Pull dock into release branch
[linux-2.6] / arch / sparc64 / kernel / smp.c
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4  */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/smp_lock.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
25
26 #include <asm/head.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
32
33 #include <asm/irq.h>
34 #include <asm/irq_regs.h>
35 #include <asm/page.h>
36 #include <asm/pgtable.h>
37 #include <asm/oplib.h>
38 #include <asm/uaccess.h>
39 #include <asm/timer.h>
40 #include <asm/starfire.h>
41 #include <asm/tlb.h>
42 #include <asm/sections.h>
43 #include <asm/prom.h>
44
45 extern void calibrate_delay(void);
46
47 /* Please don't make this stuff initdata!!!  --DaveM */
48 static unsigned char boot_cpu_id;
49
50 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
51 cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
52 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly =
53         { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
54 static cpumask_t smp_commenced_mask;
55 static cpumask_t cpu_callout_map;
56
57 void smp_info(struct seq_file *m)
58 {
59         int i;
60         
61         seq_printf(m, "State:\n");
62         for_each_online_cpu(i)
63                 seq_printf(m, "CPU%d:\t\tonline\n", i);
64 }
65
66 void smp_bogo(struct seq_file *m)
67 {
68         int i;
69         
70         for_each_online_cpu(i)
71                 seq_printf(m,
72                            "Cpu%dBogo\t: %lu.%02lu\n"
73                            "Cpu%dClkTck\t: %016lx\n",
74                            i, cpu_data(i).udelay_val / (500000/HZ),
75                            (cpu_data(i).udelay_val / (5000/HZ)) % 100,
76                            i, cpu_data(i).clock_tick);
77 }
78
79 void __init smp_store_cpu_info(int id)
80 {
81         struct device_node *dp;
82         int def;
83
84         /* multiplier and counter set by
85            smp_setup_percpu_timer()  */
86         cpu_data(id).udelay_val                 = loops_per_jiffy;
87
88         cpu_find_by_mid(id, &dp);
89         cpu_data(id).clock_tick =
90                 of_getintprop_default(dp, "clock-frequency", 0);
91
92         def = ((tlb_type == hypervisor) ? (8 * 1024) : (16 * 1024));
93         cpu_data(id).dcache_size =
94                 of_getintprop_default(dp, "dcache-size", def);
95
96         def = 32;
97         cpu_data(id).dcache_line_size =
98                 of_getintprop_default(dp, "dcache-line-size", def);
99
100         def = 16 * 1024;
101         cpu_data(id).icache_size =
102                 of_getintprop_default(dp, "icache-size", def);
103
104         def = 32;
105         cpu_data(id).icache_line_size =
106                 of_getintprop_default(dp, "icache-line-size", def);
107
108         def = ((tlb_type == hypervisor) ?
109                (3 * 1024 * 1024) :
110                (4 * 1024 * 1024));
111         cpu_data(id).ecache_size =
112                 of_getintprop_default(dp, "ecache-size", def);
113
114         def = 64;
115         cpu_data(id).ecache_line_size =
116                 of_getintprop_default(dp, "ecache-line-size", def);
117
118         printk("CPU[%d]: Caches "
119                "D[sz(%d):line_sz(%d)] "
120                "I[sz(%d):line_sz(%d)] "
121                "E[sz(%d):line_sz(%d)]\n",
122                id,
123                cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
124                cpu_data(id).icache_size, cpu_data(id).icache_line_size,
125                cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
126 }
127
128 static void smp_setup_percpu_timer(void);
129
130 static volatile unsigned long callin_flag = 0;
131
132 void __init smp_callin(void)
133 {
134         int cpuid = hard_smp_processor_id();
135
136         __local_per_cpu_offset = __per_cpu_offset(cpuid);
137
138         if (tlb_type == hypervisor)
139                 sun4v_ktsb_register();
140
141         __flush_tlb_all();
142
143         smp_setup_percpu_timer();
144
145         if (cheetah_pcache_forced_on)
146                 cheetah_enable_pcache();
147
148         local_irq_enable();
149
150         calibrate_delay();
151         smp_store_cpu_info(cpuid);
152         callin_flag = 1;
153         __asm__ __volatile__("membar #Sync\n\t"
154                              "flush  %%g6" : : : "memory");
155
156         /* Clear this or we will die instantly when we
157          * schedule back to this idler...
158          */
159         current_thread_info()->new_child = 0;
160
161         /* Attach to the address space of init_task. */
162         atomic_inc(&init_mm.mm_count);
163         current->active_mm = &init_mm;
164
165         while (!cpu_isset(cpuid, smp_commenced_mask))
166                 rmb();
167
168         cpu_set(cpuid, cpu_online_map);
169
170         /* idle thread is expected to have preempt disabled */
171         preempt_disable();
172 }
173
174 void cpu_panic(void)
175 {
176         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
177         panic("SMP bolixed\n");
178 }
179
180 static unsigned long current_tick_offset __read_mostly;
181
182 /* This tick register synchronization scheme is taken entirely from
183  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
184  *
185  * The only change I've made is to rework it so that the master
186  * initiates the synchonization instead of the slave. -DaveM
187  */
188
189 #define MASTER  0
190 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
191
192 #define NUM_ROUNDS      64      /* magic value */
193 #define NUM_ITERS       5       /* likewise */
194
195 static DEFINE_SPINLOCK(itc_sync_lock);
196 static unsigned long go[SLAVE + 1];
197
198 #define DEBUG_TICK_SYNC 0
199
200 static inline long get_delta (long *rt, long *master)
201 {
202         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
203         unsigned long tcenter, t0, t1, tm;
204         unsigned long i;
205
206         for (i = 0; i < NUM_ITERS; i++) {
207                 t0 = tick_ops->get_tick();
208                 go[MASTER] = 1;
209                 membar_storeload();
210                 while (!(tm = go[SLAVE]))
211                         rmb();
212                 go[SLAVE] = 0;
213                 wmb();
214                 t1 = tick_ops->get_tick();
215
216                 if (t1 - t0 < best_t1 - best_t0)
217                         best_t0 = t0, best_t1 = t1, best_tm = tm;
218         }
219
220         *rt = best_t1 - best_t0;
221         *master = best_tm - best_t0;
222
223         /* average best_t0 and best_t1 without overflow: */
224         tcenter = (best_t0/2 + best_t1/2);
225         if (best_t0 % 2 + best_t1 % 2 == 2)
226                 tcenter++;
227         return tcenter - best_tm;
228 }
229
230 void smp_synchronize_tick_client(void)
231 {
232         long i, delta, adj, adjust_latency = 0, done = 0;
233         unsigned long flags, rt, master_time_stamp, bound;
234 #if DEBUG_TICK_SYNC
235         struct {
236                 long rt;        /* roundtrip time */
237                 long master;    /* master's timestamp */
238                 long diff;      /* difference between midpoint and master's timestamp */
239                 long lat;       /* estimate of itc adjustment latency */
240         } t[NUM_ROUNDS];
241 #endif
242
243         go[MASTER] = 1;
244
245         while (go[MASTER])
246                 rmb();
247
248         local_irq_save(flags);
249         {
250                 for (i = 0; i < NUM_ROUNDS; i++) {
251                         delta = get_delta(&rt, &master_time_stamp);
252                         if (delta == 0) {
253                                 done = 1;       /* let's lock on to this... */
254                                 bound = rt;
255                         }
256
257                         if (!done) {
258                                 if (i > 0) {
259                                         adjust_latency += -delta;
260                                         adj = -delta + adjust_latency/4;
261                                 } else
262                                         adj = -delta;
263
264                                 tick_ops->add_tick(adj, current_tick_offset);
265                         }
266 #if DEBUG_TICK_SYNC
267                         t[i].rt = rt;
268                         t[i].master = master_time_stamp;
269                         t[i].diff = delta;
270                         t[i].lat = adjust_latency/4;
271 #endif
272                 }
273         }
274         local_irq_restore(flags);
275
276 #if DEBUG_TICK_SYNC
277         for (i = 0; i < NUM_ROUNDS; i++)
278                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
279                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
280 #endif
281
282         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
283                "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
284 }
285
286 static void smp_start_sync_tick_client(int cpu);
287
288 static void smp_synchronize_one_tick(int cpu)
289 {
290         unsigned long flags, i;
291
292         go[MASTER] = 0;
293
294         smp_start_sync_tick_client(cpu);
295
296         /* wait for client to be ready */
297         while (!go[MASTER])
298                 rmb();
299
300         /* now let the client proceed into his loop */
301         go[MASTER] = 0;
302         membar_storeload();
303
304         spin_lock_irqsave(&itc_sync_lock, flags);
305         {
306                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
307                         while (!go[MASTER])
308                                 rmb();
309                         go[MASTER] = 0;
310                         wmb();
311                         go[SLAVE] = tick_ops->get_tick();
312                         membar_storeload();
313                 }
314         }
315         spin_unlock_irqrestore(&itc_sync_lock, flags);
316 }
317
318 extern void sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load);
319
320 extern unsigned long sparc64_cpu_startup;
321
322 /* The OBP cpu startup callback truncates the 3rd arg cookie to
323  * 32-bits (I think) so to be safe we have it read the pointer
324  * contained here so we work on >4GB machines. -DaveM
325  */
326 static struct thread_info *cpu_new_thread = NULL;
327
328 static int __devinit smp_boot_one_cpu(unsigned int cpu)
329 {
330         unsigned long entry =
331                 (unsigned long)(&sparc64_cpu_startup);
332         unsigned long cookie =
333                 (unsigned long)(&cpu_new_thread);
334         struct task_struct *p;
335         int timeout, ret;
336
337         p = fork_idle(cpu);
338         callin_flag = 0;
339         cpu_new_thread = task_thread_info(p);
340         cpu_set(cpu, cpu_callout_map);
341
342         if (tlb_type == hypervisor) {
343                 /* Alloc the mondo queues, cpu will load them.  */
344                 sun4v_init_mondo_queues(0, cpu, 1, 0);
345
346                 prom_startcpu_cpuid(cpu, entry, cookie);
347         } else {
348                 struct device_node *dp;
349
350                 cpu_find_by_mid(cpu, &dp);
351                 prom_startcpu(dp->node, entry, cookie);
352         }
353
354         for (timeout = 0; timeout < 5000000; timeout++) {
355                 if (callin_flag)
356                         break;
357                 udelay(100);
358         }
359
360         if (callin_flag) {
361                 ret = 0;
362         } else {
363                 printk("Processor %d is stuck.\n", cpu);
364                 cpu_clear(cpu, cpu_callout_map);
365                 ret = -ENODEV;
366         }
367         cpu_new_thread = NULL;
368
369         return ret;
370 }
371
372 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
373 {
374         u64 result, target;
375         int stuck, tmp;
376
377         if (this_is_starfire) {
378                 /* map to real upaid */
379                 cpu = (((cpu & 0x3c) << 1) |
380                         ((cpu & 0x40) >> 4) |
381                         (cpu & 0x3));
382         }
383
384         target = (cpu << 14) | 0x70;
385 again:
386         /* Ok, this is the real Spitfire Errata #54.
387          * One must read back from a UDB internal register
388          * after writes to the UDB interrupt dispatch, but
389          * before the membar Sync for that write.
390          * So we use the high UDB control register (ASI 0x7f,
391          * ADDR 0x20) for the dummy read. -DaveM
392          */
393         tmp = 0x40;
394         __asm__ __volatile__(
395         "wrpr   %1, %2, %%pstate\n\t"
396         "stxa   %4, [%0] %3\n\t"
397         "stxa   %5, [%0+%8] %3\n\t"
398         "add    %0, %8, %0\n\t"
399         "stxa   %6, [%0+%8] %3\n\t"
400         "membar #Sync\n\t"
401         "stxa   %%g0, [%7] %3\n\t"
402         "membar #Sync\n\t"
403         "mov    0x20, %%g1\n\t"
404         "ldxa   [%%g1] 0x7f, %%g0\n\t"
405         "membar #Sync"
406         : "=r" (tmp)
407         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
408           "r" (data0), "r" (data1), "r" (data2), "r" (target),
409           "r" (0x10), "0" (tmp)
410         : "g1");
411
412         /* NOTE: PSTATE_IE is still clear. */
413         stuck = 100000;
414         do {
415                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
416                         : "=r" (result)
417                         : "i" (ASI_INTR_DISPATCH_STAT));
418                 if (result == 0) {
419                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
420                                              : : "r" (pstate));
421                         return;
422                 }
423                 stuck -= 1;
424                 if (stuck == 0)
425                         break;
426         } while (result & 0x1);
427         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
428                              : : "r" (pstate));
429         if (stuck == 0) {
430                 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
431                        smp_processor_id(), result);
432         } else {
433                 udelay(2);
434                 goto again;
435         }
436 }
437
438 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
439 {
440         u64 pstate;
441         int i;
442
443         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
444         for_each_cpu_mask(i, mask)
445                 spitfire_xcall_helper(data0, data1, data2, pstate, i);
446 }
447
448 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
449  * packet, but we have no use for that.  However we do take advantage of
450  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
451  */
452 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
453 {
454         u64 pstate, ver;
455         int nack_busy_id, is_jbus;
456
457         if (cpus_empty(mask))
458                 return;
459
460         /* Unfortunately, someone at Sun had the brilliant idea to make the
461          * busy/nack fields hard-coded by ITID number for this Ultra-III
462          * derivative processor.
463          */
464         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
465         is_jbus = ((ver >> 32) == __JALAPENO_ID ||
466                    (ver >> 32) == __SERRANO_ID);
467
468         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
469
470 retry:
471         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
472                              : : "r" (pstate), "i" (PSTATE_IE));
473
474         /* Setup the dispatch data registers. */
475         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
476                              "stxa      %1, [%4] %6\n\t"
477                              "stxa      %2, [%5] %6\n\t"
478                              "membar    #Sync\n\t"
479                              : /* no outputs */
480                              : "r" (data0), "r" (data1), "r" (data2),
481                                "r" (0x40), "r" (0x50), "r" (0x60),
482                                "i" (ASI_INTR_W));
483
484         nack_busy_id = 0;
485         {
486                 int i;
487
488                 for_each_cpu_mask(i, mask) {
489                         u64 target = (i << 14) | 0x70;
490
491                         if (!is_jbus)
492                                 target |= (nack_busy_id << 24);
493                         __asm__ __volatile__(
494                                 "stxa   %%g0, [%0] %1\n\t"
495                                 "membar #Sync\n\t"
496                                 : /* no outputs */
497                                 : "r" (target), "i" (ASI_INTR_W));
498                         nack_busy_id++;
499                 }
500         }
501
502         /* Now, poll for completion. */
503         {
504                 u64 dispatch_stat;
505                 long stuck;
506
507                 stuck = 100000 * nack_busy_id;
508                 do {
509                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
510                                              : "=r" (dispatch_stat)
511                                              : "i" (ASI_INTR_DISPATCH_STAT));
512                         if (dispatch_stat == 0UL) {
513                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
514                                                      : : "r" (pstate));
515                                 return;
516                         }
517                         if (!--stuck)
518                                 break;
519                 } while (dispatch_stat & 0x5555555555555555UL);
520
521                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
522                                      : : "r" (pstate));
523
524                 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
525                         /* Busy bits will not clear, continue instead
526                          * of freezing up on this cpu.
527                          */
528                         printk("CPU[%d]: mondo stuckage result[%016lx]\n",
529                                smp_processor_id(), dispatch_stat);
530                 } else {
531                         int i, this_busy_nack = 0;
532
533                         /* Delay some random time with interrupts enabled
534                          * to prevent deadlock.
535                          */
536                         udelay(2 * nack_busy_id);
537
538                         /* Clear out the mask bits for cpus which did not
539                          * NACK us.
540                          */
541                         for_each_cpu_mask(i, mask) {
542                                 u64 check_mask;
543
544                                 if (is_jbus)
545                                         check_mask = (0x2UL << (2*i));
546                                 else
547                                         check_mask = (0x2UL <<
548                                                       this_busy_nack);
549                                 if ((dispatch_stat & check_mask) == 0)
550                                         cpu_clear(i, mask);
551                                 this_busy_nack += 2;
552                         }
553
554                         goto retry;
555                 }
556         }
557 }
558
559 /* Multi-cpu list version.  */
560 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
561 {
562         struct trap_per_cpu *tb;
563         u16 *cpu_list;
564         u64 *mondo;
565         cpumask_t error_mask;
566         unsigned long flags, status;
567         int cnt, retries, this_cpu, prev_sent, i;
568
569         /* We have to do this whole thing with interrupts fully disabled.
570          * Otherwise if we send an xcall from interrupt context it will
571          * corrupt both our mondo block and cpu list state.
572          *
573          * One consequence of this is that we cannot use timeout mechanisms
574          * that depend upon interrupts being delivered locally.  So, for
575          * example, we cannot sample jiffies and expect it to advance.
576          *
577          * Fortunately, udelay() uses %stick/%tick so we can use that.
578          */
579         local_irq_save(flags);
580
581         this_cpu = smp_processor_id();
582         tb = &trap_block[this_cpu];
583
584         mondo = __va(tb->cpu_mondo_block_pa);
585         mondo[0] = data0;
586         mondo[1] = data1;
587         mondo[2] = data2;
588         wmb();
589
590         cpu_list = __va(tb->cpu_list_pa);
591
592         /* Setup the initial cpu list.  */
593         cnt = 0;
594         for_each_cpu_mask(i, mask)
595                 cpu_list[cnt++] = i;
596
597         cpus_clear(error_mask);
598         retries = 0;
599         prev_sent = 0;
600         do {
601                 int forward_progress, n_sent;
602
603                 status = sun4v_cpu_mondo_send(cnt,
604                                               tb->cpu_list_pa,
605                                               tb->cpu_mondo_block_pa);
606
607                 /* HV_EOK means all cpus received the xcall, we're done.  */
608                 if (likely(status == HV_EOK))
609                         break;
610
611                 /* First, see if we made any forward progress.
612                  *
613                  * The hypervisor indicates successful sends by setting
614                  * cpu list entries to the value 0xffff.
615                  */
616                 n_sent = 0;
617                 for (i = 0; i < cnt; i++) {
618                         if (likely(cpu_list[i] == 0xffff))
619                                 n_sent++;
620                 }
621
622                 forward_progress = 0;
623                 if (n_sent > prev_sent)
624                         forward_progress = 1;
625
626                 prev_sent = n_sent;
627
628                 /* If we get a HV_ECPUERROR, then one or more of the cpus
629                  * in the list are in error state.  Use the cpu_state()
630                  * hypervisor call to find out which cpus are in error state.
631                  */
632                 if (unlikely(status == HV_ECPUERROR)) {
633                         for (i = 0; i < cnt; i++) {
634                                 long err;
635                                 u16 cpu;
636
637                                 cpu = cpu_list[i];
638                                 if (cpu == 0xffff)
639                                         continue;
640
641                                 err = sun4v_cpu_state(cpu);
642                                 if (err >= 0 &&
643                                     err == HV_CPU_STATE_ERROR) {
644                                         cpu_list[i] = 0xffff;
645                                         cpu_set(cpu, error_mask);
646                                 }
647                         }
648                 } else if (unlikely(status != HV_EWOULDBLOCK))
649                         goto fatal_mondo_error;
650
651                 /* Don't bother rewriting the CPU list, just leave the
652                  * 0xffff and non-0xffff entries in there and the
653                  * hypervisor will do the right thing.
654                  *
655                  * Only advance timeout state if we didn't make any
656                  * forward progress.
657                  */
658                 if (unlikely(!forward_progress)) {
659                         if (unlikely(++retries > 10000))
660                                 goto fatal_mondo_timeout;
661
662                         /* Delay a little bit to let other cpus catch up
663                          * on their cpu mondo queue work.
664                          */
665                         udelay(2 * cnt);
666                 }
667         } while (1);
668
669         local_irq_restore(flags);
670
671         if (unlikely(!cpus_empty(error_mask)))
672                 goto fatal_mondo_cpu_error;
673
674         return;
675
676 fatal_mondo_cpu_error:
677         printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
678                "were in error state\n",
679                this_cpu);
680         printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
681         for_each_cpu_mask(i, error_mask)
682                 printk("%d ", i);
683         printk("]\n");
684         return;
685
686 fatal_mondo_timeout:
687         local_irq_restore(flags);
688         printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
689                " progress after %d retries.\n",
690                this_cpu, retries);
691         goto dump_cpu_list_and_out;
692
693 fatal_mondo_error:
694         local_irq_restore(flags);
695         printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
696                this_cpu, status);
697         printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
698                "mondo_block_pa(%lx)\n",
699                this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
700
701 dump_cpu_list_and_out:
702         printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
703         for (i = 0; i < cnt; i++)
704                 printk("%u ", cpu_list[i]);
705         printk("]\n");
706 }
707
708 /* Send cross call to all processors mentioned in MASK
709  * except self.
710  */
711 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
712 {
713         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
714         int this_cpu = get_cpu();
715
716         cpus_and(mask, mask, cpu_online_map);
717         cpu_clear(this_cpu, mask);
718
719         if (tlb_type == spitfire)
720                 spitfire_xcall_deliver(data0, data1, data2, mask);
721         else if (tlb_type == cheetah || tlb_type == cheetah_plus)
722                 cheetah_xcall_deliver(data0, data1, data2, mask);
723         else
724                 hypervisor_xcall_deliver(data0, data1, data2, mask);
725         /* NOTE: Caller runs local copy on master. */
726
727         put_cpu();
728 }
729
730 extern unsigned long xcall_sync_tick;
731
732 static void smp_start_sync_tick_client(int cpu)
733 {
734         cpumask_t mask = cpumask_of_cpu(cpu);
735
736         smp_cross_call_masked(&xcall_sync_tick,
737                               0, 0, 0, mask);
738 }
739
740 /* Send cross call to all processors except self. */
741 #define smp_cross_call(func, ctx, data1, data2) \
742         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
743
744 struct call_data_struct {
745         void (*func) (void *info);
746         void *info;
747         atomic_t finished;
748         int wait;
749 };
750
751 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
752 static struct call_data_struct *call_data;
753
754 extern unsigned long xcall_call_function;
755
756 /**
757  * smp_call_function(): Run a function on all other CPUs.
758  * @func: The function to run. This must be fast and non-blocking.
759  * @info: An arbitrary pointer to pass to the function.
760  * @nonatomic: currently unused.
761  * @wait: If true, wait (atomically) until function has completed on other CPUs.
762  *
763  * Returns 0 on success, else a negative status code. Does not return until
764  * remote CPUs are nearly ready to execute <<func>> or are or have executed.
765  *
766  * You must not call this function with disabled interrupts or from a
767  * hardware interrupt handler or from a bottom half handler.
768  */
769 static int smp_call_function_mask(void (*func)(void *info), void *info,
770                                   int nonatomic, int wait, cpumask_t mask)
771 {
772         struct call_data_struct data;
773         int cpus;
774
775         /* Can deadlock when called with interrupts disabled */
776         WARN_ON(irqs_disabled());
777
778         data.func = func;
779         data.info = info;
780         atomic_set(&data.finished, 0);
781         data.wait = wait;
782
783         spin_lock(&call_lock);
784
785         cpu_clear(smp_processor_id(), mask);
786         cpus = cpus_weight(mask);
787         if (!cpus)
788                 goto out_unlock;
789
790         call_data = &data;
791         mb();
792
793         smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
794
795         /* Wait for response */
796         while (atomic_read(&data.finished) != cpus)
797                 cpu_relax();
798
799 out_unlock:
800         spin_unlock(&call_lock);
801
802         return 0;
803 }
804
805 int smp_call_function(void (*func)(void *info), void *info,
806                       int nonatomic, int wait)
807 {
808         return smp_call_function_mask(func, info, nonatomic, wait,
809                                       cpu_online_map);
810 }
811
812 void smp_call_function_client(int irq, struct pt_regs *regs)
813 {
814         void (*func) (void *info) = call_data->func;
815         void *info = call_data->info;
816
817         clear_softint(1 << irq);
818         if (call_data->wait) {
819                 /* let initiator proceed only after completion */
820                 func(info);
821                 atomic_inc(&call_data->finished);
822         } else {
823                 /* let initiator proceed after getting data */
824                 atomic_inc(&call_data->finished);
825                 func(info);
826         }
827 }
828
829 static void tsb_sync(void *info)
830 {
831         struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
832         struct mm_struct *mm = info;
833
834         /* It is not valid to test "currrent->active_mm == mm" here.
835          *
836          * The value of "current" is not changed atomically with
837          * switch_mm().  But that's OK, we just need to check the
838          * current cpu's trap block PGD physical address.
839          */
840         if (tp->pgd_paddr == __pa(mm->pgd))
841                 tsb_context_switch(mm);
842 }
843
844 void smp_tsb_sync(struct mm_struct *mm)
845 {
846         smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
847 }
848
849 extern unsigned long xcall_flush_tlb_mm;
850 extern unsigned long xcall_flush_tlb_pending;
851 extern unsigned long xcall_flush_tlb_kernel_range;
852 extern unsigned long xcall_report_regs;
853 extern unsigned long xcall_receive_signal;
854 extern unsigned long xcall_new_mmu_context_version;
855
856 #ifdef DCACHE_ALIASING_POSSIBLE
857 extern unsigned long xcall_flush_dcache_page_cheetah;
858 #endif
859 extern unsigned long xcall_flush_dcache_page_spitfire;
860
861 #ifdef CONFIG_DEBUG_DCFLUSH
862 extern atomic_t dcpage_flushes;
863 extern atomic_t dcpage_flushes_xcall;
864 #endif
865
866 static __inline__ void __local_flush_dcache_page(struct page *page)
867 {
868 #ifdef DCACHE_ALIASING_POSSIBLE
869         __flush_dcache_page(page_address(page),
870                             ((tlb_type == spitfire) &&
871                              page_mapping(page) != NULL));
872 #else
873         if (page_mapping(page) != NULL &&
874             tlb_type == spitfire)
875                 __flush_icache_page(__pa(page_address(page)));
876 #endif
877 }
878
879 void smp_flush_dcache_page_impl(struct page *page, int cpu)
880 {
881         cpumask_t mask = cpumask_of_cpu(cpu);
882         int this_cpu;
883
884         if (tlb_type == hypervisor)
885                 return;
886
887 #ifdef CONFIG_DEBUG_DCFLUSH
888         atomic_inc(&dcpage_flushes);
889 #endif
890
891         this_cpu = get_cpu();
892
893         if (cpu == this_cpu) {
894                 __local_flush_dcache_page(page);
895         } else if (cpu_online(cpu)) {
896                 void *pg_addr = page_address(page);
897                 u64 data0;
898
899                 if (tlb_type == spitfire) {
900                         data0 =
901                                 ((u64)&xcall_flush_dcache_page_spitfire);
902                         if (page_mapping(page) != NULL)
903                                 data0 |= ((u64)1 << 32);
904                         spitfire_xcall_deliver(data0,
905                                                __pa(pg_addr),
906                                                (u64) pg_addr,
907                                                mask);
908                 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
909 #ifdef DCACHE_ALIASING_POSSIBLE
910                         data0 =
911                                 ((u64)&xcall_flush_dcache_page_cheetah);
912                         cheetah_xcall_deliver(data0,
913                                               __pa(pg_addr),
914                                               0, mask);
915 #endif
916                 }
917 #ifdef CONFIG_DEBUG_DCFLUSH
918                 atomic_inc(&dcpage_flushes_xcall);
919 #endif
920         }
921
922         put_cpu();
923 }
924
925 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
926 {
927         void *pg_addr = page_address(page);
928         cpumask_t mask = cpu_online_map;
929         u64 data0;
930         int this_cpu;
931
932         if (tlb_type == hypervisor)
933                 return;
934
935         this_cpu = get_cpu();
936
937         cpu_clear(this_cpu, mask);
938
939 #ifdef CONFIG_DEBUG_DCFLUSH
940         atomic_inc(&dcpage_flushes);
941 #endif
942         if (cpus_empty(mask))
943                 goto flush_self;
944         if (tlb_type == spitfire) {
945                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
946                 if (page_mapping(page) != NULL)
947                         data0 |= ((u64)1 << 32);
948                 spitfire_xcall_deliver(data0,
949                                        __pa(pg_addr),
950                                        (u64) pg_addr,
951                                        mask);
952         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
953 #ifdef DCACHE_ALIASING_POSSIBLE
954                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
955                 cheetah_xcall_deliver(data0,
956                                       __pa(pg_addr),
957                                       0, mask);
958 #endif
959         }
960 #ifdef CONFIG_DEBUG_DCFLUSH
961         atomic_inc(&dcpage_flushes_xcall);
962 #endif
963  flush_self:
964         __local_flush_dcache_page(page);
965
966         put_cpu();
967 }
968
969 static void __smp_receive_signal_mask(cpumask_t mask)
970 {
971         smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
972 }
973
974 void smp_receive_signal(int cpu)
975 {
976         cpumask_t mask = cpumask_of_cpu(cpu);
977
978         if (cpu_online(cpu))
979                 __smp_receive_signal_mask(mask);
980 }
981
982 void smp_receive_signal_client(int irq, struct pt_regs *regs)
983 {
984         clear_softint(1 << irq);
985 }
986
987 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
988 {
989         struct mm_struct *mm;
990         unsigned long flags;
991
992         clear_softint(1 << irq);
993
994         /* See if we need to allocate a new TLB context because
995          * the version of the one we are using is now out of date.
996          */
997         mm = current->active_mm;
998         if (unlikely(!mm || (mm == &init_mm)))
999                 return;
1000
1001         spin_lock_irqsave(&mm->context.lock, flags);
1002
1003         if (unlikely(!CTX_VALID(mm->context)))
1004                 get_new_mmu_context(mm);
1005
1006         spin_unlock_irqrestore(&mm->context.lock, flags);
1007
1008         load_secondary_context(mm);
1009         __flush_tlb_mm(CTX_HWBITS(mm->context),
1010                        SECONDARY_CONTEXT);
1011 }
1012
1013 void smp_new_mmu_context_version(void)
1014 {
1015         smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1016 }
1017
1018 void smp_report_regs(void)
1019 {
1020         smp_cross_call(&xcall_report_regs, 0, 0, 0);
1021 }
1022
1023 /* We know that the window frames of the user have been flushed
1024  * to the stack before we get here because all callers of us
1025  * are flush_tlb_*() routines, and these run after flush_cache_*()
1026  * which performs the flushw.
1027  *
1028  * The SMP TLB coherency scheme we use works as follows:
1029  *
1030  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1031  *    space has (potentially) executed on, this is the heuristic
1032  *    we use to avoid doing cross calls.
1033  *
1034  *    Also, for flushing from kswapd and also for clones, we
1035  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1036  *
1037  * 2) TLB context numbers are shared globally across all processors
1038  *    in the system, this allows us to play several games to avoid
1039  *    cross calls.
1040  *
1041  *    One invariant is that when a cpu switches to a process, and
1042  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1043  *    current cpu's bit set, that tlb context is flushed locally.
1044  *
1045  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1046  *    cross calls when we want to flush the currently running process's
1047  *    tlb state.  This is done by clearing all cpu bits except the current
1048  *    processor's in current->active_mm->cpu_vm_mask and performing the
1049  *    flush locally only.  This will force any subsequent cpus which run
1050  *    this task to flush the context from the local tlb if the process
1051  *    migrates to another cpu (again).
1052  *
1053  * 3) For shared address spaces (threads) and swapping we bite the
1054  *    bullet for most cases and perform the cross call (but only to
1055  *    the cpus listed in cpu_vm_mask).
1056  *
1057  *    The performance gain from "optimizing" away the cross call for threads is
1058  *    questionable (in theory the big win for threads is the massive sharing of
1059  *    address space state across processors).
1060  */
1061
1062 /* This currently is only used by the hugetlb arch pre-fault
1063  * hook on UltraSPARC-III+ and later when changing the pagesize
1064  * bits of the context register for an address space.
1065  */
1066 void smp_flush_tlb_mm(struct mm_struct *mm)
1067 {
1068         u32 ctx = CTX_HWBITS(mm->context);
1069         int cpu = get_cpu();
1070
1071         if (atomic_read(&mm->mm_users) == 1) {
1072                 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1073                 goto local_flush_and_out;
1074         }
1075
1076         smp_cross_call_masked(&xcall_flush_tlb_mm,
1077                               ctx, 0, 0,
1078                               mm->cpu_vm_mask);
1079
1080 local_flush_and_out:
1081         __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1082
1083         put_cpu();
1084 }
1085
1086 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1087 {
1088         u32 ctx = CTX_HWBITS(mm->context);
1089         int cpu = get_cpu();
1090
1091         if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1092                 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1093         else
1094                 smp_cross_call_masked(&xcall_flush_tlb_pending,
1095                                       ctx, nr, (unsigned long) vaddrs,
1096                                       mm->cpu_vm_mask);
1097
1098         __flush_tlb_pending(ctx, nr, vaddrs);
1099
1100         put_cpu();
1101 }
1102
1103 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1104 {
1105         start &= PAGE_MASK;
1106         end    = PAGE_ALIGN(end);
1107         if (start != end) {
1108                 smp_cross_call(&xcall_flush_tlb_kernel_range,
1109                                0, start, end);
1110
1111                 __flush_tlb_kernel_range(start, end);
1112         }
1113 }
1114
1115 /* CPU capture. */
1116 /* #define CAPTURE_DEBUG */
1117 extern unsigned long xcall_capture;
1118
1119 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1120 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1121 static unsigned long penguins_are_doing_time;
1122
1123 void smp_capture(void)
1124 {
1125         int result = atomic_add_ret(1, &smp_capture_depth);
1126
1127         if (result == 1) {
1128                 int ncpus = num_online_cpus();
1129
1130 #ifdef CAPTURE_DEBUG
1131                 printk("CPU[%d]: Sending penguins to jail...",
1132                        smp_processor_id());
1133 #endif
1134                 penguins_are_doing_time = 1;
1135                 membar_storestore_loadstore();
1136                 atomic_inc(&smp_capture_registry);
1137                 smp_cross_call(&xcall_capture, 0, 0, 0);
1138                 while (atomic_read(&smp_capture_registry) != ncpus)
1139                         rmb();
1140 #ifdef CAPTURE_DEBUG
1141                 printk("done\n");
1142 #endif
1143         }
1144 }
1145
1146 void smp_release(void)
1147 {
1148         if (atomic_dec_and_test(&smp_capture_depth)) {
1149 #ifdef CAPTURE_DEBUG
1150                 printk("CPU[%d]: Giving pardon to "
1151                        "imprisoned penguins\n",
1152                        smp_processor_id());
1153 #endif
1154                 penguins_are_doing_time = 0;
1155                 membar_storeload_storestore();
1156                 atomic_dec(&smp_capture_registry);
1157         }
1158 }
1159
1160 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1161  * can service tlb flush xcalls...
1162  */
1163 extern void prom_world(int);
1164
1165 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1166 {
1167         clear_softint(1 << irq);
1168
1169         preempt_disable();
1170
1171         __asm__ __volatile__("flushw");
1172         prom_world(1);
1173         atomic_inc(&smp_capture_registry);
1174         membar_storeload_storestore();
1175         while (penguins_are_doing_time)
1176                 rmb();
1177         atomic_dec(&smp_capture_registry);
1178         prom_world(0);
1179
1180         preempt_enable();
1181 }
1182
1183 #define prof_multiplier(__cpu)          cpu_data(__cpu).multiplier
1184 #define prof_counter(__cpu)             cpu_data(__cpu).counter
1185
1186 void smp_percpu_timer_interrupt(struct pt_regs *regs)
1187 {
1188         unsigned long compare, tick, pstate;
1189         int cpu = smp_processor_id();
1190         int user = user_mode(regs);
1191         struct pt_regs *old_regs;
1192
1193         /*
1194          * Check for level 14 softint.
1195          */
1196         {
1197                 unsigned long tick_mask = tick_ops->softint_mask;
1198
1199                 if (!(get_softint() & tick_mask)) {
1200                         extern void handler_irq(int, struct pt_regs *);
1201
1202                         handler_irq(14, regs);
1203                         return;
1204                 }
1205                 clear_softint(tick_mask);
1206         }
1207
1208         old_regs = set_irq_regs(regs);
1209         do {
1210                 profile_tick(CPU_PROFILING);
1211                 if (!--prof_counter(cpu)) {
1212                         irq_enter();
1213
1214                         if (cpu == boot_cpu_id) {
1215                                 kstat_this_cpu.irqs[0]++;
1216                                 timer_tick_interrupt(regs);
1217                         }
1218
1219                         update_process_times(user);
1220
1221                         irq_exit();
1222
1223                         prof_counter(cpu) = prof_multiplier(cpu);
1224                 }
1225
1226                 /* Guarantee that the following sequences execute
1227                  * uninterrupted.
1228                  */
1229                 __asm__ __volatile__("rdpr      %%pstate, %0\n\t"
1230                                      "wrpr      %0, %1, %%pstate"
1231                                      : "=r" (pstate)
1232                                      : "i" (PSTATE_IE));
1233
1234                 compare = tick_ops->add_compare(current_tick_offset);
1235                 tick = tick_ops->get_tick();
1236
1237                 /* Restore PSTATE_IE. */
1238                 __asm__ __volatile__("wrpr      %0, 0x0, %%pstate"
1239                                      : /* no outputs */
1240                                      : "r" (pstate));
1241         } while (time_after_eq(tick, compare));
1242         set_irq_regs(old_regs);
1243 }
1244
1245 static void __init smp_setup_percpu_timer(void)
1246 {
1247         int cpu = smp_processor_id();
1248         unsigned long pstate;
1249
1250         prof_counter(cpu) = prof_multiplier(cpu) = 1;
1251
1252         /* Guarantee that the following sequences execute
1253          * uninterrupted.
1254          */
1255         __asm__ __volatile__("rdpr      %%pstate, %0\n\t"
1256                              "wrpr      %0, %1, %%pstate"
1257                              : "=r" (pstate)
1258                              : "i" (PSTATE_IE));
1259
1260         tick_ops->init_tick(current_tick_offset);
1261
1262         /* Restore PSTATE_IE. */
1263         __asm__ __volatile__("wrpr      %0, 0x0, %%pstate"
1264                              : /* no outputs */
1265                              : "r" (pstate));
1266 }
1267
1268 void __init smp_tick_init(void)
1269 {
1270         boot_cpu_id = hard_smp_processor_id();
1271         current_tick_offset = timer_tick_offset;
1272
1273         prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1274 }
1275
1276 /* /proc/profile writes can call this, don't __init it please. */
1277 static DEFINE_SPINLOCK(prof_setup_lock);
1278
1279 int setup_profiling_timer(unsigned int multiplier)
1280 {
1281         unsigned long flags;
1282         int i;
1283
1284         if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1285                 return -EINVAL;
1286
1287         spin_lock_irqsave(&prof_setup_lock, flags);
1288         for_each_possible_cpu(i)
1289                 prof_multiplier(i) = multiplier;
1290         current_tick_offset = (timer_tick_offset / multiplier);
1291         spin_unlock_irqrestore(&prof_setup_lock, flags);
1292
1293         return 0;
1294 }
1295
1296 static void __init smp_tune_scheduling(void)
1297 {
1298         struct device_node *dp;
1299         int instance;
1300         unsigned int def, smallest = ~0U;
1301
1302         def = ((tlb_type == hypervisor) ?
1303                (3 * 1024 * 1024) :
1304                (4 * 1024 * 1024));
1305
1306         instance = 0;
1307         while (!cpu_find_by_instance(instance, &dp, NULL)) {
1308                 unsigned int val;
1309
1310                 val = of_getintprop_default(dp, "ecache-size", def);
1311                 if (val < smallest)
1312                         smallest = val;
1313
1314                 instance++;
1315         }
1316
1317         /* Any value less than 256K is nonsense.  */
1318         if (smallest < (256U * 1024U))
1319                 smallest = 256 * 1024;
1320
1321         max_cache_size = smallest;
1322
1323         if (smallest < 1U * 1024U * 1024U)
1324                 printk(KERN_INFO "Using max_cache_size of %uKB\n",
1325                        smallest / 1024U);
1326         else
1327                 printk(KERN_INFO "Using max_cache_size of %uMB\n",
1328                        smallest / 1024U / 1024U);
1329 }
1330
1331 /* Constrain the number of cpus to max_cpus.  */
1332 void __init smp_prepare_cpus(unsigned int max_cpus)
1333 {
1334         int i;
1335
1336         if (num_possible_cpus() > max_cpus) {
1337                 int instance, mid;
1338
1339                 instance = 0;
1340                 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1341                         if (mid != boot_cpu_id) {
1342                                 cpu_clear(mid, phys_cpu_present_map);
1343                                 cpu_clear(mid, cpu_present_map);
1344                                 if (num_possible_cpus() <= max_cpus)
1345                                         break;
1346                         }
1347                         instance++;
1348                 }
1349         }
1350
1351         for_each_possible_cpu(i) {
1352                 if (tlb_type == hypervisor) {
1353                         int j;
1354
1355                         /* XXX get this mapping from machine description */
1356                         for_each_possible_cpu(j) {
1357                                 if ((j >> 2) == (i >> 2))
1358                                         cpu_set(j, cpu_sibling_map[i]);
1359                         }
1360                 } else {
1361                         cpu_set(i, cpu_sibling_map[i]);
1362                 }
1363         }
1364
1365         smp_store_cpu_info(boot_cpu_id);
1366         smp_tune_scheduling();
1367 }
1368
1369 /* Set this up early so that things like the scheduler can init
1370  * properly.  We use the same cpu mask for both the present and
1371  * possible cpu map.
1372  */
1373 void __init smp_setup_cpu_possible_map(void)
1374 {
1375         int instance, mid;
1376
1377         instance = 0;
1378         while (!cpu_find_by_instance(instance, NULL, &mid)) {
1379                 if (mid < NR_CPUS) {
1380                         cpu_set(mid, phys_cpu_present_map);
1381                         cpu_set(mid, cpu_present_map);
1382                 }
1383                 instance++;
1384         }
1385 }
1386
1387 void __devinit smp_prepare_boot_cpu(void)
1388 {
1389 }
1390
1391 int __cpuinit __cpu_up(unsigned int cpu)
1392 {
1393         int ret = smp_boot_one_cpu(cpu);
1394
1395         if (!ret) {
1396                 cpu_set(cpu, smp_commenced_mask);
1397                 while (!cpu_isset(cpu, cpu_online_map))
1398                         mb();
1399                 if (!cpu_isset(cpu, cpu_online_map)) {
1400                         ret = -ENODEV;
1401                 } else {
1402                         /* On SUN4V, writes to %tick and %stick are
1403                          * not allowed.
1404                          */
1405                         if (tlb_type != hypervisor)
1406                                 smp_synchronize_one_tick(cpu);
1407                 }
1408         }
1409         return ret;
1410 }
1411
1412 void __init smp_cpus_done(unsigned int max_cpus)
1413 {
1414         unsigned long bogosum = 0;
1415         int i;
1416
1417         for_each_online_cpu(i)
1418                 bogosum += cpu_data(i).udelay_val;
1419         printk("Total of %ld processors activated "
1420                "(%lu.%02lu BogoMIPS).\n",
1421                (long) num_online_cpus(),
1422                bogosum/(500000/HZ),
1423                (bogosum/(5000/HZ))%100);
1424 }
1425
1426 void smp_send_reschedule(int cpu)
1427 {
1428         smp_receive_signal(cpu);
1429 }
1430
1431 /* This is a nop because we capture all other cpus
1432  * anyways when making the PROM active.
1433  */
1434 void smp_send_stop(void)
1435 {
1436 }
1437
1438 unsigned long __per_cpu_base __read_mostly;
1439 unsigned long __per_cpu_shift __read_mostly;
1440
1441 EXPORT_SYMBOL(__per_cpu_base);
1442 EXPORT_SYMBOL(__per_cpu_shift);
1443
1444 void __init setup_per_cpu_areas(void)
1445 {
1446         unsigned long goal, size, i;
1447         char *ptr;
1448
1449         /* Copy section for each CPU (we discard the original) */
1450         goal = PERCPU_ENOUGH_ROOM;
1451
1452         __per_cpu_shift = 0;
1453         for (size = 1UL; size < goal; size <<= 1UL)
1454                 __per_cpu_shift++;
1455
1456         ptr = alloc_bootmem(size * NR_CPUS);
1457
1458         __per_cpu_base = ptr - __per_cpu_start;
1459
1460         for (i = 0; i < NR_CPUS; i++, ptr += size)
1461                 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1462
1463         /* Setup %g5 for the boot cpu.  */
1464         __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1465 }