4 * Copyright 2001 David Brownell
5 * Copyright 2007 Intel Corporation
6 * Author: Matthew Wilcox <willy@linux.intel.com>
8 * This software may be redistributed and/or modified under the terms of
9 * the GNU General Public License ("GPL") version 2 as published by the
10 * Free Software Foundation.
12 * This allocator returns small blocks of a given size which are DMA-able by
13 * the given device. It uses the dma_alloc_coherent page allocator to get
14 * new pages, then splits them up into blocks of the required size.
15 * Many older drivers still have their own code to do this.
17 * The current design of this allocator is fairly simple. The pool is
18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
19 * allocated pages. Each page in the page_list is split into blocks of at
20 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
21 * list of free blocks within the page. Used blocks aren't tracked, but we
22 * keep a count of how many are currently allocated from each page.
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmapool.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/poison.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/string.h>
37 #include <linux/types.h>
38 #include <linux/wait.h>
40 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
41 #define DMAPOOL_DEBUG 1
44 struct dma_pool { /* the pool */
45 struct list_head page_list;
52 wait_queue_head_t waitq;
53 struct list_head pools;
56 struct dma_page { /* cacheable header for 'allocation' bytes */
57 struct list_head page_list;
64 #define POOL_TIMEOUT_JIFFIES ((100 /* msec */ * HZ) / 1000)
66 static DEFINE_MUTEX(pools_lock);
69 show_pools(struct device *dev, struct device_attribute *attr, char *buf)
74 struct dma_page *page;
75 struct dma_pool *pool;
80 temp = scnprintf(next, size, "poolinfo - 0.1\n");
84 mutex_lock(&pools_lock);
85 list_for_each_entry(pool, &dev->dma_pools, pools) {
89 list_for_each_entry(page, &pool->page_list, page_list) {
91 blocks += page->in_use;
94 /* per-pool info, no real statistics yet */
95 temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
97 pages * (pool->allocation / pool->size),
102 mutex_unlock(&pools_lock);
104 return PAGE_SIZE - size;
107 static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
110 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
111 * @name: name of pool, for diagnostics
112 * @dev: device that will be doing the DMA
113 * @size: size of the blocks in this pool.
114 * @align: alignment requirement for blocks; must be a power of two
115 * @boundary: returned blocks won't cross this power of two boundary
116 * Context: !in_interrupt()
118 * Returns a dma allocation pool with the requested characteristics, or
119 * null if one can't be created. Given one of these pools, dma_pool_alloc()
120 * may be used to allocate memory. Such memory will all have "consistent"
121 * DMA mappings, accessible by the device and its driver without using
122 * cache flushing primitives. The actual size of blocks allocated may be
123 * larger than requested because of alignment.
125 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
126 * cross that size boundary. This is useful for devices which have
127 * addressing restrictions on individual DMA transfers, such as not crossing
128 * boundaries of 4KBytes.
130 struct dma_pool *dma_pool_create(const char *name, struct device *dev,
131 size_t size, size_t align, size_t boundary)
133 struct dma_pool *retval;
138 } else if (align & (align - 1)) {
144 } else if (size < 4) {
148 if ((size % align) != 0)
149 size = ALIGN(size, align);
151 allocation = max_t(size_t, size, PAGE_SIZE);
154 boundary = allocation;
155 } else if ((boundary < size) || (boundary & (boundary - 1))) {
159 retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
163 strlcpy(retval->name, name, sizeof(retval->name));
167 INIT_LIST_HEAD(&retval->page_list);
168 spin_lock_init(&retval->lock);
170 retval->boundary = boundary;
171 retval->allocation = allocation;
172 init_waitqueue_head(&retval->waitq);
177 mutex_lock(&pools_lock);
178 if (list_empty(&dev->dma_pools))
179 ret = device_create_file(dev, &dev_attr_pools);
182 /* note: not currently insisting "name" be unique */
184 list_add(&retval->pools, &dev->dma_pools);
189 mutex_unlock(&pools_lock);
191 INIT_LIST_HEAD(&retval->pools);
195 EXPORT_SYMBOL(dma_pool_create);
197 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
199 unsigned int offset = 0;
200 unsigned int next_boundary = pool->boundary;
203 unsigned int next = offset + pool->size;
204 if (unlikely((next + pool->size) >= next_boundary)) {
205 next = next_boundary;
206 next_boundary += pool->boundary;
208 *(int *)(page->vaddr + offset) = next;
210 } while (offset < pool->allocation);
213 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
215 struct dma_page *page;
217 page = kmalloc(sizeof(*page), mem_flags);
220 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
221 &page->dma, mem_flags);
224 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
226 pool_initialise_page(pool, page);
227 list_add(&page->page_list, &pool->page_list);
237 static inline int is_page_busy(struct dma_page *page)
239 return page->in_use != 0;
242 static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
244 dma_addr_t dma = page->dma;
247 memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
249 dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
250 list_del(&page->page_list);
255 * dma_pool_destroy - destroys a pool of dma memory blocks.
256 * @pool: dma pool that will be destroyed
257 * Context: !in_interrupt()
259 * Caller guarantees that no more memory from the pool is in use,
260 * and that nothing will try to use the pool after this call.
262 void dma_pool_destroy(struct dma_pool *pool)
264 mutex_lock(&pools_lock);
265 list_del(&pool->pools);
266 if (pool->dev && list_empty(&pool->dev->dma_pools))
267 device_remove_file(pool->dev, &dev_attr_pools);
268 mutex_unlock(&pools_lock);
270 while (!list_empty(&pool->page_list)) {
271 struct dma_page *page;
272 page = list_entry(pool->page_list.next,
273 struct dma_page, page_list);
274 if (is_page_busy(page)) {
277 "dma_pool_destroy %s, %p busy\n",
278 pool->name, page->vaddr);
281 "dma_pool_destroy %s, %p busy\n",
282 pool->name, page->vaddr);
283 /* leak the still-in-use consistent memory */
284 list_del(&page->page_list);
287 pool_free_page(pool, page);
292 EXPORT_SYMBOL(dma_pool_destroy);
295 * dma_pool_alloc - get a block of consistent memory
296 * @pool: dma pool that will produce the block
297 * @mem_flags: GFP_* bitmask
298 * @handle: pointer to dma address of block
300 * This returns the kernel virtual address of a currently unused block,
301 * and reports its dma address through the handle.
302 * If such a memory block can't be allocated, %NULL is returned.
304 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
308 struct dma_page *page;
312 spin_lock_irqsave(&pool->lock, flags);
314 list_for_each_entry(page, &pool->page_list, page_list) {
315 if (page->offset < pool->allocation)
318 page = pool_alloc_page(pool, GFP_ATOMIC);
320 if (mem_flags & __GFP_WAIT) {
321 DECLARE_WAITQUEUE(wait, current);
323 __set_current_state(TASK_INTERRUPTIBLE);
324 __add_wait_queue(&pool->waitq, &wait);
325 spin_unlock_irqrestore(&pool->lock, flags);
327 schedule_timeout(POOL_TIMEOUT_JIFFIES);
329 spin_lock_irqsave(&pool->lock, flags);
330 __remove_wait_queue(&pool->waitq, &wait);
339 offset = page->offset;
340 page->offset = *(int *)(page->vaddr + offset);
341 retval = offset + page->vaddr;
342 *handle = offset + page->dma;
344 memset(retval, POOL_POISON_ALLOCATED, pool->size);
347 spin_unlock_irqrestore(&pool->lock, flags);
350 EXPORT_SYMBOL(dma_pool_alloc);
352 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
355 struct dma_page *page;
357 spin_lock_irqsave(&pool->lock, flags);
358 list_for_each_entry(page, &pool->page_list, page_list) {
361 if (dma < (page->dma + pool->allocation))
366 spin_unlock_irqrestore(&pool->lock, flags);
371 * dma_pool_free - put block back into dma pool
372 * @pool: the dma pool holding the block
373 * @vaddr: virtual address of block
374 * @dma: dma address of block
376 * Caller promises neither device nor driver will again touch this block
377 * unless it is first re-allocated.
379 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
381 struct dma_page *page;
385 page = pool_find_page(pool, dma);
389 "dma_pool_free %s, %p/%lx (bad dma)\n",
390 pool->name, vaddr, (unsigned long)dma);
392 printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
393 pool->name, vaddr, (unsigned long)dma);
397 offset = vaddr - page->vaddr;
399 if ((dma - page->dma) != offset) {
402 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
403 pool->name, vaddr, (unsigned long long)dma);
406 "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
407 pool->name, vaddr, (unsigned long long)dma);
411 unsigned int chain = page->offset;
412 while (chain < pool->allocation) {
413 if (chain != offset) {
414 chain = *(int *)(page->vaddr + chain);
418 dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
419 "already free\n", pool->name,
420 (unsigned long long)dma);
422 printk(KERN_ERR "dma_pool_free %s, dma %Lx "
423 "already free\n", pool->name,
424 (unsigned long long)dma);
428 memset(vaddr, POOL_POISON_FREED, pool->size);
431 spin_lock_irqsave(&pool->lock, flags);
433 *(int *)vaddr = page->offset;
434 page->offset = offset;
435 if (waitqueue_active(&pool->waitq))
436 wake_up_locked(&pool->waitq);
438 * Resist a temptation to do
439 * if (!is_page_busy(page)) pool_free_page(pool, page);
440 * Better have a few empty pages hang around.
442 spin_unlock_irqrestore(&pool->lock, flags);
444 EXPORT_SYMBOL(dma_pool_free);
449 static void dmam_pool_release(struct device *dev, void *res)
451 struct dma_pool *pool = *(struct dma_pool **)res;
453 dma_pool_destroy(pool);
456 static int dmam_pool_match(struct device *dev, void *res, void *match_data)
458 return *(struct dma_pool **)res == match_data;
462 * dmam_pool_create - Managed dma_pool_create()
463 * @name: name of pool, for diagnostics
464 * @dev: device that will be doing the DMA
465 * @size: size of the blocks in this pool.
466 * @align: alignment requirement for blocks; must be a power of two
467 * @allocation: returned blocks won't cross this boundary (or zero)
469 * Managed dma_pool_create(). DMA pool created with this function is
470 * automatically destroyed on driver detach.
472 struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
473 size_t size, size_t align, size_t allocation)
475 struct dma_pool **ptr, *pool;
477 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
481 pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
483 devres_add(dev, ptr);
489 EXPORT_SYMBOL(dmam_pool_create);
492 * dmam_pool_destroy - Managed dma_pool_destroy()
493 * @pool: dma pool that will be destroyed
495 * Managed dma_pool_destroy().
497 void dmam_pool_destroy(struct dma_pool *pool)
499 struct device *dev = pool->dev;
501 dma_pool_destroy(pool);
502 WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
504 EXPORT_SYMBOL(dmam_pool_destroy);