1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
8 * Copyright(c) 2008 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
33 * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
63 #include <net/mac80211.h>
67 #include "iwl-calib.h"
69 /*****************************************************************************
70 * INIT calibrations framework
71 *****************************************************************************/
73 struct statistics_general_data {
74 u32 beacon_silence_rssi_a;
75 u32 beacon_silence_rssi_b;
76 u32 beacon_silence_rssi_c;
82 int iwl_send_calib_results(struct iwl_priv *priv)
87 struct iwl_host_cmd hcmd = {
88 .id = REPLY_PHY_CALIBRATION_CMD,
89 .meta.flags = CMD_SIZE_HUGE,
92 for (i = 0; i < IWL_CALIB_MAX; i++) {
93 if ((BIT(i) & priv->hw_params.calib_init_cfg) &&
94 priv->calib_results[i].buf) {
95 hcmd.len = priv->calib_results[i].buf_len;
96 hcmd.data = priv->calib_results[i].buf;
97 ret = iwl_send_cmd_sync(priv, &hcmd);
105 IWL_ERROR("Error %d iteration %d\n", ret, i);
108 EXPORT_SYMBOL(iwl_send_calib_results);
110 int iwl_calib_set(struct iwl_calib_result *res, const u8 *buf, int len)
112 if (res->buf_len != len) {
114 res->buf = kzalloc(len, GFP_ATOMIC);
116 if (unlikely(res->buf == NULL))
120 memcpy(res->buf, buf, len);
123 EXPORT_SYMBOL(iwl_calib_set);
125 void iwl_calib_free_results(struct iwl_priv *priv)
129 for (i = 0; i < IWL_CALIB_MAX; i++) {
130 kfree(priv->calib_results[i].buf);
131 priv->calib_results[i].buf = NULL;
132 priv->calib_results[i].buf_len = 0;
136 /*****************************************************************************
137 * RUNTIME calibrations framework
138 *****************************************************************************/
140 /* "false alarms" are signals that our DSP tries to lock onto,
141 * but then determines that they are either noise, or transmissions
142 * from a distant wireless network (also "noise", really) that get
143 * "stepped on" by stronger transmissions within our own network.
144 * This algorithm attempts to set a sensitivity level that is high
145 * enough to receive all of our own network traffic, but not so
146 * high that our DSP gets too busy trying to lock onto non-network
148 static int iwl_sens_energy_cck(struct iwl_priv *priv,
151 struct statistics_general_data *rx_info)
155 u8 max_silence_rssi = 0;
157 u8 silence_rssi_a = 0;
158 u8 silence_rssi_b = 0;
159 u8 silence_rssi_c = 0;
162 /* "false_alarms" values below are cross-multiplications to assess the
163 * numbers of false alarms within the measured period of actual Rx
164 * (Rx is off when we're txing), vs the min/max expected false alarms
165 * (some should be expected if rx is sensitive enough) in a
166 * hypothetical listening period of 200 time units (TU), 204.8 msec:
168 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
171 u32 false_alarms = norm_fa * 200 * 1024;
172 u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
173 u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
174 struct iwl_sensitivity_data *data = NULL;
175 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
177 data = &(priv->sensitivity_data);
179 data->nrg_auto_corr_silence_diff = 0;
181 /* Find max silence rssi among all 3 receivers.
182 * This is background noise, which may include transmissions from other
183 * networks, measured during silence before our network's beacon */
184 silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
185 ALL_BAND_FILTER) >> 8);
186 silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
187 ALL_BAND_FILTER) >> 8);
188 silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
189 ALL_BAND_FILTER) >> 8);
191 val = max(silence_rssi_b, silence_rssi_c);
192 max_silence_rssi = max(silence_rssi_a, (u8) val);
194 /* Store silence rssi in 20-beacon history table */
195 data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
196 data->nrg_silence_idx++;
197 if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
198 data->nrg_silence_idx = 0;
200 /* Find max silence rssi across 20 beacon history */
201 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
202 val = data->nrg_silence_rssi[i];
203 silence_ref = max(silence_ref, val);
205 IWL_DEBUG_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n",
206 silence_rssi_a, silence_rssi_b, silence_rssi_c,
209 /* Find max rx energy (min value!) among all 3 receivers,
210 * measured during beacon frame.
211 * Save it in 10-beacon history table. */
212 i = data->nrg_energy_idx;
213 val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
214 data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
216 data->nrg_energy_idx++;
217 if (data->nrg_energy_idx >= 10)
218 data->nrg_energy_idx = 0;
220 /* Find min rx energy (max value) across 10 beacon history.
221 * This is the minimum signal level that we want to receive well.
222 * Add backoff (margin so we don't miss slightly lower energy frames).
223 * This establishes an upper bound (min value) for energy threshold. */
224 max_nrg_cck = data->nrg_value[0];
225 for (i = 1; i < 10; i++)
226 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
229 IWL_DEBUG_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
230 rx_info->beacon_energy_a, rx_info->beacon_energy_b,
231 rx_info->beacon_energy_c, max_nrg_cck - 6);
233 /* Count number of consecutive beacons with fewer-than-desired
235 if (false_alarms < min_false_alarms)
236 data->num_in_cck_no_fa++;
238 data->num_in_cck_no_fa = 0;
239 IWL_DEBUG_CALIB("consecutive bcns with few false alarms = %u\n",
240 data->num_in_cck_no_fa);
242 /* If we got too many false alarms this time, reduce sensitivity */
243 if ((false_alarms > max_false_alarms) &&
244 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
245 IWL_DEBUG_CALIB("norm FA %u > max FA %u\n",
246 false_alarms, max_false_alarms);
247 IWL_DEBUG_CALIB("... reducing sensitivity\n");
248 data->nrg_curr_state = IWL_FA_TOO_MANY;
249 /* Store for "fewer than desired" on later beacon */
250 data->nrg_silence_ref = silence_ref;
252 /* increase energy threshold (reduce nrg value)
253 * to decrease sensitivity */
254 if (data->nrg_th_cck >
255 (ranges->max_nrg_cck + NRG_STEP_CCK))
256 data->nrg_th_cck = data->nrg_th_cck
259 data->nrg_th_cck = ranges->max_nrg_cck;
260 /* Else if we got fewer than desired, increase sensitivity */
261 } else if (false_alarms < min_false_alarms) {
262 data->nrg_curr_state = IWL_FA_TOO_FEW;
264 /* Compare silence level with silence level for most recent
265 * healthy number or too many false alarms */
266 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
269 IWL_DEBUG_CALIB("norm FA %u < min FA %u, silence diff %d\n",
270 false_alarms, min_false_alarms,
271 data->nrg_auto_corr_silence_diff);
273 /* Increase value to increase sensitivity, but only if:
274 * 1a) previous beacon did *not* have *too many* false alarms
275 * 1b) AND there's a significant difference in Rx levels
276 * from a previous beacon with too many, or healthy # FAs
277 * OR 2) We've seen a lot of beacons (100) with too few
279 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
280 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
281 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
283 IWL_DEBUG_CALIB("... increasing sensitivity\n");
284 /* Increase nrg value to increase sensitivity */
285 val = data->nrg_th_cck + NRG_STEP_CCK;
286 data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
288 IWL_DEBUG_CALIB("... but not changing sensitivity\n");
291 /* Else we got a healthy number of false alarms, keep status quo */
293 IWL_DEBUG_CALIB(" FA in safe zone\n");
294 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
296 /* Store for use in "fewer than desired" with later beacon */
297 data->nrg_silence_ref = silence_ref;
299 /* If previous beacon had too many false alarms,
300 * give it some extra margin by reducing sensitivity again
301 * (but don't go below measured energy of desired Rx) */
302 if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
303 IWL_DEBUG_CALIB("... increasing margin\n");
304 if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
305 data->nrg_th_cck -= NRG_MARGIN;
307 data->nrg_th_cck = max_nrg_cck;
311 /* Make sure the energy threshold does not go above the measured
312 * energy of the desired Rx signals (reduced by backoff margin),
313 * or else we might start missing Rx frames.
314 * Lower value is higher energy, so we use max()!
316 data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
317 IWL_DEBUG_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck);
319 data->nrg_prev_state = data->nrg_curr_state;
321 /* Auto-correlation CCK algorithm */
322 if (false_alarms > min_false_alarms) {
324 /* increase auto_corr values to decrease sensitivity
325 * so the DSP won't be disturbed by the noise
327 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
328 data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
330 val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
331 data->auto_corr_cck =
332 min((u32)ranges->auto_corr_max_cck, val);
334 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
335 data->auto_corr_cck_mrc =
336 min((u32)ranges->auto_corr_max_cck_mrc, val);
337 } else if ((false_alarms < min_false_alarms) &&
338 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
339 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
341 /* Decrease auto_corr values to increase sensitivity */
342 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
343 data->auto_corr_cck =
344 max((u32)ranges->auto_corr_min_cck, val);
345 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
346 data->auto_corr_cck_mrc =
347 max((u32)ranges->auto_corr_min_cck_mrc, val);
354 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
359 u32 false_alarms = norm_fa * 200 * 1024;
360 u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
361 u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
362 struct iwl_sensitivity_data *data = NULL;
363 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
365 data = &(priv->sensitivity_data);
367 /* If we got too many false alarms this time, reduce sensitivity */
368 if (false_alarms > max_false_alarms) {
370 IWL_DEBUG_CALIB("norm FA %u > max FA %u)\n",
371 false_alarms, max_false_alarms);
373 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
374 data->auto_corr_ofdm =
375 min((u32)ranges->auto_corr_max_ofdm, val);
377 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
378 data->auto_corr_ofdm_mrc =
379 min((u32)ranges->auto_corr_max_ofdm_mrc, val);
381 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
382 data->auto_corr_ofdm_x1 =
383 min((u32)ranges->auto_corr_max_ofdm_x1, val);
385 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
386 data->auto_corr_ofdm_mrc_x1 =
387 min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
390 /* Else if we got fewer than desired, increase sensitivity */
391 else if (false_alarms < min_false_alarms) {
393 IWL_DEBUG_CALIB("norm FA %u < min FA %u\n",
394 false_alarms, min_false_alarms);
396 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
397 data->auto_corr_ofdm =
398 max((u32)ranges->auto_corr_min_ofdm, val);
400 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
401 data->auto_corr_ofdm_mrc =
402 max((u32)ranges->auto_corr_min_ofdm_mrc, val);
404 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
405 data->auto_corr_ofdm_x1 =
406 max((u32)ranges->auto_corr_min_ofdm_x1, val);
408 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
409 data->auto_corr_ofdm_mrc_x1 =
410 max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
412 IWL_DEBUG_CALIB("min FA %u < norm FA %u < max FA %u OK\n",
413 min_false_alarms, false_alarms, max_false_alarms);
418 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
419 static int iwl_sensitivity_write(struct iwl_priv *priv)
422 struct iwl_sensitivity_cmd cmd ;
423 struct iwl_sensitivity_data *data = NULL;
424 struct iwl_host_cmd cmd_out = {
425 .id = SENSITIVITY_CMD,
426 .len = sizeof(struct iwl_sensitivity_cmd),
427 .meta.flags = CMD_ASYNC,
431 data = &(priv->sensitivity_data);
433 memset(&cmd, 0, sizeof(cmd));
435 cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
436 cpu_to_le16((u16)data->auto_corr_ofdm);
437 cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
438 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
439 cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
440 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
441 cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
442 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
444 cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
445 cpu_to_le16((u16)data->auto_corr_cck);
446 cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
447 cpu_to_le16((u16)data->auto_corr_cck_mrc);
449 cmd.table[HD_MIN_ENERGY_CCK_DET_INDEX] =
450 cpu_to_le16((u16)data->nrg_th_cck);
451 cmd.table[HD_MIN_ENERGY_OFDM_DET_INDEX] =
452 cpu_to_le16((u16)data->nrg_th_ofdm);
454 cmd.table[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
455 __constant_cpu_to_le16(190);
456 cmd.table[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
457 __constant_cpu_to_le16(390);
458 cmd.table[HD_OFDM_ENERGY_TH_IN_INDEX] =
459 __constant_cpu_to_le16(62);
461 IWL_DEBUG_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
462 data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
463 data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
466 IWL_DEBUG_CALIB("cck: ac %u mrc %u thresh %u\n",
467 data->auto_corr_cck, data->auto_corr_cck_mrc,
470 /* Update uCode's "work" table, and copy it to DSP */
471 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
473 /* Don't send command to uCode if nothing has changed */
474 if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
475 sizeof(u16)*HD_TABLE_SIZE)) {
476 IWL_DEBUG_CALIB("No change in SENSITIVITY_CMD\n");
480 /* Copy table for comparison next time */
481 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
482 sizeof(u16)*HD_TABLE_SIZE);
484 ret = iwl_send_cmd(priv, &cmd_out);
486 IWL_ERROR("SENSITIVITY_CMD failed\n");
491 void iwl_init_sensitivity(struct iwl_priv *priv)
495 struct iwl_sensitivity_data *data = NULL;
496 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
498 if (priv->disable_sens_cal)
501 IWL_DEBUG_CALIB("Start iwl_init_sensitivity\n");
503 /* Clear driver's sensitivity algo data */
504 data = &(priv->sensitivity_data);
509 memset(data, 0, sizeof(struct iwl_sensitivity_data));
511 data->num_in_cck_no_fa = 0;
512 data->nrg_curr_state = IWL_FA_TOO_MANY;
513 data->nrg_prev_state = IWL_FA_TOO_MANY;
514 data->nrg_silence_ref = 0;
515 data->nrg_silence_idx = 0;
516 data->nrg_energy_idx = 0;
518 for (i = 0; i < 10; i++)
519 data->nrg_value[i] = 0;
521 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
522 data->nrg_silence_rssi[i] = 0;
524 data->auto_corr_ofdm = 90;
525 data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
526 data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
527 data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
528 data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
529 data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
530 data->nrg_th_cck = ranges->nrg_th_cck;
531 data->nrg_th_ofdm = ranges->nrg_th_ofdm;
533 data->last_bad_plcp_cnt_ofdm = 0;
534 data->last_fa_cnt_ofdm = 0;
535 data->last_bad_plcp_cnt_cck = 0;
536 data->last_fa_cnt_cck = 0;
538 ret |= iwl_sensitivity_write(priv);
539 IWL_DEBUG_CALIB("<<return 0x%X\n", ret);
541 EXPORT_SYMBOL(iwl_init_sensitivity);
543 void iwl_sensitivity_calibration(struct iwl_priv *priv,
544 struct iwl_notif_statistics *resp)
553 struct iwl_sensitivity_data *data = NULL;
554 struct statistics_rx_non_phy *rx_info = &(resp->rx.general);
555 struct statistics_rx *statistics = &(resp->rx);
557 struct statistics_general_data statis;
559 if (priv->disable_sens_cal)
562 data = &(priv->sensitivity_data);
564 if (!iwl_is_associated(priv)) {
565 IWL_DEBUG_CALIB("<< - not associated\n");
569 spin_lock_irqsave(&priv->lock, flags);
570 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
571 IWL_DEBUG_CALIB("<< invalid data.\n");
572 spin_unlock_irqrestore(&priv->lock, flags);
576 /* Extract Statistics: */
577 rx_enable_time = le32_to_cpu(rx_info->channel_load);
578 fa_cck = le32_to_cpu(statistics->cck.false_alarm_cnt);
579 fa_ofdm = le32_to_cpu(statistics->ofdm.false_alarm_cnt);
580 bad_plcp_cck = le32_to_cpu(statistics->cck.plcp_err);
581 bad_plcp_ofdm = le32_to_cpu(statistics->ofdm.plcp_err);
583 statis.beacon_silence_rssi_a =
584 le32_to_cpu(statistics->general.beacon_silence_rssi_a);
585 statis.beacon_silence_rssi_b =
586 le32_to_cpu(statistics->general.beacon_silence_rssi_b);
587 statis.beacon_silence_rssi_c =
588 le32_to_cpu(statistics->general.beacon_silence_rssi_c);
589 statis.beacon_energy_a =
590 le32_to_cpu(statistics->general.beacon_energy_a);
591 statis.beacon_energy_b =
592 le32_to_cpu(statistics->general.beacon_energy_b);
593 statis.beacon_energy_c =
594 le32_to_cpu(statistics->general.beacon_energy_c);
596 spin_unlock_irqrestore(&priv->lock, flags);
598 IWL_DEBUG_CALIB("rx_enable_time = %u usecs\n", rx_enable_time);
600 if (!rx_enable_time) {
601 IWL_DEBUG_CALIB("<< RX Enable Time == 0! \n");
605 /* These statistics increase monotonically, and do not reset
606 * at each beacon. Calculate difference from last value, or just
607 * use the new statistics value if it has reset or wrapped around. */
608 if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
609 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
611 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
612 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
615 if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
616 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
618 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
619 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
622 if (data->last_fa_cnt_ofdm > fa_ofdm)
623 data->last_fa_cnt_ofdm = fa_ofdm;
625 fa_ofdm -= data->last_fa_cnt_ofdm;
626 data->last_fa_cnt_ofdm += fa_ofdm;
629 if (data->last_fa_cnt_cck > fa_cck)
630 data->last_fa_cnt_cck = fa_cck;
632 fa_cck -= data->last_fa_cnt_cck;
633 data->last_fa_cnt_cck += fa_cck;
636 /* Total aborted signal locks */
637 norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
638 norm_fa_cck = fa_cck + bad_plcp_cck;
640 IWL_DEBUG_CALIB("cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
641 bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
643 iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
644 iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
645 iwl_sensitivity_write(priv);
649 EXPORT_SYMBOL(iwl_sensitivity_calibration);
652 * Accumulate 20 beacons of signal and noise statistics for each of
653 * 3 receivers/antennas/rx-chains, then figure out:
654 * 1) Which antennas are connected.
655 * 2) Differential rx gain settings to balance the 3 receivers.
657 void iwl_chain_noise_calibration(struct iwl_priv *priv,
658 struct iwl_notif_statistics *stat_resp)
660 struct iwl_chain_noise_data *data = NULL;
668 u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
669 u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
671 u16 max_average_sig_antenna_i;
672 u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
673 u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
675 u16 rxon_chnum = INITIALIZATION_VALUE;
676 u16 stat_chnum = INITIALIZATION_VALUE;
679 u32 active_chains = 0;
682 struct statistics_rx_non_phy *rx_info = &(stat_resp->rx.general);
684 if (priv->disable_chain_noise_cal)
687 data = &(priv->chain_noise_data);
689 /* Accumulate just the first 20 beacons after the first association,
690 * then we're done forever. */
691 if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
692 if (data->state == IWL_CHAIN_NOISE_ALIVE)
693 IWL_DEBUG_CALIB("Wait for noise calib reset\n");
697 spin_lock_irqsave(&priv->lock, flags);
698 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
699 IWL_DEBUG_CALIB(" << Interference data unavailable\n");
700 spin_unlock_irqrestore(&priv->lock, flags);
704 rxon_band24 = !!(priv->staging_rxon.flags & RXON_FLG_BAND_24G_MSK);
705 rxon_chnum = le16_to_cpu(priv->staging_rxon.channel);
706 stat_band24 = !!(stat_resp->flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
707 stat_chnum = le32_to_cpu(stat_resp->flag) >> 16;
709 /* Make sure we accumulate data for just the associated channel
710 * (even if scanning). */
711 if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
712 IWL_DEBUG_CALIB("Stats not from chan=%d, band24=%d\n",
713 rxon_chnum, rxon_band24);
714 spin_unlock_irqrestore(&priv->lock, flags);
718 /* Accumulate beacon statistics values across 20 beacons */
719 chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
721 chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
723 chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
726 chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
727 chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
728 chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
730 spin_unlock_irqrestore(&priv->lock, flags);
732 data->beacon_count++;
734 data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
735 data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
736 data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
738 data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
739 data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
740 data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
742 IWL_DEBUG_CALIB("chan=%d, band24=%d, beacon=%d\n",
743 rxon_chnum, rxon_band24, data->beacon_count);
744 IWL_DEBUG_CALIB("chain_sig: a %d b %d c %d\n",
745 chain_sig_a, chain_sig_b, chain_sig_c);
746 IWL_DEBUG_CALIB("chain_noise: a %d b %d c %d\n",
747 chain_noise_a, chain_noise_b, chain_noise_c);
749 /* If this is the 20th beacon, determine:
750 * 1) Disconnected antennas (using signal strengths)
751 * 2) Differential gain (using silence noise) to balance receivers */
752 if (data->beacon_count != CAL_NUM_OF_BEACONS)
755 /* Analyze signal for disconnected antenna */
756 average_sig[0] = (data->chain_signal_a) / CAL_NUM_OF_BEACONS;
757 average_sig[1] = (data->chain_signal_b) / CAL_NUM_OF_BEACONS;
758 average_sig[2] = (data->chain_signal_c) / CAL_NUM_OF_BEACONS;
760 if (average_sig[0] >= average_sig[1]) {
761 max_average_sig = average_sig[0];
762 max_average_sig_antenna_i = 0;
763 active_chains = (1 << max_average_sig_antenna_i);
765 max_average_sig = average_sig[1];
766 max_average_sig_antenna_i = 1;
767 active_chains = (1 << max_average_sig_antenna_i);
770 if (average_sig[2] >= max_average_sig) {
771 max_average_sig = average_sig[2];
772 max_average_sig_antenna_i = 2;
773 active_chains = (1 << max_average_sig_antenna_i);
776 IWL_DEBUG_CALIB("average_sig: a %d b %d c %d\n",
777 average_sig[0], average_sig[1], average_sig[2]);
778 IWL_DEBUG_CALIB("max_average_sig = %d, antenna %d\n",
779 max_average_sig, max_average_sig_antenna_i);
781 /* Compare signal strengths for all 3 receivers. */
782 for (i = 0; i < NUM_RX_CHAINS; i++) {
783 if (i != max_average_sig_antenna_i) {
784 s32 rssi_delta = (max_average_sig - average_sig[i]);
786 /* If signal is very weak, compared with
787 * strongest, mark it as disconnected. */
788 if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
789 data->disconn_array[i] = 1;
791 active_chains |= (1 << i);
792 IWL_DEBUG_CALIB("i = %d rssiDelta = %d "
793 "disconn_array[i] = %d\n",
794 i, rssi_delta, data->disconn_array[i]);
799 for (i = 0; i < NUM_RX_CHAINS; i++) {
800 /* loops on all the bits of
801 * priv->hw_setting.valid_tx_ant */
802 u8 ant_msk = (1 << i);
803 if (!(priv->hw_params.valid_tx_ant & ant_msk))
807 if (data->disconn_array[i] == 0)
808 /* there is a Tx antenna connected */
810 if (num_tx_chains == priv->hw_params.tx_chains_num &&
811 data->disconn_array[i]) {
812 /* This is the last TX antenna and is also
813 * disconnected connect it anyway */
814 data->disconn_array[i] = 0;
815 active_chains |= ant_msk;
816 IWL_DEBUG_CALIB("All Tx chains are disconnected W/A - "
817 "declare %d as connected\n", i);
822 /* Save for use within RXON, TX, SCAN commands, etc. */
823 priv->chain_noise_data.active_chains = active_chains;
824 IWL_DEBUG_CALIB("active_chains (bitwise) = 0x%x\n",
827 /* Analyze noise for rx balance */
828 average_noise[0] = ((data->chain_noise_a)/CAL_NUM_OF_BEACONS);
829 average_noise[1] = ((data->chain_noise_b)/CAL_NUM_OF_BEACONS);
830 average_noise[2] = ((data->chain_noise_c)/CAL_NUM_OF_BEACONS);
832 for (i = 0; i < NUM_RX_CHAINS; i++) {
833 if (!(data->disconn_array[i]) &&
834 (average_noise[i] <= min_average_noise)) {
835 /* This means that chain i is active and has
836 * lower noise values so far: */
837 min_average_noise = average_noise[i];
838 min_average_noise_antenna_i = i;
842 IWL_DEBUG_CALIB("average_noise: a %d b %d c %d\n",
843 average_noise[0], average_noise[1],
846 IWL_DEBUG_CALIB("min_average_noise = %d, antenna %d\n",
847 min_average_noise, min_average_noise_antenna_i);
849 priv->cfg->ops->utils->gain_computation(priv, average_noise,
850 min_average_noise_antenna_i, min_average_noise);
852 /* Some power changes may have been made during the calibration.
853 * Update and commit the RXON
855 if (priv->cfg->ops->lib->update_chain_flags)
856 priv->cfg->ops->lib->update_chain_flags(priv);
858 data->state = IWL_CHAIN_NOISE_DONE;
859 iwl_power_enable_management(priv);
861 EXPORT_SYMBOL(iwl_chain_noise_calibration);
864 void iwl_reset_run_time_calib(struct iwl_priv *priv)
867 memset(&(priv->sensitivity_data), 0,
868 sizeof(struct iwl_sensitivity_data));
869 memset(&(priv->chain_noise_data), 0,
870 sizeof(struct iwl_chain_noise_data));
871 for (i = 0; i < NUM_RX_CHAINS; i++)
872 priv->chain_noise_data.delta_gain_code[i] =
873 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
875 /* Ask for statistics now, the uCode will send notification
876 * periodically after association */
877 iwl_send_statistics_request(priv, CMD_ASYNC);
879 EXPORT_SYMBOL(iwl_reset_run_time_calib);