1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
68 #include <linux/capability.h>
72 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
73 * for saving names from getname(). */
74 #define AUDIT_NAMES 20
76 /* Indicates that audit should log the full pathname. */
77 #define AUDIT_NAME_FULL -1
79 /* no execve audit message should be longer than this (userspace limits) */
80 #define MAX_EXECVE_AUDIT_LEN 7500
82 /* number of audit rules */
85 /* determines whether we collect data for signals sent */
88 struct audit_cap_data {
89 kernel_cap_t permitted;
90 kernel_cap_t inheritable;
92 unsigned int fE; /* effective bit of a file capability */
93 kernel_cap_t effective; /* effective set of a process */
97 /* When fs/namei.c:getname() is called, we store the pointer in name and
98 * we don't let putname() free it (instead we free all of the saved
99 * pointers at syscall exit time).
101 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
104 int name_len; /* number of name's characters to log */
105 unsigned name_put; /* call __putname() for this name */
113 struct audit_cap_data fcap;
114 unsigned int fcap_ver;
117 struct audit_aux_data {
118 struct audit_aux_data *next;
122 #define AUDIT_AUX_IPCPERM 0
124 /* Number of target pids per aux struct. */
125 #define AUDIT_AUX_PIDS 16
127 struct audit_aux_data_execve {
128 struct audit_aux_data d;
131 struct mm_struct *mm;
134 struct audit_aux_data_pids {
135 struct audit_aux_data d;
136 pid_t target_pid[AUDIT_AUX_PIDS];
137 uid_t target_auid[AUDIT_AUX_PIDS];
138 uid_t target_uid[AUDIT_AUX_PIDS];
139 unsigned int target_sessionid[AUDIT_AUX_PIDS];
140 u32 target_sid[AUDIT_AUX_PIDS];
141 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
145 struct audit_aux_data_bprm_fcaps {
146 struct audit_aux_data d;
147 struct audit_cap_data fcap;
148 unsigned int fcap_ver;
149 struct audit_cap_data old_pcap;
150 struct audit_cap_data new_pcap;
153 struct audit_aux_data_capset {
154 struct audit_aux_data d;
156 struct audit_cap_data cap;
159 struct audit_tree_refs {
160 struct audit_tree_refs *next;
161 struct audit_chunk *c[31];
164 /* The per-task audit context. */
165 struct audit_context {
166 int dummy; /* must be the first element */
167 int in_syscall; /* 1 if task is in a syscall */
168 enum audit_state state;
169 unsigned int serial; /* serial number for record */
170 struct timespec ctime; /* time of syscall entry */
171 int major; /* syscall number */
172 unsigned long argv[4]; /* syscall arguments */
173 int return_valid; /* return code is valid */
174 long return_code;/* syscall return code */
175 int auditable; /* 1 if record should be written */
177 struct audit_names names[AUDIT_NAMES];
178 char * filterkey; /* key for rule that triggered record */
180 struct audit_context *previous; /* For nested syscalls */
181 struct audit_aux_data *aux;
182 struct audit_aux_data *aux_pids;
183 struct sockaddr_storage *sockaddr;
185 /* Save things to print about task_struct */
187 uid_t uid, euid, suid, fsuid;
188 gid_t gid, egid, sgid, fsgid;
189 unsigned long personality;
195 unsigned int target_sessionid;
197 char target_comm[TASK_COMM_LEN];
199 struct audit_tree_refs *trees, *first_trees;
217 unsigned long qbytes;
221 struct mq_attr mqstat;
230 unsigned int msg_prio;
231 struct timespec abs_timeout;
247 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
248 static inline int open_arg(int flags, int mask)
250 int n = ACC_MODE(flags);
251 if (flags & (O_TRUNC | O_CREAT))
252 n |= AUDIT_PERM_WRITE;
256 static int audit_match_perm(struct audit_context *ctx, int mask)
263 switch (audit_classify_syscall(ctx->arch, n)) {
265 if ((mask & AUDIT_PERM_WRITE) &&
266 audit_match_class(AUDIT_CLASS_WRITE, n))
268 if ((mask & AUDIT_PERM_READ) &&
269 audit_match_class(AUDIT_CLASS_READ, n))
271 if ((mask & AUDIT_PERM_ATTR) &&
272 audit_match_class(AUDIT_CLASS_CHATTR, n))
275 case 1: /* 32bit on biarch */
276 if ((mask & AUDIT_PERM_WRITE) &&
277 audit_match_class(AUDIT_CLASS_WRITE_32, n))
279 if ((mask & AUDIT_PERM_READ) &&
280 audit_match_class(AUDIT_CLASS_READ_32, n))
282 if ((mask & AUDIT_PERM_ATTR) &&
283 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
287 return mask & ACC_MODE(ctx->argv[1]);
289 return mask & ACC_MODE(ctx->argv[2]);
290 case 4: /* socketcall */
291 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
293 return mask & AUDIT_PERM_EXEC;
299 static int audit_match_filetype(struct audit_context *ctx, int which)
301 unsigned index = which & ~S_IFMT;
302 mode_t mode = which & S_IFMT;
307 if (index >= ctx->name_count)
309 if (ctx->names[index].ino == -1)
311 if ((ctx->names[index].mode ^ mode) & S_IFMT)
317 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
318 * ->first_trees points to its beginning, ->trees - to the current end of data.
319 * ->tree_count is the number of free entries in array pointed to by ->trees.
320 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
321 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
322 * it's going to remain 1-element for almost any setup) until we free context itself.
323 * References in it _are_ dropped - at the same time we free/drop aux stuff.
326 #ifdef CONFIG_AUDIT_TREE
327 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
329 struct audit_tree_refs *p = ctx->trees;
330 int left = ctx->tree_count;
332 p->c[--left] = chunk;
333 ctx->tree_count = left;
342 ctx->tree_count = 30;
348 static int grow_tree_refs(struct audit_context *ctx)
350 struct audit_tree_refs *p = ctx->trees;
351 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
357 p->next = ctx->trees;
359 ctx->first_trees = ctx->trees;
360 ctx->tree_count = 31;
365 static void unroll_tree_refs(struct audit_context *ctx,
366 struct audit_tree_refs *p, int count)
368 #ifdef CONFIG_AUDIT_TREE
369 struct audit_tree_refs *q;
372 /* we started with empty chain */
373 p = ctx->first_trees;
375 /* if the very first allocation has failed, nothing to do */
380 for (q = p; q != ctx->trees; q = q->next, n = 31) {
382 audit_put_chunk(q->c[n]);
386 while (n-- > ctx->tree_count) {
387 audit_put_chunk(q->c[n]);
391 ctx->tree_count = count;
395 static void free_tree_refs(struct audit_context *ctx)
397 struct audit_tree_refs *p, *q;
398 for (p = ctx->first_trees; p; p = q) {
404 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
406 #ifdef CONFIG_AUDIT_TREE
407 struct audit_tree_refs *p;
412 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
413 for (n = 0; n < 31; n++)
414 if (audit_tree_match(p->c[n], tree))
419 for (n = ctx->tree_count; n < 31; n++)
420 if (audit_tree_match(p->c[n], tree))
427 /* Determine if any context name data matches a rule's watch data */
428 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
430 static int audit_filter_rules(struct task_struct *tsk,
431 struct audit_krule *rule,
432 struct audit_context *ctx,
433 struct audit_names *name,
434 enum audit_state *state)
436 const struct cred *cred = get_task_cred(tsk);
437 int i, j, need_sid = 1;
440 for (i = 0; i < rule->field_count; i++) {
441 struct audit_field *f = &rule->fields[i];
446 result = audit_comparator(tsk->pid, f->op, f->val);
451 ctx->ppid = sys_getppid();
452 result = audit_comparator(ctx->ppid, f->op, f->val);
456 result = audit_comparator(cred->uid, f->op, f->val);
459 result = audit_comparator(cred->euid, f->op, f->val);
462 result = audit_comparator(cred->suid, f->op, f->val);
465 result = audit_comparator(cred->fsuid, f->op, f->val);
468 result = audit_comparator(cred->gid, f->op, f->val);
471 result = audit_comparator(cred->egid, f->op, f->val);
474 result = audit_comparator(cred->sgid, f->op, f->val);
477 result = audit_comparator(cred->fsgid, f->op, f->val);
480 result = audit_comparator(tsk->personality, f->op, f->val);
484 result = audit_comparator(ctx->arch, f->op, f->val);
488 if (ctx && ctx->return_valid)
489 result = audit_comparator(ctx->return_code, f->op, f->val);
492 if (ctx && ctx->return_valid) {
494 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
496 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
501 result = audit_comparator(MAJOR(name->dev),
504 for (j = 0; j < ctx->name_count; j++) {
505 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
514 result = audit_comparator(MINOR(name->dev),
517 for (j = 0; j < ctx->name_count; j++) {
518 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
527 result = (name->ino == f->val);
529 for (j = 0; j < ctx->name_count; j++) {
530 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
538 if (name && rule->watch->ino != (unsigned long)-1)
539 result = (name->dev == rule->watch->dev &&
540 name->ino == rule->watch->ino);
544 result = match_tree_refs(ctx, rule->tree);
549 result = audit_comparator(tsk->loginuid, f->op, f->val);
551 case AUDIT_SUBJ_USER:
552 case AUDIT_SUBJ_ROLE:
553 case AUDIT_SUBJ_TYPE:
556 /* NOTE: this may return negative values indicating
557 a temporary error. We simply treat this as a
558 match for now to avoid losing information that
559 may be wanted. An error message will also be
563 security_task_getsecid(tsk, &sid);
566 result = security_audit_rule_match(sid, f->type,
575 case AUDIT_OBJ_LEV_LOW:
576 case AUDIT_OBJ_LEV_HIGH:
577 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
580 /* Find files that match */
582 result = security_audit_rule_match(
583 name->osid, f->type, f->op,
586 for (j = 0; j < ctx->name_count; j++) {
587 if (security_audit_rule_match(
596 /* Find ipc objects that match */
597 if (!ctx || ctx->type != AUDIT_IPC)
599 if (security_audit_rule_match(ctx->ipc.osid,
610 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
612 case AUDIT_FILTERKEY:
613 /* ignore this field for filtering */
617 result = audit_match_perm(ctx, f->val);
620 result = audit_match_filetype(ctx, f->val);
629 if (rule->filterkey && ctx)
630 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
631 switch (rule->action) {
632 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
633 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
639 /* At process creation time, we can determine if system-call auditing is
640 * completely disabled for this task. Since we only have the task
641 * structure at this point, we can only check uid and gid.
643 static enum audit_state audit_filter_task(struct task_struct *tsk)
645 struct audit_entry *e;
646 enum audit_state state;
649 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
650 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
656 return AUDIT_BUILD_CONTEXT;
659 /* At syscall entry and exit time, this filter is called if the
660 * audit_state is not low enough that auditing cannot take place, but is
661 * also not high enough that we already know we have to write an audit
662 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
664 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
665 struct audit_context *ctx,
666 struct list_head *list)
668 struct audit_entry *e;
669 enum audit_state state;
671 if (audit_pid && tsk->tgid == audit_pid)
672 return AUDIT_DISABLED;
675 if (!list_empty(list)) {
676 int word = AUDIT_WORD(ctx->major);
677 int bit = AUDIT_BIT(ctx->major);
679 list_for_each_entry_rcu(e, list, list) {
680 if ((e->rule.mask[word] & bit) == bit &&
681 audit_filter_rules(tsk, &e->rule, ctx, NULL,
689 return AUDIT_BUILD_CONTEXT;
692 /* At syscall exit time, this filter is called if any audit_names[] have been
693 * collected during syscall processing. We only check rules in sublists at hash
694 * buckets applicable to the inode numbers in audit_names[].
695 * Regarding audit_state, same rules apply as for audit_filter_syscall().
697 enum audit_state audit_filter_inodes(struct task_struct *tsk,
698 struct audit_context *ctx)
701 struct audit_entry *e;
702 enum audit_state state;
704 if (audit_pid && tsk->tgid == audit_pid)
705 return AUDIT_DISABLED;
708 for (i = 0; i < ctx->name_count; i++) {
709 int word = AUDIT_WORD(ctx->major);
710 int bit = AUDIT_BIT(ctx->major);
711 struct audit_names *n = &ctx->names[i];
712 int h = audit_hash_ino((u32)n->ino);
713 struct list_head *list = &audit_inode_hash[h];
715 if (list_empty(list))
718 list_for_each_entry_rcu(e, list, list) {
719 if ((e->rule.mask[word] & bit) == bit &&
720 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
727 return AUDIT_BUILD_CONTEXT;
730 void audit_set_auditable(struct audit_context *ctx)
735 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
739 struct audit_context *context = tsk->audit_context;
741 if (likely(!context))
743 context->return_valid = return_valid;
746 * we need to fix up the return code in the audit logs if the actual
747 * return codes are later going to be fixed up by the arch specific
750 * This is actually a test for:
751 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
752 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
754 * but is faster than a bunch of ||
756 if (unlikely(return_code <= -ERESTARTSYS) &&
757 (return_code >= -ERESTART_RESTARTBLOCK) &&
758 (return_code != -ENOIOCTLCMD))
759 context->return_code = -EINTR;
761 context->return_code = return_code;
763 if (context->in_syscall && !context->dummy && !context->auditable) {
764 enum audit_state state;
766 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
767 if (state == AUDIT_RECORD_CONTEXT) {
768 context->auditable = 1;
772 state = audit_filter_inodes(tsk, context);
773 if (state == AUDIT_RECORD_CONTEXT)
774 context->auditable = 1;
780 tsk->audit_context = NULL;
784 static inline void audit_free_names(struct audit_context *context)
789 if (context->auditable
790 ||context->put_count + context->ino_count != context->name_count) {
791 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
792 " name_count=%d put_count=%d"
793 " ino_count=%d [NOT freeing]\n",
795 context->serial, context->major, context->in_syscall,
796 context->name_count, context->put_count,
798 for (i = 0; i < context->name_count; i++) {
799 printk(KERN_ERR "names[%d] = %p = %s\n", i,
800 context->names[i].name,
801 context->names[i].name ?: "(null)");
808 context->put_count = 0;
809 context->ino_count = 0;
812 for (i = 0; i < context->name_count; i++) {
813 if (context->names[i].name && context->names[i].name_put)
814 __putname(context->names[i].name);
816 context->name_count = 0;
817 path_put(&context->pwd);
818 context->pwd.dentry = NULL;
819 context->pwd.mnt = NULL;
822 static inline void audit_free_aux(struct audit_context *context)
824 struct audit_aux_data *aux;
826 while ((aux = context->aux)) {
827 context->aux = aux->next;
830 while ((aux = context->aux_pids)) {
831 context->aux_pids = aux->next;
836 static inline void audit_zero_context(struct audit_context *context,
837 enum audit_state state)
839 memset(context, 0, sizeof(*context));
840 context->state = state;
843 static inline struct audit_context *audit_alloc_context(enum audit_state state)
845 struct audit_context *context;
847 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
849 audit_zero_context(context, state);
854 * audit_alloc - allocate an audit context block for a task
857 * Filter on the task information and allocate a per-task audit context
858 * if necessary. Doing so turns on system call auditing for the
859 * specified task. This is called from copy_process, so no lock is
862 int audit_alloc(struct task_struct *tsk)
864 struct audit_context *context;
865 enum audit_state state;
867 if (likely(!audit_ever_enabled))
868 return 0; /* Return if not auditing. */
870 state = audit_filter_task(tsk);
871 if (likely(state == AUDIT_DISABLED))
874 if (!(context = audit_alloc_context(state))) {
875 audit_log_lost("out of memory in audit_alloc");
879 tsk->audit_context = context;
880 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
884 static inline void audit_free_context(struct audit_context *context)
886 struct audit_context *previous;
890 previous = context->previous;
891 if (previous || (count && count < 10)) {
893 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
894 " freeing multiple contexts (%d)\n",
895 context->serial, context->major,
896 context->name_count, count);
898 audit_free_names(context);
899 unroll_tree_refs(context, NULL, 0);
900 free_tree_refs(context);
901 audit_free_aux(context);
902 kfree(context->filterkey);
903 kfree(context->sockaddr);
908 printk(KERN_ERR "audit: freed %d contexts\n", count);
911 void audit_log_task_context(struct audit_buffer *ab)
918 security_task_getsecid(current, &sid);
922 error = security_secid_to_secctx(sid, &ctx, &len);
924 if (error != -EINVAL)
929 audit_log_format(ab, " subj=%s", ctx);
930 security_release_secctx(ctx, len);
934 audit_panic("error in audit_log_task_context");
938 EXPORT_SYMBOL(audit_log_task_context);
940 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
942 char name[sizeof(tsk->comm)];
943 struct mm_struct *mm = tsk->mm;
944 struct vm_area_struct *vma;
948 get_task_comm(name, tsk);
949 audit_log_format(ab, " comm=");
950 audit_log_untrustedstring(ab, name);
953 down_read(&mm->mmap_sem);
956 if ((vma->vm_flags & VM_EXECUTABLE) &&
958 audit_log_d_path(ab, "exe=",
959 &vma->vm_file->f_path);
964 up_read(&mm->mmap_sem);
966 audit_log_task_context(ab);
969 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
970 uid_t auid, uid_t uid, unsigned int sessionid,
973 struct audit_buffer *ab;
978 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
982 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
984 if (security_secid_to_secctx(sid, &ctx, &len)) {
985 audit_log_format(ab, " obj=(none)");
988 audit_log_format(ab, " obj=%s", ctx);
989 security_release_secctx(ctx, len);
991 audit_log_format(ab, " ocomm=");
992 audit_log_untrustedstring(ab, comm);
999 * to_send and len_sent accounting are very loose estimates. We aren't
1000 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1001 * within about 500 bytes (next page boundry)
1003 * why snprintf? an int is up to 12 digits long. if we just assumed when
1004 * logging that a[%d]= was going to be 16 characters long we would be wasting
1005 * space in every audit message. In one 7500 byte message we can log up to
1006 * about 1000 min size arguments. That comes down to about 50% waste of space
1007 * if we didn't do the snprintf to find out how long arg_num_len was.
1009 static int audit_log_single_execve_arg(struct audit_context *context,
1010 struct audit_buffer **ab,
1013 const char __user *p,
1016 char arg_num_len_buf[12];
1017 const char __user *tmp_p = p;
1018 /* how many digits are in arg_num? 3 is the length of a=\n */
1019 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1020 size_t len, len_left, to_send;
1021 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1022 unsigned int i, has_cntl = 0, too_long = 0;
1025 /* strnlen_user includes the null we don't want to send */
1026 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1029 * We just created this mm, if we can't find the strings
1030 * we just copied into it something is _very_ wrong. Similar
1031 * for strings that are too long, we should not have created
1034 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1036 send_sig(SIGKILL, current, 0);
1040 /* walk the whole argument looking for non-ascii chars */
1042 if (len_left > MAX_EXECVE_AUDIT_LEN)
1043 to_send = MAX_EXECVE_AUDIT_LEN;
1046 ret = copy_from_user(buf, tmp_p, to_send);
1048 * There is no reason for this copy to be short. We just
1049 * copied them here, and the mm hasn't been exposed to user-
1054 send_sig(SIGKILL, current, 0);
1057 buf[to_send] = '\0';
1058 has_cntl = audit_string_contains_control(buf, to_send);
1061 * hex messages get logged as 2 bytes, so we can only
1062 * send half as much in each message
1064 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1067 len_left -= to_send;
1069 } while (len_left > 0);
1073 if (len > max_execve_audit_len)
1076 /* rewalk the argument actually logging the message */
1077 for (i = 0; len_left > 0; i++) {
1080 if (len_left > max_execve_audit_len)
1081 to_send = max_execve_audit_len;
1085 /* do we have space left to send this argument in this ab? */
1086 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1088 room_left -= (to_send * 2);
1090 room_left -= to_send;
1091 if (room_left < 0) {
1094 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1100 * first record needs to say how long the original string was
1101 * so we can be sure nothing was lost.
1103 if ((i == 0) && (too_long))
1104 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
1105 has_cntl ? 2*len : len);
1108 * normally arguments are small enough to fit and we already
1109 * filled buf above when we checked for control characters
1110 * so don't bother with another copy_from_user
1112 if (len >= max_execve_audit_len)
1113 ret = copy_from_user(buf, p, to_send);
1118 send_sig(SIGKILL, current, 0);
1121 buf[to_send] = '\0';
1123 /* actually log it */
1124 audit_log_format(*ab, "a%d", arg_num);
1126 audit_log_format(*ab, "[%d]", i);
1127 audit_log_format(*ab, "=");
1129 audit_log_n_hex(*ab, buf, to_send);
1131 audit_log_format(*ab, "\"%s\"", buf);
1132 audit_log_format(*ab, "\n");
1135 len_left -= to_send;
1136 *len_sent += arg_num_len;
1138 *len_sent += to_send * 2;
1140 *len_sent += to_send;
1142 /* include the null we didn't log */
1146 static void audit_log_execve_info(struct audit_context *context,
1147 struct audit_buffer **ab,
1148 struct audit_aux_data_execve *axi)
1151 size_t len, len_sent = 0;
1152 const char __user *p;
1155 if (axi->mm != current->mm)
1156 return; /* execve failed, no additional info */
1158 p = (const char __user *)axi->mm->arg_start;
1160 audit_log_format(*ab, "argc=%d ", axi->argc);
1163 * we need some kernel buffer to hold the userspace args. Just
1164 * allocate one big one rather than allocating one of the right size
1165 * for every single argument inside audit_log_single_execve_arg()
1166 * should be <8k allocation so should be pretty safe.
1168 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1170 audit_panic("out of memory for argv string\n");
1174 for (i = 0; i < axi->argc; i++) {
1175 len = audit_log_single_execve_arg(context, ab, i,
1184 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1188 audit_log_format(ab, " %s=", prefix);
1189 CAP_FOR_EACH_U32(i) {
1190 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1194 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1196 kernel_cap_t *perm = &name->fcap.permitted;
1197 kernel_cap_t *inh = &name->fcap.inheritable;
1200 if (!cap_isclear(*perm)) {
1201 audit_log_cap(ab, "cap_fp", perm);
1204 if (!cap_isclear(*inh)) {
1205 audit_log_cap(ab, "cap_fi", inh);
1210 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1213 static void show_special(struct audit_context *context, int *call_panic)
1215 struct audit_buffer *ab;
1218 ab = audit_log_start(context, GFP_KERNEL, context->type);
1222 switch (context->type) {
1223 case AUDIT_SOCKETCALL: {
1224 int nargs = context->socketcall.nargs;
1225 audit_log_format(ab, "nargs=%d", nargs);
1226 for (i = 0; i < nargs; i++)
1227 audit_log_format(ab, " a%d=%lx", i,
1228 context->socketcall.args[i]);
1231 u32 osid = context->ipc.osid;
1233 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1234 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1238 if (security_secid_to_secctx(osid, &ctx, &len)) {
1239 audit_log_format(ab, " osid=%u", osid);
1242 audit_log_format(ab, " obj=%s", ctx);
1243 security_release_secctx(ctx, len);
1246 if (context->ipc.has_perm) {
1248 ab = audit_log_start(context, GFP_KERNEL,
1249 AUDIT_IPC_SET_PERM);
1250 audit_log_format(ab,
1251 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1252 context->ipc.qbytes,
1253 context->ipc.perm_uid,
1254 context->ipc.perm_gid,
1255 context->ipc.perm_mode);
1260 case AUDIT_MQ_OPEN: {
1261 audit_log_format(ab,
1262 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1263 "mq_msgsize=%ld mq_curmsgs=%ld",
1264 context->mq_open.oflag, context->mq_open.mode,
1265 context->mq_open.attr.mq_flags,
1266 context->mq_open.attr.mq_maxmsg,
1267 context->mq_open.attr.mq_msgsize,
1268 context->mq_open.attr.mq_curmsgs);
1270 case AUDIT_MQ_SENDRECV: {
1271 audit_log_format(ab,
1272 "mqdes=%d msg_len=%zd msg_prio=%u "
1273 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1274 context->mq_sendrecv.mqdes,
1275 context->mq_sendrecv.msg_len,
1276 context->mq_sendrecv.msg_prio,
1277 context->mq_sendrecv.abs_timeout.tv_sec,
1278 context->mq_sendrecv.abs_timeout.tv_nsec);
1280 case AUDIT_MQ_NOTIFY: {
1281 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1282 context->mq_notify.mqdes,
1283 context->mq_notify.sigev_signo);
1285 case AUDIT_MQ_GETSETATTR: {
1286 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1287 audit_log_format(ab,
1288 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1290 context->mq_getsetattr.mqdes,
1291 attr->mq_flags, attr->mq_maxmsg,
1292 attr->mq_msgsize, attr->mq_curmsgs);
1298 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1300 const struct cred *cred;
1301 int i, call_panic = 0;
1302 struct audit_buffer *ab;
1303 struct audit_aux_data *aux;
1306 /* tsk == current */
1307 context->pid = tsk->pid;
1309 context->ppid = sys_getppid();
1310 cred = current_cred();
1311 context->uid = cred->uid;
1312 context->gid = cred->gid;
1313 context->euid = cred->euid;
1314 context->suid = cred->suid;
1315 context->fsuid = cred->fsuid;
1316 context->egid = cred->egid;
1317 context->sgid = cred->sgid;
1318 context->fsgid = cred->fsgid;
1319 context->personality = tsk->personality;
1321 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1323 return; /* audit_panic has been called */
1324 audit_log_format(ab, "arch=%x syscall=%d",
1325 context->arch, context->major);
1326 if (context->personality != PER_LINUX)
1327 audit_log_format(ab, " per=%lx", context->personality);
1328 if (context->return_valid)
1329 audit_log_format(ab, " success=%s exit=%ld",
1330 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1331 context->return_code);
1333 spin_lock_irq(&tsk->sighand->siglock);
1334 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1335 tty = tsk->signal->tty->name;
1338 spin_unlock_irq(&tsk->sighand->siglock);
1340 audit_log_format(ab,
1341 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1342 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1343 " euid=%u suid=%u fsuid=%u"
1344 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1349 context->name_count,
1355 context->euid, context->suid, context->fsuid,
1356 context->egid, context->sgid, context->fsgid, tty,
1360 audit_log_task_info(ab, tsk);
1361 if (context->filterkey) {
1362 audit_log_format(ab, " key=");
1363 audit_log_untrustedstring(ab, context->filterkey);
1365 audit_log_format(ab, " key=(null)");
1368 for (aux = context->aux; aux; aux = aux->next) {
1370 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1372 continue; /* audit_panic has been called */
1374 switch (aux->type) {
1376 case AUDIT_EXECVE: {
1377 struct audit_aux_data_execve *axi = (void *)aux;
1378 audit_log_execve_info(context, &ab, axi);
1381 case AUDIT_BPRM_FCAPS: {
1382 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1383 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1384 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1385 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1386 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1387 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1388 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1389 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1390 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1391 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1392 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1395 case AUDIT_CAPSET: {
1396 struct audit_aux_data_capset *axs = (void *)aux;
1397 audit_log_format(ab, "pid=%d", axs->pid);
1398 audit_log_cap(ab, "cap_pi", &axs->cap.inheritable);
1399 audit_log_cap(ab, "cap_pp", &axs->cap.permitted);
1400 audit_log_cap(ab, "cap_pe", &axs->cap.effective);
1408 show_special(context, &call_panic);
1410 if (context->fds[0] >= 0) {
1411 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1413 audit_log_format(ab, "fd0=%d fd1=%d",
1414 context->fds[0], context->fds[1]);
1419 if (context->sockaddr_len) {
1420 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1422 audit_log_format(ab, "saddr=");
1423 audit_log_n_hex(ab, (void *)context->sockaddr,
1424 context->sockaddr_len);
1429 for (aux = context->aux_pids; aux; aux = aux->next) {
1430 struct audit_aux_data_pids *axs = (void *)aux;
1432 for (i = 0; i < axs->pid_count; i++)
1433 if (audit_log_pid_context(context, axs->target_pid[i],
1434 axs->target_auid[i],
1436 axs->target_sessionid[i],
1438 axs->target_comm[i]))
1442 if (context->target_pid &&
1443 audit_log_pid_context(context, context->target_pid,
1444 context->target_auid, context->target_uid,
1445 context->target_sessionid,
1446 context->target_sid, context->target_comm))
1449 if (context->pwd.dentry && context->pwd.mnt) {
1450 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1452 audit_log_d_path(ab, "cwd=", &context->pwd);
1456 for (i = 0; i < context->name_count; i++) {
1457 struct audit_names *n = &context->names[i];
1459 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1461 continue; /* audit_panic has been called */
1463 audit_log_format(ab, "item=%d", i);
1466 switch(n->name_len) {
1467 case AUDIT_NAME_FULL:
1468 /* log the full path */
1469 audit_log_format(ab, " name=");
1470 audit_log_untrustedstring(ab, n->name);
1473 /* name was specified as a relative path and the
1474 * directory component is the cwd */
1475 audit_log_d_path(ab, " name=", &context->pwd);
1478 /* log the name's directory component */
1479 audit_log_format(ab, " name=");
1480 audit_log_n_untrustedstring(ab, n->name,
1484 audit_log_format(ab, " name=(null)");
1486 if (n->ino != (unsigned long)-1) {
1487 audit_log_format(ab, " inode=%lu"
1488 " dev=%02x:%02x mode=%#o"
1489 " ouid=%u ogid=%u rdev=%02x:%02x",
1502 if (security_secid_to_secctx(
1503 n->osid, &ctx, &len)) {
1504 audit_log_format(ab, " osid=%u", n->osid);
1507 audit_log_format(ab, " obj=%s", ctx);
1508 security_release_secctx(ctx, len);
1512 audit_log_fcaps(ab, n);
1517 /* Send end of event record to help user space know we are finished */
1518 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1522 audit_panic("error converting sid to string");
1526 * audit_free - free a per-task audit context
1527 * @tsk: task whose audit context block to free
1529 * Called from copy_process and do_exit
1531 void audit_free(struct task_struct *tsk)
1533 struct audit_context *context;
1535 context = audit_get_context(tsk, 0, 0);
1536 if (likely(!context))
1539 /* Check for system calls that do not go through the exit
1540 * function (e.g., exit_group), then free context block.
1541 * We use GFP_ATOMIC here because we might be doing this
1542 * in the context of the idle thread */
1543 /* that can happen only if we are called from do_exit() */
1544 if (context->in_syscall && context->auditable)
1545 audit_log_exit(context, tsk);
1547 audit_free_context(context);
1551 * audit_syscall_entry - fill in an audit record at syscall entry
1552 * @arch: architecture type
1553 * @major: major syscall type (function)
1554 * @a1: additional syscall register 1
1555 * @a2: additional syscall register 2
1556 * @a3: additional syscall register 3
1557 * @a4: additional syscall register 4
1559 * Fill in audit context at syscall entry. This only happens if the
1560 * audit context was created when the task was created and the state or
1561 * filters demand the audit context be built. If the state from the
1562 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1563 * then the record will be written at syscall exit time (otherwise, it
1564 * will only be written if another part of the kernel requests that it
1567 void audit_syscall_entry(int arch, int major,
1568 unsigned long a1, unsigned long a2,
1569 unsigned long a3, unsigned long a4)
1571 struct task_struct *tsk = current;
1572 struct audit_context *context = tsk->audit_context;
1573 enum audit_state state;
1575 if (unlikely(!context))
1579 * This happens only on certain architectures that make system
1580 * calls in kernel_thread via the entry.S interface, instead of
1581 * with direct calls. (If you are porting to a new
1582 * architecture, hitting this condition can indicate that you
1583 * got the _exit/_leave calls backward in entry.S.)
1587 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1589 * This also happens with vm86 emulation in a non-nested manner
1590 * (entries without exits), so this case must be caught.
1592 if (context->in_syscall) {
1593 struct audit_context *newctx;
1597 "audit(:%d) pid=%d in syscall=%d;"
1598 " entering syscall=%d\n",
1599 context->serial, tsk->pid, context->major, major);
1601 newctx = audit_alloc_context(context->state);
1603 newctx->previous = context;
1605 tsk->audit_context = newctx;
1607 /* If we can't alloc a new context, the best we
1608 * can do is to leak memory (any pending putname
1609 * will be lost). The only other alternative is
1610 * to abandon auditing. */
1611 audit_zero_context(context, context->state);
1614 BUG_ON(context->in_syscall || context->name_count);
1619 context->arch = arch;
1620 context->major = major;
1621 context->argv[0] = a1;
1622 context->argv[1] = a2;
1623 context->argv[2] = a3;
1624 context->argv[3] = a4;
1626 state = context->state;
1627 context->dummy = !audit_n_rules;
1628 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1629 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1630 if (likely(state == AUDIT_DISABLED))
1633 context->serial = 0;
1634 context->ctime = CURRENT_TIME;
1635 context->in_syscall = 1;
1636 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1640 void audit_finish_fork(struct task_struct *child)
1642 struct audit_context *ctx = current->audit_context;
1643 struct audit_context *p = child->audit_context;
1644 if (!p || !ctx || !ctx->auditable)
1646 p->arch = ctx->arch;
1647 p->major = ctx->major;
1648 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1649 p->ctime = ctx->ctime;
1650 p->dummy = ctx->dummy;
1651 p->auditable = ctx->auditable;
1652 p->in_syscall = ctx->in_syscall;
1653 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1654 p->ppid = current->pid;
1658 * audit_syscall_exit - deallocate audit context after a system call
1659 * @valid: success/failure flag
1660 * @return_code: syscall return value
1662 * Tear down after system call. If the audit context has been marked as
1663 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1664 * filtering, or because some other part of the kernel write an audit
1665 * message), then write out the syscall information. In call cases,
1666 * free the names stored from getname().
1668 void audit_syscall_exit(int valid, long return_code)
1670 struct task_struct *tsk = current;
1671 struct audit_context *context;
1673 context = audit_get_context(tsk, valid, return_code);
1675 if (likely(!context))
1678 if (context->in_syscall && context->auditable)
1679 audit_log_exit(context, tsk);
1681 context->in_syscall = 0;
1682 context->auditable = 0;
1684 if (context->previous) {
1685 struct audit_context *new_context = context->previous;
1686 context->previous = NULL;
1687 audit_free_context(context);
1688 tsk->audit_context = new_context;
1690 audit_free_names(context);
1691 unroll_tree_refs(context, NULL, 0);
1692 audit_free_aux(context);
1693 context->aux = NULL;
1694 context->aux_pids = NULL;
1695 context->target_pid = 0;
1696 context->target_sid = 0;
1697 context->sockaddr_len = 0;
1699 context->fds[0] = -1;
1700 kfree(context->filterkey);
1701 context->filterkey = NULL;
1702 tsk->audit_context = context;
1706 static inline void handle_one(const struct inode *inode)
1708 #ifdef CONFIG_AUDIT_TREE
1709 struct audit_context *context;
1710 struct audit_tree_refs *p;
1711 struct audit_chunk *chunk;
1713 if (likely(list_empty(&inode->inotify_watches)))
1715 context = current->audit_context;
1717 count = context->tree_count;
1719 chunk = audit_tree_lookup(inode);
1723 if (likely(put_tree_ref(context, chunk)))
1725 if (unlikely(!grow_tree_refs(context))) {
1726 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1727 audit_set_auditable(context);
1728 audit_put_chunk(chunk);
1729 unroll_tree_refs(context, p, count);
1732 put_tree_ref(context, chunk);
1736 static void handle_path(const struct dentry *dentry)
1738 #ifdef CONFIG_AUDIT_TREE
1739 struct audit_context *context;
1740 struct audit_tree_refs *p;
1741 const struct dentry *d, *parent;
1742 struct audit_chunk *drop;
1746 context = current->audit_context;
1748 count = context->tree_count;
1753 seq = read_seqbegin(&rename_lock);
1755 struct inode *inode = d->d_inode;
1756 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1757 struct audit_chunk *chunk;
1758 chunk = audit_tree_lookup(inode);
1760 if (unlikely(!put_tree_ref(context, chunk))) {
1766 parent = d->d_parent;
1771 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1774 /* just a race with rename */
1775 unroll_tree_refs(context, p, count);
1778 audit_put_chunk(drop);
1779 if (grow_tree_refs(context)) {
1780 /* OK, got more space */
1781 unroll_tree_refs(context, p, count);
1786 "out of memory, audit has lost a tree reference\n");
1787 unroll_tree_refs(context, p, count);
1788 audit_set_auditable(context);
1796 * audit_getname - add a name to the list
1797 * @name: name to add
1799 * Add a name to the list of audit names for this context.
1800 * Called from fs/namei.c:getname().
1802 void __audit_getname(const char *name)
1804 struct audit_context *context = current->audit_context;
1806 if (IS_ERR(name) || !name)
1809 if (!context->in_syscall) {
1810 #if AUDIT_DEBUG == 2
1811 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1812 __FILE__, __LINE__, context->serial, name);
1817 BUG_ON(context->name_count >= AUDIT_NAMES);
1818 context->names[context->name_count].name = name;
1819 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1820 context->names[context->name_count].name_put = 1;
1821 context->names[context->name_count].ino = (unsigned long)-1;
1822 context->names[context->name_count].osid = 0;
1823 ++context->name_count;
1824 if (!context->pwd.dentry) {
1825 read_lock(¤t->fs->lock);
1826 context->pwd = current->fs->pwd;
1827 path_get(¤t->fs->pwd);
1828 read_unlock(¤t->fs->lock);
1833 /* audit_putname - intercept a putname request
1834 * @name: name to intercept and delay for putname
1836 * If we have stored the name from getname in the audit context,
1837 * then we delay the putname until syscall exit.
1838 * Called from include/linux/fs.h:putname().
1840 void audit_putname(const char *name)
1842 struct audit_context *context = current->audit_context;
1845 if (!context->in_syscall) {
1846 #if AUDIT_DEBUG == 2
1847 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1848 __FILE__, __LINE__, context->serial, name);
1849 if (context->name_count) {
1851 for (i = 0; i < context->name_count; i++)
1852 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1853 context->names[i].name,
1854 context->names[i].name ?: "(null)");
1861 ++context->put_count;
1862 if (context->put_count > context->name_count) {
1863 printk(KERN_ERR "%s:%d(:%d): major=%d"
1864 " in_syscall=%d putname(%p) name_count=%d"
1867 context->serial, context->major,
1868 context->in_syscall, name, context->name_count,
1869 context->put_count);
1876 static int audit_inc_name_count(struct audit_context *context,
1877 const struct inode *inode)
1879 if (context->name_count >= AUDIT_NAMES) {
1881 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1882 "dev=%02x:%02x, inode=%lu\n",
1883 MAJOR(inode->i_sb->s_dev),
1884 MINOR(inode->i_sb->s_dev),
1888 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1891 context->name_count++;
1893 context->ino_count++;
1899 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1901 struct cpu_vfs_cap_data caps;
1904 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1905 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1912 rc = get_vfs_caps_from_disk(dentry, &caps);
1916 name->fcap.permitted = caps.permitted;
1917 name->fcap.inheritable = caps.inheritable;
1918 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1919 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1925 /* Copy inode data into an audit_names. */
1926 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1927 const struct inode *inode)
1929 name->ino = inode->i_ino;
1930 name->dev = inode->i_sb->s_dev;
1931 name->mode = inode->i_mode;
1932 name->uid = inode->i_uid;
1933 name->gid = inode->i_gid;
1934 name->rdev = inode->i_rdev;
1935 security_inode_getsecid(inode, &name->osid);
1936 audit_copy_fcaps(name, dentry);
1940 * audit_inode - store the inode and device from a lookup
1941 * @name: name being audited
1942 * @dentry: dentry being audited
1944 * Called from fs/namei.c:path_lookup().
1946 void __audit_inode(const char *name, const struct dentry *dentry)
1949 struct audit_context *context = current->audit_context;
1950 const struct inode *inode = dentry->d_inode;
1952 if (!context->in_syscall)
1954 if (context->name_count
1955 && context->names[context->name_count-1].name
1956 && context->names[context->name_count-1].name == name)
1957 idx = context->name_count - 1;
1958 else if (context->name_count > 1
1959 && context->names[context->name_count-2].name
1960 && context->names[context->name_count-2].name == name)
1961 idx = context->name_count - 2;
1963 /* FIXME: how much do we care about inodes that have no
1964 * associated name? */
1965 if (audit_inc_name_count(context, inode))
1967 idx = context->name_count - 1;
1968 context->names[idx].name = NULL;
1970 handle_path(dentry);
1971 audit_copy_inode(&context->names[idx], dentry, inode);
1975 * audit_inode_child - collect inode info for created/removed objects
1976 * @dname: inode's dentry name
1977 * @dentry: dentry being audited
1978 * @parent: inode of dentry parent
1980 * For syscalls that create or remove filesystem objects, audit_inode
1981 * can only collect information for the filesystem object's parent.
1982 * This call updates the audit context with the child's information.
1983 * Syscalls that create a new filesystem object must be hooked after
1984 * the object is created. Syscalls that remove a filesystem object
1985 * must be hooked prior, in order to capture the target inode during
1986 * unsuccessful attempts.
1988 void __audit_inode_child(const char *dname, const struct dentry *dentry,
1989 const struct inode *parent)
1992 struct audit_context *context = current->audit_context;
1993 const char *found_parent = NULL, *found_child = NULL;
1994 const struct inode *inode = dentry->d_inode;
1997 if (!context->in_syscall)
2002 /* determine matching parent */
2006 /* parent is more likely, look for it first */
2007 for (idx = 0; idx < context->name_count; idx++) {
2008 struct audit_names *n = &context->names[idx];
2013 if (n->ino == parent->i_ino &&
2014 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2015 n->name_len = dirlen; /* update parent data in place */
2016 found_parent = n->name;
2021 /* no matching parent, look for matching child */
2022 for (idx = 0; idx < context->name_count; idx++) {
2023 struct audit_names *n = &context->names[idx];
2028 /* strcmp() is the more likely scenario */
2029 if (!strcmp(dname, n->name) ||
2030 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2032 audit_copy_inode(n, NULL, inode);
2034 n->ino = (unsigned long)-1;
2035 found_child = n->name;
2041 if (!found_parent) {
2042 if (audit_inc_name_count(context, parent))
2044 idx = context->name_count - 1;
2045 context->names[idx].name = NULL;
2046 audit_copy_inode(&context->names[idx], NULL, parent);
2050 if (audit_inc_name_count(context, inode))
2052 idx = context->name_count - 1;
2054 /* Re-use the name belonging to the slot for a matching parent
2055 * directory. All names for this context are relinquished in
2056 * audit_free_names() */
2058 context->names[idx].name = found_parent;
2059 context->names[idx].name_len = AUDIT_NAME_FULL;
2060 /* don't call __putname() */
2061 context->names[idx].name_put = 0;
2063 context->names[idx].name = NULL;
2067 audit_copy_inode(&context->names[idx], NULL, inode);
2069 context->names[idx].ino = (unsigned long)-1;
2072 EXPORT_SYMBOL_GPL(__audit_inode_child);
2075 * auditsc_get_stamp - get local copies of audit_context values
2076 * @ctx: audit_context for the task
2077 * @t: timespec to store time recorded in the audit_context
2078 * @serial: serial value that is recorded in the audit_context
2080 * Also sets the context as auditable.
2082 int auditsc_get_stamp(struct audit_context *ctx,
2083 struct timespec *t, unsigned int *serial)
2085 if (!ctx->in_syscall)
2088 ctx->serial = audit_serial();
2089 t->tv_sec = ctx->ctime.tv_sec;
2090 t->tv_nsec = ctx->ctime.tv_nsec;
2091 *serial = ctx->serial;
2096 /* global counter which is incremented every time something logs in */
2097 static atomic_t session_id = ATOMIC_INIT(0);
2100 * audit_set_loginuid - set a task's audit_context loginuid
2101 * @task: task whose audit context is being modified
2102 * @loginuid: loginuid value
2106 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2108 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2110 unsigned int sessionid = atomic_inc_return(&session_id);
2111 struct audit_context *context = task->audit_context;
2113 if (context && context->in_syscall) {
2114 struct audit_buffer *ab;
2116 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2118 audit_log_format(ab, "login pid=%d uid=%u "
2119 "old auid=%u new auid=%u"
2120 " old ses=%u new ses=%u",
2121 task->pid, task_uid(task),
2122 task->loginuid, loginuid,
2123 task->sessionid, sessionid);
2127 task->sessionid = sessionid;
2128 task->loginuid = loginuid;
2133 * __audit_mq_open - record audit data for a POSIX MQ open
2136 * @u_attr: queue attributes
2139 void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2141 struct audit_context *context = current->audit_context;
2144 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2146 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2148 context->mq_open.oflag = oflag;
2149 context->mq_open.mode = mode;
2151 context->type = AUDIT_MQ_OPEN;
2155 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2156 * @mqdes: MQ descriptor
2157 * @msg_len: Message length
2158 * @msg_prio: Message priority
2159 * @abs_timeout: Message timeout in absolute time
2162 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2163 const struct timespec *abs_timeout)
2165 struct audit_context *context = current->audit_context;
2166 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2169 memcpy(p, abs_timeout, sizeof(struct timespec));
2171 memset(p, 0, sizeof(struct timespec));
2173 context->mq_sendrecv.mqdes = mqdes;
2174 context->mq_sendrecv.msg_len = msg_len;
2175 context->mq_sendrecv.msg_prio = msg_prio;
2177 context->type = AUDIT_MQ_SENDRECV;
2181 * __audit_mq_notify - record audit data for a POSIX MQ notify
2182 * @mqdes: MQ descriptor
2183 * @u_notification: Notification event
2187 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2189 struct audit_context *context = current->audit_context;
2192 context->mq_notify.sigev_signo = notification->sigev_signo;
2194 context->mq_notify.sigev_signo = 0;
2196 context->mq_notify.mqdes = mqdes;
2197 context->type = AUDIT_MQ_NOTIFY;
2201 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2202 * @mqdes: MQ descriptor
2206 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2208 struct audit_context *context = current->audit_context;
2209 context->mq_getsetattr.mqdes = mqdes;
2210 context->mq_getsetattr.mqstat = *mqstat;
2211 context->type = AUDIT_MQ_GETSETATTR;
2215 * audit_ipc_obj - record audit data for ipc object
2216 * @ipcp: ipc permissions
2219 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2221 struct audit_context *context = current->audit_context;
2222 context->ipc.uid = ipcp->uid;
2223 context->ipc.gid = ipcp->gid;
2224 context->ipc.mode = ipcp->mode;
2225 context->ipc.has_perm = 0;
2226 security_ipc_getsecid(ipcp, &context->ipc.osid);
2227 context->type = AUDIT_IPC;
2231 * audit_ipc_set_perm - record audit data for new ipc permissions
2232 * @qbytes: msgq bytes
2233 * @uid: msgq user id
2234 * @gid: msgq group id
2235 * @mode: msgq mode (permissions)
2237 * Called only after audit_ipc_obj().
2239 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2241 struct audit_context *context = current->audit_context;
2243 context->ipc.qbytes = qbytes;
2244 context->ipc.perm_uid = uid;
2245 context->ipc.perm_gid = gid;
2246 context->ipc.perm_mode = mode;
2247 context->ipc.has_perm = 1;
2250 int audit_bprm(struct linux_binprm *bprm)
2252 struct audit_aux_data_execve *ax;
2253 struct audit_context *context = current->audit_context;
2255 if (likely(!audit_enabled || !context || context->dummy))
2258 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2262 ax->argc = bprm->argc;
2263 ax->envc = bprm->envc;
2265 ax->d.type = AUDIT_EXECVE;
2266 ax->d.next = context->aux;
2267 context->aux = (void *)ax;
2273 * audit_socketcall - record audit data for sys_socketcall
2274 * @nargs: number of args
2278 void audit_socketcall(int nargs, unsigned long *args)
2280 struct audit_context *context = current->audit_context;
2282 if (likely(!context || context->dummy))
2285 context->type = AUDIT_SOCKETCALL;
2286 context->socketcall.nargs = nargs;
2287 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2291 * __audit_fd_pair - record audit data for pipe and socketpair
2292 * @fd1: the first file descriptor
2293 * @fd2: the second file descriptor
2296 void __audit_fd_pair(int fd1, int fd2)
2298 struct audit_context *context = current->audit_context;
2299 context->fds[0] = fd1;
2300 context->fds[1] = fd2;
2304 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2305 * @len: data length in user space
2306 * @a: data address in kernel space
2308 * Returns 0 for success or NULL context or < 0 on error.
2310 int audit_sockaddr(int len, void *a)
2312 struct audit_context *context = current->audit_context;
2314 if (likely(!context || context->dummy))
2317 if (!context->sockaddr) {
2318 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2321 context->sockaddr = p;
2324 context->sockaddr_len = len;
2325 memcpy(context->sockaddr, a, len);
2329 void __audit_ptrace(struct task_struct *t)
2331 struct audit_context *context = current->audit_context;
2333 context->target_pid = t->pid;
2334 context->target_auid = audit_get_loginuid(t);
2335 context->target_uid = task_uid(t);
2336 context->target_sessionid = audit_get_sessionid(t);
2337 security_task_getsecid(t, &context->target_sid);
2338 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2342 * audit_signal_info - record signal info for shutting down audit subsystem
2343 * @sig: signal value
2344 * @t: task being signaled
2346 * If the audit subsystem is being terminated, record the task (pid)
2347 * and uid that is doing that.
2349 int __audit_signal_info(int sig, struct task_struct *t)
2351 struct audit_aux_data_pids *axp;
2352 struct task_struct *tsk = current;
2353 struct audit_context *ctx = tsk->audit_context;
2354 uid_t uid = current_uid(), t_uid = task_uid(t);
2356 if (audit_pid && t->tgid == audit_pid) {
2357 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2358 audit_sig_pid = tsk->pid;
2359 if (tsk->loginuid != -1)
2360 audit_sig_uid = tsk->loginuid;
2362 audit_sig_uid = uid;
2363 security_task_getsecid(tsk, &audit_sig_sid);
2365 if (!audit_signals || audit_dummy_context())
2369 /* optimize the common case by putting first signal recipient directly
2370 * in audit_context */
2371 if (!ctx->target_pid) {
2372 ctx->target_pid = t->tgid;
2373 ctx->target_auid = audit_get_loginuid(t);
2374 ctx->target_uid = t_uid;
2375 ctx->target_sessionid = audit_get_sessionid(t);
2376 security_task_getsecid(t, &ctx->target_sid);
2377 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2381 axp = (void *)ctx->aux_pids;
2382 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2383 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2387 axp->d.type = AUDIT_OBJ_PID;
2388 axp->d.next = ctx->aux_pids;
2389 ctx->aux_pids = (void *)axp;
2391 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2393 axp->target_pid[axp->pid_count] = t->tgid;
2394 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2395 axp->target_uid[axp->pid_count] = t_uid;
2396 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2397 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2398 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2405 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2406 * @bprm: pointer to the bprm being processed
2407 * @new: the proposed new credentials
2408 * @old: the old credentials
2410 * Simply check if the proc already has the caps given by the file and if not
2411 * store the priv escalation info for later auditing at the end of the syscall
2415 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2416 const struct cred *new, const struct cred *old)
2418 struct audit_aux_data_bprm_fcaps *ax;
2419 struct audit_context *context = current->audit_context;
2420 struct cpu_vfs_cap_data vcaps;
2421 struct dentry *dentry;
2423 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2427 ax->d.type = AUDIT_BPRM_FCAPS;
2428 ax->d.next = context->aux;
2429 context->aux = (void *)ax;
2431 dentry = dget(bprm->file->f_dentry);
2432 get_vfs_caps_from_disk(dentry, &vcaps);
2435 ax->fcap.permitted = vcaps.permitted;
2436 ax->fcap.inheritable = vcaps.inheritable;
2437 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2438 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2440 ax->old_pcap.permitted = old->cap_permitted;
2441 ax->old_pcap.inheritable = old->cap_inheritable;
2442 ax->old_pcap.effective = old->cap_effective;
2444 ax->new_pcap.permitted = new->cap_permitted;
2445 ax->new_pcap.inheritable = new->cap_inheritable;
2446 ax->new_pcap.effective = new->cap_effective;
2451 * __audit_log_capset - store information about the arguments to the capset syscall
2452 * @pid: target pid of the capset call
2453 * @new: the new credentials
2454 * @old: the old (current) credentials
2456 * Record the aguments userspace sent to sys_capset for later printing by the
2457 * audit system if applicable
2459 int __audit_log_capset(pid_t pid,
2460 const struct cred *new, const struct cred *old)
2462 struct audit_aux_data_capset *ax;
2463 struct audit_context *context = current->audit_context;
2465 if (likely(!audit_enabled || !context || context->dummy))
2468 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2472 ax->d.type = AUDIT_CAPSET;
2473 ax->d.next = context->aux;
2474 context->aux = (void *)ax;
2477 ax->cap.effective = new->cap_effective;
2478 ax->cap.inheritable = new->cap_effective;
2479 ax->cap.permitted = new->cap_permitted;
2485 * audit_core_dumps - record information about processes that end abnormally
2486 * @signr: signal value
2488 * If a process ends with a core dump, something fishy is going on and we
2489 * should record the event for investigation.
2491 void audit_core_dumps(long signr)
2493 struct audit_buffer *ab;
2495 uid_t auid = audit_get_loginuid(current), uid;
2497 unsigned int sessionid = audit_get_sessionid(current);
2502 if (signr == SIGQUIT) /* don't care for those */
2505 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2506 current_uid_gid(&uid, &gid);
2507 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2508 auid, uid, gid, sessionid);
2509 security_task_getsecid(current, &sid);
2514 if (security_secid_to_secctx(sid, &ctx, &len))
2515 audit_log_format(ab, " ssid=%u", sid);
2517 audit_log_format(ab, " subj=%s", ctx);
2518 security_release_secctx(ctx, len);
2521 audit_log_format(ab, " pid=%d comm=", current->pid);
2522 audit_log_untrustedstring(ab, current->comm);
2523 audit_log_format(ab, " sig=%ld", signr);