3 * PCI address cache; allows the lookup of PCI devices based on I/O address
5 * Copyright IBM Corporation 2004
6 * Copyright Linas Vepstas <linas@austin.ibm.com> 2004
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/list.h>
24 #include <linux/pci.h>
25 #include <linux/rbtree.h>
26 #include <linux/spinlock.h>
27 #include <asm/atomic.h>
28 #include <asm/pci-bridge.h>
29 #include <asm/ppc-pci.h>
33 * The pci address cache subsystem. This subsystem places
34 * PCI device address resources into a red-black tree, sorted
35 * according to the address range, so that given only an i/o
36 * address, the corresponding PCI device can be **quickly**
37 * found. It is safe to perform an address lookup in an interrupt
38 * context; this ability is an important feature.
40 * Currently, the only customer of this code is the EEH subsystem;
41 * thus, this code has been somewhat tailored to suit EEH better.
42 * In particular, the cache does *not* hold the addresses of devices
43 * for which EEH is not enabled.
45 * (Implementation Note: The RB tree seems to be better/faster
46 * than any hash algo I could think of for this problem, even
47 * with the penalty of slow pointer chases for d-cache misses).
49 struct pci_io_addr_range
51 struct rb_node rb_node;
52 unsigned long addr_lo;
53 unsigned long addr_hi;
54 struct pci_dev *pcidev;
58 static struct pci_io_addr_cache
60 struct rb_root rb_root;
62 } pci_io_addr_cache_root;
64 static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
66 struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
69 struct pci_io_addr_range *piar;
70 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
72 if (addr < piar->addr_lo) {
75 if (addr > piar->addr_hi) {
78 pci_dev_get(piar->pcidev);
88 * pci_get_device_by_addr - Get device, given only address
89 * @addr: mmio (PIO) phys address or i/o port number
91 * Given an mmio phys address, or a port number, find a pci device
92 * that implements this address. Be sure to pci_dev_put the device
93 * when finished. I/O port numbers are assumed to be offset
94 * from zero (that is, they do *not* have pci_io_addr added in).
95 * It is safe to call this function within an interrupt.
97 struct pci_dev *pci_get_device_by_addr(unsigned long addr)
102 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
103 dev = __pci_get_device_by_addr(addr);
104 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
110 * Handy-dandy debug print routine, does nothing more
111 * than print out the contents of our addr cache.
113 static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
118 n = rb_first(&cache->rb_root);
120 struct pci_io_addr_range *piar;
121 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
122 printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
123 (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
124 piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
131 /* Insert address range into the rb tree. */
132 static struct pci_io_addr_range *
133 pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
134 unsigned long ahi, unsigned int flags)
136 struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
137 struct rb_node *parent = NULL;
138 struct pci_io_addr_range *piar;
140 /* Walk tree, find a place to insert into tree */
143 piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
144 if (ahi < piar->addr_lo) {
145 p = &parent->rb_left;
146 } else if (alo > piar->addr_hi) {
147 p = &parent->rb_right;
149 if (dev != piar->pcidev ||
150 alo != piar->addr_lo || ahi != piar->addr_hi) {
151 printk(KERN_WARNING "PIAR: overlapping address range\n");
156 piar = kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
167 printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",
168 alo, ahi, pci_name (dev));
171 rb_link_node(&piar->rb_node, parent, p);
172 rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
177 static void __pci_addr_cache_insert_device(struct pci_dev *dev)
179 struct device_node *dn;
183 dn = pci_device_to_OF_node(dev);
185 printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));
189 /* Skip any devices for which EEH is not enabled. */
191 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
192 pdn->eeh_mode & EEH_MODE_NOCHECK) {
194 printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n",
195 pci_name(dev), pdn->node->full_name);
200 /* Walk resources on this device, poke them into the tree */
201 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
202 unsigned long start = pci_resource_start(dev,i);
203 unsigned long end = pci_resource_end(dev,i);
204 unsigned int flags = pci_resource_flags(dev,i);
206 /* We are interested only bus addresses, not dma or other stuff */
207 if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
209 if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
211 pci_addr_cache_insert(dev, start, end, flags);
216 * pci_addr_cache_insert_device - Add a device to the address cache
217 * @dev: PCI device whose I/O addresses we are interested in.
219 * In order to support the fast lookup of devices based on addresses,
220 * we maintain a cache of devices that can be quickly searched.
221 * This routine adds a device to that cache.
223 void pci_addr_cache_insert_device(struct pci_dev *dev)
227 /* Ignore PCI bridges */
228 if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE)
231 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
232 __pci_addr_cache_insert_device(dev);
233 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
236 static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
241 n = rb_first(&pci_io_addr_cache_root.rb_root);
243 struct pci_io_addr_range *piar;
244 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
246 if (piar->pcidev == dev) {
247 rb_erase(n, &pci_io_addr_cache_root.rb_root);
248 pci_dev_put(piar->pcidev);
257 * pci_addr_cache_remove_device - remove pci device from addr cache
258 * @dev: device to remove
260 * Remove a device from the addr-cache tree.
261 * This is potentially expensive, since it will walk
262 * the tree multiple times (once per resource).
263 * But so what; device removal doesn't need to be that fast.
265 void pci_addr_cache_remove_device(struct pci_dev *dev)
269 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
270 __pci_addr_cache_remove_device(dev);
271 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
275 * pci_addr_cache_build - Build a cache of I/O addresses
277 * Build a cache of pci i/o addresses. This cache will be used to
278 * find the pci device that corresponds to a given address.
279 * This routine scans all pci busses to build the cache.
280 * Must be run late in boot process, after the pci controllers
281 * have been scanned for devices (after all device resources are known).
283 void __init pci_addr_cache_build(void)
285 struct device_node *dn;
286 struct pci_dev *dev = NULL;
288 spin_lock_init(&pci_io_addr_cache_root.piar_lock);
290 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
292 pci_addr_cache_insert_device(dev);
294 dn = pci_device_to_OF_node(dev);
297 pci_dev_get(dev); /* matching put is in eeh_remove_device() */
298 PCI_DN(dn)->pcidev = dev;
300 eeh_sysfs_add_device(dev);
304 /* Verify tree built up above, echo back the list of addrs. */
305 pci_addr_cache_print(&pci_io_addr_cache_root);