4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
52 #include <asm/byteorder.h>
54 #include <asm/uaccess.h>
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58 int uptodate, unsigned int nr_bytes, int dequeue)
63 * if failfast is set on a request, override number of sectors and
64 * complete the whole request right now
66 if (blk_noretry_request(rq) && end_io_error(uptodate))
67 nr_bytes = rq->hard_nr_sectors << 9;
69 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
73 * decide whether to reenable DMA -- 3 is a random magic for now,
74 * if we DMA timeout more than 3 times, just stay in PIO
76 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
78 HWGROUP(drive)->hwif->ide_dma_on(drive);
81 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82 add_disk_randomness(rq->rq_disk);
84 if (!list_empty(&rq->queuelist))
85 blkdev_dequeue_request(rq);
86 HWGROUP(drive)->rq = NULL;
88 end_that_request_last(rq, uptodate);
96 * ide_end_request - complete an IDE I/O
97 * @drive: IDE device for the I/O
99 * @nr_sectors: number of sectors completed
101 * This is our end_request wrapper function. We complete the I/O
102 * update random number input and dequeue the request, which if
103 * it was tagged may be out of order.
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 unsigned int nr_bytes = nr_sectors << 9;
114 * room for locking improvements here, the calls below don't
115 * need the queue lock held at all
117 spin_lock_irqsave(&ide_lock, flags);
118 rq = HWGROUP(drive)->rq;
121 if (blk_pc_request(rq))
122 nr_bytes = rq->data_len;
124 nr_bytes = rq->hard_cur_sectors << 9;
127 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
129 spin_unlock_irqrestore(&ide_lock, flags);
132 EXPORT_SYMBOL(ide_end_request);
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
141 ide_pm_flush_cache = ide_pm_state_start_suspend,
144 idedisk_pm_restore_pio = ide_pm_state_start_resume,
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
151 struct request_pm_state *pm = rq->data;
153 if (drive->media != ide_disk)
156 switch (pm->pm_step) {
157 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
158 if (pm->pm_state == PM_EVENT_FREEZE)
159 pm->pm_step = ide_pm_state_completed;
161 pm->pm_step = idedisk_pm_standby;
163 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
164 pm->pm_step = ide_pm_state_completed;
166 case idedisk_pm_restore_pio: /* Resume step 1 complete */
167 pm->pm_step = idedisk_pm_idle;
169 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
170 pm->pm_step = ide_pm_restore_dma;
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
177 struct request_pm_state *pm = rq->data;
178 ide_task_t *args = rq->special;
180 memset(args, 0, sizeof(*args));
182 switch (pm->pm_step) {
183 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
184 if (drive->media != ide_disk)
186 /* Not supported? Switch to next step now. */
187 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188 ide_complete_power_step(drive, rq, 0, 0);
191 if (ide_id_has_flush_cache_ext(drive->id))
192 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
194 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
195 args->command_type = IDE_DRIVE_TASK_NO_DATA;
196 args->handler = &task_no_data_intr;
197 return do_rw_taskfile(drive, args);
199 case idedisk_pm_standby: /* Suspend step 2 (standby) */
200 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
201 args->command_type = IDE_DRIVE_TASK_NO_DATA;
202 args->handler = &task_no_data_intr;
203 return do_rw_taskfile(drive, args);
205 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
206 ide_set_max_pio(drive);
208 * skip idedisk_pm_idle for ATAPI devices
210 if (drive->media != ide_disk)
211 pm->pm_step = ide_pm_restore_dma;
213 ide_complete_power_step(drive, rq, 0, 0);
216 case idedisk_pm_idle: /* Resume step 2 (idle) */
217 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
218 args->command_type = IDE_DRIVE_TASK_NO_DATA;
219 args->handler = task_no_data_intr;
220 return do_rw_taskfile(drive, args);
222 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
224 * Right now, all we do is call ide_set_dma(drive),
225 * we could be smarter and check for current xfer_speed
226 * in struct drive etc...
228 if (drive->hwif->ide_dma_on == NULL)
230 drive->hwif->dma_off_quietly(drive);
232 * TODO: respect ->using_dma setting
237 pm->pm_step = ide_pm_state_completed;
242 * ide_end_dequeued_request - complete an IDE I/O
243 * @drive: IDE device for the I/O
245 * @nr_sectors: number of sectors completed
247 * Complete an I/O that is no longer on the request queue. This
248 * typically occurs when we pull the request and issue a REQUEST_SENSE.
249 * We must still finish the old request but we must not tamper with the
250 * queue in the meantime.
252 * NOTE: This path does not handle barrier, but barrier is not supported
256 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
257 int uptodate, int nr_sectors)
262 spin_lock_irqsave(&ide_lock, flags);
263 BUG_ON(!blk_rq_started(rq));
264 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
265 spin_unlock_irqrestore(&ide_lock, flags);
269 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
273 * ide_complete_pm_request - end the current Power Management request
274 * @drive: target drive
277 * This function cleans up the current PM request and stops the queue
280 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
285 printk("%s: completing PM request, %s\n", drive->name,
286 blk_pm_suspend_request(rq) ? "suspend" : "resume");
288 spin_lock_irqsave(&ide_lock, flags);
289 if (blk_pm_suspend_request(rq)) {
290 blk_stop_queue(drive->queue);
293 blk_start_queue(drive->queue);
295 blkdev_dequeue_request(rq);
296 HWGROUP(drive)->rq = NULL;
297 end_that_request_last(rq, 1);
298 spin_unlock_irqrestore(&ide_lock, flags);
302 * ide_end_drive_cmd - end an explicit drive command
307 * Clean up after success/failure of an explicit drive command.
308 * These get thrown onto the queue so they are synchronized with
309 * real I/O operations on the drive.
311 * In LBA48 mode we have to read the register set twice to get
312 * all the extra information out.
315 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
317 ide_hwif_t *hwif = HWIF(drive);
321 spin_lock_irqsave(&ide_lock, flags);
322 rq = HWGROUP(drive)->rq;
323 spin_unlock_irqrestore(&ide_lock, flags);
325 if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
326 u8 *args = (u8 *) rq->buffer;
328 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
333 args[2] = hwif->INB(IDE_NSECTOR_REG);
335 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
336 u8 *args = (u8 *) rq->buffer;
338 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
343 args[2] = hwif->INB(IDE_NSECTOR_REG);
344 args[3] = hwif->INB(IDE_SECTOR_REG);
345 args[4] = hwif->INB(IDE_LCYL_REG);
346 args[5] = hwif->INB(IDE_HCYL_REG);
347 args[6] = hwif->INB(IDE_SELECT_REG);
349 } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
350 ide_task_t *args = (ide_task_t *) rq->special;
352 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
355 if (args->tf_in_flags.b.data) {
356 u16 data = hwif->INW(IDE_DATA_REG);
357 args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF;
358 args->hobRegister[IDE_DATA_OFFSET] = (data >> 8) & 0xFF;
360 args->tfRegister[IDE_ERROR_OFFSET] = err;
361 /* be sure we're looking at the low order bits */
362 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
363 args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
364 args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
365 args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
366 args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
367 args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG);
368 args->tfRegister[IDE_STATUS_OFFSET] = stat;
370 if (drive->addressing == 1) {
371 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
372 args->hobRegister[IDE_FEATURE_OFFSET] = hwif->INB(IDE_FEATURE_REG);
373 args->hobRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
374 args->hobRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
375 args->hobRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
376 args->hobRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
379 } else if (blk_pm_request(rq)) {
380 struct request_pm_state *pm = rq->data;
382 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
383 drive->name, rq->pm->pm_step, stat, err);
385 ide_complete_power_step(drive, rq, stat, err);
386 if (pm->pm_step == ide_pm_state_completed)
387 ide_complete_pm_request(drive, rq);
391 spin_lock_irqsave(&ide_lock, flags);
392 blkdev_dequeue_request(rq);
393 HWGROUP(drive)->rq = NULL;
395 end_that_request_last(rq, !rq->errors);
396 spin_unlock_irqrestore(&ide_lock, flags);
399 EXPORT_SYMBOL(ide_end_drive_cmd);
402 * try_to_flush_leftover_data - flush junk
403 * @drive: drive to flush
405 * try_to_flush_leftover_data() is invoked in response to a drive
406 * unexpectedly having its DRQ_STAT bit set. As an alternative to
407 * resetting the drive, this routine tries to clear the condition
408 * by read a sector's worth of data from the drive. Of course,
409 * this may not help if the drive is *waiting* for data from *us*.
411 static void try_to_flush_leftover_data (ide_drive_t *drive)
413 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
415 if (drive->media != ide_disk)
419 u32 wcount = (i > 16) ? 16 : i;
422 HWIF(drive)->ata_input_data(drive, buffer, wcount);
426 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
431 drv = *(ide_driver_t **)rq->rq_disk->private_data;
432 drv->end_request(drive, 0, 0);
434 ide_end_request(drive, 0, 0);
437 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
439 ide_hwif_t *hwif = drive->hwif;
441 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
442 /* other bits are useless when BUSY */
443 rq->errors |= ERROR_RESET;
444 } else if (stat & ERR_STAT) {
445 /* err has different meaning on cdrom and tape */
446 if (err == ABRT_ERR) {
447 if (drive->select.b.lba &&
448 /* some newer drives don't support WIN_SPECIFY */
449 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
451 } else if ((err & BAD_CRC) == BAD_CRC) {
452 /* UDMA crc error, just retry the operation */
454 } else if (err & (BBD_ERR | ECC_ERR)) {
455 /* retries won't help these */
456 rq->errors = ERROR_MAX;
457 } else if (err & TRK0_ERR) {
458 /* help it find track zero */
459 rq->errors |= ERROR_RECAL;
463 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
464 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
465 try_to_flush_leftover_data(drive);
467 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
468 ide_kill_rq(drive, rq);
472 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
473 rq->errors |= ERROR_RESET;
475 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
477 return ide_do_reset(drive);
480 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
481 drive->special.b.recalibrate = 1;
488 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
490 ide_hwif_t *hwif = drive->hwif;
492 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
493 /* other bits are useless when BUSY */
494 rq->errors |= ERROR_RESET;
496 /* add decoding error stuff */
499 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
501 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
503 if (rq->errors >= ERROR_MAX) {
504 ide_kill_rq(drive, rq);
506 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
508 return ide_do_reset(drive);
517 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
519 if (drive->media == ide_disk)
520 return ide_ata_error(drive, rq, stat, err);
521 return ide_atapi_error(drive, rq, stat, err);
524 EXPORT_SYMBOL_GPL(__ide_error);
527 * ide_error - handle an error on the IDE
528 * @drive: drive the error occurred on
529 * @msg: message to report
532 * ide_error() takes action based on the error returned by the drive.
533 * For normal I/O that may well include retries. We deal with
534 * both new-style (taskfile) and old style command handling here.
535 * In the case of taskfile command handling there is work left to
539 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
544 err = ide_dump_status(drive, msg, stat);
546 if ((rq = HWGROUP(drive)->rq) == NULL)
549 /* retry only "normal" I/O: */
550 if (!blk_fs_request(rq)) {
552 ide_end_drive_cmd(drive, stat, err);
559 drv = *(ide_driver_t **)rq->rq_disk->private_data;
560 return drv->error(drive, rq, stat, err);
562 return __ide_error(drive, rq, stat, err);
565 EXPORT_SYMBOL_GPL(ide_error);
567 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
569 if (drive->media != ide_disk)
570 rq->errors |= ERROR_RESET;
572 ide_kill_rq(drive, rq);
577 EXPORT_SYMBOL_GPL(__ide_abort);
580 * ide_abort - abort pending IDE operations
581 * @drive: drive the error occurred on
582 * @msg: message to report
584 * ide_abort kills and cleans up when we are about to do a
585 * host initiated reset on active commands. Longer term we
586 * want handlers to have sensible abort handling themselves
588 * This differs fundamentally from ide_error because in
589 * this case the command is doing just fine when we
593 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
597 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
600 /* retry only "normal" I/O: */
601 if (!blk_fs_request(rq)) {
603 ide_end_drive_cmd(drive, BUSY_STAT, 0);
610 drv = *(ide_driver_t **)rq->rq_disk->private_data;
611 return drv->abort(drive, rq);
613 return __ide_abort(drive, rq);
617 * ide_cmd - issue a simple drive command
618 * @drive: drive the command is for
620 * @nsect: sector byte
621 * @handler: handler for the command completion
623 * Issue a simple drive command with interrupts.
624 * The drive must be selected beforehand.
627 static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
628 ide_handler_t *handler)
630 ide_hwif_t *hwif = HWIF(drive);
632 hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
633 SELECT_MASK(drive,0);
634 hwif->OUTB(nsect,IDE_NSECTOR_REG);
635 ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
639 * drive_cmd_intr - drive command completion interrupt
640 * @drive: drive the completion interrupt occurred on
642 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
643 * We do any necessary data reading and then wait for the drive to
644 * go non busy. At that point we may read the error data and complete
648 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
650 struct request *rq = HWGROUP(drive)->rq;
651 ide_hwif_t *hwif = HWIF(drive);
652 u8 *args = (u8 *) rq->buffer;
653 u8 stat = hwif->INB(IDE_STATUS_REG);
656 local_irq_enable_in_hardirq();
657 if ((stat & DRQ_STAT) && args && args[3]) {
658 u8 io_32bit = drive->io_32bit;
660 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
661 drive->io_32bit = io_32bit;
662 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
666 if (!OK_STAT(stat, READY_STAT, BAD_STAT))
667 return ide_error(drive, "drive_cmd", stat);
668 /* calls ide_end_drive_cmd */
669 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
673 static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
675 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
676 task->tfRegister[IDE_SECTOR_OFFSET] = drive->sect;
677 task->tfRegister[IDE_LCYL_OFFSET] = drive->cyl;
678 task->tfRegister[IDE_HCYL_OFFSET] = drive->cyl>>8;
679 task->tfRegister[IDE_SELECT_OFFSET] = ((drive->head-1)|drive->select.all)&0xBF;
680 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
682 task->handler = &set_geometry_intr;
685 static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
687 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
688 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
690 task->handler = &recal_intr;
693 static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
695 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
696 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
698 task->handler = &set_multmode_intr;
701 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
703 special_t *s = &drive->special;
706 memset(&args, 0, sizeof(ide_task_t));
707 args.command_type = IDE_DRIVE_TASK_NO_DATA;
709 if (s->b.set_geometry) {
710 s->b.set_geometry = 0;
711 ide_init_specify_cmd(drive, &args);
712 } else if (s->b.recalibrate) {
713 s->b.recalibrate = 0;
714 ide_init_restore_cmd(drive, &args);
715 } else if (s->b.set_multmode) {
716 s->b.set_multmode = 0;
717 if (drive->mult_req > drive->id->max_multsect)
718 drive->mult_req = drive->id->max_multsect;
719 ide_init_setmult_cmd(drive, &args);
721 int special = s->all;
723 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
727 do_rw_taskfile(drive, &args);
733 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
735 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
744 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
747 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
750 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
757 * do_special - issue some special commands
758 * @drive: drive the command is for
760 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
761 * commands to a drive. It used to do much more, but has been scaled
765 static ide_startstop_t do_special (ide_drive_t *drive)
767 special_t *s = &drive->special;
770 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
773 ide_hwif_t *hwif = drive->hwif;
774 u8 req_pio = drive->tune_req;
778 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
780 if (hwif->set_pio_mode == NULL)
784 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
786 if (req_pio == 8 || req_pio == 9) {
789 spin_lock_irqsave(&ide_lock, flags);
790 hwif->set_pio_mode(drive, req_pio);
791 spin_unlock_irqrestore(&ide_lock, flags);
793 hwif->set_pio_mode(drive, req_pio);
795 int keep_dma = drive->using_dma;
797 ide_set_pio(drive, req_pio);
799 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
801 hwif->ide_dma_on(drive);
807 if (drive->media == ide_disk)
808 return ide_disk_special(drive);
816 void ide_map_sg(ide_drive_t *drive, struct request *rq)
818 ide_hwif_t *hwif = drive->hwif;
819 struct scatterlist *sg = hwif->sg_table;
821 if (hwif->sg_mapped) /* needed by ide-scsi */
824 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
825 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
827 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
832 EXPORT_SYMBOL_GPL(ide_map_sg);
834 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
836 ide_hwif_t *hwif = drive->hwif;
838 hwif->nsect = hwif->nleft = rq->nr_sectors;
843 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
846 * execute_drive_command - issue special drive command
847 * @drive: the drive to issue the command on
848 * @rq: the request structure holding the command
850 * execute_drive_cmd() issues a special drive command, usually
851 * initiated by ioctl() from the external hdparm program. The
852 * command can be a drive command, drive task or taskfile
853 * operation. Weirdly you can call it with NULL to wait for
854 * all commands to finish. Don't do this as that is due to change
857 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
860 ide_hwif_t *hwif = HWIF(drive);
861 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
862 ide_task_t *args = rq->special;
867 hwif->data_phase = args->data_phase;
869 switch (hwif->data_phase) {
870 case TASKFILE_MULTI_OUT:
872 case TASKFILE_MULTI_IN:
874 ide_init_sg_cmd(drive, rq);
875 ide_map_sg(drive, rq);
880 if (args->tf_out_flags.all != 0)
881 return flagged_taskfile(drive, args);
882 return do_rw_taskfile(drive, args);
883 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
884 u8 *args = rq->buffer;
890 printk("%s: DRIVE_TASK_CMD ", drive->name);
891 printk("cmd=0x%02x ", args[0]);
892 printk("fr=0x%02x ", args[1]);
893 printk("ns=0x%02x ", args[2]);
894 printk("sc=0x%02x ", args[3]);
895 printk("lcyl=0x%02x ", args[4]);
896 printk("hcyl=0x%02x ", args[5]);
897 printk("sel=0x%02x\n", args[6]);
899 hwif->OUTB(args[1], IDE_FEATURE_REG);
900 hwif->OUTB(args[3], IDE_SECTOR_REG);
901 hwif->OUTB(args[4], IDE_LCYL_REG);
902 hwif->OUTB(args[5], IDE_HCYL_REG);
903 sel = (args[6] & ~0x10);
904 if (drive->select.b.unit)
906 hwif->OUTB(sel, IDE_SELECT_REG);
907 ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
909 } else if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
910 u8 *args = rq->buffer;
915 printk("%s: DRIVE_CMD ", drive->name);
916 printk("cmd=0x%02x ", args[0]);
917 printk("sc=0x%02x ", args[1]);
918 printk("fr=0x%02x ", args[2]);
919 printk("xx=0x%02x\n", args[3]);
921 if (args[0] == WIN_SMART) {
922 hwif->OUTB(0x4f, IDE_LCYL_REG);
923 hwif->OUTB(0xc2, IDE_HCYL_REG);
924 hwif->OUTB(args[2],IDE_FEATURE_REG);
925 hwif->OUTB(args[1],IDE_SECTOR_REG);
926 ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
929 hwif->OUTB(args[2],IDE_FEATURE_REG);
930 ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
936 * NULL is actually a valid way of waiting for
937 * all current requests to be flushed from the queue.
940 printk("%s: DRIVE_CMD (null)\n", drive->name);
942 ide_end_drive_cmd(drive,
943 hwif->INB(IDE_STATUS_REG),
944 hwif->INB(IDE_ERROR_REG));
948 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
950 struct request_pm_state *pm = rq->data;
952 if (blk_pm_suspend_request(rq) &&
953 pm->pm_step == ide_pm_state_start_suspend)
954 /* Mark drive blocked when starting the suspend sequence. */
956 else if (blk_pm_resume_request(rq) &&
957 pm->pm_step == ide_pm_state_start_resume) {
959 * The first thing we do on wakeup is to wait for BSY bit to
960 * go away (with a looong timeout) as a drive on this hwif may
961 * just be POSTing itself.
962 * We do that before even selecting as the "other" device on
963 * the bus may be broken enough to walk on our toes at this
968 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
970 rc = ide_wait_not_busy(HWIF(drive), 35000);
972 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
974 HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
975 rc = ide_wait_not_busy(HWIF(drive), 100000);
977 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
982 * start_request - start of I/O and command issuing for IDE
984 * start_request() initiates handling of a new I/O request. It
985 * accepts commands and I/O (read/write) requests. It also does
986 * the final remapping for weird stuff like EZDrive. Once
987 * device mapper can work sector level the EZDrive stuff can go away
989 * FIXME: this function needs a rename
992 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
994 ide_startstop_t startstop;
997 BUG_ON(!blk_rq_started(rq));
1000 printk("%s: start_request: current=0x%08lx\n",
1001 HWIF(drive)->name, (unsigned long) rq);
1004 /* bail early if we've exceeded max_failures */
1005 if (drive->max_failures && (drive->failures > drive->max_failures)) {
1010 if (blk_fs_request(rq) &&
1011 (drive->media == ide_disk || drive->media == ide_floppy)) {
1012 block += drive->sect0;
1014 /* Yecch - this will shift the entire interval,
1015 possibly killing some innocent following sector */
1016 if (block == 0 && drive->remap_0_to_1 == 1)
1017 block = 1; /* redirect MBR access to EZ-Drive partn table */
1019 if (blk_pm_request(rq))
1020 ide_check_pm_state(drive, rq);
1022 SELECT_DRIVE(drive);
1023 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1024 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1027 if (!drive->special.all) {
1031 * We reset the drive so we need to issue a SETFEATURES.
1032 * Do it _after_ do_special() restored device parameters.
1034 if (drive->current_speed == 0xff)
1035 ide_config_drive_speed(drive, drive->desired_speed);
1037 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1038 rq->cmd_type == REQ_TYPE_ATA_TASK ||
1039 rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1040 return execute_drive_cmd(drive, rq);
1041 else if (blk_pm_request(rq)) {
1042 struct request_pm_state *pm = rq->data;
1044 printk("%s: start_power_step(step: %d)\n",
1045 drive->name, rq->pm->pm_step);
1047 startstop = ide_start_power_step(drive, rq);
1048 if (startstop == ide_stopped &&
1049 pm->pm_step == ide_pm_state_completed)
1050 ide_complete_pm_request(drive, rq);
1054 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1055 return drv->do_request(drive, rq, block);
1057 return do_special(drive);
1059 ide_kill_rq(drive, rq);
1064 * ide_stall_queue - pause an IDE device
1065 * @drive: drive to stall
1066 * @timeout: time to stall for (jiffies)
1068 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1069 * to the hwgroup by sleeping for timeout jiffies.
1072 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1074 if (timeout > WAIT_WORSTCASE)
1075 timeout = WAIT_WORSTCASE;
1076 drive->sleep = timeout + jiffies;
1077 drive->sleeping = 1;
1080 EXPORT_SYMBOL(ide_stall_queue);
1082 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1085 * choose_drive - select a drive to service
1086 * @hwgroup: hardware group to select on
1088 * choose_drive() selects the next drive which will be serviced.
1089 * This is necessary because the IDE layer can't issue commands
1090 * to both drives on the same cable, unlike SCSI.
1093 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1095 ide_drive_t *drive, *best;
1099 drive = hwgroup->drive;
1102 * drive is doing pre-flush, ordered write, post-flush sequence. even
1103 * though that is 3 requests, it must be seen as a single transaction.
1104 * we must not preempt this drive until that is complete
1106 if (blk_queue_flushing(drive->queue)) {
1108 * small race where queue could get replugged during
1109 * the 3-request flush cycle, just yank the plug since
1110 * we want it to finish asap
1112 blk_remove_plug(drive->queue);
1117 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1118 && !elv_queue_empty(drive->queue)) {
1120 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1121 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1123 if (!blk_queue_plugged(drive->queue))
1127 } while ((drive = drive->next) != hwgroup->drive);
1128 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1129 long t = (signed long)(WAKEUP(best) - jiffies);
1130 if (t >= WAIT_MIN_SLEEP) {
1132 * We *may* have some time to spare, but first let's see if
1133 * someone can potentially benefit from our nice mood today..
1137 if (!drive->sleeping
1138 && time_before(jiffies - best->service_time, WAKEUP(drive))
1139 && time_before(WAKEUP(drive), jiffies + t))
1141 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1144 } while ((drive = drive->next) != best);
1151 * Issue a new request to a drive from hwgroup
1152 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1154 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1155 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1156 * may have both interfaces in a single hwgroup to "serialize" access.
1157 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1158 * together into one hwgroup for serialized access.
1160 * Note also that several hwgroups can end up sharing a single IRQ,
1161 * possibly along with many other devices. This is especially common in
1162 * PCI-based systems with off-board IDE controller cards.
1164 * The IDE driver uses the single global ide_lock spinlock to protect
1165 * access to the request queues, and to protect the hwgroup->busy flag.
1167 * The first thread into the driver for a particular hwgroup sets the
1168 * hwgroup->busy flag to indicate that this hwgroup is now active,
1169 * and then initiates processing of the top request from the request queue.
1171 * Other threads attempting entry notice the busy setting, and will simply
1172 * queue their new requests and exit immediately. Note that hwgroup->busy
1173 * remains set even when the driver is merely awaiting the next interrupt.
1174 * Thus, the meaning is "this hwgroup is busy processing a request".
1176 * When processing of a request completes, the completing thread or IRQ-handler
1177 * will start the next request from the queue. If no more work remains,
1178 * the driver will clear the hwgroup->busy flag and exit.
1180 * The ide_lock (spinlock) is used to protect all access to the
1181 * hwgroup->busy flag, but is otherwise not needed for most processing in
1182 * the driver. This makes the driver much more friendlier to shared IRQs
1183 * than previous designs, while remaining 100% (?) SMP safe and capable.
1185 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1190 ide_startstop_t startstop;
1193 /* for atari only: POSSIBLY BROKEN HERE(?) */
1194 ide_get_lock(ide_intr, hwgroup);
1196 /* caller must own ide_lock */
1197 BUG_ON(!irqs_disabled());
1199 while (!hwgroup->busy) {
1201 drive = choose_drive(hwgroup);
1202 if (drive == NULL) {
1204 unsigned long sleep = 0; /* shut up, gcc */
1206 drive = hwgroup->drive;
1208 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1210 sleep = drive->sleep;
1212 } while ((drive = drive->next) != hwgroup->drive);
1215 * Take a short snooze, and then wake up this hwgroup again.
1216 * This gives other hwgroups on the same a chance to
1217 * play fairly with us, just in case there are big differences
1218 * in relative throughputs.. don't want to hog the cpu too much.
1220 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1221 sleep = jiffies + WAIT_MIN_SLEEP;
1223 if (timer_pending(&hwgroup->timer))
1224 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1226 /* so that ide_timer_expiry knows what to do */
1227 hwgroup->sleeping = 1;
1228 hwgroup->req_gen_timer = hwgroup->req_gen;
1229 mod_timer(&hwgroup->timer, sleep);
1230 /* we purposely leave hwgroup->busy==1
1233 /* Ugly, but how can we sleep for the lock
1234 * otherwise? perhaps from tq_disk?
1237 /* for atari only */
1242 /* no more work for this hwgroup (for now) */
1247 if (hwgroup->hwif->sharing_irq &&
1248 hwif != hwgroup->hwif &&
1249 hwif->io_ports[IDE_CONTROL_OFFSET]) {
1250 /* set nIEN for previous hwif */
1251 SELECT_INTERRUPT(drive);
1253 hwgroup->hwif = hwif;
1254 hwgroup->drive = drive;
1255 drive->sleeping = 0;
1256 drive->service_start = jiffies;
1258 if (blk_queue_plugged(drive->queue)) {
1259 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1264 * we know that the queue isn't empty, but this can happen
1265 * if the q->prep_rq_fn() decides to kill a request
1267 rq = elv_next_request(drive->queue);
1274 * Sanity: don't accept a request that isn't a PM request
1275 * if we are currently power managed. This is very important as
1276 * blk_stop_queue() doesn't prevent the elv_next_request()
1277 * above to return us whatever is in the queue. Since we call
1278 * ide_do_request() ourselves, we end up taking requests while
1279 * the queue is blocked...
1281 * We let requests forced at head of queue with ide-preempt
1282 * though. I hope that doesn't happen too much, hopefully not
1283 * unless the subdriver triggers such a thing in its own PM
1286 * We count how many times we loop here to make sure we service
1287 * all drives in the hwgroup without looping for ever
1289 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1290 drive = drive->next ? drive->next : hwgroup->drive;
1291 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1293 /* We clear busy, there should be no pending ATA command at this point. */
1301 * Some systems have trouble with IDE IRQs arriving while
1302 * the driver is still setting things up. So, here we disable
1303 * the IRQ used by this interface while the request is being started.
1304 * This may look bad at first, but pretty much the same thing
1305 * happens anyway when any interrupt comes in, IDE or otherwise
1306 * -- the kernel masks the IRQ while it is being handled.
1308 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1309 disable_irq_nosync(hwif->irq);
1310 spin_unlock(&ide_lock);
1311 local_irq_enable_in_hardirq();
1312 /* allow other IRQs while we start this request */
1313 startstop = start_request(drive, rq);
1314 spin_lock_irq(&ide_lock);
1315 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1316 enable_irq(hwif->irq);
1317 if (startstop == ide_stopped)
1323 * Passes the stuff to ide_do_request
1325 void do_ide_request(struct request_queue *q)
1327 ide_drive_t *drive = q->queuedata;
1329 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1333 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1334 * retry the current request in pio mode instead of risking tossing it
1337 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1339 ide_hwif_t *hwif = HWIF(drive);
1341 ide_startstop_t ret = ide_stopped;
1344 * end current dma transaction
1348 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1349 (void)HWIF(drive)->ide_dma_end(drive);
1350 ret = ide_error(drive, "dma timeout error",
1351 hwif->INB(IDE_STATUS_REG));
1353 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1354 hwif->dma_timeout(drive);
1358 * disable dma for now, but remember that we did so because of
1359 * a timeout -- we'll reenable after we finish this next request
1360 * (or rather the first chunk of it) in pio.
1363 drive->state = DMA_PIO_RETRY;
1364 hwif->dma_off_quietly(drive);
1367 * un-busy drive etc (hwgroup->busy is cleared on return) and
1368 * make sure request is sane
1370 rq = HWGROUP(drive)->rq;
1375 HWGROUP(drive)->rq = NULL;
1382 rq->sector = rq->bio->bi_sector;
1383 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1384 rq->hard_cur_sectors = rq->current_nr_sectors;
1385 rq->buffer = bio_data(rq->bio);
1391 * ide_timer_expiry - handle lack of an IDE interrupt
1392 * @data: timer callback magic (hwgroup)
1394 * An IDE command has timed out before the expected drive return
1395 * occurred. At this point we attempt to clean up the current
1396 * mess. If the current handler includes an expiry handler then
1397 * we invoke the expiry handler, and providing it is happy the
1398 * work is done. If that fails we apply generic recovery rules
1399 * invoking the handler and checking the drive DMA status. We
1400 * have an excessively incestuous relationship with the DMA
1401 * logic that wants cleaning up.
1404 void ide_timer_expiry (unsigned long data)
1406 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1407 ide_handler_t *handler;
1408 ide_expiry_t *expiry;
1409 unsigned long flags;
1410 unsigned long wait = -1;
1412 spin_lock_irqsave(&ide_lock, flags);
1414 if (((handler = hwgroup->handler) == NULL) ||
1415 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1417 * Either a marginal timeout occurred
1418 * (got the interrupt just as timer expired),
1419 * or we were "sleeping" to give other devices a chance.
1420 * Either way, we don't really want to complain about anything.
1422 if (hwgroup->sleeping) {
1423 hwgroup->sleeping = 0;
1427 ide_drive_t *drive = hwgroup->drive;
1429 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1430 hwgroup->handler = NULL;
1433 ide_startstop_t startstop = ide_stopped;
1434 if (!hwgroup->busy) {
1435 hwgroup->busy = 1; /* paranoia */
1436 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1438 if ((expiry = hwgroup->expiry) != NULL) {
1440 if ((wait = expiry(drive)) > 0) {
1442 hwgroup->timer.expires = jiffies + wait;
1443 hwgroup->req_gen_timer = hwgroup->req_gen;
1444 add_timer(&hwgroup->timer);
1445 spin_unlock_irqrestore(&ide_lock, flags);
1449 hwgroup->handler = NULL;
1451 * We need to simulate a real interrupt when invoking
1452 * the handler() function, which means we need to
1453 * globally mask the specific IRQ:
1455 spin_unlock(&ide_lock);
1457 #if DISABLE_IRQ_NOSYNC
1458 disable_irq_nosync(hwif->irq);
1460 /* disable_irq_nosync ?? */
1461 disable_irq(hwif->irq);
1462 #endif /* DISABLE_IRQ_NOSYNC */
1464 * as if we were handling an interrupt */
1465 local_irq_disable();
1466 if (hwgroup->polling) {
1467 startstop = handler(drive);
1468 } else if (drive_is_ready(drive)) {
1469 if (drive->waiting_for_dma)
1470 hwgroup->hwif->dma_lost_irq(drive);
1471 (void)ide_ack_intr(hwif);
1472 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1473 startstop = handler(drive);
1475 if (drive->waiting_for_dma) {
1476 startstop = ide_dma_timeout_retry(drive, wait);
1479 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1481 drive->service_time = jiffies - drive->service_start;
1482 spin_lock_irq(&ide_lock);
1483 enable_irq(hwif->irq);
1484 if (startstop == ide_stopped)
1488 ide_do_request(hwgroup, IDE_NO_IRQ);
1489 spin_unlock_irqrestore(&ide_lock, flags);
1493 * unexpected_intr - handle an unexpected IDE interrupt
1494 * @irq: interrupt line
1495 * @hwgroup: hwgroup being processed
1497 * There's nothing really useful we can do with an unexpected interrupt,
1498 * other than reading the status register (to clear it), and logging it.
1499 * There should be no way that an irq can happen before we're ready for it,
1500 * so we needn't worry much about losing an "important" interrupt here.
1502 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1503 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1504 * looks "good", we just ignore the interrupt completely.
1506 * This routine assumes __cli() is in effect when called.
1508 * If an unexpected interrupt happens on irq15 while we are handling irq14
1509 * and if the two interfaces are "serialized" (CMD640), then it looks like
1510 * we could screw up by interfering with a new request being set up for
1513 * In reality, this is a non-issue. The new command is not sent unless
1514 * the drive is ready to accept one, in which case we know the drive is
1515 * not trying to interrupt us. And ide_set_handler() is always invoked
1516 * before completing the issuance of any new drive command, so we will not
1517 * be accidentally invoked as a result of any valid command completion
1520 * Note that we must walk the entire hwgroup here. We know which hwif
1521 * is doing the current command, but we don't know which hwif burped
1525 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1528 ide_hwif_t *hwif = hwgroup->hwif;
1531 * handle the unexpected interrupt
1534 if (hwif->irq == irq) {
1535 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1536 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1537 /* Try to not flood the console with msgs */
1538 static unsigned long last_msgtime, count;
1540 if (time_after(jiffies, last_msgtime + HZ)) {
1541 last_msgtime = jiffies;
1542 printk(KERN_ERR "%s%s: unexpected interrupt, "
1543 "status=0x%02x, count=%ld\n",
1545 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1549 } while ((hwif = hwif->next) != hwgroup->hwif);
1553 * ide_intr - default IDE interrupt handler
1554 * @irq: interrupt number
1555 * @dev_id: hwif group
1556 * @regs: unused weirdness from the kernel irq layer
1558 * This is the default IRQ handler for the IDE layer. You should
1559 * not need to override it. If you do be aware it is subtle in
1562 * hwgroup->hwif is the interface in the group currently performing
1563 * a command. hwgroup->drive is the drive and hwgroup->handler is
1564 * the IRQ handler to call. As we issue a command the handlers
1565 * step through multiple states, reassigning the handler to the
1566 * next step in the process. Unlike a smart SCSI controller IDE
1567 * expects the main processor to sequence the various transfer
1568 * stages. We also manage a poll timer to catch up with most
1569 * timeout situations. There are still a few where the handlers
1570 * don't ever decide to give up.
1572 * The handler eventually returns ide_stopped to indicate the
1573 * request completed. At this point we issue the next request
1574 * on the hwgroup and the process begins again.
1577 irqreturn_t ide_intr (int irq, void *dev_id)
1579 unsigned long flags;
1580 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1583 ide_handler_t *handler;
1584 ide_startstop_t startstop;
1586 spin_lock_irqsave(&ide_lock, flags);
1587 hwif = hwgroup->hwif;
1589 if (!ide_ack_intr(hwif)) {
1590 spin_unlock_irqrestore(&ide_lock, flags);
1594 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1596 * Not expecting an interrupt from this drive.
1597 * That means this could be:
1598 * (1) an interrupt from another PCI device
1599 * sharing the same PCI INT# as us.
1600 * or (2) a drive just entered sleep or standby mode,
1601 * and is interrupting to let us know.
1602 * or (3) a spurious interrupt of unknown origin.
1604 * For PCI, we cannot tell the difference,
1605 * so in that case we just ignore it and hope it goes away.
1607 * FIXME: unexpected_intr should be hwif-> then we can
1608 * remove all the ifdef PCI crap
1610 #ifdef CONFIG_BLK_DEV_IDEPCI
1611 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1612 #endif /* CONFIG_BLK_DEV_IDEPCI */
1615 * Probably not a shared PCI interrupt,
1616 * so we can safely try to do something about it:
1618 unexpected_intr(irq, hwgroup);
1619 #ifdef CONFIG_BLK_DEV_IDEPCI
1622 * Whack the status register, just in case
1623 * we have a leftover pending IRQ.
1625 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1626 #endif /* CONFIG_BLK_DEV_IDEPCI */
1628 spin_unlock_irqrestore(&ide_lock, flags);
1631 drive = hwgroup->drive;
1634 * This should NEVER happen, and there isn't much
1635 * we could do about it here.
1637 * [Note - this can occur if the drive is hot unplugged]
1639 spin_unlock_irqrestore(&ide_lock, flags);
1642 if (!drive_is_ready(drive)) {
1644 * This happens regularly when we share a PCI IRQ with
1645 * another device. Unfortunately, it can also happen
1646 * with some buggy drives that trigger the IRQ before
1647 * their status register is up to date. Hopefully we have
1648 * enough advance overhead that the latter isn't a problem.
1650 spin_unlock_irqrestore(&ide_lock, flags);
1653 if (!hwgroup->busy) {
1654 hwgroup->busy = 1; /* paranoia */
1655 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1657 hwgroup->handler = NULL;
1659 del_timer(&hwgroup->timer);
1660 spin_unlock(&ide_lock);
1662 /* Some controllers might set DMA INTR no matter DMA or PIO;
1663 * bmdma status might need to be cleared even for
1664 * PIO interrupts to prevent spurious/lost irq.
1666 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1667 /* ide_dma_end() needs bmdma status for error checking.
1668 * So, skip clearing bmdma status here and leave it
1669 * to ide_dma_end() if this is dma interrupt.
1671 hwif->ide_dma_clear_irq(drive);
1674 local_irq_enable_in_hardirq();
1675 /* service this interrupt, may set handler for next interrupt */
1676 startstop = handler(drive);
1677 spin_lock_irq(&ide_lock);
1680 * Note that handler() may have set things up for another
1681 * interrupt to occur soon, but it cannot happen until
1682 * we exit from this routine, because it will be the
1683 * same irq as is currently being serviced here, and Linux
1684 * won't allow another of the same (on any CPU) until we return.
1686 drive->service_time = jiffies - drive->service_start;
1687 if (startstop == ide_stopped) {
1688 if (hwgroup->handler == NULL) { /* paranoia */
1690 ide_do_request(hwgroup, hwif->irq);
1692 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1693 "on exit\n", drive->name);
1696 spin_unlock_irqrestore(&ide_lock, flags);
1701 * ide_init_drive_cmd - initialize a drive command request
1702 * @rq: request object
1704 * Initialize a request before we fill it in and send it down to
1705 * ide_do_drive_cmd. Commands must be set up by this function. Right
1706 * now it doesn't do a lot, but if that changes abusers will have a
1710 void ide_init_drive_cmd (struct request *rq)
1712 memset(rq, 0, sizeof(*rq));
1713 rq->cmd_type = REQ_TYPE_ATA_CMD;
1717 EXPORT_SYMBOL(ide_init_drive_cmd);
1720 * ide_do_drive_cmd - issue IDE special command
1721 * @drive: device to issue command
1722 * @rq: request to issue
1723 * @action: action for processing
1725 * This function issues a special IDE device request
1726 * onto the request queue.
1728 * If action is ide_wait, then the rq is queued at the end of the
1729 * request queue, and the function sleeps until it has been processed.
1730 * This is for use when invoked from an ioctl handler.
1732 * If action is ide_preempt, then the rq is queued at the head of
1733 * the request queue, displacing the currently-being-processed
1734 * request and this function returns immediately without waiting
1735 * for the new rq to be completed. This is VERY DANGEROUS, and is
1736 * intended for careful use by the ATAPI tape/cdrom driver code.
1738 * If action is ide_end, then the rq is queued at the end of the
1739 * request queue, and the function returns immediately without waiting
1740 * for the new rq to be completed. This is again intended for careful
1741 * use by the ATAPI tape/cdrom driver code.
1744 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1746 unsigned long flags;
1747 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1748 DECLARE_COMPLETION_ONSTACK(wait);
1749 int where = ELEVATOR_INSERT_BACK, err;
1750 int must_wait = (action == ide_wait || action == ide_head_wait);
1755 * we need to hold an extra reference to request for safe inspection
1760 rq->end_io_data = &wait;
1761 rq->end_io = blk_end_sync_rq;
1764 spin_lock_irqsave(&ide_lock, flags);
1765 if (action == ide_preempt)
1767 if (action == ide_preempt || action == ide_head_wait) {
1768 where = ELEVATOR_INSERT_FRONT;
1769 rq->cmd_flags |= REQ_PREEMPT;
1771 __elv_add_request(drive->queue, rq, where, 0);
1772 ide_do_request(hwgroup, IDE_NO_IRQ);
1773 spin_unlock_irqrestore(&ide_lock, flags);
1777 wait_for_completion(&wait);
1781 blk_put_request(rq);
1787 EXPORT_SYMBOL(ide_do_drive_cmd);