Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
[linux-2.6] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28
29 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
30
31 /*
32  * jbd2_get_transaction: obtain a new transaction_t object.
33  *
34  * Simply allocate and initialise a new transaction.  Create it in
35  * RUNNING state and add it to the current journal (which should not
36  * have an existing running transaction: we only make a new transaction
37  * once we have started to commit the old one).
38  *
39  * Preconditions:
40  *      The journal MUST be locked.  We don't perform atomic mallocs on the
41  *      new transaction and we can't block without protecting against other
42  *      processes trying to touch the journal while it is in transition.
43  *
44  */
45
46 static transaction_t *
47 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
48 {
49         transaction->t_journal = journal;
50         transaction->t_state = T_RUNNING;
51         transaction->t_tid = journal->j_transaction_sequence++;
52         transaction->t_expires = jiffies + journal->j_commit_interval;
53         spin_lock_init(&transaction->t_handle_lock);
54         INIT_LIST_HEAD(&transaction->t_inode_list);
55         INIT_LIST_HEAD(&transaction->t_private_list);
56
57         /* Set up the commit timer for the new transaction. */
58         journal->j_commit_timer.expires = round_jiffies(transaction->t_expires);
59         add_timer(&journal->j_commit_timer);
60
61         J_ASSERT(journal->j_running_transaction == NULL);
62         journal->j_running_transaction = transaction;
63         transaction->t_max_wait = 0;
64         transaction->t_start = jiffies;
65
66         return transaction;
67 }
68
69 /*
70  * Handle management.
71  *
72  * A handle_t is an object which represents a single atomic update to a
73  * filesystem, and which tracks all of the modifications which form part
74  * of that one update.
75  */
76
77 /*
78  * start_this_handle: Given a handle, deal with any locking or stalling
79  * needed to make sure that there is enough journal space for the handle
80  * to begin.  Attach the handle to a transaction and set up the
81  * transaction's buffer credits.
82  */
83
84 static int start_this_handle(journal_t *journal, handle_t *handle)
85 {
86         transaction_t *transaction;
87         int needed;
88         int nblocks = handle->h_buffer_credits;
89         transaction_t *new_transaction = NULL;
90         int ret = 0;
91         unsigned long ts = jiffies;
92
93         if (nblocks > journal->j_max_transaction_buffers) {
94                 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
95                        current->comm, nblocks,
96                        journal->j_max_transaction_buffers);
97                 ret = -ENOSPC;
98                 goto out;
99         }
100
101 alloc_transaction:
102         if (!journal->j_running_transaction) {
103                 new_transaction = kzalloc(sizeof(*new_transaction),
104                                                 GFP_NOFS|__GFP_NOFAIL);
105                 if (!new_transaction) {
106                         ret = -ENOMEM;
107                         goto out;
108                 }
109         }
110
111         jbd_debug(3, "New handle %p going live.\n", handle);
112
113 repeat:
114
115         /*
116          * We need to hold j_state_lock until t_updates has been incremented,
117          * for proper journal barrier handling
118          */
119         spin_lock(&journal->j_state_lock);
120 repeat_locked:
121         if (is_journal_aborted(journal) ||
122             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
123                 spin_unlock(&journal->j_state_lock);
124                 ret = -EROFS;
125                 goto out;
126         }
127
128         /* Wait on the journal's transaction barrier if necessary */
129         if (journal->j_barrier_count) {
130                 spin_unlock(&journal->j_state_lock);
131                 wait_event(journal->j_wait_transaction_locked,
132                                 journal->j_barrier_count == 0);
133                 goto repeat;
134         }
135
136         if (!journal->j_running_transaction) {
137                 if (!new_transaction) {
138                         spin_unlock(&journal->j_state_lock);
139                         goto alloc_transaction;
140                 }
141                 jbd2_get_transaction(journal, new_transaction);
142                 new_transaction = NULL;
143         }
144
145         transaction = journal->j_running_transaction;
146
147         /*
148          * If the current transaction is locked down for commit, wait for the
149          * lock to be released.
150          */
151         if (transaction->t_state == T_LOCKED) {
152                 DEFINE_WAIT(wait);
153
154                 prepare_to_wait(&journal->j_wait_transaction_locked,
155                                         &wait, TASK_UNINTERRUPTIBLE);
156                 spin_unlock(&journal->j_state_lock);
157                 schedule();
158                 finish_wait(&journal->j_wait_transaction_locked, &wait);
159                 goto repeat;
160         }
161
162         /*
163          * If there is not enough space left in the log to write all potential
164          * buffers requested by this operation, we need to stall pending a log
165          * checkpoint to free some more log space.
166          */
167         spin_lock(&transaction->t_handle_lock);
168         needed = transaction->t_outstanding_credits + nblocks;
169
170         if (needed > journal->j_max_transaction_buffers) {
171                 /*
172                  * If the current transaction is already too large, then start
173                  * to commit it: we can then go back and attach this handle to
174                  * a new transaction.
175                  */
176                 DEFINE_WAIT(wait);
177
178                 jbd_debug(2, "Handle %p starting new commit...\n", handle);
179                 spin_unlock(&transaction->t_handle_lock);
180                 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
181                                 TASK_UNINTERRUPTIBLE);
182                 __jbd2_log_start_commit(journal, transaction->t_tid);
183                 spin_unlock(&journal->j_state_lock);
184                 schedule();
185                 finish_wait(&journal->j_wait_transaction_locked, &wait);
186                 goto repeat;
187         }
188
189         /*
190          * The commit code assumes that it can get enough log space
191          * without forcing a checkpoint.  This is *critical* for
192          * correctness: a checkpoint of a buffer which is also
193          * associated with a committing transaction creates a deadlock,
194          * so commit simply cannot force through checkpoints.
195          *
196          * We must therefore ensure the necessary space in the journal
197          * *before* starting to dirty potentially checkpointed buffers
198          * in the new transaction.
199          *
200          * The worst part is, any transaction currently committing can
201          * reduce the free space arbitrarily.  Be careful to account for
202          * those buffers when checkpointing.
203          */
204
205         /*
206          * @@@ AKPM: This seems rather over-defensive.  We're giving commit
207          * a _lot_ of headroom: 1/4 of the journal plus the size of
208          * the committing transaction.  Really, we only need to give it
209          * committing_transaction->t_outstanding_credits plus "enough" for
210          * the log control blocks.
211          * Also, this test is inconsitent with the matching one in
212          * jbd2_journal_extend().
213          */
214         if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
215                 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
216                 spin_unlock(&transaction->t_handle_lock);
217                 __jbd2_log_wait_for_space(journal);
218                 goto repeat_locked;
219         }
220
221         /* OK, account for the buffers that this operation expects to
222          * use and add the handle to the running transaction. */
223
224         if (time_after(transaction->t_start, ts)) {
225                 ts = jbd2_time_diff(ts, transaction->t_start);
226                 if (ts > transaction->t_max_wait)
227                         transaction->t_max_wait = ts;
228         }
229
230         handle->h_transaction = transaction;
231         transaction->t_outstanding_credits += nblocks;
232         transaction->t_updates++;
233         transaction->t_handle_count++;
234         jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
235                   handle, nblocks, transaction->t_outstanding_credits,
236                   __jbd2_log_space_left(journal));
237         spin_unlock(&transaction->t_handle_lock);
238         spin_unlock(&journal->j_state_lock);
239 out:
240         if (unlikely(new_transaction))          /* It's usually NULL */
241                 kfree(new_transaction);
242         return ret;
243 }
244
245 static struct lock_class_key jbd2_handle_key;
246
247 /* Allocate a new handle.  This should probably be in a slab... */
248 static handle_t *new_handle(int nblocks)
249 {
250         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
251         if (!handle)
252                 return NULL;
253         memset(handle, 0, sizeof(*handle));
254         handle->h_buffer_credits = nblocks;
255         handle->h_ref = 1;
256
257         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
258                                                 &jbd2_handle_key, 0);
259
260         return handle;
261 }
262
263 /**
264  * handle_t *jbd2_journal_start() - Obtain a new handle.
265  * @journal: Journal to start transaction on.
266  * @nblocks: number of block buffer we might modify
267  *
268  * We make sure that the transaction can guarantee at least nblocks of
269  * modified buffers in the log.  We block until the log can guarantee
270  * that much space.
271  *
272  * This function is visible to journal users (like ext3fs), so is not
273  * called with the journal already locked.
274  *
275  * Return a pointer to a newly allocated handle, or NULL on failure
276  */
277 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
278 {
279         handle_t *handle = journal_current_handle();
280         int err;
281
282         if (!journal)
283                 return ERR_PTR(-EROFS);
284
285         if (handle) {
286                 J_ASSERT(handle->h_transaction->t_journal == journal);
287                 handle->h_ref++;
288                 return handle;
289         }
290
291         handle = new_handle(nblocks);
292         if (!handle)
293                 return ERR_PTR(-ENOMEM);
294
295         current->journal_info = handle;
296
297         err = start_this_handle(journal, handle);
298         if (err < 0) {
299                 jbd2_free_handle(handle);
300                 current->journal_info = NULL;
301                 handle = ERR_PTR(err);
302                 goto out;
303         }
304
305         lock_map_acquire(&handle->h_lockdep_map);
306 out:
307         return handle;
308 }
309
310 /**
311  * int jbd2_journal_extend() - extend buffer credits.
312  * @handle:  handle to 'extend'
313  * @nblocks: nr blocks to try to extend by.
314  *
315  * Some transactions, such as large extends and truncates, can be done
316  * atomically all at once or in several stages.  The operation requests
317  * a credit for a number of buffer modications in advance, but can
318  * extend its credit if it needs more.
319  *
320  * jbd2_journal_extend tries to give the running handle more buffer credits.
321  * It does not guarantee that allocation - this is a best-effort only.
322  * The calling process MUST be able to deal cleanly with a failure to
323  * extend here.
324  *
325  * Return 0 on success, non-zero on failure.
326  *
327  * return code < 0 implies an error
328  * return code > 0 implies normal transaction-full status.
329  */
330 int jbd2_journal_extend(handle_t *handle, int nblocks)
331 {
332         transaction_t *transaction = handle->h_transaction;
333         journal_t *journal = transaction->t_journal;
334         int result;
335         int wanted;
336
337         result = -EIO;
338         if (is_handle_aborted(handle))
339                 goto out;
340
341         result = 1;
342
343         spin_lock(&journal->j_state_lock);
344
345         /* Don't extend a locked-down transaction! */
346         if (handle->h_transaction->t_state != T_RUNNING) {
347                 jbd_debug(3, "denied handle %p %d blocks: "
348                           "transaction not running\n", handle, nblocks);
349                 goto error_out;
350         }
351
352         spin_lock(&transaction->t_handle_lock);
353         wanted = transaction->t_outstanding_credits + nblocks;
354
355         if (wanted > journal->j_max_transaction_buffers) {
356                 jbd_debug(3, "denied handle %p %d blocks: "
357                           "transaction too large\n", handle, nblocks);
358                 goto unlock;
359         }
360
361         if (wanted > __jbd2_log_space_left(journal)) {
362                 jbd_debug(3, "denied handle %p %d blocks: "
363                           "insufficient log space\n", handle, nblocks);
364                 goto unlock;
365         }
366
367         handle->h_buffer_credits += nblocks;
368         transaction->t_outstanding_credits += nblocks;
369         result = 0;
370
371         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
372 unlock:
373         spin_unlock(&transaction->t_handle_lock);
374 error_out:
375         spin_unlock(&journal->j_state_lock);
376 out:
377         return result;
378 }
379
380
381 /**
382  * int jbd2_journal_restart() - restart a handle .
383  * @handle:  handle to restart
384  * @nblocks: nr credits requested
385  *
386  * Restart a handle for a multi-transaction filesystem
387  * operation.
388  *
389  * If the jbd2_journal_extend() call above fails to grant new buffer credits
390  * to a running handle, a call to jbd2_journal_restart will commit the
391  * handle's transaction so far and reattach the handle to a new
392  * transaction capabable of guaranteeing the requested number of
393  * credits.
394  */
395
396 int jbd2_journal_restart(handle_t *handle, int nblocks)
397 {
398         transaction_t *transaction = handle->h_transaction;
399         journal_t *journal = transaction->t_journal;
400         int ret;
401
402         /* If we've had an abort of any type, don't even think about
403          * actually doing the restart! */
404         if (is_handle_aborted(handle))
405                 return 0;
406
407         /*
408          * First unlink the handle from its current transaction, and start the
409          * commit on that.
410          */
411         J_ASSERT(transaction->t_updates > 0);
412         J_ASSERT(journal_current_handle() == handle);
413
414         spin_lock(&journal->j_state_lock);
415         spin_lock(&transaction->t_handle_lock);
416         transaction->t_outstanding_credits -= handle->h_buffer_credits;
417         transaction->t_updates--;
418
419         if (!transaction->t_updates)
420                 wake_up(&journal->j_wait_updates);
421         spin_unlock(&transaction->t_handle_lock);
422
423         jbd_debug(2, "restarting handle %p\n", handle);
424         __jbd2_log_start_commit(journal, transaction->t_tid);
425         spin_unlock(&journal->j_state_lock);
426
427         handle->h_buffer_credits = nblocks;
428         ret = start_this_handle(journal, handle);
429         return ret;
430 }
431
432
433 /**
434  * void jbd2_journal_lock_updates () - establish a transaction barrier.
435  * @journal:  Journal to establish a barrier on.
436  *
437  * This locks out any further updates from being started, and blocks
438  * until all existing updates have completed, returning only once the
439  * journal is in a quiescent state with no updates running.
440  *
441  * The journal lock should not be held on entry.
442  */
443 void jbd2_journal_lock_updates(journal_t *journal)
444 {
445         DEFINE_WAIT(wait);
446
447         spin_lock(&journal->j_state_lock);
448         ++journal->j_barrier_count;
449
450         /* Wait until there are no running updates */
451         while (1) {
452                 transaction_t *transaction = journal->j_running_transaction;
453
454                 if (!transaction)
455                         break;
456
457                 spin_lock(&transaction->t_handle_lock);
458                 if (!transaction->t_updates) {
459                         spin_unlock(&transaction->t_handle_lock);
460                         break;
461                 }
462                 prepare_to_wait(&journal->j_wait_updates, &wait,
463                                 TASK_UNINTERRUPTIBLE);
464                 spin_unlock(&transaction->t_handle_lock);
465                 spin_unlock(&journal->j_state_lock);
466                 schedule();
467                 finish_wait(&journal->j_wait_updates, &wait);
468                 spin_lock(&journal->j_state_lock);
469         }
470         spin_unlock(&journal->j_state_lock);
471
472         /*
473          * We have now established a barrier against other normal updates, but
474          * we also need to barrier against other jbd2_journal_lock_updates() calls
475          * to make sure that we serialise special journal-locked operations
476          * too.
477          */
478         mutex_lock(&journal->j_barrier);
479 }
480
481 /**
482  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
483  * @journal:  Journal to release the barrier on.
484  *
485  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
486  *
487  * Should be called without the journal lock held.
488  */
489 void jbd2_journal_unlock_updates (journal_t *journal)
490 {
491         J_ASSERT(journal->j_barrier_count != 0);
492
493         mutex_unlock(&journal->j_barrier);
494         spin_lock(&journal->j_state_lock);
495         --journal->j_barrier_count;
496         spin_unlock(&journal->j_state_lock);
497         wake_up(&journal->j_wait_transaction_locked);
498 }
499
500 /*
501  * Report any unexpected dirty buffers which turn up.  Normally those
502  * indicate an error, but they can occur if the user is running (say)
503  * tune2fs to modify the live filesystem, so we need the option of
504  * continuing as gracefully as possible.  #
505  *
506  * The caller should already hold the journal lock and
507  * j_list_lock spinlock: most callers will need those anyway
508  * in order to probe the buffer's journaling state safely.
509  */
510 static void jbd_unexpected_dirty_buffer(struct journal_head *jh)
511 {
512         int jlist;
513
514         /* If this buffer is one which might reasonably be dirty
515          * --- ie. data, or not part of this journal --- then
516          * we're OK to leave it alone, but otherwise we need to
517          * move the dirty bit to the journal's own internal
518          * JBDDirty bit. */
519         jlist = jh->b_jlist;
520
521         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
522             jlist == BJ_Shadow || jlist == BJ_Forget) {
523                 struct buffer_head *bh = jh2bh(jh);
524
525                 if (test_clear_buffer_dirty(bh))
526                         set_buffer_jbddirty(bh);
527         }
528 }
529
530 /*
531  * If the buffer is already part of the current transaction, then there
532  * is nothing we need to do.  If it is already part of a prior
533  * transaction which we are still committing to disk, then we need to
534  * make sure that we do not overwrite the old copy: we do copy-out to
535  * preserve the copy going to disk.  We also account the buffer against
536  * the handle's metadata buffer credits (unless the buffer is already
537  * part of the transaction, that is).
538  *
539  */
540 static int
541 do_get_write_access(handle_t *handle, struct journal_head *jh,
542                         int force_copy)
543 {
544         struct buffer_head *bh;
545         transaction_t *transaction;
546         journal_t *journal;
547         int error;
548         char *frozen_buffer = NULL;
549         int need_copy = 0;
550
551         if (is_handle_aborted(handle))
552                 return -EROFS;
553
554         transaction = handle->h_transaction;
555         journal = transaction->t_journal;
556
557         jbd_debug(5, "buffer_head %p, force_copy %d\n", jh, force_copy);
558
559         JBUFFER_TRACE(jh, "entry");
560 repeat:
561         bh = jh2bh(jh);
562
563         /* @@@ Need to check for errors here at some point. */
564
565         lock_buffer(bh);
566         jbd_lock_bh_state(bh);
567
568         /* We now hold the buffer lock so it is safe to query the buffer
569          * state.  Is the buffer dirty?
570          *
571          * If so, there are two possibilities.  The buffer may be
572          * non-journaled, and undergoing a quite legitimate writeback.
573          * Otherwise, it is journaled, and we don't expect dirty buffers
574          * in that state (the buffers should be marked JBD_Dirty
575          * instead.)  So either the IO is being done under our own
576          * control and this is a bug, or it's a third party IO such as
577          * dump(8) (which may leave the buffer scheduled for read ---
578          * ie. locked but not dirty) or tune2fs (which may actually have
579          * the buffer dirtied, ugh.)  */
580
581         if (buffer_dirty(bh)) {
582                 /*
583                  * First question: is this buffer already part of the current
584                  * transaction or the existing committing transaction?
585                  */
586                 if (jh->b_transaction) {
587                         J_ASSERT_JH(jh,
588                                 jh->b_transaction == transaction ||
589                                 jh->b_transaction ==
590                                         journal->j_committing_transaction);
591                         if (jh->b_next_transaction)
592                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
593                                                         transaction);
594                 }
595                 /*
596                  * In any case we need to clean the dirty flag and we must
597                  * do it under the buffer lock to be sure we don't race
598                  * with running write-out.
599                  */
600                 JBUFFER_TRACE(jh, "Unexpected dirty buffer");
601                 jbd_unexpected_dirty_buffer(jh);
602         }
603
604         unlock_buffer(bh);
605
606         error = -EROFS;
607         if (is_handle_aborted(handle)) {
608                 jbd_unlock_bh_state(bh);
609                 goto out;
610         }
611         error = 0;
612
613         /*
614          * The buffer is already part of this transaction if b_transaction or
615          * b_next_transaction points to it
616          */
617         if (jh->b_transaction == transaction ||
618             jh->b_next_transaction == transaction)
619                 goto done;
620
621         /*
622          * this is the first time this transaction is touching this buffer,
623          * reset the modified flag
624          */
625        jh->b_modified = 0;
626
627         /*
628          * If there is already a copy-out version of this buffer, then we don't
629          * need to make another one
630          */
631         if (jh->b_frozen_data) {
632                 JBUFFER_TRACE(jh, "has frozen data");
633                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
634                 jh->b_next_transaction = transaction;
635                 goto done;
636         }
637
638         /* Is there data here we need to preserve? */
639
640         if (jh->b_transaction && jh->b_transaction != transaction) {
641                 JBUFFER_TRACE(jh, "owned by older transaction");
642                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
643                 J_ASSERT_JH(jh, jh->b_transaction ==
644                                         journal->j_committing_transaction);
645
646                 /* There is one case we have to be very careful about.
647                  * If the committing transaction is currently writing
648                  * this buffer out to disk and has NOT made a copy-out,
649                  * then we cannot modify the buffer contents at all
650                  * right now.  The essence of copy-out is that it is the
651                  * extra copy, not the primary copy, which gets
652                  * journaled.  If the primary copy is already going to
653                  * disk then we cannot do copy-out here. */
654
655                 if (jh->b_jlist == BJ_Shadow) {
656                         DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
657                         wait_queue_head_t *wqh;
658
659                         wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
660
661                         JBUFFER_TRACE(jh, "on shadow: sleep");
662                         jbd_unlock_bh_state(bh);
663                         /* commit wakes up all shadow buffers after IO */
664                         for ( ; ; ) {
665                                 prepare_to_wait(wqh, &wait.wait,
666                                                 TASK_UNINTERRUPTIBLE);
667                                 if (jh->b_jlist != BJ_Shadow)
668                                         break;
669                                 schedule();
670                         }
671                         finish_wait(wqh, &wait.wait);
672                         goto repeat;
673                 }
674
675                 /* Only do the copy if the currently-owning transaction
676                  * still needs it.  If it is on the Forget list, the
677                  * committing transaction is past that stage.  The
678                  * buffer had better remain locked during the kmalloc,
679                  * but that should be true --- we hold the journal lock
680                  * still and the buffer is already on the BUF_JOURNAL
681                  * list so won't be flushed.
682                  *
683                  * Subtle point, though: if this is a get_undo_access,
684                  * then we will be relying on the frozen_data to contain
685                  * the new value of the committed_data record after the
686                  * transaction, so we HAVE to force the frozen_data copy
687                  * in that case. */
688
689                 if (jh->b_jlist != BJ_Forget || force_copy) {
690                         JBUFFER_TRACE(jh, "generate frozen data");
691                         if (!frozen_buffer) {
692                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
693                                 jbd_unlock_bh_state(bh);
694                                 frozen_buffer =
695                                         jbd2_alloc(jh2bh(jh)->b_size,
696                                                          GFP_NOFS);
697                                 if (!frozen_buffer) {
698                                         printk(KERN_EMERG
699                                                "%s: OOM for frozen_buffer\n",
700                                                __func__);
701                                         JBUFFER_TRACE(jh, "oom!");
702                                         error = -ENOMEM;
703                                         jbd_lock_bh_state(bh);
704                                         goto done;
705                                 }
706                                 goto repeat;
707                         }
708                         jh->b_frozen_data = frozen_buffer;
709                         frozen_buffer = NULL;
710                         need_copy = 1;
711                 }
712                 jh->b_next_transaction = transaction;
713         }
714
715
716         /*
717          * Finally, if the buffer is not journaled right now, we need to make
718          * sure it doesn't get written to disk before the caller actually
719          * commits the new data
720          */
721         if (!jh->b_transaction) {
722                 JBUFFER_TRACE(jh, "no transaction");
723                 J_ASSERT_JH(jh, !jh->b_next_transaction);
724                 jh->b_transaction = transaction;
725                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
726                 spin_lock(&journal->j_list_lock);
727                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
728                 spin_unlock(&journal->j_list_lock);
729         }
730
731 done:
732         if (need_copy) {
733                 struct page *page;
734                 int offset;
735                 char *source;
736
737                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
738                             "Possible IO failure.\n");
739                 page = jh2bh(jh)->b_page;
740                 offset = ((unsigned long) jh2bh(jh)->b_data) & ~PAGE_MASK;
741                 source = kmap_atomic(page, KM_USER0);
742                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
743                 kunmap_atomic(source, KM_USER0);
744         }
745         jbd_unlock_bh_state(bh);
746
747         /*
748          * If we are about to journal a buffer, then any revoke pending on it is
749          * no longer valid
750          */
751         jbd2_journal_cancel_revoke(handle, jh);
752
753 out:
754         if (unlikely(frozen_buffer))    /* It's usually NULL */
755                 jbd2_free(frozen_buffer, bh->b_size);
756
757         JBUFFER_TRACE(jh, "exit");
758         return error;
759 }
760
761 /**
762  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
763  * @handle: transaction to add buffer modifications to
764  * @bh:     bh to be used for metadata writes
765  * @credits: variable that will receive credits for the buffer
766  *
767  * Returns an error code or 0 on success.
768  *
769  * In full data journalling mode the buffer may be of type BJ_AsyncData,
770  * because we're write()ing a buffer which is also part of a shared mapping.
771  */
772
773 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
774 {
775         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
776         int rc;
777
778         /* We do not want to get caught playing with fields which the
779          * log thread also manipulates.  Make sure that the buffer
780          * completes any outstanding IO before proceeding. */
781         rc = do_get_write_access(handle, jh, 0);
782         jbd2_journal_put_journal_head(jh);
783         return rc;
784 }
785
786
787 /*
788  * When the user wants to journal a newly created buffer_head
789  * (ie. getblk() returned a new buffer and we are going to populate it
790  * manually rather than reading off disk), then we need to keep the
791  * buffer_head locked until it has been completely filled with new
792  * data.  In this case, we should be able to make the assertion that
793  * the bh is not already part of an existing transaction.
794  *
795  * The buffer should already be locked by the caller by this point.
796  * There is no lock ranking violation: it was a newly created,
797  * unlocked buffer beforehand. */
798
799 /**
800  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
801  * @handle: transaction to new buffer to
802  * @bh: new buffer.
803  *
804  * Call this if you create a new bh.
805  */
806 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
807 {
808         transaction_t *transaction = handle->h_transaction;
809         journal_t *journal = transaction->t_journal;
810         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
811         int err;
812
813         jbd_debug(5, "journal_head %p\n", jh);
814         err = -EROFS;
815         if (is_handle_aborted(handle))
816                 goto out;
817         err = 0;
818
819         JBUFFER_TRACE(jh, "entry");
820         /*
821          * The buffer may already belong to this transaction due to pre-zeroing
822          * in the filesystem's new_block code.  It may also be on the previous,
823          * committing transaction's lists, but it HAS to be in Forget state in
824          * that case: the transaction must have deleted the buffer for it to be
825          * reused here.
826          */
827         jbd_lock_bh_state(bh);
828         spin_lock(&journal->j_list_lock);
829         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
830                 jh->b_transaction == NULL ||
831                 (jh->b_transaction == journal->j_committing_transaction &&
832                           jh->b_jlist == BJ_Forget)));
833
834         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
835         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
836
837         if (jh->b_transaction == NULL) {
838                 jh->b_transaction = transaction;
839
840                 /* first access by this transaction */
841                 jh->b_modified = 0;
842
843                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
844                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
845         } else if (jh->b_transaction == journal->j_committing_transaction) {
846                 /* first access by this transaction */
847                 jh->b_modified = 0;
848
849                 JBUFFER_TRACE(jh, "set next transaction");
850                 jh->b_next_transaction = transaction;
851         }
852         spin_unlock(&journal->j_list_lock);
853         jbd_unlock_bh_state(bh);
854
855         /*
856          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
857          * blocks which contain freed but then revoked metadata.  We need
858          * to cancel the revoke in case we end up freeing it yet again
859          * and the reallocating as data - this would cause a second revoke,
860          * which hits an assertion error.
861          */
862         JBUFFER_TRACE(jh, "cancelling revoke");
863         jbd2_journal_cancel_revoke(handle, jh);
864         jbd2_journal_put_journal_head(jh);
865 out:
866         return err;
867 }
868
869 /**
870  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
871  *     non-rewindable consequences
872  * @handle: transaction
873  * @bh: buffer to undo
874  * @credits: store the number of taken credits here (if not NULL)
875  *
876  * Sometimes there is a need to distinguish between metadata which has
877  * been committed to disk and that which has not.  The ext3fs code uses
878  * this for freeing and allocating space, we have to make sure that we
879  * do not reuse freed space until the deallocation has been committed,
880  * since if we overwrote that space we would make the delete
881  * un-rewindable in case of a crash.
882  *
883  * To deal with that, jbd2_journal_get_undo_access requests write access to a
884  * buffer for parts of non-rewindable operations such as delete
885  * operations on the bitmaps.  The journaling code must keep a copy of
886  * the buffer's contents prior to the undo_access call until such time
887  * as we know that the buffer has definitely been committed to disk.
888  *
889  * We never need to know which transaction the committed data is part
890  * of, buffers touched here are guaranteed to be dirtied later and so
891  * will be committed to a new transaction in due course, at which point
892  * we can discard the old committed data pointer.
893  *
894  * Returns error number or 0 on success.
895  */
896 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
897 {
898         int err;
899         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
900         char *committed_data = NULL;
901
902         JBUFFER_TRACE(jh, "entry");
903
904         /*
905          * Do this first --- it can drop the journal lock, so we want to
906          * make sure that obtaining the committed_data is done
907          * atomically wrt. completion of any outstanding commits.
908          */
909         err = do_get_write_access(handle, jh, 1);
910         if (err)
911                 goto out;
912
913 repeat:
914         if (!jh->b_committed_data) {
915                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
916                 if (!committed_data) {
917                         printk(KERN_EMERG "%s: No memory for committed data\n",
918                                 __func__);
919                         err = -ENOMEM;
920                         goto out;
921                 }
922         }
923
924         jbd_lock_bh_state(bh);
925         if (!jh->b_committed_data) {
926                 /* Copy out the current buffer contents into the
927                  * preserved, committed copy. */
928                 JBUFFER_TRACE(jh, "generate b_committed data");
929                 if (!committed_data) {
930                         jbd_unlock_bh_state(bh);
931                         goto repeat;
932                 }
933
934                 jh->b_committed_data = committed_data;
935                 committed_data = NULL;
936                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
937         }
938         jbd_unlock_bh_state(bh);
939 out:
940         jbd2_journal_put_journal_head(jh);
941         if (unlikely(committed_data))
942                 jbd2_free(committed_data, bh->b_size);
943         return err;
944 }
945
946 /**
947  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
948  * @handle: transaction to add buffer to.
949  * @bh: buffer to mark
950  *
951  * mark dirty metadata which needs to be journaled as part of the current
952  * transaction.
953  *
954  * The buffer is placed on the transaction's metadata list and is marked
955  * as belonging to the transaction.
956  *
957  * Returns error number or 0 on success.
958  *
959  * Special care needs to be taken if the buffer already belongs to the
960  * current committing transaction (in which case we should have frozen
961  * data present for that commit).  In that case, we don't relink the
962  * buffer: that only gets done when the old transaction finally
963  * completes its commit.
964  */
965 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
966 {
967         transaction_t *transaction = handle->h_transaction;
968         journal_t *journal = transaction->t_journal;
969         struct journal_head *jh = bh2jh(bh);
970
971         jbd_debug(5, "journal_head %p\n", jh);
972         JBUFFER_TRACE(jh, "entry");
973         if (is_handle_aborted(handle))
974                 goto out;
975
976         jbd_lock_bh_state(bh);
977
978         if (jh->b_modified == 0) {
979                 /*
980                  * This buffer's got modified and becoming part
981                  * of the transaction. This needs to be done
982                  * once a transaction -bzzz
983                  */
984                 jh->b_modified = 1;
985                 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
986                 handle->h_buffer_credits--;
987         }
988
989         /*
990          * fastpath, to avoid expensive locking.  If this buffer is already
991          * on the running transaction's metadata list there is nothing to do.
992          * Nobody can take it off again because there is a handle open.
993          * I _think_ we're OK here with SMP barriers - a mistaken decision will
994          * result in this test being false, so we go in and take the locks.
995          */
996         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
997                 JBUFFER_TRACE(jh, "fastpath");
998                 J_ASSERT_JH(jh, jh->b_transaction ==
999                                         journal->j_running_transaction);
1000                 goto out_unlock_bh;
1001         }
1002
1003         set_buffer_jbddirty(bh);
1004
1005         /*
1006          * Metadata already on the current transaction list doesn't
1007          * need to be filed.  Metadata on another transaction's list must
1008          * be committing, and will be refiled once the commit completes:
1009          * leave it alone for now.
1010          */
1011         if (jh->b_transaction != transaction) {
1012                 JBUFFER_TRACE(jh, "already on other transaction");
1013                 J_ASSERT_JH(jh, jh->b_transaction ==
1014                                         journal->j_committing_transaction);
1015                 J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1016                 /* And this case is illegal: we can't reuse another
1017                  * transaction's data buffer, ever. */
1018                 goto out_unlock_bh;
1019         }
1020
1021         /* That test should have eliminated the following case: */
1022         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1023
1024         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1025         spin_lock(&journal->j_list_lock);
1026         __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1027         spin_unlock(&journal->j_list_lock);
1028 out_unlock_bh:
1029         jbd_unlock_bh_state(bh);
1030 out:
1031         JBUFFER_TRACE(jh, "exit");
1032         return 0;
1033 }
1034
1035 /*
1036  * jbd2_journal_release_buffer: undo a get_write_access without any buffer
1037  * updates, if the update decided in the end that it didn't need access.
1038  *
1039  */
1040 void
1041 jbd2_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1042 {
1043         BUFFER_TRACE(bh, "entry");
1044 }
1045
1046 /**
1047  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1048  * @handle: transaction handle
1049  * @bh:     bh to 'forget'
1050  *
1051  * We can only do the bforget if there are no commits pending against the
1052  * buffer.  If the buffer is dirty in the current running transaction we
1053  * can safely unlink it.
1054  *
1055  * bh may not be a journalled buffer at all - it may be a non-JBD
1056  * buffer which came off the hashtable.  Check for this.
1057  *
1058  * Decrements bh->b_count by one.
1059  *
1060  * Allow this call even if the handle has aborted --- it may be part of
1061  * the caller's cleanup after an abort.
1062  */
1063 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1064 {
1065         transaction_t *transaction = handle->h_transaction;
1066         journal_t *journal = transaction->t_journal;
1067         struct journal_head *jh;
1068         int drop_reserve = 0;
1069         int err = 0;
1070         int was_modified = 0;
1071
1072         BUFFER_TRACE(bh, "entry");
1073
1074         jbd_lock_bh_state(bh);
1075         spin_lock(&journal->j_list_lock);
1076
1077         if (!buffer_jbd(bh))
1078                 goto not_jbd;
1079         jh = bh2jh(bh);
1080
1081         /* Critical error: attempting to delete a bitmap buffer, maybe?
1082          * Don't do any jbd operations, and return an error. */
1083         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1084                          "inconsistent data on disk")) {
1085                 err = -EIO;
1086                 goto not_jbd;
1087         }
1088
1089         /* keep track of wether or not this transaction modified us */
1090         was_modified = jh->b_modified;
1091
1092         /*
1093          * The buffer's going from the transaction, we must drop
1094          * all references -bzzz
1095          */
1096         jh->b_modified = 0;
1097
1098         if (jh->b_transaction == handle->h_transaction) {
1099                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1100
1101                 /* If we are forgetting a buffer which is already part
1102                  * of this transaction, then we can just drop it from
1103                  * the transaction immediately. */
1104                 clear_buffer_dirty(bh);
1105                 clear_buffer_jbddirty(bh);
1106
1107                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1108
1109                 /*
1110                  * we only want to drop a reference if this transaction
1111                  * modified the buffer
1112                  */
1113                 if (was_modified)
1114                         drop_reserve = 1;
1115
1116                 /*
1117                  * We are no longer going to journal this buffer.
1118                  * However, the commit of this transaction is still
1119                  * important to the buffer: the delete that we are now
1120                  * processing might obsolete an old log entry, so by
1121                  * committing, we can satisfy the buffer's checkpoint.
1122                  *
1123                  * So, if we have a checkpoint on the buffer, we should
1124                  * now refile the buffer on our BJ_Forget list so that
1125                  * we know to remove the checkpoint after we commit.
1126                  */
1127
1128                 if (jh->b_cp_transaction) {
1129                         __jbd2_journal_temp_unlink_buffer(jh);
1130                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1131                 } else {
1132                         __jbd2_journal_unfile_buffer(jh);
1133                         jbd2_journal_remove_journal_head(bh);
1134                         __brelse(bh);
1135                         if (!buffer_jbd(bh)) {
1136                                 spin_unlock(&journal->j_list_lock);
1137                                 jbd_unlock_bh_state(bh);
1138                                 __bforget(bh);
1139                                 goto drop;
1140                         }
1141                 }
1142         } else if (jh->b_transaction) {
1143                 J_ASSERT_JH(jh, (jh->b_transaction ==
1144                                  journal->j_committing_transaction));
1145                 /* However, if the buffer is still owned by a prior
1146                  * (committing) transaction, we can't drop it yet... */
1147                 JBUFFER_TRACE(jh, "belongs to older transaction");
1148                 /* ... but we CAN drop it from the new transaction if we
1149                  * have also modified it since the original commit. */
1150
1151                 if (jh->b_next_transaction) {
1152                         J_ASSERT(jh->b_next_transaction == transaction);
1153                         jh->b_next_transaction = NULL;
1154
1155                         /*
1156                          * only drop a reference if this transaction modified
1157                          * the buffer
1158                          */
1159                         if (was_modified)
1160                                 drop_reserve = 1;
1161                 }
1162         }
1163
1164 not_jbd:
1165         spin_unlock(&journal->j_list_lock);
1166         jbd_unlock_bh_state(bh);
1167         __brelse(bh);
1168 drop:
1169         if (drop_reserve) {
1170                 /* no need to reserve log space for this block -bzzz */
1171                 handle->h_buffer_credits++;
1172         }
1173         return err;
1174 }
1175
1176 /**
1177  * int jbd2_journal_stop() - complete a transaction
1178  * @handle: tranaction to complete.
1179  *
1180  * All done for a particular handle.
1181  *
1182  * There is not much action needed here.  We just return any remaining
1183  * buffer credits to the transaction and remove the handle.  The only
1184  * complication is that we need to start a commit operation if the
1185  * filesystem is marked for synchronous update.
1186  *
1187  * jbd2_journal_stop itself will not usually return an error, but it may
1188  * do so in unusual circumstances.  In particular, expect it to
1189  * return -EIO if a jbd2_journal_abort has been executed since the
1190  * transaction began.
1191  */
1192 int jbd2_journal_stop(handle_t *handle)
1193 {
1194         transaction_t *transaction = handle->h_transaction;
1195         journal_t *journal = transaction->t_journal;
1196         int old_handle_count, err;
1197         pid_t pid;
1198
1199         J_ASSERT(journal_current_handle() == handle);
1200
1201         if (is_handle_aborted(handle))
1202                 err = -EIO;
1203         else {
1204                 J_ASSERT(transaction->t_updates > 0);
1205                 err = 0;
1206         }
1207
1208         if (--handle->h_ref > 0) {
1209                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1210                           handle->h_ref);
1211                 return err;
1212         }
1213
1214         jbd_debug(4, "Handle %p going down\n", handle);
1215
1216         /*
1217          * Implement synchronous transaction batching.  If the handle
1218          * was synchronous, don't force a commit immediately.  Let's
1219          * yield and let another thread piggyback onto this transaction.
1220          * Keep doing that while new threads continue to arrive.
1221          * It doesn't cost much - we're about to run a commit and sleep
1222          * on IO anyway.  Speeds up many-threaded, many-dir operations
1223          * by 30x or more...
1224          *
1225          * But don't do this if this process was the most recent one to
1226          * perform a synchronous write.  We do this to detect the case where a
1227          * single process is doing a stream of sync writes.  No point in waiting
1228          * for joiners in that case.
1229          */
1230         pid = current->pid;
1231         if (handle->h_sync && journal->j_last_sync_writer != pid) {
1232                 journal->j_last_sync_writer = pid;
1233                 do {
1234                         old_handle_count = transaction->t_handle_count;
1235                         schedule_timeout_uninterruptible(1);
1236                 } while (old_handle_count != transaction->t_handle_count);
1237         }
1238
1239         current->journal_info = NULL;
1240         spin_lock(&journal->j_state_lock);
1241         spin_lock(&transaction->t_handle_lock);
1242         transaction->t_outstanding_credits -= handle->h_buffer_credits;
1243         transaction->t_updates--;
1244         if (!transaction->t_updates) {
1245                 wake_up(&journal->j_wait_updates);
1246                 if (journal->j_barrier_count)
1247                         wake_up(&journal->j_wait_transaction_locked);
1248         }
1249
1250         /*
1251          * If the handle is marked SYNC, we need to set another commit
1252          * going!  We also want to force a commit if the current
1253          * transaction is occupying too much of the log, or if the
1254          * transaction is too old now.
1255          */
1256         if (handle->h_sync ||
1257                         transaction->t_outstanding_credits >
1258                                 journal->j_max_transaction_buffers ||
1259                         time_after_eq(jiffies, transaction->t_expires)) {
1260                 /* Do this even for aborted journals: an abort still
1261                  * completes the commit thread, it just doesn't write
1262                  * anything to disk. */
1263                 tid_t tid = transaction->t_tid;
1264
1265                 spin_unlock(&transaction->t_handle_lock);
1266                 jbd_debug(2, "transaction too old, requesting commit for "
1267                                         "handle %p\n", handle);
1268                 /* This is non-blocking */
1269                 __jbd2_log_start_commit(journal, transaction->t_tid);
1270                 spin_unlock(&journal->j_state_lock);
1271
1272                 /*
1273                  * Special case: JBD2_SYNC synchronous updates require us
1274                  * to wait for the commit to complete.
1275                  */
1276                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1277                         err = jbd2_log_wait_commit(journal, tid);
1278         } else {
1279                 spin_unlock(&transaction->t_handle_lock);
1280                 spin_unlock(&journal->j_state_lock);
1281         }
1282
1283         lock_map_release(&handle->h_lockdep_map);
1284
1285         jbd2_free_handle(handle);
1286         return err;
1287 }
1288
1289 /**
1290  * int jbd2_journal_force_commit() - force any uncommitted transactions
1291  * @journal: journal to force
1292  *
1293  * For synchronous operations: force any uncommitted transactions
1294  * to disk.  May seem kludgy, but it reuses all the handle batching
1295  * code in a very simple manner.
1296  */
1297 int jbd2_journal_force_commit(journal_t *journal)
1298 {
1299         handle_t *handle;
1300         int ret;
1301
1302         handle = jbd2_journal_start(journal, 1);
1303         if (IS_ERR(handle)) {
1304                 ret = PTR_ERR(handle);
1305         } else {
1306                 handle->h_sync = 1;
1307                 ret = jbd2_journal_stop(handle);
1308         }
1309         return ret;
1310 }
1311
1312 /*
1313  *
1314  * List management code snippets: various functions for manipulating the
1315  * transaction buffer lists.
1316  *
1317  */
1318
1319 /*
1320  * Append a buffer to a transaction list, given the transaction's list head
1321  * pointer.
1322  *
1323  * j_list_lock is held.
1324  *
1325  * jbd_lock_bh_state(jh2bh(jh)) is held.
1326  */
1327
1328 static inline void
1329 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1330 {
1331         if (!*list) {
1332                 jh->b_tnext = jh->b_tprev = jh;
1333                 *list = jh;
1334         } else {
1335                 /* Insert at the tail of the list to preserve order */
1336                 struct journal_head *first = *list, *last = first->b_tprev;
1337                 jh->b_tprev = last;
1338                 jh->b_tnext = first;
1339                 last->b_tnext = first->b_tprev = jh;
1340         }
1341 }
1342
1343 /*
1344  * Remove a buffer from a transaction list, given the transaction's list
1345  * head pointer.
1346  *
1347  * Called with j_list_lock held, and the journal may not be locked.
1348  *
1349  * jbd_lock_bh_state(jh2bh(jh)) is held.
1350  */
1351
1352 static inline void
1353 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1354 {
1355         if (*list == jh) {
1356                 *list = jh->b_tnext;
1357                 if (*list == jh)
1358                         *list = NULL;
1359         }
1360         jh->b_tprev->b_tnext = jh->b_tnext;
1361         jh->b_tnext->b_tprev = jh->b_tprev;
1362 }
1363
1364 /*
1365  * Remove a buffer from the appropriate transaction list.
1366  *
1367  * Note that this function can *change* the value of
1368  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1369  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1370  * of these pointers, it could go bad.  Generally the caller needs to re-read
1371  * the pointer from the transaction_t.
1372  *
1373  * Called under j_list_lock.  The journal may not be locked.
1374  */
1375 void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1376 {
1377         struct journal_head **list = NULL;
1378         transaction_t *transaction;
1379         struct buffer_head *bh = jh2bh(jh);
1380
1381         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1382         transaction = jh->b_transaction;
1383         if (transaction)
1384                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1385
1386         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1387         if (jh->b_jlist != BJ_None)
1388                 J_ASSERT_JH(jh, transaction != NULL);
1389
1390         switch (jh->b_jlist) {
1391         case BJ_None:
1392                 return;
1393         case BJ_Metadata:
1394                 transaction->t_nr_buffers--;
1395                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1396                 list = &transaction->t_buffers;
1397                 break;
1398         case BJ_Forget:
1399                 list = &transaction->t_forget;
1400                 break;
1401         case BJ_IO:
1402                 list = &transaction->t_iobuf_list;
1403                 break;
1404         case BJ_Shadow:
1405                 list = &transaction->t_shadow_list;
1406                 break;
1407         case BJ_LogCtl:
1408                 list = &transaction->t_log_list;
1409                 break;
1410         case BJ_Reserved:
1411                 list = &transaction->t_reserved_list;
1412                 break;
1413         }
1414
1415         __blist_del_buffer(list, jh);
1416         jh->b_jlist = BJ_None;
1417         if (test_clear_buffer_jbddirty(bh))
1418                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1419 }
1420
1421 void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1422 {
1423         __jbd2_journal_temp_unlink_buffer(jh);
1424         jh->b_transaction = NULL;
1425 }
1426
1427 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1428 {
1429         jbd_lock_bh_state(jh2bh(jh));
1430         spin_lock(&journal->j_list_lock);
1431         __jbd2_journal_unfile_buffer(jh);
1432         spin_unlock(&journal->j_list_lock);
1433         jbd_unlock_bh_state(jh2bh(jh));
1434 }
1435
1436 /*
1437  * Called from jbd2_journal_try_to_free_buffers().
1438  *
1439  * Called under jbd_lock_bh_state(bh)
1440  */
1441 static void
1442 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1443 {
1444         struct journal_head *jh;
1445
1446         jh = bh2jh(bh);
1447
1448         if (buffer_locked(bh) || buffer_dirty(bh))
1449                 goto out;
1450
1451         if (jh->b_next_transaction != NULL)
1452                 goto out;
1453
1454         spin_lock(&journal->j_list_lock);
1455         if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1456                 /* written-back checkpointed metadata buffer */
1457                 if (jh->b_jlist == BJ_None) {
1458                         JBUFFER_TRACE(jh, "remove from checkpoint list");
1459                         __jbd2_journal_remove_checkpoint(jh);
1460                         jbd2_journal_remove_journal_head(bh);
1461                         __brelse(bh);
1462                 }
1463         }
1464         spin_unlock(&journal->j_list_lock);
1465 out:
1466         return;
1467 }
1468
1469 /*
1470  * jbd2_journal_try_to_free_buffers() could race with
1471  * jbd2_journal_commit_transaction(). The later might still hold the
1472  * reference count to the buffers when inspecting them on
1473  * t_syncdata_list or t_locked_list.
1474  *
1475  * jbd2_journal_try_to_free_buffers() will call this function to
1476  * wait for the current transaction to finish syncing data buffers, before
1477  * try to free that buffer.
1478  *
1479  * Called with journal->j_state_lock hold.
1480  */
1481 static void jbd2_journal_wait_for_transaction_sync_data(journal_t *journal)
1482 {
1483         transaction_t *transaction;
1484         tid_t tid;
1485
1486         spin_lock(&journal->j_state_lock);
1487         transaction = journal->j_committing_transaction;
1488
1489         if (!transaction) {
1490                 spin_unlock(&journal->j_state_lock);
1491                 return;
1492         }
1493
1494         tid = transaction->t_tid;
1495         spin_unlock(&journal->j_state_lock);
1496         jbd2_log_wait_commit(journal, tid);
1497 }
1498
1499 /**
1500  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1501  * @journal: journal for operation
1502  * @page: to try and free
1503  * @gfp_mask: we use the mask to detect how hard should we try to release
1504  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1505  * release the buffers.
1506  *
1507  *
1508  * For all the buffers on this page,
1509  * if they are fully written out ordered data, move them onto BUF_CLEAN
1510  * so try_to_free_buffers() can reap them.
1511  *
1512  * This function returns non-zero if we wish try_to_free_buffers()
1513  * to be called. We do this if the page is releasable by try_to_free_buffers().
1514  * We also do it if the page has locked or dirty buffers and the caller wants
1515  * us to perform sync or async writeout.
1516  *
1517  * This complicates JBD locking somewhat.  We aren't protected by the
1518  * BKL here.  We wish to remove the buffer from its committing or
1519  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1520  *
1521  * This may *change* the value of transaction_t->t_datalist, so anyone
1522  * who looks at t_datalist needs to lock against this function.
1523  *
1524  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1525  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1526  * will come out of the lock with the buffer dirty, which makes it
1527  * ineligible for release here.
1528  *
1529  * Who else is affected by this?  hmm...  Really the only contender
1530  * is do_get_write_access() - it could be looking at the buffer while
1531  * journal_try_to_free_buffer() is changing its state.  But that
1532  * cannot happen because we never reallocate freed data as metadata
1533  * while the data is part of a transaction.  Yes?
1534  *
1535  * Return 0 on failure, 1 on success
1536  */
1537 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1538                                 struct page *page, gfp_t gfp_mask)
1539 {
1540         struct buffer_head *head;
1541         struct buffer_head *bh;
1542         int ret = 0;
1543
1544         J_ASSERT(PageLocked(page));
1545
1546         head = page_buffers(page);
1547         bh = head;
1548         do {
1549                 struct journal_head *jh;
1550
1551                 /*
1552                  * We take our own ref against the journal_head here to avoid
1553                  * having to add tons of locking around each instance of
1554                  * jbd2_journal_remove_journal_head() and
1555                  * jbd2_journal_put_journal_head().
1556                  */
1557                 jh = jbd2_journal_grab_journal_head(bh);
1558                 if (!jh)
1559                         continue;
1560
1561                 jbd_lock_bh_state(bh);
1562                 __journal_try_to_free_buffer(journal, bh);
1563                 jbd2_journal_put_journal_head(jh);
1564                 jbd_unlock_bh_state(bh);
1565                 if (buffer_jbd(bh))
1566                         goto busy;
1567         } while ((bh = bh->b_this_page) != head);
1568
1569         ret = try_to_free_buffers(page);
1570
1571         /*
1572          * There are a number of places where jbd2_journal_try_to_free_buffers()
1573          * could race with jbd2_journal_commit_transaction(), the later still
1574          * holds the reference to the buffers to free while processing them.
1575          * try_to_free_buffers() failed to free those buffers. Some of the
1576          * caller of releasepage() request page buffers to be dropped, otherwise
1577          * treat the fail-to-free as errors (such as generic_file_direct_IO())
1578          *
1579          * So, if the caller of try_to_release_page() wants the synchronous
1580          * behaviour(i.e make sure buffers are dropped upon return),
1581          * let's wait for the current transaction to finish flush of
1582          * dirty data buffers, then try to free those buffers again,
1583          * with the journal locked.
1584          */
1585         if (ret == 0 && (gfp_mask & __GFP_WAIT) && (gfp_mask & __GFP_FS)) {
1586                 jbd2_journal_wait_for_transaction_sync_data(journal);
1587                 ret = try_to_free_buffers(page);
1588         }
1589
1590 busy:
1591         return ret;
1592 }
1593
1594 /*
1595  * This buffer is no longer needed.  If it is on an older transaction's
1596  * checkpoint list we need to record it on this transaction's forget list
1597  * to pin this buffer (and hence its checkpointing transaction) down until
1598  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1599  * release it.
1600  * Returns non-zero if JBD no longer has an interest in the buffer.
1601  *
1602  * Called under j_list_lock.
1603  *
1604  * Called under jbd_lock_bh_state(bh).
1605  */
1606 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1607 {
1608         int may_free = 1;
1609         struct buffer_head *bh = jh2bh(jh);
1610
1611         __jbd2_journal_unfile_buffer(jh);
1612
1613         if (jh->b_cp_transaction) {
1614                 JBUFFER_TRACE(jh, "on running+cp transaction");
1615                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1616                 clear_buffer_jbddirty(bh);
1617                 may_free = 0;
1618         } else {
1619                 JBUFFER_TRACE(jh, "on running transaction");
1620                 jbd2_journal_remove_journal_head(bh);
1621                 __brelse(bh);
1622         }
1623         return may_free;
1624 }
1625
1626 /*
1627  * jbd2_journal_invalidatepage
1628  *
1629  * This code is tricky.  It has a number of cases to deal with.
1630  *
1631  * There are two invariants which this code relies on:
1632  *
1633  * i_size must be updated on disk before we start calling invalidatepage on the
1634  * data.
1635  *
1636  *  This is done in ext3 by defining an ext3_setattr method which
1637  *  updates i_size before truncate gets going.  By maintaining this
1638  *  invariant, we can be sure that it is safe to throw away any buffers
1639  *  attached to the current transaction: once the transaction commits,
1640  *  we know that the data will not be needed.
1641  *
1642  *  Note however that we can *not* throw away data belonging to the
1643  *  previous, committing transaction!
1644  *
1645  * Any disk blocks which *are* part of the previous, committing
1646  * transaction (and which therefore cannot be discarded immediately) are
1647  * not going to be reused in the new running transaction
1648  *
1649  *  The bitmap committed_data images guarantee this: any block which is
1650  *  allocated in one transaction and removed in the next will be marked
1651  *  as in-use in the committed_data bitmap, so cannot be reused until
1652  *  the next transaction to delete the block commits.  This means that
1653  *  leaving committing buffers dirty is quite safe: the disk blocks
1654  *  cannot be reallocated to a different file and so buffer aliasing is
1655  *  not possible.
1656  *
1657  *
1658  * The above applies mainly to ordered data mode.  In writeback mode we
1659  * don't make guarantees about the order in which data hits disk --- in
1660  * particular we don't guarantee that new dirty data is flushed before
1661  * transaction commit --- so it is always safe just to discard data
1662  * immediately in that mode.  --sct
1663  */
1664
1665 /*
1666  * The journal_unmap_buffer helper function returns zero if the buffer
1667  * concerned remains pinned as an anonymous buffer belonging to an older
1668  * transaction.
1669  *
1670  * We're outside-transaction here.  Either or both of j_running_transaction
1671  * and j_committing_transaction may be NULL.
1672  */
1673 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh)
1674 {
1675         transaction_t *transaction;
1676         struct journal_head *jh;
1677         int may_free = 1;
1678         int ret;
1679
1680         BUFFER_TRACE(bh, "entry");
1681
1682         /*
1683          * It is safe to proceed here without the j_list_lock because the
1684          * buffers cannot be stolen by try_to_free_buffers as long as we are
1685          * holding the page lock. --sct
1686          */
1687
1688         if (!buffer_jbd(bh))
1689                 goto zap_buffer_unlocked;
1690
1691         /* OK, we have data buffer in journaled mode */
1692         spin_lock(&journal->j_state_lock);
1693         jbd_lock_bh_state(bh);
1694         spin_lock(&journal->j_list_lock);
1695
1696         jh = jbd2_journal_grab_journal_head(bh);
1697         if (!jh)
1698                 goto zap_buffer_no_jh;
1699
1700         transaction = jh->b_transaction;
1701         if (transaction == NULL) {
1702                 /* First case: not on any transaction.  If it
1703                  * has no checkpoint link, then we can zap it:
1704                  * it's a writeback-mode buffer so we don't care
1705                  * if it hits disk safely. */
1706                 if (!jh->b_cp_transaction) {
1707                         JBUFFER_TRACE(jh, "not on any transaction: zap");
1708                         goto zap_buffer;
1709                 }
1710
1711                 if (!buffer_dirty(bh)) {
1712                         /* bdflush has written it.  We can drop it now */
1713                         goto zap_buffer;
1714                 }
1715
1716                 /* OK, it must be in the journal but still not
1717                  * written fully to disk: it's metadata or
1718                  * journaled data... */
1719
1720                 if (journal->j_running_transaction) {
1721                         /* ... and once the current transaction has
1722                          * committed, the buffer won't be needed any
1723                          * longer. */
1724                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1725                         ret = __dispose_buffer(jh,
1726                                         journal->j_running_transaction);
1727                         jbd2_journal_put_journal_head(jh);
1728                         spin_unlock(&journal->j_list_lock);
1729                         jbd_unlock_bh_state(bh);
1730                         spin_unlock(&journal->j_state_lock);
1731                         return ret;
1732                 } else {
1733                         /* There is no currently-running transaction. So the
1734                          * orphan record which we wrote for this file must have
1735                          * passed into commit.  We must attach this buffer to
1736                          * the committing transaction, if it exists. */
1737                         if (journal->j_committing_transaction) {
1738                                 JBUFFER_TRACE(jh, "give to committing trans");
1739                                 ret = __dispose_buffer(jh,
1740                                         journal->j_committing_transaction);
1741                                 jbd2_journal_put_journal_head(jh);
1742                                 spin_unlock(&journal->j_list_lock);
1743                                 jbd_unlock_bh_state(bh);
1744                                 spin_unlock(&journal->j_state_lock);
1745                                 return ret;
1746                         } else {
1747                                 /* The orphan record's transaction has
1748                                  * committed.  We can cleanse this buffer */
1749                                 clear_buffer_jbddirty(bh);
1750                                 goto zap_buffer;
1751                         }
1752                 }
1753         } else if (transaction == journal->j_committing_transaction) {
1754                 JBUFFER_TRACE(jh, "on committing transaction");
1755                 /*
1756                  * If it is committing, we simply cannot touch it.  We
1757                  * can remove it's next_transaction pointer from the
1758                  * running transaction if that is set, but nothing
1759                  * else. */
1760                 set_buffer_freed(bh);
1761                 if (jh->b_next_transaction) {
1762                         J_ASSERT(jh->b_next_transaction ==
1763                                         journal->j_running_transaction);
1764                         jh->b_next_transaction = NULL;
1765                 }
1766                 jbd2_journal_put_journal_head(jh);
1767                 spin_unlock(&journal->j_list_lock);
1768                 jbd_unlock_bh_state(bh);
1769                 spin_unlock(&journal->j_state_lock);
1770                 return 0;
1771         } else {
1772                 /* Good, the buffer belongs to the running transaction.
1773                  * We are writing our own transaction's data, not any
1774                  * previous one's, so it is safe to throw it away
1775                  * (remember that we expect the filesystem to have set
1776                  * i_size already for this truncate so recovery will not
1777                  * expose the disk blocks we are discarding here.) */
1778                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1779                 JBUFFER_TRACE(jh, "on running transaction");
1780                 may_free = __dispose_buffer(jh, transaction);
1781         }
1782
1783 zap_buffer:
1784         jbd2_journal_put_journal_head(jh);
1785 zap_buffer_no_jh:
1786         spin_unlock(&journal->j_list_lock);
1787         jbd_unlock_bh_state(bh);
1788         spin_unlock(&journal->j_state_lock);
1789 zap_buffer_unlocked:
1790         clear_buffer_dirty(bh);
1791         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
1792         clear_buffer_mapped(bh);
1793         clear_buffer_req(bh);
1794         clear_buffer_new(bh);
1795         bh->b_bdev = NULL;
1796         return may_free;
1797 }
1798
1799 /**
1800  * void jbd2_journal_invalidatepage()
1801  * @journal: journal to use for flush...
1802  * @page:    page to flush
1803  * @offset:  length of page to invalidate.
1804  *
1805  * Reap page buffers containing data after offset in page.
1806  *
1807  */
1808 void jbd2_journal_invalidatepage(journal_t *journal,
1809                       struct page *page,
1810                       unsigned long offset)
1811 {
1812         struct buffer_head *head, *bh, *next;
1813         unsigned int curr_off = 0;
1814         int may_free = 1;
1815
1816         if (!PageLocked(page))
1817                 BUG();
1818         if (!page_has_buffers(page))
1819                 return;
1820
1821         /* We will potentially be playing with lists other than just the
1822          * data lists (especially for journaled data mode), so be
1823          * cautious in our locking. */
1824
1825         head = bh = page_buffers(page);
1826         do {
1827                 unsigned int next_off = curr_off + bh->b_size;
1828                 next = bh->b_this_page;
1829
1830                 if (offset <= curr_off) {
1831                         /* This block is wholly outside the truncation point */
1832                         lock_buffer(bh);
1833                         may_free &= journal_unmap_buffer(journal, bh);
1834                         unlock_buffer(bh);
1835                 }
1836                 curr_off = next_off;
1837                 bh = next;
1838
1839         } while (bh != head);
1840
1841         if (!offset) {
1842                 if (may_free && try_to_free_buffers(page))
1843                         J_ASSERT(!page_has_buffers(page));
1844         }
1845 }
1846
1847 /*
1848  * File a buffer on the given transaction list.
1849  */
1850 void __jbd2_journal_file_buffer(struct journal_head *jh,
1851                         transaction_t *transaction, int jlist)
1852 {
1853         struct journal_head **list = NULL;
1854         int was_dirty = 0;
1855         struct buffer_head *bh = jh2bh(jh);
1856
1857         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1858         assert_spin_locked(&transaction->t_journal->j_list_lock);
1859
1860         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1861         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1862                                 jh->b_transaction == NULL);
1863
1864         if (jh->b_transaction && jh->b_jlist == jlist)
1865                 return;
1866
1867         /* The following list of buffer states needs to be consistent
1868          * with __jbd_unexpected_dirty_buffer()'s handling of dirty
1869          * state. */
1870
1871         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
1872             jlist == BJ_Shadow || jlist == BJ_Forget) {
1873                 if (test_clear_buffer_dirty(bh) ||
1874                     test_clear_buffer_jbddirty(bh))
1875                         was_dirty = 1;
1876         }
1877
1878         if (jh->b_transaction)
1879                 __jbd2_journal_temp_unlink_buffer(jh);
1880         jh->b_transaction = transaction;
1881
1882         switch (jlist) {
1883         case BJ_None:
1884                 J_ASSERT_JH(jh, !jh->b_committed_data);
1885                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1886                 return;
1887         case BJ_Metadata:
1888                 transaction->t_nr_buffers++;
1889                 list = &transaction->t_buffers;
1890                 break;
1891         case BJ_Forget:
1892                 list = &transaction->t_forget;
1893                 break;
1894         case BJ_IO:
1895                 list = &transaction->t_iobuf_list;
1896                 break;
1897         case BJ_Shadow:
1898                 list = &transaction->t_shadow_list;
1899                 break;
1900         case BJ_LogCtl:
1901                 list = &transaction->t_log_list;
1902                 break;
1903         case BJ_Reserved:
1904                 list = &transaction->t_reserved_list;
1905                 break;
1906         }
1907
1908         __blist_add_buffer(list, jh);
1909         jh->b_jlist = jlist;
1910
1911         if (was_dirty)
1912                 set_buffer_jbddirty(bh);
1913 }
1914
1915 void jbd2_journal_file_buffer(struct journal_head *jh,
1916                                 transaction_t *transaction, int jlist)
1917 {
1918         jbd_lock_bh_state(jh2bh(jh));
1919         spin_lock(&transaction->t_journal->j_list_lock);
1920         __jbd2_journal_file_buffer(jh, transaction, jlist);
1921         spin_unlock(&transaction->t_journal->j_list_lock);
1922         jbd_unlock_bh_state(jh2bh(jh));
1923 }
1924
1925 /*
1926  * Remove a buffer from its current buffer list in preparation for
1927  * dropping it from its current transaction entirely.  If the buffer has
1928  * already started to be used by a subsequent transaction, refile the
1929  * buffer on that transaction's metadata list.
1930  *
1931  * Called under journal->j_list_lock
1932  *
1933  * Called under jbd_lock_bh_state(jh2bh(jh))
1934  */
1935 void __jbd2_journal_refile_buffer(struct journal_head *jh)
1936 {
1937         int was_dirty;
1938         struct buffer_head *bh = jh2bh(jh);
1939
1940         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1941         if (jh->b_transaction)
1942                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
1943
1944         /* If the buffer is now unused, just drop it. */
1945         if (jh->b_next_transaction == NULL) {
1946                 __jbd2_journal_unfile_buffer(jh);
1947                 return;
1948         }
1949
1950         /*
1951          * It has been modified by a later transaction: add it to the new
1952          * transaction's metadata list.
1953          */
1954
1955         was_dirty = test_clear_buffer_jbddirty(bh);
1956         __jbd2_journal_temp_unlink_buffer(jh);
1957         jh->b_transaction = jh->b_next_transaction;
1958         jh->b_next_transaction = NULL;
1959         __jbd2_journal_file_buffer(jh, jh->b_transaction,
1960                                 jh->b_modified ? BJ_Metadata : BJ_Reserved);
1961         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
1962
1963         if (was_dirty)
1964                 set_buffer_jbddirty(bh);
1965 }
1966
1967 /*
1968  * For the unlocked version of this call, also make sure that any
1969  * hanging journal_head is cleaned up if necessary.
1970  *
1971  * __jbd2_journal_refile_buffer is usually called as part of a single locked
1972  * operation on a buffer_head, in which the caller is probably going to
1973  * be hooking the journal_head onto other lists.  In that case it is up
1974  * to the caller to remove the journal_head if necessary.  For the
1975  * unlocked jbd2_journal_refile_buffer call, the caller isn't going to be
1976  * doing anything else to the buffer so we need to do the cleanup
1977  * ourselves to avoid a jh leak.
1978  *
1979  * *** The journal_head may be freed by this call! ***
1980  */
1981 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
1982 {
1983         struct buffer_head *bh = jh2bh(jh);
1984
1985         jbd_lock_bh_state(bh);
1986         spin_lock(&journal->j_list_lock);
1987
1988         __jbd2_journal_refile_buffer(jh);
1989         jbd_unlock_bh_state(bh);
1990         jbd2_journal_remove_journal_head(bh);
1991
1992         spin_unlock(&journal->j_list_lock);
1993         __brelse(bh);
1994 }
1995
1996 /*
1997  * File inode in the inode list of the handle's transaction
1998  */
1999 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2000 {
2001         transaction_t *transaction = handle->h_transaction;
2002         journal_t *journal = transaction->t_journal;
2003
2004         if (is_handle_aborted(handle))
2005                 return -EIO;
2006
2007         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2008                         transaction->t_tid);
2009
2010         /*
2011          * First check whether inode isn't already on the transaction's
2012          * lists without taking the lock. Note that this check is safe
2013          * without the lock as we cannot race with somebody removing inode
2014          * from the transaction. The reason is that we remove inode from the
2015          * transaction only in journal_release_jbd_inode() and when we commit
2016          * the transaction. We are guarded from the first case by holding
2017          * a reference to the inode. We are safe against the second case
2018          * because if jinode->i_transaction == transaction, commit code
2019          * cannot touch the transaction because we hold reference to it,
2020          * and if jinode->i_next_transaction == transaction, commit code
2021          * will only file the inode where we want it.
2022          */
2023         if (jinode->i_transaction == transaction ||
2024             jinode->i_next_transaction == transaction)
2025                 return 0;
2026
2027         spin_lock(&journal->j_list_lock);
2028
2029         if (jinode->i_transaction == transaction ||
2030             jinode->i_next_transaction == transaction)
2031                 goto done;
2032
2033         /* On some different transaction's list - should be
2034          * the committing one */
2035         if (jinode->i_transaction) {
2036                 J_ASSERT(jinode->i_next_transaction == NULL);
2037                 J_ASSERT(jinode->i_transaction ==
2038                                         journal->j_committing_transaction);
2039                 jinode->i_next_transaction = transaction;
2040                 goto done;
2041         }
2042         /* Not on any transaction list... */
2043         J_ASSERT(!jinode->i_next_transaction);
2044         jinode->i_transaction = transaction;
2045         list_add(&jinode->i_list, &transaction->t_inode_list);
2046 done:
2047         spin_unlock(&journal->j_list_lock);
2048
2049         return 0;
2050 }
2051
2052 /*
2053  * This function must be called when inode is journaled in ordered mode
2054  * before truncation happens. It starts writeout of truncated part in
2055  * case it is in the committing transaction so that we stand to ordered
2056  * mode consistency guarantees.
2057  */
2058 int jbd2_journal_begin_ordered_truncate(struct jbd2_inode *inode,
2059                                         loff_t new_size)
2060 {
2061         journal_t *journal;
2062         transaction_t *commit_trans;
2063         int ret = 0;
2064
2065         if (!inode->i_transaction && !inode->i_next_transaction)
2066                 goto out;
2067         journal = inode->i_transaction->t_journal;
2068         spin_lock(&journal->j_state_lock);
2069         commit_trans = journal->j_committing_transaction;
2070         spin_unlock(&journal->j_state_lock);
2071         if (inode->i_transaction == commit_trans) {
2072                 ret = filemap_fdatawrite_range(inode->i_vfs_inode->i_mapping,
2073                         new_size, LLONG_MAX);
2074                 if (ret)
2075                         jbd2_journal_abort(journal, ret);
2076         }
2077 out:
2078         return ret;
2079 }