Merge git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[linux-2.6] / arch / sparc / mm / srmmu.c
1 /*
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/bootmem.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21
22 #include <asm/bitext.h>
23 #include <asm/page.h>
24 #include <asm/pgalloc.h>
25 #include <asm/pgtable.h>
26 #include <asm/io.h>
27 #include <asm/kdebug.h>
28 #include <asm/vaddrs.h>
29 #include <asm/traps.h>
30 #include <asm/smp.h>
31 #include <asm/mbus.h>
32 #include <asm/cache.h>
33 #include <asm/oplib.h>
34 #include <asm/sbus.h>
35 #include <asm/asi.h>
36 #include <asm/msi.h>
37 #include <asm/a.out.h>
38 #include <asm/mmu_context.h>
39 #include <asm/io-unit.h>
40 #include <asm/cacheflush.h>
41 #include <asm/tlbflush.h>
42
43 /* Now the cpu specific definitions. */
44 #include <asm/viking.h>
45 #include <asm/mxcc.h>
46 #include <asm/ross.h>
47 #include <asm/tsunami.h>
48 #include <asm/swift.h>
49 #include <asm/turbosparc.h>
50
51 #include <asm/btfixup.h>
52
53 enum mbus_module srmmu_modtype;
54 unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
57
58 extern struct resource sparc_iomap;
59
60 extern unsigned long last_valid_pfn;
61
62 extern unsigned long page_kernel;
63
64 pgd_t *srmmu_swapper_pg_dir;
65
66 #ifdef CONFIG_SMP
67 #define FLUSH_BEGIN(mm)
68 #define FLUSH_END
69 #else
70 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
71 #define FLUSH_END       }
72 #endif
73
74 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
75 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
76
77 int flush_page_for_dma_global = 1;
78
79 #ifdef CONFIG_SMP
80 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
81 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
82 #endif
83
84 char *srmmu_name;
85
86 ctxd_t *srmmu_ctx_table_phys;
87 ctxd_t *srmmu_context_table;
88
89 int viking_mxcc_present;
90 static DEFINE_SPINLOCK(srmmu_context_spinlock);
91
92 int is_hypersparc;
93
94 /*
95  * In general all page table modifications should use the V8 atomic
96  * swap instruction.  This insures the mmu and the cpu are in sync
97  * with respect to ref/mod bits in the page tables.
98  */
99 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
100 {
101         __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
102         return value;
103 }
104
105 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
106 {
107         srmmu_swap((unsigned long *)ptep, pte_val(pteval));
108 }
109
110 /* The very generic SRMMU page table operations. */
111 static inline int srmmu_device_memory(unsigned long x)
112 {
113         return ((x & 0xF0000000) != 0);
114 }
115
116 int srmmu_cache_pagetables;
117
118 /* these will be initialized in srmmu_nocache_calcsize() */
119 unsigned long srmmu_nocache_size;
120 unsigned long srmmu_nocache_end;
121
122 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
123 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
124
125 /* The context table is a nocache user with the biggest alignment needs. */
126 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
127
128 void *srmmu_nocache_pool;
129 void *srmmu_nocache_bitmap;
130 static struct bit_map srmmu_nocache_map;
131
132 static unsigned long srmmu_pte_pfn(pte_t pte)
133 {
134         if (srmmu_device_memory(pte_val(pte))) {
135                 /* Just return something that will cause
136                  * pfn_valid() to return false.  This makes
137                  * copy_one_pte() to just directly copy to
138                  * PTE over.
139                  */
140                 return ~0UL;
141         }
142         return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
143 }
144
145 static struct page *srmmu_pmd_page(pmd_t pmd)
146 {
147
148         if (srmmu_device_memory(pmd_val(pmd)))
149                 BUG();
150         return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
151 }
152
153 static inline unsigned long srmmu_pgd_page(pgd_t pgd)
154 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
155
156
157 static inline int srmmu_pte_none(pte_t pte)
158 { return !(pte_val(pte) & 0xFFFFFFF); }
159
160 static inline int srmmu_pte_present(pte_t pte)
161 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
162
163 static inline int srmmu_pte_read(pte_t pte)
164 { return !(pte_val(pte) & SRMMU_NOREAD); }
165
166 static inline void srmmu_pte_clear(pte_t *ptep)
167 { srmmu_set_pte(ptep, __pte(0)); }
168
169 static inline int srmmu_pmd_none(pmd_t pmd)
170 { return !(pmd_val(pmd) & 0xFFFFFFF); }
171
172 static inline int srmmu_pmd_bad(pmd_t pmd)
173 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
174
175 static inline int srmmu_pmd_present(pmd_t pmd)
176 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
177
178 static inline void srmmu_pmd_clear(pmd_t *pmdp) {
179         int i;
180         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
181                 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
182 }
183
184 static inline int srmmu_pgd_none(pgd_t pgd)          
185 { return !(pgd_val(pgd) & 0xFFFFFFF); }
186
187 static inline int srmmu_pgd_bad(pgd_t pgd)
188 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
189
190 static inline int srmmu_pgd_present(pgd_t pgd)
191 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
192
193 static inline void srmmu_pgd_clear(pgd_t * pgdp)
194 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
195
196 static inline pte_t srmmu_pte_wrprotect(pte_t pte)
197 { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
198
199 static inline pte_t srmmu_pte_mkclean(pte_t pte)
200 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
201
202 static inline pte_t srmmu_pte_mkold(pte_t pte)
203 { return __pte(pte_val(pte) & ~SRMMU_REF);}
204
205 static inline pte_t srmmu_pte_mkwrite(pte_t pte)
206 { return __pte(pte_val(pte) | SRMMU_WRITE);}
207
208 static inline pte_t srmmu_pte_mkdirty(pte_t pte)
209 { return __pte(pte_val(pte) | SRMMU_DIRTY);}
210
211 static inline pte_t srmmu_pte_mkyoung(pte_t pte)
212 { return __pte(pte_val(pte) | SRMMU_REF);}
213
214 /*
215  * Conversion functions: convert a page and protection to a page entry,
216  * and a page entry and page directory to the page they refer to.
217  */
218 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
219 { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
220
221 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
222 { return __pte(((page) >> 4) | pgprot_val(pgprot)); }
223
224 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
225 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
226
227 /* XXX should we hyper_flush_whole_icache here - Anton */
228 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
229 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
230
231 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
232 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
233
234 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
235 {
236         unsigned long ptp;      /* Physical address, shifted right by 4 */
237         int i;
238
239         ptp = __nocache_pa((unsigned long) ptep) >> 4;
240         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
241                 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
242                 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
243         }
244 }
245
246 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
247 {
248         unsigned long ptp;      /* Physical address, shifted right by 4 */
249         int i;
250
251         ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);      /* watch for overflow */
252         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
253                 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
254                 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
255         }
256 }
257
258 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
259 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
260
261 /* to find an entry in a top-level page table... */
262 static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
263 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
264
265 /* Find an entry in the second-level page table.. */
266 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
267 {
268         return (pmd_t *) srmmu_pgd_page(*dir) +
269             ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
270 }
271
272 /* Find an entry in the third-level page table.. */ 
273 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
274 {
275         void *pte;
276
277         pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
278         return (pte_t *) pte +
279             ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
280 }
281
282 static unsigned long srmmu_swp_type(swp_entry_t entry)
283 {
284         return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
285 }
286
287 static unsigned long srmmu_swp_offset(swp_entry_t entry)
288 {
289         return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
290 }
291
292 static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
293 {
294         return (swp_entry_t) {
295                   (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
296                 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
297 }
298
299 /*
300  * size: bytes to allocate in the nocache area.
301  * align: bytes, number to align at.
302  * Returns the virtual address of the allocated area.
303  */
304 static unsigned long __srmmu_get_nocache(int size, int align)
305 {
306         int offset;
307
308         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
309                 printk("Size 0x%x too small for nocache request\n", size);
310                 size = SRMMU_NOCACHE_BITMAP_SHIFT;
311         }
312         if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
313                 printk("Size 0x%x unaligned int nocache request\n", size);
314                 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
315         }
316         BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
317
318         offset = bit_map_string_get(&srmmu_nocache_map,
319                                         size >> SRMMU_NOCACHE_BITMAP_SHIFT,
320                                         align >> SRMMU_NOCACHE_BITMAP_SHIFT);
321         if (offset == -1) {
322                 printk("srmmu: out of nocache %d: %d/%d\n",
323                     size, (int) srmmu_nocache_size,
324                     srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
325                 return 0;
326         }
327
328         return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
329 }
330
331 unsigned inline long srmmu_get_nocache(int size, int align)
332 {
333         unsigned long tmp;
334
335         tmp = __srmmu_get_nocache(size, align);
336
337         if (tmp)
338                 memset((void *)tmp, 0, size);
339
340         return tmp;
341 }
342
343 void srmmu_free_nocache(unsigned long vaddr, int size)
344 {
345         int offset;
346
347         if (vaddr < SRMMU_NOCACHE_VADDR) {
348                 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
349                     vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
350                 BUG();
351         }
352         if (vaddr+size > srmmu_nocache_end) {
353                 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
354                     vaddr, srmmu_nocache_end);
355                 BUG();
356         }
357         if (size & (size-1)) {
358                 printk("Size 0x%x is not a power of 2\n", size);
359                 BUG();
360         }
361         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
362                 printk("Size 0x%x is too small\n", size);
363                 BUG();
364         }
365         if (vaddr & (size-1)) {
366                 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
367                 BUG();
368         }
369
370         offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
371         size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
372
373         bit_map_clear(&srmmu_nocache_map, offset, size);
374 }
375
376 void srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end);
377
378 extern unsigned long probe_memory(void);        /* in fault.c */
379
380 /*
381  * Reserve nocache dynamically proportionally to the amount of
382  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
383  */
384 void srmmu_nocache_calcsize(void)
385 {
386         unsigned long sysmemavail = probe_memory() / 1024;
387         int srmmu_nocache_npages;
388
389         srmmu_nocache_npages =
390                 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
391
392  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
393         // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
394         if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
395                 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
396
397         /* anything above 1280 blows up */
398         if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
399                 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
400
401         srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
402         srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
403 }
404
405 void __init srmmu_nocache_init(void)
406 {
407         unsigned int bitmap_bits;
408         pgd_t *pgd;
409         pmd_t *pmd;
410         pte_t *pte;
411         unsigned long paddr, vaddr;
412         unsigned long pteval;
413
414         bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
415
416         srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
417                 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
418         memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
419
420         srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
421         bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
422
423         srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
424         memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
425         init_mm.pgd = srmmu_swapper_pg_dir;
426
427         srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
428
429         paddr = __pa((unsigned long)srmmu_nocache_pool);
430         vaddr = SRMMU_NOCACHE_VADDR;
431
432         while (vaddr < srmmu_nocache_end) {
433                 pgd = pgd_offset_k(vaddr);
434                 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
435                 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
436
437                 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
438
439                 if (srmmu_cache_pagetables)
440                         pteval |= SRMMU_CACHE;
441
442                 srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
443
444                 vaddr += PAGE_SIZE;
445                 paddr += PAGE_SIZE;
446         }
447
448         flush_cache_all();
449         flush_tlb_all();
450 }
451
452 static inline pgd_t *srmmu_get_pgd_fast(void)
453 {
454         pgd_t *pgd = NULL;
455
456         pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
457         if (pgd) {
458                 pgd_t *init = pgd_offset_k(0);
459                 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
460                 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
461                                                 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
462         }
463
464         return pgd;
465 }
466
467 static void srmmu_free_pgd_fast(pgd_t *pgd)
468 {
469         srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
470 }
471
472 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
473 {
474         return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
475 }
476
477 static void srmmu_pmd_free(pmd_t * pmd)
478 {
479         srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
480 }
481
482 /*
483  * Hardware needs alignment to 256 only, but we align to whole page size
484  * to reduce fragmentation problems due to the buddy principle.
485  * XXX Provide actual fragmentation statistics in /proc.
486  *
487  * Alignments up to the page size are the same for physical and virtual
488  * addresses of the nocache area.
489  */
490 static pte_t *
491 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
492 {
493         return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
494 }
495
496 static struct page *
497 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
498 {
499         unsigned long pte;
500
501         if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
502                 return NULL;
503         return pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
504 }
505
506 static void srmmu_free_pte_fast(pte_t *pte)
507 {
508         srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
509 }
510
511 static void srmmu_pte_free(struct page *pte)
512 {
513         unsigned long p;
514
515         p = (unsigned long)page_address(pte);   /* Cached address (for test) */
516         if (p == 0)
517                 BUG();
518         p = page_to_pfn(pte) << PAGE_SHIFT;     /* Physical address */
519         p = (unsigned long) __nocache_va(p);    /* Nocached virtual */
520         srmmu_free_nocache(p, PTE_SIZE);
521 }
522
523 /*
524  */
525 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
526 {
527         struct ctx_list *ctxp;
528
529         ctxp = ctx_free.next;
530         if(ctxp != &ctx_free) {
531                 remove_from_ctx_list(ctxp);
532                 add_to_used_ctxlist(ctxp);
533                 mm->context = ctxp->ctx_number;
534                 ctxp->ctx_mm = mm;
535                 return;
536         }
537         ctxp = ctx_used.next;
538         if(ctxp->ctx_mm == old_mm)
539                 ctxp = ctxp->next;
540         if(ctxp == &ctx_used)
541                 panic("out of mmu contexts");
542         flush_cache_mm(ctxp->ctx_mm);
543         flush_tlb_mm(ctxp->ctx_mm);
544         remove_from_ctx_list(ctxp);
545         add_to_used_ctxlist(ctxp);
546         ctxp->ctx_mm->context = NO_CONTEXT;
547         ctxp->ctx_mm = mm;
548         mm->context = ctxp->ctx_number;
549 }
550
551 static inline void free_context(int context)
552 {
553         struct ctx_list *ctx_old;
554
555         ctx_old = ctx_list_pool + context;
556         remove_from_ctx_list(ctx_old);
557         add_to_free_ctxlist(ctx_old);
558 }
559
560
561 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
562     struct task_struct *tsk, int cpu)
563 {
564         if(mm->context == NO_CONTEXT) {
565                 spin_lock(&srmmu_context_spinlock);
566                 alloc_context(old_mm, mm);
567                 spin_unlock(&srmmu_context_spinlock);
568                 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
569         }
570
571         if (is_hypersparc)
572                 hyper_flush_whole_icache();
573
574         srmmu_set_context(mm->context);
575 }
576
577 /* Low level IO area allocation on the SRMMU. */
578 static inline void srmmu_mapioaddr(unsigned long physaddr,
579     unsigned long virt_addr, int bus_type)
580 {
581         pgd_t *pgdp;
582         pmd_t *pmdp;
583         pte_t *ptep;
584         unsigned long tmp;
585
586         physaddr &= PAGE_MASK;
587         pgdp = pgd_offset_k(virt_addr);
588         pmdp = srmmu_pmd_offset(pgdp, virt_addr);
589         ptep = srmmu_pte_offset(pmdp, virt_addr);
590         tmp = (physaddr >> 4) | SRMMU_ET_PTE;
591
592         /*
593          * I need to test whether this is consistent over all
594          * sun4m's.  The bus_type represents the upper 4 bits of
595          * 36-bit physical address on the I/O space lines...
596          */
597         tmp |= (bus_type << 28);
598         tmp |= SRMMU_PRIV;
599         __flush_page_to_ram(virt_addr);
600         srmmu_set_pte(ptep, __pte(tmp));
601 }
602
603 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
604     unsigned long xva, unsigned int len)
605 {
606         while (len != 0) {
607                 len -= PAGE_SIZE;
608                 srmmu_mapioaddr(xpa, xva, bus);
609                 xva += PAGE_SIZE;
610                 xpa += PAGE_SIZE;
611         }
612         flush_tlb_all();
613 }
614
615 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
616 {
617         pgd_t *pgdp;
618         pmd_t *pmdp;
619         pte_t *ptep;
620
621         pgdp = pgd_offset_k(virt_addr);
622         pmdp = srmmu_pmd_offset(pgdp, virt_addr);
623         ptep = srmmu_pte_offset(pmdp, virt_addr);
624
625         /* No need to flush uncacheable page. */
626         srmmu_pte_clear(ptep);
627 }
628
629 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
630 {
631         while (len != 0) {
632                 len -= PAGE_SIZE;
633                 srmmu_unmapioaddr(virt_addr);
634                 virt_addr += PAGE_SIZE;
635         }
636         flush_tlb_all();
637 }
638
639 /*
640  * On the SRMMU we do not have the problems with limited tlb entries
641  * for mapping kernel pages, so we just take things from the free page
642  * pool.  As a side effect we are putting a little too much pressure
643  * on the gfp() subsystem.  This setup also makes the logic of the
644  * iommu mapping code a lot easier as we can transparently handle
645  * mappings on the kernel stack without any special code as we did
646  * need on the sun4c.
647  */
648 struct thread_info *srmmu_alloc_thread_info(void)
649 {
650         struct thread_info *ret;
651
652         ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
653                                                      THREAD_INFO_ORDER);
654 #ifdef CONFIG_DEBUG_STACK_USAGE
655         if (ret)
656                 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
657 #endif /* DEBUG_STACK_USAGE */
658
659         return ret;
660 }
661
662 static void srmmu_free_thread_info(struct thread_info *ti)
663 {
664         free_pages((unsigned long)ti, THREAD_INFO_ORDER);
665 }
666
667 /* tsunami.S */
668 extern void tsunami_flush_cache_all(void);
669 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
670 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
671 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
672 extern void tsunami_flush_page_to_ram(unsigned long page);
673 extern void tsunami_flush_page_for_dma(unsigned long page);
674 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
675 extern void tsunami_flush_tlb_all(void);
676 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
677 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
678 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
679 extern void tsunami_setup_blockops(void);
680
681 /*
682  * Workaround, until we find what's going on with Swift. When low on memory,
683  * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
684  * out it is already in page tables/ fault again on the same instruction.
685  * I really don't understand it, have checked it and contexts
686  * are right, flush_tlb_all is done as well, and it faults again...
687  * Strange. -jj
688  *
689  * The following code is a deadwood that may be necessary when
690  * we start to make precise page flushes again. --zaitcev
691  */
692 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
693 {
694 #if 0
695         static unsigned long last;
696         unsigned int val;
697         /* unsigned int n; */
698
699         if (address == last) {
700                 val = srmmu_hwprobe(address);
701                 if (val != 0 && pte_val(pte) != val) {
702                         printk("swift_update_mmu_cache: "
703                             "addr %lx put %08x probed %08x from %p\n",
704                             address, pte_val(pte), val,
705                             __builtin_return_address(0));
706                         srmmu_flush_whole_tlb();
707                 }
708         }
709         last = address;
710 #endif
711 }
712
713 /* swift.S */
714 extern void swift_flush_cache_all(void);
715 extern void swift_flush_cache_mm(struct mm_struct *mm);
716 extern void swift_flush_cache_range(struct vm_area_struct *vma,
717                                     unsigned long start, unsigned long end);
718 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
719 extern void swift_flush_page_to_ram(unsigned long page);
720 extern void swift_flush_page_for_dma(unsigned long page);
721 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
722 extern void swift_flush_tlb_all(void);
723 extern void swift_flush_tlb_mm(struct mm_struct *mm);
724 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
725                                   unsigned long start, unsigned long end);
726 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
727
728 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
729 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
730 {
731         int cctx, ctx1;
732
733         page &= PAGE_MASK;
734         if ((ctx1 = vma->vm_mm->context) != -1) {
735                 cctx = srmmu_get_context();
736 /* Is context # ever different from current context? P3 */
737                 if (cctx != ctx1) {
738                         printk("flush ctx %02x curr %02x\n", ctx1, cctx);
739                         srmmu_set_context(ctx1);
740                         swift_flush_page(page);
741                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
742                                         "r" (page), "i" (ASI_M_FLUSH_PROBE));
743                         srmmu_set_context(cctx);
744                 } else {
745                          /* Rm. prot. bits from virt. c. */
746                         /* swift_flush_cache_all(); */
747                         /* swift_flush_cache_page(vma, page); */
748                         swift_flush_page(page);
749
750                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
751                                 "r" (page), "i" (ASI_M_FLUSH_PROBE));
752                         /* same as above: srmmu_flush_tlb_page() */
753                 }
754         }
755 }
756 #endif
757
758 /*
759  * The following are all MBUS based SRMMU modules, and therefore could
760  * be found in a multiprocessor configuration.  On the whole, these
761  * chips seems to be much more touchy about DVMA and page tables
762  * with respect to cache coherency.
763  */
764
765 /* Cypress flushes. */
766 static void cypress_flush_cache_all(void)
767 {
768         volatile unsigned long cypress_sucks;
769         unsigned long faddr, tagval;
770
771         flush_user_windows();
772         for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
773                 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
774                                      "=r" (tagval) :
775                                      "r" (faddr), "r" (0x40000),
776                                      "i" (ASI_M_DATAC_TAG));
777
778                 /* If modified and valid, kick it. */
779                 if((tagval & 0x60) == 0x60)
780                         cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
781         }
782 }
783
784 static void cypress_flush_cache_mm(struct mm_struct *mm)
785 {
786         register unsigned long a, b, c, d, e, f, g;
787         unsigned long flags, faddr;
788         int octx;
789
790         FLUSH_BEGIN(mm)
791         flush_user_windows();
792         local_irq_save(flags);
793         octx = srmmu_get_context();
794         srmmu_set_context(mm->context);
795         a = 0x20; b = 0x40; c = 0x60;
796         d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
797
798         faddr = (0x10000 - 0x100);
799         goto inside;
800         do {
801                 faddr -= 0x100;
802         inside:
803                 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
804                                      "sta %%g0, [%0 + %2] %1\n\t"
805                                      "sta %%g0, [%0 + %3] %1\n\t"
806                                      "sta %%g0, [%0 + %4] %1\n\t"
807                                      "sta %%g0, [%0 + %5] %1\n\t"
808                                      "sta %%g0, [%0 + %6] %1\n\t"
809                                      "sta %%g0, [%0 + %7] %1\n\t"
810                                      "sta %%g0, [%0 + %8] %1\n\t" : :
811                                      "r" (faddr), "i" (ASI_M_FLUSH_CTX),
812                                      "r" (a), "r" (b), "r" (c), "r" (d),
813                                      "r" (e), "r" (f), "r" (g));
814         } while(faddr);
815         srmmu_set_context(octx);
816         local_irq_restore(flags);
817         FLUSH_END
818 }
819
820 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
821 {
822         struct mm_struct *mm = vma->vm_mm;
823         register unsigned long a, b, c, d, e, f, g;
824         unsigned long flags, faddr;
825         int octx;
826
827         FLUSH_BEGIN(mm)
828         flush_user_windows();
829         local_irq_save(flags);
830         octx = srmmu_get_context();
831         srmmu_set_context(mm->context);
832         a = 0x20; b = 0x40; c = 0x60;
833         d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
834
835         start &= SRMMU_REAL_PMD_MASK;
836         while(start < end) {
837                 faddr = (start + (0x10000 - 0x100));
838                 goto inside;
839                 do {
840                         faddr -= 0x100;
841                 inside:
842                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
843                                              "sta %%g0, [%0 + %2] %1\n\t"
844                                              "sta %%g0, [%0 + %3] %1\n\t"
845                                              "sta %%g0, [%0 + %4] %1\n\t"
846                                              "sta %%g0, [%0 + %5] %1\n\t"
847                                              "sta %%g0, [%0 + %6] %1\n\t"
848                                              "sta %%g0, [%0 + %7] %1\n\t"
849                                              "sta %%g0, [%0 + %8] %1\n\t" : :
850                                              "r" (faddr),
851                                              "i" (ASI_M_FLUSH_SEG),
852                                              "r" (a), "r" (b), "r" (c), "r" (d),
853                                              "r" (e), "r" (f), "r" (g));
854                 } while (faddr != start);
855                 start += SRMMU_REAL_PMD_SIZE;
856         }
857         srmmu_set_context(octx);
858         local_irq_restore(flags);
859         FLUSH_END
860 }
861
862 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
863 {
864         register unsigned long a, b, c, d, e, f, g;
865         struct mm_struct *mm = vma->vm_mm;
866         unsigned long flags, line;
867         int octx;
868
869         FLUSH_BEGIN(mm)
870         flush_user_windows();
871         local_irq_save(flags);
872         octx = srmmu_get_context();
873         srmmu_set_context(mm->context);
874         a = 0x20; b = 0x40; c = 0x60;
875         d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
876
877         page &= PAGE_MASK;
878         line = (page + PAGE_SIZE) - 0x100;
879         goto inside;
880         do {
881                 line -= 0x100;
882         inside:
883                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
884                                              "sta %%g0, [%0 + %2] %1\n\t"
885                                              "sta %%g0, [%0 + %3] %1\n\t"
886                                              "sta %%g0, [%0 + %4] %1\n\t"
887                                              "sta %%g0, [%0 + %5] %1\n\t"
888                                              "sta %%g0, [%0 + %6] %1\n\t"
889                                              "sta %%g0, [%0 + %7] %1\n\t"
890                                              "sta %%g0, [%0 + %8] %1\n\t" : :
891                                              "r" (line),
892                                              "i" (ASI_M_FLUSH_PAGE),
893                                              "r" (a), "r" (b), "r" (c), "r" (d),
894                                              "r" (e), "r" (f), "r" (g));
895         } while(line != page);
896         srmmu_set_context(octx);
897         local_irq_restore(flags);
898         FLUSH_END
899 }
900
901 /* Cypress is copy-back, at least that is how we configure it. */
902 static void cypress_flush_page_to_ram(unsigned long page)
903 {
904         register unsigned long a, b, c, d, e, f, g;
905         unsigned long line;
906
907         a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
908         page &= PAGE_MASK;
909         line = (page + PAGE_SIZE) - 0x100;
910         goto inside;
911         do {
912                 line -= 0x100;
913         inside:
914                 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
915                                      "sta %%g0, [%0 + %2] %1\n\t"
916                                      "sta %%g0, [%0 + %3] %1\n\t"
917                                      "sta %%g0, [%0 + %4] %1\n\t"
918                                      "sta %%g0, [%0 + %5] %1\n\t"
919                                      "sta %%g0, [%0 + %6] %1\n\t"
920                                      "sta %%g0, [%0 + %7] %1\n\t"
921                                      "sta %%g0, [%0 + %8] %1\n\t" : :
922                                      "r" (line),
923                                      "i" (ASI_M_FLUSH_PAGE),
924                                      "r" (a), "r" (b), "r" (c), "r" (d),
925                                      "r" (e), "r" (f), "r" (g));
926         } while(line != page);
927 }
928
929 /* Cypress is also IO cache coherent. */
930 static void cypress_flush_page_for_dma(unsigned long page)
931 {
932 }
933
934 /* Cypress has unified L2 VIPT, from which both instructions and data
935  * are stored.  It does not have an onboard icache of any sort, therefore
936  * no flush is necessary.
937  */
938 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
939 {
940 }
941
942 static void cypress_flush_tlb_all(void)
943 {
944         srmmu_flush_whole_tlb();
945 }
946
947 static void cypress_flush_tlb_mm(struct mm_struct *mm)
948 {
949         FLUSH_BEGIN(mm)
950         __asm__ __volatile__(
951         "lda    [%0] %3, %%g5\n\t"
952         "sta    %2, [%0] %3\n\t"
953         "sta    %%g0, [%1] %4\n\t"
954         "sta    %%g5, [%0] %3\n"
955         : /* no outputs */
956         : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
957           "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
958         : "g5");
959         FLUSH_END
960 }
961
962 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
963 {
964         struct mm_struct *mm = vma->vm_mm;
965         unsigned long size;
966
967         FLUSH_BEGIN(mm)
968         start &= SRMMU_PGDIR_MASK;
969         size = SRMMU_PGDIR_ALIGN(end) - start;
970         __asm__ __volatile__(
971                 "lda    [%0] %5, %%g5\n\t"
972                 "sta    %1, [%0] %5\n"
973                 "1:\n\t"
974                 "subcc  %3, %4, %3\n\t"
975                 "bne    1b\n\t"
976                 " sta   %%g0, [%2 + %3] %6\n\t"
977                 "sta    %%g5, [%0] %5\n"
978         : /* no outputs */
979         : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
980           "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
981           "i" (ASI_M_FLUSH_PROBE)
982         : "g5", "cc");
983         FLUSH_END
984 }
985
986 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
987 {
988         struct mm_struct *mm = vma->vm_mm;
989
990         FLUSH_BEGIN(mm)
991         __asm__ __volatile__(
992         "lda    [%0] %3, %%g5\n\t"
993         "sta    %1, [%0] %3\n\t"
994         "sta    %%g0, [%2] %4\n\t"
995         "sta    %%g5, [%0] %3\n"
996         : /* no outputs */
997         : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
998           "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
999         : "g5");
1000         FLUSH_END
1001 }
1002
1003 /* viking.S */
1004 extern void viking_flush_cache_all(void);
1005 extern void viking_flush_cache_mm(struct mm_struct *mm);
1006 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1007                                      unsigned long end);
1008 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1009 extern void viking_flush_page_to_ram(unsigned long page);
1010 extern void viking_flush_page_for_dma(unsigned long page);
1011 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1012 extern void viking_flush_page(unsigned long page);
1013 extern void viking_mxcc_flush_page(unsigned long page);
1014 extern void viking_flush_tlb_all(void);
1015 extern void viking_flush_tlb_mm(struct mm_struct *mm);
1016 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1017                                    unsigned long end);
1018 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1019                                   unsigned long page);
1020 extern void sun4dsmp_flush_tlb_all(void);
1021 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1022 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1023                                    unsigned long end);
1024 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1025                                   unsigned long page);
1026
1027 /* hypersparc.S */
1028 extern void hypersparc_flush_cache_all(void);
1029 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1030 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1031 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1032 extern void hypersparc_flush_page_to_ram(unsigned long page);
1033 extern void hypersparc_flush_page_for_dma(unsigned long page);
1034 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1035 extern void hypersparc_flush_tlb_all(void);
1036 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1037 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1038 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1039 extern void hypersparc_setup_blockops(void);
1040
1041 /*
1042  * NOTE: All of this startup code assumes the low 16mb (approx.) of
1043  *       kernel mappings are done with one single contiguous chunk of
1044  *       ram.  On small ram machines (classics mainly) we only get
1045  *       around 8mb mapped for us.
1046  */
1047
1048 void __init early_pgtable_allocfail(char *type)
1049 {
1050         prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1051         prom_halt();
1052 }
1053
1054 void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1055 {
1056         pgd_t *pgdp;
1057         pmd_t *pmdp;
1058         pte_t *ptep;
1059
1060         while(start < end) {
1061                 pgdp = pgd_offset_k(start);
1062                 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1063                         pmdp = (pmd_t *) __srmmu_get_nocache(
1064                             SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1065                         if (pmdp == NULL)
1066                                 early_pgtable_allocfail("pmd");
1067                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1068                         srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1069                 }
1070                 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1071                 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1072                         ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1073                         if (ptep == NULL)
1074                                 early_pgtable_allocfail("pte");
1075                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
1076                         srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1077                 }
1078                 if (start > (0xffffffffUL - PMD_SIZE))
1079                         break;
1080                 start = (start + PMD_SIZE) & PMD_MASK;
1081         }
1082 }
1083
1084 void __init srmmu_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1085 {
1086         pgd_t *pgdp;
1087         pmd_t *pmdp;
1088         pte_t *ptep;
1089
1090         while(start < end) {
1091                 pgdp = pgd_offset_k(start);
1092                 if(srmmu_pgd_none(*pgdp)) {
1093                         pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1094                         if (pmdp == NULL)
1095                                 early_pgtable_allocfail("pmd");
1096                         memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1097                         srmmu_pgd_set(pgdp, pmdp);
1098                 }
1099                 pmdp = srmmu_pmd_offset(pgdp, start);
1100                 if(srmmu_pmd_none(*pmdp)) {
1101                         ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1102                                                              PTE_SIZE);
1103                         if (ptep == NULL)
1104                                 early_pgtable_allocfail("pte");
1105                         memset(ptep, 0, PTE_SIZE);
1106                         srmmu_pmd_set(pmdp, ptep);
1107                 }
1108                 if (start > (0xffffffffUL - PMD_SIZE))
1109                         break;
1110                 start = (start + PMD_SIZE) & PMD_MASK;
1111         }
1112 }
1113
1114 /*
1115  * This is much cleaner than poking around physical address space
1116  * looking at the prom's page table directly which is what most
1117  * other OS's do.  Yuck... this is much better.
1118  */
1119 void __init srmmu_inherit_prom_mappings(unsigned long start,unsigned long end)
1120 {
1121         pgd_t *pgdp;
1122         pmd_t *pmdp;
1123         pte_t *ptep;
1124         int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1125         unsigned long prompte;
1126
1127         while(start <= end) {
1128                 if (start == 0)
1129                         break; /* probably wrap around */
1130                 if(start == 0xfef00000)
1131                         start = KADB_DEBUGGER_BEGVM;
1132                 if(!(prompte = srmmu_hwprobe(start))) {
1133                         start += PAGE_SIZE;
1134                         continue;
1135                 }
1136     
1137                 /* A red snapper, see what it really is. */
1138                 what = 0;
1139     
1140                 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1141                         if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1142                                 what = 1;
1143                 }
1144     
1145                 if(!(start & ~(SRMMU_PGDIR_MASK))) {
1146                         if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1147                            prompte)
1148                                 what = 2;
1149                 }
1150     
1151                 pgdp = pgd_offset_k(start);
1152                 if(what == 2) {
1153                         *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1154                         start += SRMMU_PGDIR_SIZE;
1155                         continue;
1156                 }
1157                 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1158                         pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1159                         if (pmdp == NULL)
1160                                 early_pgtable_allocfail("pmd");
1161                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1162                         srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1163                 }
1164                 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1165                 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1166                         ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1167                                                              PTE_SIZE);
1168                         if (ptep == NULL)
1169                                 early_pgtable_allocfail("pte");
1170                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
1171                         srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1172                 }
1173                 if(what == 1) {
1174                         /*
1175                          * We bend the rule where all 16 PTPs in a pmd_t point
1176                          * inside the same PTE page, and we leak a perfectly
1177                          * good hardware PTE piece. Alternatives seem worse.
1178                          */
1179                         unsigned int x; /* Index of HW PMD in soft cluster */
1180                         x = (start >> PMD_SHIFT) & 15;
1181                         *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1182                         start += SRMMU_REAL_PMD_SIZE;
1183                         continue;
1184                 }
1185                 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1186                 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1187                 start += PAGE_SIZE;
1188         }
1189 }
1190
1191 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1192
1193 /* Create a third-level SRMMU 16MB page mapping. */
1194 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1195 {
1196         pgd_t *pgdp = pgd_offset_k(vaddr);
1197         unsigned long big_pte;
1198
1199         big_pte = KERNEL_PTE(phys_base >> 4);
1200         *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1201 }
1202
1203 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1204 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1205 {
1206         unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1207         unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1208         unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1209         /* Map "low" memory only */
1210         const unsigned long min_vaddr = PAGE_OFFSET;
1211         const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1212
1213         if (vstart < min_vaddr || vstart >= max_vaddr)
1214                 return vstart;
1215         
1216         if (vend > max_vaddr || vend < min_vaddr)
1217                 vend = max_vaddr;
1218
1219         while(vstart < vend) {
1220                 do_large_mapping(vstart, pstart);
1221                 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1222         }
1223         return vstart;
1224 }
1225
1226 static inline void memprobe_error(char *msg)
1227 {
1228         prom_printf(msg);
1229         prom_printf("Halting now...\n");
1230         prom_halt();
1231 }
1232
1233 static inline void map_kernel(void)
1234 {
1235         int i;
1236
1237         if (phys_base > 0) {
1238                 do_large_mapping(PAGE_OFFSET, phys_base);
1239         }
1240
1241         for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1242                 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1243         }
1244
1245         BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1246 }
1247
1248 /* Paging initialization on the Sparc Reference MMU. */
1249 extern void sparc_context_init(int);
1250
1251 void (*poke_srmmu)(void) __initdata = NULL;
1252
1253 extern unsigned long bootmem_init(unsigned long *pages_avail);
1254
1255 void __init srmmu_paging_init(void)
1256 {
1257         int i, cpunode;
1258         char node_str[128];
1259         pgd_t *pgd;
1260         pmd_t *pmd;
1261         pte_t *pte;
1262         unsigned long pages_avail;
1263
1264         sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1265
1266         if (sparc_cpu_model == sun4d)
1267                 num_contexts = 65536; /* We know it is Viking */
1268         else {
1269                 /* Find the number of contexts on the srmmu. */
1270                 cpunode = prom_getchild(prom_root_node);
1271                 num_contexts = 0;
1272                 while(cpunode != 0) {
1273                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1274                         if(!strcmp(node_str, "cpu")) {
1275                                 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1276                                 break;
1277                         }
1278                         cpunode = prom_getsibling(cpunode);
1279                 }
1280         }
1281
1282         if(!num_contexts) {
1283                 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1284                 prom_halt();
1285         }
1286
1287         pages_avail = 0;
1288         last_valid_pfn = bootmem_init(&pages_avail);
1289
1290         srmmu_nocache_calcsize();
1291         srmmu_nocache_init();
1292         srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1293         map_kernel();
1294
1295         /* ctx table has to be physically aligned to its size */
1296         srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1297         srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1298
1299         for(i = 0; i < num_contexts; i++)
1300                 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1301
1302         flush_cache_all();
1303         srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1304 #ifdef CONFIG_SMP
1305         /* Stop from hanging here... */
1306         local_flush_tlb_all();
1307 #else
1308         flush_tlb_all();
1309 #endif
1310         poke_srmmu();
1311
1312 #ifdef CONFIG_SUN_IO
1313         srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1314         srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1315 #endif
1316
1317         srmmu_allocate_ptable_skeleton(
1318                 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1319         srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1320
1321         pgd = pgd_offset_k(PKMAP_BASE);
1322         pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1323         pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1324         pkmap_page_table = pte;
1325
1326         flush_cache_all();
1327         flush_tlb_all();
1328
1329         sparc_context_init(num_contexts);
1330
1331         kmap_init();
1332
1333         {
1334                 unsigned long zones_size[MAX_NR_ZONES];
1335                 unsigned long zholes_size[MAX_NR_ZONES];
1336                 unsigned long npages;
1337                 int znum;
1338
1339                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1340                         zones_size[znum] = zholes_size[znum] = 0;
1341
1342                 npages = max_low_pfn - pfn_base;
1343
1344                 zones_size[ZONE_DMA] = npages;
1345                 zholes_size[ZONE_DMA] = npages - pages_avail;
1346
1347                 npages = highend_pfn - max_low_pfn;
1348                 zones_size[ZONE_HIGHMEM] = npages;
1349                 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1350
1351                 free_area_init_node(0, &contig_page_data, zones_size,
1352                                     pfn_base, zholes_size);
1353         }
1354 }
1355
1356 static void srmmu_mmu_info(struct seq_file *m)
1357 {
1358         seq_printf(m, 
1359                    "MMU type\t: %s\n"
1360                    "contexts\t: %d\n"
1361                    "nocache total\t: %ld\n"
1362                    "nocache used\t: %d\n",
1363                    srmmu_name,
1364                    num_contexts,
1365                    srmmu_nocache_size,
1366                    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1367 }
1368
1369 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1370 {
1371 }
1372
1373 static void srmmu_destroy_context(struct mm_struct *mm)
1374 {
1375
1376         if(mm->context != NO_CONTEXT) {
1377                 flush_cache_mm(mm);
1378                 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1379                 flush_tlb_mm(mm);
1380                 spin_lock(&srmmu_context_spinlock);
1381                 free_context(mm->context);
1382                 spin_unlock(&srmmu_context_spinlock);
1383                 mm->context = NO_CONTEXT;
1384         }
1385 }
1386
1387 /* Init various srmmu chip types. */
1388 static void __init srmmu_is_bad(void)
1389 {
1390         prom_printf("Could not determine SRMMU chip type.\n");
1391         prom_halt();
1392 }
1393
1394 static void __init init_vac_layout(void)
1395 {
1396         int nd, cache_lines;
1397         char node_str[128];
1398 #ifdef CONFIG_SMP
1399         int cpu = 0;
1400         unsigned long max_size = 0;
1401         unsigned long min_line_size = 0x10000000;
1402 #endif
1403
1404         nd = prom_getchild(prom_root_node);
1405         while((nd = prom_getsibling(nd)) != 0) {
1406                 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1407                 if(!strcmp(node_str, "cpu")) {
1408                         vac_line_size = prom_getint(nd, "cache-line-size");
1409                         if (vac_line_size == -1) {
1410                                 prom_printf("can't determine cache-line-size, "
1411                                             "halting.\n");
1412                                 prom_halt();
1413                         }
1414                         cache_lines = prom_getint(nd, "cache-nlines");
1415                         if (cache_lines == -1) {
1416                                 prom_printf("can't determine cache-nlines, halting.\n");
1417                                 prom_halt();
1418                         }
1419
1420                         vac_cache_size = cache_lines * vac_line_size;
1421 #ifdef CONFIG_SMP
1422                         if(vac_cache_size > max_size)
1423                                 max_size = vac_cache_size;
1424                         if(vac_line_size < min_line_size)
1425                                 min_line_size = vac_line_size;
1426                         //FIXME: cpus not contiguous!!
1427                         cpu++;
1428                         if (cpu >= NR_CPUS || !cpu_online(cpu))
1429                                 break;
1430 #else
1431                         break;
1432 #endif
1433                 }
1434         }
1435         if(nd == 0) {
1436                 prom_printf("No CPU nodes found, halting.\n");
1437                 prom_halt();
1438         }
1439 #ifdef CONFIG_SMP
1440         vac_cache_size = max_size;
1441         vac_line_size = min_line_size;
1442 #endif
1443         printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1444                (int)vac_cache_size, (int)vac_line_size);
1445 }
1446
1447 static void __init poke_hypersparc(void)
1448 {
1449         volatile unsigned long clear;
1450         unsigned long mreg = srmmu_get_mmureg();
1451
1452         hyper_flush_unconditional_combined();
1453
1454         mreg &= ~(HYPERSPARC_CWENABLE);
1455         mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1456         mreg |= (HYPERSPARC_CMODE);
1457
1458         srmmu_set_mmureg(mreg);
1459
1460 #if 0 /* XXX I think this is bad news... -DaveM */
1461         hyper_clear_all_tags();
1462 #endif
1463
1464         put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1465         hyper_flush_whole_icache();
1466         clear = srmmu_get_faddr();
1467         clear = srmmu_get_fstatus();
1468 }
1469
1470 static void __init init_hypersparc(void)
1471 {
1472         srmmu_name = "ROSS HyperSparc";
1473         srmmu_modtype = HyperSparc;
1474
1475         init_vac_layout();
1476
1477         is_hypersparc = 1;
1478
1479         BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1480         BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1481         BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1482         BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1483         BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1484         BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1485         BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1486
1487         BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1488         BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1489         BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1490         BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1491
1492         BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1493         BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1494         BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1495
1496
1497         poke_srmmu = poke_hypersparc;
1498
1499         hypersparc_setup_blockops();
1500 }
1501
1502 static void __init poke_cypress(void)
1503 {
1504         unsigned long mreg = srmmu_get_mmureg();
1505         unsigned long faddr, tagval;
1506         volatile unsigned long cypress_sucks;
1507         volatile unsigned long clear;
1508
1509         clear = srmmu_get_faddr();
1510         clear = srmmu_get_fstatus();
1511
1512         if (!(mreg & CYPRESS_CENABLE)) {
1513                 for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1514                         __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1515                                              "sta %%g0, [%0] %2\n\t" : :
1516                                              "r" (faddr), "r" (0x40000),
1517                                              "i" (ASI_M_DATAC_TAG));
1518                 }
1519         } else {
1520                 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1521                         __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1522                                              "=r" (tagval) :
1523                                              "r" (faddr), "r" (0x40000),
1524                                              "i" (ASI_M_DATAC_TAG));
1525
1526                         /* If modified and valid, kick it. */
1527                         if((tagval & 0x60) == 0x60)
1528                                 cypress_sucks = *(unsigned long *)
1529                                                         (0xf0020000 + faddr);
1530                 }
1531         }
1532
1533         /* And one more, for our good neighbor, Mr. Broken Cypress. */
1534         clear = srmmu_get_faddr();
1535         clear = srmmu_get_fstatus();
1536
1537         mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1538         srmmu_set_mmureg(mreg);
1539 }
1540
1541 static void __init init_cypress_common(void)
1542 {
1543         init_vac_layout();
1544
1545         BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1546         BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1547         BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1548         BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1549         BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1550         BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1551         BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1552
1553         BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1554         BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1555         BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1556         BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1557
1558
1559         BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1560         BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1561         BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1562
1563         poke_srmmu = poke_cypress;
1564 }
1565
1566 static void __init init_cypress_604(void)
1567 {
1568         srmmu_name = "ROSS Cypress-604(UP)";
1569         srmmu_modtype = Cypress;
1570         init_cypress_common();
1571 }
1572
1573 static void __init init_cypress_605(unsigned long mrev)
1574 {
1575         srmmu_name = "ROSS Cypress-605(MP)";
1576         if(mrev == 0xe) {
1577                 srmmu_modtype = Cypress_vE;
1578                 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1579         } else {
1580                 if(mrev == 0xd) {
1581                         srmmu_modtype = Cypress_vD;
1582                         hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1583                 } else {
1584                         srmmu_modtype = Cypress;
1585                 }
1586         }
1587         init_cypress_common();
1588 }
1589
1590 static void __init poke_swift(void)
1591 {
1592         unsigned long mreg;
1593
1594         /* Clear any crap from the cache or else... */
1595         swift_flush_cache_all();
1596
1597         /* Enable I & D caches */
1598         mreg = srmmu_get_mmureg();
1599         mreg |= (SWIFT_IE | SWIFT_DE);
1600         /*
1601          * The Swift branch folding logic is completely broken.  At
1602          * trap time, if things are just right, if can mistakenly
1603          * think that a trap is coming from kernel mode when in fact
1604          * it is coming from user mode (it mis-executes the branch in
1605          * the trap code).  So you see things like crashme completely
1606          * hosing your machine which is completely unacceptable.  Turn
1607          * this shit off... nice job Fujitsu.
1608          */
1609         mreg &= ~(SWIFT_BF);
1610         srmmu_set_mmureg(mreg);
1611 }
1612
1613 #define SWIFT_MASKID_ADDR  0x10003018
1614 static void __init init_swift(void)
1615 {
1616         unsigned long swift_rev;
1617
1618         __asm__ __volatile__("lda [%1] %2, %0\n\t"
1619                              "srl %0, 0x18, %0\n\t" :
1620                              "=r" (swift_rev) :
1621                              "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1622         srmmu_name = "Fujitsu Swift";
1623         switch(swift_rev) {
1624         case 0x11:
1625         case 0x20:
1626         case 0x23:
1627         case 0x30:
1628                 srmmu_modtype = Swift_lots_o_bugs;
1629                 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1630                 /*
1631                  * Gee george, I wonder why Sun is so hush hush about
1632                  * this hardware bug... really braindamage stuff going
1633                  * on here.  However I think we can find a way to avoid
1634                  * all of the workaround overhead under Linux.  Basically,
1635                  * any page fault can cause kernel pages to become user
1636                  * accessible (the mmu gets confused and clears some of
1637                  * the ACC bits in kernel ptes).  Aha, sounds pretty
1638                  * horrible eh?  But wait, after extensive testing it appears
1639                  * that if you use pgd_t level large kernel pte's (like the
1640                  * 4MB pages on the Pentium) the bug does not get tripped
1641                  * at all.  This avoids almost all of the major overhead.
1642                  * Welcome to a world where your vendor tells you to,
1643                  * "apply this kernel patch" instead of "sorry for the
1644                  * broken hardware, send it back and we'll give you
1645                  * properly functioning parts"
1646                  */
1647                 break;
1648         case 0x25:
1649         case 0x31:
1650                 srmmu_modtype = Swift_bad_c;
1651                 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1652                 /*
1653                  * You see Sun allude to this hardware bug but never
1654                  * admit things directly, they'll say things like,
1655                  * "the Swift chip cache problems" or similar.
1656                  */
1657                 break;
1658         default:
1659                 srmmu_modtype = Swift_ok;
1660                 break;
1661         };
1662
1663         BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1664         BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1665         BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1666         BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1667
1668
1669         BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1670         BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1671         BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1672         BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1673
1674         BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1675         BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1676         BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1677
1678         BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1679
1680         flush_page_for_dma_global = 0;
1681
1682         /*
1683          * Are you now convinced that the Swift is one of the
1684          * biggest VLSI abortions of all time?  Bravo Fujitsu!
1685          * Fujitsu, the !#?!%$'d up processor people.  I bet if
1686          * you examined the microcode of the Swift you'd find
1687          * XXX's all over the place.
1688          */
1689         poke_srmmu = poke_swift;
1690 }
1691
1692 static void turbosparc_flush_cache_all(void)
1693 {
1694         flush_user_windows();
1695         turbosparc_idflash_clear();
1696 }
1697
1698 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1699 {
1700         FLUSH_BEGIN(mm)
1701         flush_user_windows();
1702         turbosparc_idflash_clear();
1703         FLUSH_END
1704 }
1705
1706 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1707 {
1708         FLUSH_BEGIN(vma->vm_mm)
1709         flush_user_windows();
1710         turbosparc_idflash_clear();
1711         FLUSH_END
1712 }
1713
1714 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1715 {
1716         FLUSH_BEGIN(vma->vm_mm)
1717         flush_user_windows();
1718         if (vma->vm_flags & VM_EXEC)
1719                 turbosparc_flush_icache();
1720         turbosparc_flush_dcache();
1721         FLUSH_END
1722 }
1723
1724 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1725 static void turbosparc_flush_page_to_ram(unsigned long page)
1726 {
1727 #ifdef TURBOSPARC_WRITEBACK
1728         volatile unsigned long clear;
1729
1730         if (srmmu_hwprobe(page))
1731                 turbosparc_flush_page_cache(page);
1732         clear = srmmu_get_fstatus();
1733 #endif
1734 }
1735
1736 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1737 {
1738 }
1739
1740 static void turbosparc_flush_page_for_dma(unsigned long page)
1741 {
1742         turbosparc_flush_dcache();
1743 }
1744
1745 static void turbosparc_flush_tlb_all(void)
1746 {
1747         srmmu_flush_whole_tlb();
1748 }
1749
1750 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1751 {
1752         FLUSH_BEGIN(mm)
1753         srmmu_flush_whole_tlb();
1754         FLUSH_END
1755 }
1756
1757 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1758 {
1759         FLUSH_BEGIN(vma->vm_mm)
1760         srmmu_flush_whole_tlb();
1761         FLUSH_END
1762 }
1763
1764 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1765 {
1766         FLUSH_BEGIN(vma->vm_mm)
1767         srmmu_flush_whole_tlb();
1768         FLUSH_END
1769 }
1770
1771
1772 static void __init poke_turbosparc(void)
1773 {
1774         unsigned long mreg = srmmu_get_mmureg();
1775         unsigned long ccreg;
1776
1777         /* Clear any crap from the cache or else... */
1778         turbosparc_flush_cache_all();
1779         mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1780         mreg &= ~(TURBOSPARC_PCENABLE);         /* Don't check parity */
1781         srmmu_set_mmureg(mreg);
1782         
1783         ccreg = turbosparc_get_ccreg();
1784
1785 #ifdef TURBOSPARC_WRITEBACK
1786         ccreg |= (TURBOSPARC_SNENABLE);         /* Do DVMA snooping in Dcache */
1787         ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1788                         /* Write-back D-cache, emulate VLSI
1789                          * abortion number three, not number one */
1790 #else
1791         /* For now let's play safe, optimize later */
1792         ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1793                         /* Do DVMA snooping in Dcache, Write-thru D-cache */
1794         ccreg &= ~(TURBOSPARC_uS2);
1795                         /* Emulate VLSI abortion number three, not number one */
1796 #endif
1797
1798         switch (ccreg & 7) {
1799         case 0: /* No SE cache */
1800         case 7: /* Test mode */
1801                 break;
1802         default:
1803                 ccreg |= (TURBOSPARC_SCENABLE);
1804         }
1805         turbosparc_set_ccreg (ccreg);
1806
1807         mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1808         mreg |= (TURBOSPARC_ICSNOOP);           /* Icache snooping on */
1809         srmmu_set_mmureg(mreg);
1810 }
1811
1812 static void __init init_turbosparc(void)
1813 {
1814         srmmu_name = "Fujitsu TurboSparc";
1815         srmmu_modtype = TurboSparc;
1816
1817         BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1818         BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1819         BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1820         BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1821
1822         BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1823         BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1824         BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1825         BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1826
1827         BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1828
1829         BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1830         BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1831
1832         poke_srmmu = poke_turbosparc;
1833 }
1834
1835 static void __init poke_tsunami(void)
1836 {
1837         unsigned long mreg = srmmu_get_mmureg();
1838
1839         tsunami_flush_icache();
1840         tsunami_flush_dcache();
1841         mreg &= ~TSUNAMI_ITD;
1842         mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1843         srmmu_set_mmureg(mreg);
1844 }
1845
1846 static void __init init_tsunami(void)
1847 {
1848         /*
1849          * Tsunami's pretty sane, Sun and TI actually got it
1850          * somewhat right this time.  Fujitsu should have
1851          * taken some lessons from them.
1852          */
1853
1854         srmmu_name = "TI Tsunami";
1855         srmmu_modtype = Tsunami;
1856
1857         BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1858         BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1859         BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1860         BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1861
1862
1863         BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1864         BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1865         BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1866         BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1867
1868         BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1869         BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1870         BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1871
1872         poke_srmmu = poke_tsunami;
1873
1874         tsunami_setup_blockops();
1875 }
1876
1877 static void __init poke_viking(void)
1878 {
1879         unsigned long mreg = srmmu_get_mmureg();
1880         static int smp_catch;
1881
1882         if(viking_mxcc_present) {
1883                 unsigned long mxcc_control = mxcc_get_creg();
1884
1885                 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1886                 mxcc_control &= ~(MXCC_CTL_RRC);
1887                 mxcc_set_creg(mxcc_control);
1888
1889                 /*
1890                  * We don't need memory parity checks.
1891                  * XXX This is a mess, have to dig out later. ecd.
1892                 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1893                  */
1894
1895                 /* We do cache ptables on MXCC. */
1896                 mreg |= VIKING_TCENABLE;
1897         } else {
1898                 unsigned long bpreg;
1899
1900                 mreg &= ~(VIKING_TCENABLE);
1901                 if(smp_catch++) {
1902                         /* Must disable mixed-cmd mode here for other cpu's. */
1903                         bpreg = viking_get_bpreg();
1904                         bpreg &= ~(VIKING_ACTION_MIX);
1905                         viking_set_bpreg(bpreg);
1906
1907                         /* Just in case PROM does something funny. */
1908                         msi_set_sync();
1909                 }
1910         }
1911
1912         mreg |= VIKING_SPENABLE;
1913         mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1914         mreg |= VIKING_SBENABLE;
1915         mreg &= ~(VIKING_ACENABLE);
1916         srmmu_set_mmureg(mreg);
1917
1918 #ifdef CONFIG_SMP
1919         /* Avoid unnecessary cross calls. */
1920         BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
1921         BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
1922         BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
1923         BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
1924         BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
1925         BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
1926         BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
1927         btfixup();
1928 #endif
1929 }
1930
1931 static void __init init_viking(void)
1932 {
1933         unsigned long mreg = srmmu_get_mmureg();
1934
1935         /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1936         if(mreg & VIKING_MMODE) {
1937                 srmmu_name = "TI Viking";
1938                 viking_mxcc_present = 0;
1939                 msi_set_sync();
1940
1941                 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1942                 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1943                 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1944
1945                 /*
1946                  * We need this to make sure old viking takes no hits
1947                  * on it's cache for dma snoops to workaround the
1948                  * "load from non-cacheable memory" interrupt bug.
1949                  * This is only necessary because of the new way in
1950                  * which we use the IOMMU.
1951                  */
1952                 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1953
1954                 flush_page_for_dma_global = 0;
1955         } else {
1956                 srmmu_name = "TI Viking/MXCC";
1957                 viking_mxcc_present = 1;
1958
1959                 srmmu_cache_pagetables = 1;
1960
1961                 /* MXCC vikings lack the DMA snooping bug. */
1962                 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1963         }
1964
1965         BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1966         BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1967         BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1968         BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1969
1970 #ifdef CONFIG_SMP
1971         if (sparc_cpu_model == sun4d) {
1972                 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1973                 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1974                 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1975                 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1976         } else
1977 #endif
1978         {
1979                 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1980                 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1981                 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1982                 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1983         }
1984
1985         BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1986         BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1987
1988         poke_srmmu = poke_viking;
1989 }
1990
1991 /* Probe for the srmmu chip version. */
1992 static void __init get_srmmu_type(void)
1993 {
1994         unsigned long mreg, psr;
1995         unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1996
1997         srmmu_modtype = SRMMU_INVAL_MOD;
1998         hwbug_bitmask = 0;
1999
2000         mreg = srmmu_get_mmureg(); psr = get_psr();
2001         mod_typ = (mreg & 0xf0000000) >> 28;
2002         mod_rev = (mreg & 0x0f000000) >> 24;
2003         psr_typ = (psr >> 28) & 0xf;
2004         psr_vers = (psr >> 24) & 0xf;
2005
2006         /* First, check for HyperSparc or Cypress. */
2007         if(mod_typ == 1) {
2008                 switch(mod_rev) {
2009                 case 7:
2010                         /* UP or MP Hypersparc */
2011                         init_hypersparc();
2012                         break;
2013                 case 0:
2014                 case 2:
2015                         /* Uniprocessor Cypress */
2016                         init_cypress_604();
2017                         break;
2018                 case 10:
2019                 case 11:
2020                 case 12:
2021                         /* _REALLY OLD_ Cypress MP chips... */
2022                 case 13:
2023                 case 14:
2024                 case 15:
2025                         /* MP Cypress mmu/cache-controller */
2026                         init_cypress_605(mod_rev);
2027                         break;
2028                 default:
2029                         /* Some other Cypress revision, assume a 605. */
2030                         init_cypress_605(mod_rev);
2031                         break;
2032                 };
2033                 return;
2034         }
2035         
2036         /*
2037          * Now Fujitsu TurboSparc. It might happen that it is
2038          * in Swift emulation mode, so we will check later...
2039          */
2040         if (psr_typ == 0 && psr_vers == 5) {
2041                 init_turbosparc();
2042                 return;
2043         }
2044
2045         /* Next check for Fujitsu Swift. */
2046         if(psr_typ == 0 && psr_vers == 4) {
2047                 int cpunode;
2048                 char node_str[128];
2049
2050                 /* Look if it is not a TurboSparc emulating Swift... */
2051                 cpunode = prom_getchild(prom_root_node);
2052                 while((cpunode = prom_getsibling(cpunode)) != 0) {
2053                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2054                         if(!strcmp(node_str, "cpu")) {
2055                                 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2056                                     prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2057                                         init_turbosparc();
2058                                         return;
2059                                 }
2060                                 break;
2061                         }
2062                 }
2063                 
2064                 init_swift();
2065                 return;
2066         }
2067
2068         /* Now the Viking family of srmmu. */
2069         if(psr_typ == 4 &&
2070            ((psr_vers == 0) ||
2071             ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2072                 init_viking();
2073                 return;
2074         }
2075
2076         /* Finally the Tsunami. */
2077         if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2078                 init_tsunami();
2079                 return;
2080         }
2081
2082         /* Oh well */
2083         srmmu_is_bad();
2084 }
2085
2086 /* don't laugh, static pagetables */
2087 static void srmmu_check_pgt_cache(int low, int high)
2088 {
2089 }
2090
2091 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2092         tsetup_mmu_patchme, rtrap_mmu_patchme;
2093
2094 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2095         tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2096
2097 extern unsigned long srmmu_fault;
2098
2099 #define PATCH_BRANCH(insn, dest) do { \
2100                 iaddr = &(insn); \
2101                 daddr = &(dest); \
2102                 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2103         } while(0)
2104
2105 static void __init patch_window_trap_handlers(void)
2106 {
2107         unsigned long *iaddr, *daddr;
2108         
2109         PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2110         PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2111         PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2112         PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2113         PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2114         PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2115         PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2116 }
2117
2118 #ifdef CONFIG_SMP
2119 /* Local cross-calls. */
2120 static void smp_flush_page_for_dma(unsigned long page)
2121 {
2122         xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2123         local_flush_page_for_dma(page);
2124 }
2125
2126 #endif
2127
2128 static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2129 {
2130         return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2131 }
2132
2133 static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2134 {
2135         return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2136 }
2137
2138 static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2139 {
2140         prot &= ~__pgprot(SRMMU_CACHE);
2141
2142         return prot;
2143 }
2144
2145 /* Load up routines and constants for sun4m and sun4d mmu */
2146 void __init ld_mmu_srmmu(void)
2147 {
2148         extern void ld_mmu_iommu(void);
2149         extern void ld_mmu_iounit(void);
2150         extern void ___xchg32_sun4md(void);
2151
2152         BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2153         BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2154         BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2155
2156         BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2157         BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2158
2159         BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2160         BTFIXUPSET_INT(page_shared, pgprot_val(SRMMU_PAGE_SHARED));
2161         BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2162         BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2163         BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2164         page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2165
2166         /* Functions */
2167         BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
2168 #ifndef CONFIG_SMP      
2169         BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2170 #endif
2171         BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2172
2173         BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2174         BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2175
2176         BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2177         BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2178         BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2179
2180         BTFIXUPSET_SETHI(none_mask, 0xF0000000);
2181
2182         BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2183         BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2184         BTFIXUPSET_CALL(pte_read, srmmu_pte_read, BTFIXUPCALL_NORM);
2185
2186         BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2187         BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2188         BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2189
2190         BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2191         BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2192         BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2193         BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2194
2195         BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2196         BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2197         BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2198         BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2199         BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2200         BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2201         
2202         BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2203         BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2204         BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2205
2206         BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2207         BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2208         BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2209         BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2210         BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2211         BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2212         BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2213         BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2214
2215         BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2216         BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2217         BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2218         BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2219         BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2220         BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2221         BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2222         BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2223         BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2224         BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2225         BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2226         BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2227
2228         BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2229         BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2230
2231         BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2232         BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2233         BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2234
2235         BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2236
2237         BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2238         BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2239
2240         BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2241         BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2242
2243         get_srmmu_type();
2244         patch_window_trap_handlers();
2245
2246 #ifdef CONFIG_SMP
2247         /* El switcheroo... */
2248
2249         BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2250         BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2251         BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2252         BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2253         BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2254         BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2255         BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2256         BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2257         BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2258         BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2259         BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2260
2261         BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2262         BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2263         BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2264         BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2265         if (sparc_cpu_model != sun4d) {
2266                 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2267                 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2268                 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2269                 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2270         }
2271         BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2272         BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2273         BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2274 #endif
2275
2276         if (sparc_cpu_model == sun4d)
2277                 ld_mmu_iounit();
2278         else
2279                 ld_mmu_iommu();
2280 #ifdef CONFIG_SMP
2281         if (sparc_cpu_model == sun4d)
2282                 sun4d_init_smp();
2283         else
2284                 sun4m_init_smp();
2285 #endif
2286 }