2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations prepare_write and/or commit_write are not available on the
45 * Anton Altaparmakov, 16 Feb 2005
48 * - Advisory locking is ignored here.
49 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/sched.h>
57 #include <linux/file.h>
58 #include <linux/stat.h>
59 #include <linux/errno.h>
60 #include <linux/major.h>
61 #include <linux/wait.h>
62 #include <linux/blkdev.h>
63 #include <linux/blkpg.h>
64 #include <linux/init.h>
65 #include <linux/smp_lock.h>
66 #include <linux/swap.h>
67 #include <linux/slab.h>
68 #include <linux/loop.h>
69 #include <linux/compat.h>
70 #include <linux/suspend.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h> /* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/gfp.h>
76 #include <linux/kthread.h>
78 #include <asm/uaccess.h>
80 static LIST_HEAD(loop_devices);
81 static DEFINE_MUTEX(loop_devices_mutex);
86 static int transfer_none(struct loop_device *lo, int cmd,
87 struct page *raw_page, unsigned raw_off,
88 struct page *loop_page, unsigned loop_off,
89 int size, sector_t real_block)
91 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
92 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
95 memcpy(loop_buf, raw_buf, size);
97 memcpy(raw_buf, loop_buf, size);
99 kunmap_atomic(raw_buf, KM_USER0);
100 kunmap_atomic(loop_buf, KM_USER1);
105 static int transfer_xor(struct loop_device *lo, int cmd,
106 struct page *raw_page, unsigned raw_off,
107 struct page *loop_page, unsigned loop_off,
108 int size, sector_t real_block)
110 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
111 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
112 char *in, *out, *key;
123 key = lo->lo_encrypt_key;
124 keysize = lo->lo_encrypt_key_size;
125 for (i = 0; i < size; i++)
126 *out++ = *in++ ^ key[(i & 511) % keysize];
128 kunmap_atomic(raw_buf, KM_USER0);
129 kunmap_atomic(loop_buf, KM_USER1);
134 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
136 if (unlikely(info->lo_encrypt_key_size <= 0))
141 static struct loop_func_table none_funcs = {
142 .number = LO_CRYPT_NONE,
143 .transfer = transfer_none,
146 static struct loop_func_table xor_funcs = {
147 .number = LO_CRYPT_XOR,
148 .transfer = transfer_xor,
152 /* xfer_funcs[0] is special - its release function is never called */
153 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
158 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
160 loff_t size, offset, loopsize;
162 /* Compute loopsize in bytes */
163 size = i_size_read(file->f_mapping->host);
164 offset = lo->lo_offset;
165 loopsize = size - offset;
166 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
167 loopsize = lo->lo_sizelimit;
170 * Unfortunately, if we want to do I/O on the device,
171 * the number of 512-byte sectors has to fit into a sector_t.
173 return loopsize >> 9;
177 figure_loop_size(struct loop_device *lo)
179 loff_t size = get_loop_size(lo, lo->lo_backing_file);
180 sector_t x = (sector_t)size;
182 if (unlikely((loff_t)x != size))
185 set_capacity(lo->lo_disk, x);
190 lo_do_transfer(struct loop_device *lo, int cmd,
191 struct page *rpage, unsigned roffs,
192 struct page *lpage, unsigned loffs,
193 int size, sector_t rblock)
195 if (unlikely(!lo->transfer))
198 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
202 * do_lo_send_aops - helper for writing data to a loop device
204 * This is the fast version for backing filesystems which implement the address
205 * space operations prepare_write and commit_write.
207 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
208 int bsize, loff_t pos, struct page *page)
210 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
211 struct address_space *mapping = file->f_mapping;
212 const struct address_space_operations *aops = mapping->a_ops;
214 unsigned offset, bv_offs;
217 mutex_lock(&mapping->host->i_mutex);
218 index = pos >> PAGE_CACHE_SHIFT;
219 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
220 bv_offs = bvec->bv_offset;
227 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
228 size = PAGE_CACHE_SIZE - offset;
231 page = grab_cache_page(mapping, index);
234 ret = aops->prepare_write(file, page, offset,
237 if (ret == AOP_TRUNCATED_PAGE) {
238 page_cache_release(page);
243 transfer_result = lo_do_transfer(lo, WRITE, page, offset,
244 bvec->bv_page, bv_offs, size, IV);
245 if (unlikely(transfer_result)) {
249 * The transfer failed, but we still write the data to
250 * keep prepare/commit calls balanced.
252 printk(KERN_ERR "loop: transfer error block %llu\n",
253 (unsigned long long)index);
254 kaddr = kmap_atomic(page, KM_USER0);
255 memset(kaddr + offset, 0, size);
256 kunmap_atomic(kaddr, KM_USER0);
258 flush_dcache_page(page);
259 ret = aops->commit_write(file, page, offset,
262 if (ret == AOP_TRUNCATED_PAGE) {
263 page_cache_release(page);
268 if (unlikely(transfer_result))
276 page_cache_release(page);
280 mutex_unlock(&mapping->host->i_mutex);
284 page_cache_release(page);
291 * __do_lo_send_write - helper for writing data to a loop device
293 * This helper just factors out common code between do_lo_send_direct_write()
294 * and do_lo_send_write().
296 static int __do_lo_send_write(struct file *file,
297 u8 *buf, const int len, loff_t pos)
300 mm_segment_t old_fs = get_fs();
303 bw = file->f_op->write(file, buf, len, &pos);
305 if (likely(bw == len))
307 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
308 (unsigned long long)pos, len);
315 * do_lo_send_direct_write - helper for writing data to a loop device
317 * This is the fast, non-transforming version for backing filesystems which do
318 * not implement the address space operations prepare_write and commit_write.
319 * It uses the write file operation which should be present on all writeable
322 static int do_lo_send_direct_write(struct loop_device *lo,
323 struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
325 ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
326 kmap(bvec->bv_page) + bvec->bv_offset,
328 kunmap(bvec->bv_page);
334 * do_lo_send_write - helper for writing data to a loop device
336 * This is the slow, transforming version for filesystems which do not
337 * implement the address space operations prepare_write and commit_write. It
338 * uses the write file operation which should be present on all writeable
341 * Using fops->write is slower than using aops->{prepare,commit}_write in the
342 * transforming case because we need to double buffer the data as we cannot do
343 * the transformations in place as we do not have direct access to the
344 * destination pages of the backing file.
346 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
347 int bsize, loff_t pos, struct page *page)
349 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
350 bvec->bv_offset, bvec->bv_len, pos >> 9);
352 return __do_lo_send_write(lo->lo_backing_file,
353 page_address(page), bvec->bv_len,
355 printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
356 "length %i.\n", (unsigned long long)pos, bvec->bv_len);
362 static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
365 int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
367 struct bio_vec *bvec;
368 struct page *page = NULL;
371 do_lo_send = do_lo_send_aops;
372 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
373 do_lo_send = do_lo_send_direct_write;
374 if (lo->transfer != transfer_none) {
375 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
379 do_lo_send = do_lo_send_write;
382 bio_for_each_segment(bvec, bio, i) {
383 ret = do_lo_send(lo, bvec, bsize, pos, page);
395 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
400 struct lo_read_data {
401 struct loop_device *lo;
408 lo_read_actor(read_descriptor_t *desc, struct page *page,
409 unsigned long offset, unsigned long size)
411 unsigned long count = desc->count;
412 struct lo_read_data *p = desc->arg.data;
413 struct loop_device *lo = p->lo;
416 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
421 if (lo_do_transfer(lo, READ, page, offset, p->page, p->offset, size, IV)) {
423 printk(KERN_ERR "loop: transfer error block %ld\n",
425 desc->error = -EINVAL;
428 flush_dcache_page(p->page);
430 desc->count = count - size;
431 desc->written += size;
437 do_lo_receive(struct loop_device *lo,
438 struct bio_vec *bvec, int bsize, loff_t pos)
440 struct lo_read_data cookie;
445 cookie.page = bvec->bv_page;
446 cookie.offset = bvec->bv_offset;
447 cookie.bsize = bsize;
448 file = lo->lo_backing_file;
449 retval = file->f_op->sendfile(file, &pos, bvec->bv_len,
450 lo_read_actor, &cookie);
451 return (retval < 0)? retval: 0;
455 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
457 struct bio_vec *bvec;
460 bio_for_each_segment(bvec, bio, i) {
461 ret = do_lo_receive(lo, bvec, bsize, pos);
469 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
474 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
475 if (bio_rw(bio) == WRITE)
476 ret = lo_send(lo, bio, lo->lo_blocksize, pos);
478 ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
483 * Add bio to back of pending list
485 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
487 if (lo->lo_biotail) {
488 lo->lo_biotail->bi_next = bio;
489 lo->lo_biotail = bio;
491 lo->lo_bio = lo->lo_biotail = bio;
495 * Grab first pending buffer
497 static struct bio *loop_get_bio(struct loop_device *lo)
501 if ((bio = lo->lo_bio)) {
502 if (bio == lo->lo_biotail)
503 lo->lo_biotail = NULL;
504 lo->lo_bio = bio->bi_next;
511 static int loop_make_request(request_queue_t *q, struct bio *old_bio)
513 struct loop_device *lo = q->queuedata;
514 int rw = bio_rw(old_bio);
519 BUG_ON(!lo || (rw != READ && rw != WRITE));
521 spin_lock_irq(&lo->lo_lock);
522 if (lo->lo_state != Lo_bound)
524 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
526 loop_add_bio(lo, old_bio);
527 wake_up(&lo->lo_event);
528 spin_unlock_irq(&lo->lo_lock);
532 spin_unlock_irq(&lo->lo_lock);
533 bio_io_error(old_bio, old_bio->bi_size);
538 * kick off io on the underlying address space
540 static void loop_unplug(request_queue_t *q)
542 struct loop_device *lo = q->queuedata;
544 clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
545 blk_run_address_space(lo->lo_backing_file->f_mapping);
548 struct switch_request {
550 struct completion wait;
553 static void do_loop_switch(struct loop_device *, struct switch_request *);
555 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
557 if (unlikely(!bio->bi_bdev)) {
558 do_loop_switch(lo, bio->bi_private);
561 int ret = do_bio_filebacked(lo, bio);
562 bio_endio(bio, bio->bi_size, ret);
567 * worker thread that handles reads/writes to file backed loop devices,
568 * to avoid blocking in our make_request_fn. it also does loop decrypting
569 * on reads for block backed loop, as that is too heavy to do from
570 * b_end_io context where irqs may be disabled.
572 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
573 * calling kthread_stop(). Therefore once kthread_should_stop() is
574 * true, make_request will not place any more requests. Therefore
575 * once kthread_should_stop() is true and lo_bio is NULL, we are
576 * done with the loop.
578 static int loop_thread(void *data)
580 struct loop_device *lo = data;
584 * loop can be used in an encrypted device,
585 * hence, it mustn't be stopped at all
586 * because it could be indirectly used during suspension
588 current->flags |= PF_NOFREEZE;
590 set_user_nice(current, -20);
592 while (!kthread_should_stop() || lo->lo_bio) {
594 wait_event_interruptible(lo->lo_event,
595 lo->lo_bio || kthread_should_stop());
599 spin_lock_irq(&lo->lo_lock);
600 bio = loop_get_bio(lo);
601 spin_unlock_irq(&lo->lo_lock);
604 loop_handle_bio(lo, bio);
611 * loop_switch performs the hard work of switching a backing store.
612 * First it needs to flush existing IO, it does this by sending a magic
613 * BIO down the pipe. The completion of this BIO does the actual switch.
615 static int loop_switch(struct loop_device *lo, struct file *file)
617 struct switch_request w;
618 struct bio *bio = bio_alloc(GFP_KERNEL, 1);
621 init_completion(&w.wait);
623 bio->bi_private = &w;
625 loop_make_request(lo->lo_queue, bio);
626 wait_for_completion(&w.wait);
631 * Do the actual switch; called from the BIO completion routine
633 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
635 struct file *file = p->file;
636 struct file *old_file = lo->lo_backing_file;
637 struct address_space *mapping = file->f_mapping;
639 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
640 lo->lo_backing_file = file;
641 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
642 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
643 lo->old_gfp_mask = mapping_gfp_mask(mapping);
644 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
650 * loop_change_fd switched the backing store of a loopback device to
651 * a new file. This is useful for operating system installers to free up
652 * the original file and in High Availability environments to switch to
653 * an alternative location for the content in case of server meltdown.
654 * This can only work if the loop device is used read-only, and if the
655 * new backing store is the same size and type as the old backing store.
657 static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
658 struct block_device *bdev, unsigned int arg)
660 struct file *file, *old_file;
665 if (lo->lo_state != Lo_bound)
668 /* the loop device has to be read-only */
670 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
678 inode = file->f_mapping->host;
679 old_file = lo->lo_backing_file;
683 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
686 /* new backing store needs to support loop (eg sendfile) */
687 if (!inode->i_fop->sendfile)
690 /* size of the new backing store needs to be the same */
691 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
695 error = loop_switch(lo, file);
708 static inline int is_loop_device(struct file *file)
710 struct inode *i = file->f_mapping->host;
712 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
715 static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
716 struct block_device *bdev, unsigned int arg)
718 struct file *file, *f;
720 struct address_space *mapping;
721 unsigned lo_blocksize;
726 /* This is safe, since we have a reference from open(). */
727 __module_get(THIS_MODULE);
735 if (lo->lo_state != Lo_unbound)
738 /* Avoid recursion */
740 while (is_loop_device(f)) {
741 struct loop_device *l;
743 if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
746 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
747 if (l->lo_state == Lo_unbound) {
751 f = l->lo_backing_file;
754 mapping = file->f_mapping;
755 inode = mapping->host;
757 if (!(file->f_mode & FMODE_WRITE))
758 lo_flags |= LO_FLAGS_READ_ONLY;
761 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
762 const struct address_space_operations *aops = mapping->a_ops;
764 * If we can't read - sorry. If we only can't write - well,
765 * it's going to be read-only.
767 if (!file->f_op->sendfile)
769 if (aops->prepare_write && aops->commit_write)
770 lo_flags |= LO_FLAGS_USE_AOPS;
771 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
772 lo_flags |= LO_FLAGS_READ_ONLY;
774 lo_blocksize = S_ISBLK(inode->i_mode) ?
775 inode->i_bdev->bd_block_size : PAGE_SIZE;
782 size = get_loop_size(lo, file);
784 if ((loff_t)(sector_t)size != size) {
789 if (!(lo_file->f_mode & FMODE_WRITE))
790 lo_flags |= LO_FLAGS_READ_ONLY;
792 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
794 lo->lo_blocksize = lo_blocksize;
795 lo->lo_device = bdev;
796 lo->lo_flags = lo_flags;
797 lo->lo_backing_file = file;
798 lo->transfer = transfer_none;
800 lo->lo_sizelimit = 0;
801 lo->old_gfp_mask = mapping_gfp_mask(mapping);
802 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
804 lo->lo_bio = lo->lo_biotail = NULL;
807 * set queue make_request_fn, and add limits based on lower level
810 blk_queue_make_request(lo->lo_queue, loop_make_request);
811 lo->lo_queue->queuedata = lo;
812 lo->lo_queue->unplug_fn = loop_unplug;
814 set_capacity(lo->lo_disk, size);
815 bd_set_size(bdev, size << 9);
817 set_blocksize(bdev, lo_blocksize);
819 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
821 if (IS_ERR(lo->lo_thread)) {
822 error = PTR_ERR(lo->lo_thread);
825 lo->lo_state = Lo_bound;
826 wake_up_process(lo->lo_thread);
830 lo->lo_thread = NULL;
831 lo->lo_device = NULL;
832 lo->lo_backing_file = NULL;
834 set_capacity(lo->lo_disk, 0);
835 invalidate_bdev(bdev);
836 bd_set_size(bdev, 0);
837 mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
838 lo->lo_state = Lo_unbound;
842 /* This is safe: open() is still holding a reference. */
843 module_put(THIS_MODULE);
848 loop_release_xfer(struct loop_device *lo)
851 struct loop_func_table *xfer = lo->lo_encryption;
855 err = xfer->release(lo);
857 lo->lo_encryption = NULL;
858 module_put(xfer->owner);
864 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
865 const struct loop_info64 *i)
870 struct module *owner = xfer->owner;
872 if (!try_module_get(owner))
875 err = xfer->init(lo, i);
879 lo->lo_encryption = xfer;
884 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
886 struct file *filp = lo->lo_backing_file;
887 gfp_t gfp = lo->old_gfp_mask;
889 if (lo->lo_state != Lo_bound)
892 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
898 spin_lock_irq(&lo->lo_lock);
899 lo->lo_state = Lo_rundown;
900 spin_unlock_irq(&lo->lo_lock);
902 kthread_stop(lo->lo_thread);
904 lo->lo_backing_file = NULL;
906 loop_release_xfer(lo);
909 lo->lo_device = NULL;
910 lo->lo_encryption = NULL;
912 lo->lo_sizelimit = 0;
913 lo->lo_encrypt_key_size = 0;
915 lo->lo_thread = NULL;
916 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
917 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
918 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
919 invalidate_bdev(bdev);
920 set_capacity(lo->lo_disk, 0);
921 bd_set_size(bdev, 0);
922 mapping_set_gfp_mask(filp->f_mapping, gfp);
923 lo->lo_state = Lo_unbound;
925 /* This is safe: open() is still holding a reference. */
926 module_put(THIS_MODULE);
931 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
934 struct loop_func_table *xfer;
936 if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
937 !capable(CAP_SYS_ADMIN))
939 if (lo->lo_state != Lo_bound)
941 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
944 err = loop_release_xfer(lo);
948 if (info->lo_encrypt_type) {
949 unsigned int type = info->lo_encrypt_type;
951 if (type >= MAX_LO_CRYPT)
953 xfer = xfer_funcs[type];
959 err = loop_init_xfer(lo, xfer, info);
963 if (lo->lo_offset != info->lo_offset ||
964 lo->lo_sizelimit != info->lo_sizelimit) {
965 lo->lo_offset = info->lo_offset;
966 lo->lo_sizelimit = info->lo_sizelimit;
967 if (figure_loop_size(lo))
971 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
972 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
973 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
974 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
978 lo->transfer = xfer->transfer;
979 lo->ioctl = xfer->ioctl;
981 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
982 lo->lo_init[0] = info->lo_init[0];
983 lo->lo_init[1] = info->lo_init[1];
984 if (info->lo_encrypt_key_size) {
985 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
986 info->lo_encrypt_key_size);
987 lo->lo_key_owner = current->uid;
994 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
996 struct file *file = lo->lo_backing_file;
1000 if (lo->lo_state != Lo_bound)
1002 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1005 memset(info, 0, sizeof(*info));
1006 info->lo_number = lo->lo_number;
1007 info->lo_device = huge_encode_dev(stat.dev);
1008 info->lo_inode = stat.ino;
1009 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1010 info->lo_offset = lo->lo_offset;
1011 info->lo_sizelimit = lo->lo_sizelimit;
1012 info->lo_flags = lo->lo_flags;
1013 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1014 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1015 info->lo_encrypt_type =
1016 lo->lo_encryption ? lo->lo_encryption->number : 0;
1017 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1018 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1019 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1020 lo->lo_encrypt_key_size);
1026 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1028 memset(info64, 0, sizeof(*info64));
1029 info64->lo_number = info->lo_number;
1030 info64->lo_device = info->lo_device;
1031 info64->lo_inode = info->lo_inode;
1032 info64->lo_rdevice = info->lo_rdevice;
1033 info64->lo_offset = info->lo_offset;
1034 info64->lo_sizelimit = 0;
1035 info64->lo_encrypt_type = info->lo_encrypt_type;
1036 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1037 info64->lo_flags = info->lo_flags;
1038 info64->lo_init[0] = info->lo_init[0];
1039 info64->lo_init[1] = info->lo_init[1];
1040 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1041 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1043 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1044 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1048 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1050 memset(info, 0, sizeof(*info));
1051 info->lo_number = info64->lo_number;
1052 info->lo_device = info64->lo_device;
1053 info->lo_inode = info64->lo_inode;
1054 info->lo_rdevice = info64->lo_rdevice;
1055 info->lo_offset = info64->lo_offset;
1056 info->lo_encrypt_type = info64->lo_encrypt_type;
1057 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1058 info->lo_flags = info64->lo_flags;
1059 info->lo_init[0] = info64->lo_init[0];
1060 info->lo_init[1] = info64->lo_init[1];
1061 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1062 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1064 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1065 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1067 /* error in case values were truncated */
1068 if (info->lo_device != info64->lo_device ||
1069 info->lo_rdevice != info64->lo_rdevice ||
1070 info->lo_inode != info64->lo_inode ||
1071 info->lo_offset != info64->lo_offset)
1078 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1080 struct loop_info info;
1081 struct loop_info64 info64;
1083 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1085 loop_info64_from_old(&info, &info64);
1086 return loop_set_status(lo, &info64);
1090 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1092 struct loop_info64 info64;
1094 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1096 return loop_set_status(lo, &info64);
1100 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1101 struct loop_info info;
1102 struct loop_info64 info64;
1108 err = loop_get_status(lo, &info64);
1110 err = loop_info64_to_old(&info64, &info);
1111 if (!err && copy_to_user(arg, &info, sizeof(info)))
1118 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1119 struct loop_info64 info64;
1125 err = loop_get_status(lo, &info64);
1126 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1132 static int lo_ioctl(struct inode * inode, struct file * file,
1133 unsigned int cmd, unsigned long arg)
1135 struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1138 mutex_lock(&lo->lo_ctl_mutex);
1141 err = loop_set_fd(lo, file, inode->i_bdev, arg);
1143 case LOOP_CHANGE_FD:
1144 err = loop_change_fd(lo, file, inode->i_bdev, arg);
1147 err = loop_clr_fd(lo, inode->i_bdev);
1149 case LOOP_SET_STATUS:
1150 err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1152 case LOOP_GET_STATUS:
1153 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1155 case LOOP_SET_STATUS64:
1156 err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1158 case LOOP_GET_STATUS64:
1159 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1162 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1164 mutex_unlock(&lo->lo_ctl_mutex);
1168 #ifdef CONFIG_COMPAT
1169 struct compat_loop_info {
1170 compat_int_t lo_number; /* ioctl r/o */
1171 compat_dev_t lo_device; /* ioctl r/o */
1172 compat_ulong_t lo_inode; /* ioctl r/o */
1173 compat_dev_t lo_rdevice; /* ioctl r/o */
1174 compat_int_t lo_offset;
1175 compat_int_t lo_encrypt_type;
1176 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1177 compat_int_t lo_flags; /* ioctl r/o */
1178 char lo_name[LO_NAME_SIZE];
1179 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1180 compat_ulong_t lo_init[2];
1185 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1186 * - noinlined to reduce stack space usage in main part of driver
1189 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1190 struct loop_info64 *info64)
1192 struct compat_loop_info info;
1194 if (copy_from_user(&info, arg, sizeof(info)))
1197 memset(info64, 0, sizeof(*info64));
1198 info64->lo_number = info.lo_number;
1199 info64->lo_device = info.lo_device;
1200 info64->lo_inode = info.lo_inode;
1201 info64->lo_rdevice = info.lo_rdevice;
1202 info64->lo_offset = info.lo_offset;
1203 info64->lo_sizelimit = 0;
1204 info64->lo_encrypt_type = info.lo_encrypt_type;
1205 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1206 info64->lo_flags = info.lo_flags;
1207 info64->lo_init[0] = info.lo_init[0];
1208 info64->lo_init[1] = info.lo_init[1];
1209 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1210 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1212 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1213 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1218 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1219 * - noinlined to reduce stack space usage in main part of driver
1222 loop_info64_to_compat(const struct loop_info64 *info64,
1223 struct compat_loop_info __user *arg)
1225 struct compat_loop_info info;
1227 memset(&info, 0, sizeof(info));
1228 info.lo_number = info64->lo_number;
1229 info.lo_device = info64->lo_device;
1230 info.lo_inode = info64->lo_inode;
1231 info.lo_rdevice = info64->lo_rdevice;
1232 info.lo_offset = info64->lo_offset;
1233 info.lo_encrypt_type = info64->lo_encrypt_type;
1234 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1235 info.lo_flags = info64->lo_flags;
1236 info.lo_init[0] = info64->lo_init[0];
1237 info.lo_init[1] = info64->lo_init[1];
1238 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1239 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1241 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1242 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1244 /* error in case values were truncated */
1245 if (info.lo_device != info64->lo_device ||
1246 info.lo_rdevice != info64->lo_rdevice ||
1247 info.lo_inode != info64->lo_inode ||
1248 info.lo_offset != info64->lo_offset ||
1249 info.lo_init[0] != info64->lo_init[0] ||
1250 info.lo_init[1] != info64->lo_init[1])
1253 if (copy_to_user(arg, &info, sizeof(info)))
1259 loop_set_status_compat(struct loop_device *lo,
1260 const struct compat_loop_info __user *arg)
1262 struct loop_info64 info64;
1265 ret = loop_info64_from_compat(arg, &info64);
1268 return loop_set_status(lo, &info64);
1272 loop_get_status_compat(struct loop_device *lo,
1273 struct compat_loop_info __user *arg)
1275 struct loop_info64 info64;
1281 err = loop_get_status(lo, &info64);
1283 err = loop_info64_to_compat(&info64, arg);
1287 static long lo_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1289 struct inode *inode = file->f_path.dentry->d_inode;
1290 struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1295 case LOOP_SET_STATUS:
1296 mutex_lock(&lo->lo_ctl_mutex);
1297 err = loop_set_status_compat(
1298 lo, (const struct compat_loop_info __user *) arg);
1299 mutex_unlock(&lo->lo_ctl_mutex);
1301 case LOOP_GET_STATUS:
1302 mutex_lock(&lo->lo_ctl_mutex);
1303 err = loop_get_status_compat(
1304 lo, (struct compat_loop_info __user *) arg);
1305 mutex_unlock(&lo->lo_ctl_mutex);
1308 case LOOP_GET_STATUS64:
1309 case LOOP_SET_STATUS64:
1310 arg = (unsigned long) compat_ptr(arg);
1312 case LOOP_CHANGE_FD:
1313 err = lo_ioctl(inode, file, cmd, arg);
1324 static struct loop_device *loop_find_dev(int number)
1326 struct loop_device *lo;
1328 list_for_each_entry(lo, &loop_devices, lo_list) {
1329 if (lo->lo_number == number)
1335 static struct loop_device *loop_init_one(int i);
1336 static int lo_open(struct inode *inode, struct file *file)
1338 struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1340 mutex_lock(&lo->lo_ctl_mutex);
1342 mutex_unlock(&lo->lo_ctl_mutex);
1344 mutex_lock(&loop_devices_mutex);
1345 if (!loop_find_dev(lo->lo_number + 1))
1346 loop_init_one(lo->lo_number + 1);
1347 mutex_unlock(&loop_devices_mutex);
1352 static int lo_release(struct inode *inode, struct file *file)
1354 struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1356 mutex_lock(&lo->lo_ctl_mutex);
1358 mutex_unlock(&lo->lo_ctl_mutex);
1363 static struct block_device_operations lo_fops = {
1364 .owner = THIS_MODULE,
1366 .release = lo_release,
1368 #ifdef CONFIG_COMPAT
1369 .compat_ioctl = lo_compat_ioctl,
1374 * And now the modules code and kernel interface.
1376 static int max_loop;
1377 module_param(max_loop, int, 0);
1378 MODULE_PARM_DESC(max_loop, "obsolete, loop device is created on-demand");
1379 MODULE_LICENSE("GPL");
1380 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1382 int loop_register_transfer(struct loop_func_table *funcs)
1384 unsigned int n = funcs->number;
1386 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1388 xfer_funcs[n] = funcs;
1392 int loop_unregister_transfer(int number)
1394 unsigned int n = number;
1395 struct loop_device *lo;
1396 struct loop_func_table *xfer;
1398 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1401 xfer_funcs[n] = NULL;
1403 list_for_each_entry(lo, &loop_devices, lo_list) {
1404 mutex_lock(&lo->lo_ctl_mutex);
1406 if (lo->lo_encryption == xfer)
1407 loop_release_xfer(lo);
1409 mutex_unlock(&lo->lo_ctl_mutex);
1415 EXPORT_SYMBOL(loop_register_transfer);
1416 EXPORT_SYMBOL(loop_unregister_transfer);
1418 static struct loop_device *loop_init_one(int i)
1420 struct loop_device *lo;
1421 struct gendisk *disk;
1423 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1427 lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1431 disk = lo->lo_disk = alloc_disk(1);
1433 goto out_free_queue;
1435 mutex_init(&lo->lo_ctl_mutex);
1437 lo->lo_thread = NULL;
1438 init_waitqueue_head(&lo->lo_event);
1439 spin_lock_init(&lo->lo_lock);
1440 disk->major = LOOP_MAJOR;
1441 disk->first_minor = i;
1442 disk->fops = &lo_fops;
1443 disk->private_data = lo;
1444 disk->queue = lo->lo_queue;
1445 sprintf(disk->disk_name, "loop%d", i);
1447 list_add_tail(&lo->lo_list, &loop_devices);
1451 blk_cleanup_queue(lo->lo_queue);
1455 return ERR_PTR(-ENOMEM);
1458 static void loop_del_one(struct loop_device *lo)
1460 del_gendisk(lo->lo_disk);
1461 blk_cleanup_queue(lo->lo_queue);
1462 put_disk(lo->lo_disk);
1463 list_del(&lo->lo_list);
1467 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1469 unsigned int number = dev & MINORMASK;
1470 struct loop_device *lo;
1472 mutex_lock(&loop_devices_mutex);
1473 lo = loop_find_dev(number);
1475 lo = loop_init_one(number);
1476 mutex_unlock(&loop_devices_mutex);
1482 return &lo->lo_disk->kobj;
1485 static int __init loop_init(void)
1487 struct loop_device *lo;
1489 if (register_blkdev(LOOP_MAJOR, "loop"))
1491 blk_register_region(MKDEV(LOOP_MAJOR, 0), 1UL << MINORBITS,
1492 THIS_MODULE, loop_probe, NULL, NULL);
1494 lo = loop_init_one(0);
1499 printk(KERN_INFO "loop: the max_loop option is obsolete "
1500 "and will be removed in March 2008\n");
1503 printk(KERN_INFO "loop: module loaded\n");
1507 unregister_blkdev(LOOP_MAJOR, "loop");
1508 printk(KERN_ERR "loop: ran out of memory\n");
1512 static void __exit loop_exit(void)
1514 struct loop_device *lo, *next;
1516 list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1519 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), 1UL << MINORBITS);
1520 if (unregister_blkdev(LOOP_MAJOR, "loop"))
1521 printk(KERN_WARNING "loop: cannot unregister blkdev\n");
1524 module_init(loop_init);
1525 module_exit(loop_exit);
1528 static int __init max_loop_setup(char *str)
1530 max_loop = simple_strtol(str, NULL, 0);
1534 __setup("max_loop=", max_loop_setup);