2 * Support for IDE interfaces on PowerMacs.
4 * These IDE interfaces are memory-mapped and have a DBDMA channel
7 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8 * Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Some code taken from drivers/ide/ide-dma.c:
17 * Copyright (c) 1995-1998 Mark Lord
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/ide.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/pci.h>
33 #include <linux/adb.h>
34 #include <linux/pmu.h>
35 #include <linux/scatterlist.h>
39 #include <asm/dbdma.h>
41 #include <asm/pci-bridge.h>
42 #include <asm/machdep.h>
43 #include <asm/pmac_feature.h>
44 #include <asm/sections.h>
48 #include <asm/mediabay.h>
51 #define DRV_NAME "ide-pmac"
55 #define DMA_WAIT_TIMEOUT 50
57 typedef struct pmac_ide_hwif {
58 unsigned long regbase;
62 unsigned mediabay : 1;
63 unsigned broken_dma : 1;
64 unsigned broken_dma_warn : 1;
65 struct device_node* node;
66 struct macio_dev *mdev;
68 volatile u32 __iomem * *kauai_fcr;
69 /* Those fields are duplicating what is in hwif. We currently
70 * can't use the hwif ones because of some assumptions that are
71 * beeing done by the generic code about the kind of dma controller
72 * and format of the dma table. This will have to be fixed though.
74 volatile struct dbdma_regs __iomem * dma_regs;
75 struct dbdma_cmd* dma_table_cpu;
79 controller_ohare, /* OHare based */
80 controller_heathrow, /* Heathrow/Paddington */
81 controller_kl_ata3, /* KeyLargo ATA-3 */
82 controller_kl_ata4, /* KeyLargo ATA-4 */
83 controller_un_ata6, /* UniNorth2 ATA-6 */
84 controller_k2_ata6, /* K2 ATA-6 */
85 controller_sh_ata6, /* Shasta ATA-6 */
88 static const char* model_name[] = {
89 "OHare ATA", /* OHare based */
90 "Heathrow ATA", /* Heathrow/Paddington */
91 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
92 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
93 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
94 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
95 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
99 * Extra registers, both 32-bit little-endian
101 #define IDE_TIMING_CONFIG 0x200
102 #define IDE_INTERRUPT 0x300
104 /* Kauai (U2) ATA has different register setup */
105 #define IDE_KAUAI_PIO_CONFIG 0x200
106 #define IDE_KAUAI_ULTRA_CONFIG 0x210
107 #define IDE_KAUAI_POLL_CONFIG 0x220
110 * Timing configuration register definitions
113 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
114 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
115 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
116 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
117 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
119 /* 133Mhz cell, found in shasta.
120 * See comments about 100 Mhz Uninorth 2...
121 * Note that PIO_MASK and MDMA_MASK seem to overlap
123 #define TR_133_PIOREG_PIO_MASK 0xff000fff
124 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
125 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
126 #define TR_133_UDMAREG_UDMA_EN 0x00000001
128 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
129 * this one yet, it appears as a pci device (106b/0033) on uninorth
130 * internal PCI bus and it's clock is controlled like gem or fw. It
131 * appears to be an evolution of keylargo ATA4 with a timing register
132 * extended to 2 32bits registers and a similar DBDMA channel. Other
133 * registers seem to exist but I can't tell much about them.
135 * So far, I'm using pre-calculated tables for this extracted from
136 * the values used by the MacOS X driver.
138 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
139 * register controls the UDMA timings. At least, it seems bit 0
140 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
141 * cycle time in units of 10ns. Bits 8..15 are used by I don't
142 * know their meaning yet
144 #define TR_100_PIOREG_PIO_MASK 0xff000fff
145 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
146 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
147 #define TR_100_UDMAREG_UDMA_EN 0x00000001
150 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
151 * 40 connector cable and to 4 on 80 connector one.
152 * Clock unit is 15ns (66Mhz)
154 * 3 Values can be programmed:
155 * - Write data setup, which appears to match the cycle time. They
156 * also call it DIOW setup.
157 * - Ready to pause time (from spec)
158 * - Address setup. That one is weird. I don't see where exactly
159 * it fits in UDMA cycles, I got it's name from an obscure piece
160 * of commented out code in Darwin. They leave it to 0, we do as
161 * well, despite a comment that would lead to think it has a
163 * Apple also add 60ns to the write data setup (or cycle time ?) on
166 #define TR_66_UDMA_MASK 0xfff00000
167 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
168 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
169 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
170 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
171 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
172 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
173 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
174 #define TR_66_MDMA_MASK 0x000ffc00
175 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
176 #define TR_66_MDMA_RECOVERY_SHIFT 15
177 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
178 #define TR_66_MDMA_ACCESS_SHIFT 10
179 #define TR_66_PIO_MASK 0x000003ff
180 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
181 #define TR_66_PIO_RECOVERY_SHIFT 5
182 #define TR_66_PIO_ACCESS_MASK 0x0000001f
183 #define TR_66_PIO_ACCESS_SHIFT 0
185 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
186 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
188 * The access time and recovery time can be programmed. Some older
189 * Darwin code base limit OHare to 150ns cycle time. I decided to do
190 * the same here fore safety against broken old hardware ;)
191 * The HalfTick bit, when set, adds half a clock (15ns) to the access
192 * time and removes one from recovery. It's not supported on KeyLargo
193 * implementation afaik. The E bit appears to be set for PIO mode 0 and
194 * is used to reach long timings used in this mode.
196 #define TR_33_MDMA_MASK 0x003ff800
197 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
198 #define TR_33_MDMA_RECOVERY_SHIFT 16
199 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
200 #define TR_33_MDMA_ACCESS_SHIFT 11
201 #define TR_33_MDMA_HALFTICK 0x00200000
202 #define TR_33_PIO_MASK 0x000007ff
203 #define TR_33_PIO_E 0x00000400
204 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
205 #define TR_33_PIO_RECOVERY_SHIFT 5
206 #define TR_33_PIO_ACCESS_MASK 0x0000001f
207 #define TR_33_PIO_ACCESS_SHIFT 0
210 * Interrupt register definitions
212 #define IDE_INTR_DMA 0x80000000
213 #define IDE_INTR_DEVICE 0x40000000
216 * FCR Register on Kauai. Not sure what bit 0x4 is ...
218 #define KAUAI_FCR_UATA_MAGIC 0x00000004
219 #define KAUAI_FCR_UATA_RESET_N 0x00000002
220 #define KAUAI_FCR_UATA_ENABLE 0x00000001
222 /* Rounded Multiword DMA timings
224 * I gave up finding a generic formula for all controller
225 * types and instead, built tables based on timing values
226 * used by Apple in Darwin's implementation.
228 struct mdma_timings_t {
234 struct mdma_timings_t mdma_timings_33[] =
247 struct mdma_timings_t mdma_timings_33k[] =
260 struct mdma_timings_t mdma_timings_66[] =
273 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
275 int addrSetup; /* ??? */
278 } kl66_udma_timings[] =
280 { 0, 180, 120 }, /* Mode 0 */
281 { 0, 150, 90 }, /* 1 */
282 { 0, 120, 60 }, /* 2 */
283 { 0, 90, 45 }, /* 3 */
284 { 0, 90, 30 } /* 4 */
287 /* UniNorth 2 ATA/100 timings */
288 struct kauai_timing {
293 static struct kauai_timing kauai_pio_timings[] =
295 { 930 , 0x08000fff },
296 { 600 , 0x08000a92 },
297 { 383 , 0x0800060f },
298 { 360 , 0x08000492 },
299 { 330 , 0x0800048f },
300 { 300 , 0x080003cf },
301 { 270 , 0x080003cc },
302 { 240 , 0x0800038b },
303 { 239 , 0x0800030c },
304 { 180 , 0x05000249 },
305 { 120 , 0x04000148 },
309 static struct kauai_timing kauai_mdma_timings[] =
311 { 1260 , 0x00fff000 },
312 { 480 , 0x00618000 },
313 { 360 , 0x00492000 },
314 { 270 , 0x0038e000 },
315 { 240 , 0x0030c000 },
316 { 210 , 0x002cb000 },
317 { 180 , 0x00249000 },
318 { 150 , 0x00209000 },
319 { 120 , 0x00148000 },
323 static struct kauai_timing kauai_udma_timings[] =
325 { 120 , 0x000070c0 },
334 static struct kauai_timing shasta_pio_timings[] =
336 { 930 , 0x08000fff },
337 { 600 , 0x0A000c97 },
338 { 383 , 0x07000712 },
339 { 360 , 0x040003cd },
340 { 330 , 0x040003cd },
341 { 300 , 0x040003cd },
342 { 270 , 0x040003cd },
343 { 240 , 0x040003cd },
344 { 239 , 0x040003cd },
345 { 180 , 0x0400028b },
346 { 120 , 0x0400010a },
350 static struct kauai_timing shasta_mdma_timings[] =
352 { 1260 , 0x00fff000 },
353 { 480 , 0x00820800 },
354 { 360 , 0x00820800 },
355 { 270 , 0x00820800 },
356 { 240 , 0x00820800 },
357 { 210 , 0x00820800 },
358 { 180 , 0x00820800 },
359 { 150 , 0x0028b000 },
360 { 120 , 0x001ca000 },
364 static struct kauai_timing shasta_udma133_timings[] =
366 { 120 , 0x00035901, },
367 { 90 , 0x000348b1, },
368 { 60 , 0x00033881, },
369 { 45 , 0x00033861, },
370 { 30 , 0x00033841, },
371 { 20 , 0x00033031, },
372 { 15 , 0x00033021, },
378 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
382 for (i=0; table[i].cycle_time; i++)
383 if (cycle_time > table[i+1].cycle_time)
384 return table[i].timing_reg;
389 /* allow up to 256 DBDMA commands per xfer */
390 #define MAX_DCMDS 256
393 * Wait 1s for disk to answer on IDE bus after a hard reset
394 * of the device (via GPIO/FCR).
396 * Some devices seem to "pollute" the bus even after dropping
397 * the BSY bit (typically some combo drives slave on the UDMA
398 * bus) after a hard reset. Since we hard reset all drives on
399 * KeyLargo ATA66, we have to keep that delay around. I may end
400 * up not hard resetting anymore on these and keep the delay only
401 * for older interfaces instead (we have to reset when coming
402 * from MacOS...) --BenH.
404 #define IDE_WAKEUP_DELAY (1*HZ)
406 static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
407 static void pmac_ide_selectproc(ide_drive_t *drive);
408 static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
410 #define PMAC_IDE_REG(x) \
411 ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
414 * Apply the timings of the proper unit (master/slave) to the shared
415 * timing register when selecting that unit. This version is for
416 * ASICs with a single timing register
419 pmac_ide_selectproc(ide_drive_t *drive)
421 ide_hwif_t *hwif = drive->hwif;
422 pmac_ide_hwif_t *pmif =
423 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
426 writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
428 writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
429 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
433 * Apply the timings of the proper unit (master/slave) to the shared
434 * timing register when selecting that unit. This version is for
435 * ASICs with a dual timing register (Kauai)
438 pmac_ide_kauai_selectproc(ide_drive_t *drive)
440 ide_hwif_t *hwif = drive->hwif;
441 pmac_ide_hwif_t *pmif =
442 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
445 writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
446 writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
448 writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
449 writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
451 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
455 * Force an update of controller timing values for a given drive
458 pmac_ide_do_update_timings(ide_drive_t *drive)
460 ide_hwif_t *hwif = drive->hwif;
461 pmac_ide_hwif_t *pmif =
462 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
464 if (pmif->kind == controller_sh_ata6 ||
465 pmif->kind == controller_un_ata6 ||
466 pmif->kind == controller_k2_ata6)
467 pmac_ide_kauai_selectproc(drive);
469 pmac_ide_selectproc(drive);
472 static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd)
474 writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
475 (void)readl((void __iomem *)(hwif->io_ports.data_addr
476 + IDE_TIMING_CONFIG));
479 static void pmac_set_irq(ide_hwif_t *hwif, int on)
481 u8 ctl = ATA_DEVCTL_OBS;
483 if (on == 4) { /* hack for SRST */
490 writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
491 (void)readl((void __iomem *)(hwif->io_ports.data_addr
492 + IDE_TIMING_CONFIG));
496 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
499 pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
501 ide_hwif_t *hwif = drive->hwif;
502 pmac_ide_hwif_t *pmif =
503 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
504 struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
506 unsigned accessTicks, recTicks;
507 unsigned accessTime, recTime;
508 unsigned int cycle_time;
510 /* which drive is it ? */
511 timings = &pmif->timings[drive->dn & 1];
514 cycle_time = ide_pio_cycle_time(drive, pio);
516 switch (pmif->kind) {
517 case controller_sh_ata6: {
519 u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
520 t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
523 case controller_un_ata6:
524 case controller_k2_ata6: {
526 u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
527 t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
530 case controller_kl_ata4:
532 recTime = cycle_time - tim->active - tim->setup;
533 recTime = max(recTime, 150U);
534 accessTime = tim->active;
535 accessTime = max(accessTime, 150U);
536 accessTicks = SYSCLK_TICKS_66(accessTime);
537 accessTicks = min(accessTicks, 0x1fU);
538 recTicks = SYSCLK_TICKS_66(recTime);
539 recTicks = min(recTicks, 0x1fU);
540 t = (t & ~TR_66_PIO_MASK) |
541 (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
542 (recTicks << TR_66_PIO_RECOVERY_SHIFT);
547 recTime = cycle_time - tim->active - tim->setup;
548 recTime = max(recTime, 150U);
549 accessTime = tim->active;
550 accessTime = max(accessTime, 150U);
551 accessTicks = SYSCLK_TICKS(accessTime);
552 accessTicks = min(accessTicks, 0x1fU);
553 accessTicks = max(accessTicks, 4U);
554 recTicks = SYSCLK_TICKS(recTime);
555 recTicks = min(recTicks, 0x1fU);
556 recTicks = max(recTicks, 5U) - 4;
558 recTicks--; /* guess, but it's only for PIO0, so... */
561 t = (t & ~TR_33_PIO_MASK) |
562 (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
563 (recTicks << TR_33_PIO_RECOVERY_SHIFT);
570 #ifdef IDE_PMAC_DEBUG
571 printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
572 drive->name, pio, *timings);
576 pmac_ide_do_update_timings(drive);
580 * Calculate KeyLargo ATA/66 UDMA timings
583 set_timings_udma_ata4(u32 *timings, u8 speed)
585 unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
587 if (speed > XFER_UDMA_4)
590 rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
591 wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
592 addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
594 *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
595 (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
596 (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
597 (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
599 #ifdef IDE_PMAC_DEBUG
600 printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
601 speed & 0xf, *timings);
608 * Calculate Kauai ATA/100 UDMA timings
611 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
613 struct ide_timing *t = ide_timing_find_mode(speed);
616 if (speed > XFER_UDMA_5 || t == NULL)
618 tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
619 *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
620 *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
626 * Calculate Shasta ATA/133 UDMA timings
629 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
631 struct ide_timing *t = ide_timing_find_mode(speed);
634 if (speed > XFER_UDMA_6 || t == NULL)
636 tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
637 *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
638 *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
644 * Calculate MDMA timings for all cells
647 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
651 int cycleTime, accessTime = 0, recTime = 0;
652 unsigned accessTicks, recTicks;
653 struct mdma_timings_t* tm = NULL;
656 /* Get default cycle time for mode */
657 switch(speed & 0xf) {
658 case 0: cycleTime = 480; break;
659 case 1: cycleTime = 150; break;
660 case 2: cycleTime = 120; break;
666 /* Check if drive provides explicit DMA cycle time */
667 if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME])
668 cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime);
670 /* OHare limits according to some old Apple sources */
671 if ((intf_type == controller_ohare) && (cycleTime < 150))
673 /* Get the proper timing array for this controller */
675 case controller_sh_ata6:
676 case controller_un_ata6:
677 case controller_k2_ata6:
679 case controller_kl_ata4:
680 tm = mdma_timings_66;
682 case controller_kl_ata3:
683 tm = mdma_timings_33k;
686 tm = mdma_timings_33;
690 /* Lookup matching access & recovery times */
693 if (tm[i+1].cycleTime < cycleTime)
697 cycleTime = tm[i].cycleTime;
698 accessTime = tm[i].accessTime;
699 recTime = tm[i].recoveryTime;
701 #ifdef IDE_PMAC_DEBUG
702 printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
703 drive->name, cycleTime, accessTime, recTime);
707 case controller_sh_ata6: {
709 u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
710 *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
711 *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
713 case controller_un_ata6:
714 case controller_k2_ata6: {
716 u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
717 *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
718 *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
721 case controller_kl_ata4:
723 accessTicks = SYSCLK_TICKS_66(accessTime);
724 accessTicks = min(accessTicks, 0x1fU);
725 accessTicks = max(accessTicks, 0x1U);
726 recTicks = SYSCLK_TICKS_66(recTime);
727 recTicks = min(recTicks, 0x1fU);
728 recTicks = max(recTicks, 0x3U);
729 /* Clear out mdma bits and disable udma */
730 *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
731 (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
732 (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
734 case controller_kl_ata3:
735 /* 33Mhz cell on KeyLargo */
736 accessTicks = SYSCLK_TICKS(accessTime);
737 accessTicks = max(accessTicks, 1U);
738 accessTicks = min(accessTicks, 0x1fU);
739 accessTime = accessTicks * IDE_SYSCLK_NS;
740 recTicks = SYSCLK_TICKS(recTime);
741 recTicks = max(recTicks, 1U);
742 recTicks = min(recTicks, 0x1fU);
743 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
744 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
745 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
748 /* 33Mhz cell on others */
750 int origAccessTime = accessTime;
751 int origRecTime = recTime;
753 accessTicks = SYSCLK_TICKS(accessTime);
754 accessTicks = max(accessTicks, 1U);
755 accessTicks = min(accessTicks, 0x1fU);
756 accessTime = accessTicks * IDE_SYSCLK_NS;
757 recTicks = SYSCLK_TICKS(recTime);
758 recTicks = max(recTicks, 2U) - 1;
759 recTicks = min(recTicks, 0x1fU);
760 recTime = (recTicks + 1) * IDE_SYSCLK_NS;
761 if ((accessTicks > 1) &&
762 ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
763 ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
767 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
768 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
769 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
771 *timings |= TR_33_MDMA_HALFTICK;
774 #ifdef IDE_PMAC_DEBUG
775 printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
776 drive->name, speed & 0xf, *timings);
780 static void pmac_ide_set_dma_mode(ide_drive_t *drive, const u8 speed)
782 ide_hwif_t *hwif = drive->hwif;
783 pmac_ide_hwif_t *pmif =
784 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
786 u32 *timings, *timings2, tl[2];
787 u8 unit = drive->dn & 1;
789 timings = &pmif->timings[unit];
790 timings2 = &pmif->timings[unit+2];
792 /* Copy timings to local image */
796 if (speed >= XFER_UDMA_0) {
797 if (pmif->kind == controller_kl_ata4)
798 ret = set_timings_udma_ata4(&tl[0], speed);
799 else if (pmif->kind == controller_un_ata6
800 || pmif->kind == controller_k2_ata6)
801 ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
802 else if (pmif->kind == controller_sh_ata6)
803 ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
807 set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
812 /* Apply timings to controller */
816 pmac_ide_do_update_timings(drive);
820 * Blast some well known "safe" values to the timing registers at init or
821 * wakeup from sleep time, before we do real calculation
824 sanitize_timings(pmac_ide_hwif_t *pmif)
826 unsigned int value, value2 = 0;
829 case controller_sh_ata6:
833 case controller_un_ata6:
834 case controller_k2_ata6:
838 case controller_kl_ata4:
841 case controller_kl_ata3:
844 case controller_heathrow:
845 case controller_ohare:
850 pmif->timings[0] = pmif->timings[1] = value;
851 pmif->timings[2] = pmif->timings[3] = value2;
854 /* Suspend call back, should be called after the child devices
855 * have actually been suspended
857 static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
859 /* We clear the timings */
860 pmif->timings[0] = 0;
861 pmif->timings[1] = 0;
863 disable_irq(pmif->irq);
865 /* The media bay will handle itself just fine */
869 /* Kauai has bus control FCRs directly here */
870 if (pmif->kauai_fcr) {
871 u32 fcr = readl(pmif->kauai_fcr);
872 fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
873 writel(fcr, pmif->kauai_fcr);
876 /* Disable the bus on older machines and the cell on kauai */
877 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
883 /* Resume call back, should be called before the child devices
886 static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
888 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
889 if (!pmif->mediabay) {
890 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
891 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
893 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
895 /* Kauai has it different */
896 if (pmif->kauai_fcr) {
897 u32 fcr = readl(pmif->kauai_fcr);
898 fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
899 writel(fcr, pmif->kauai_fcr);
902 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
905 /* Sanitize drive timings */
906 sanitize_timings(pmif);
908 enable_irq(pmif->irq);
913 static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
915 pmac_ide_hwif_t *pmif =
916 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
917 struct device_node *np = pmif->node;
918 const char *cable = of_get_property(np, "cable-type", NULL);
920 /* Get cable type from device-tree. */
921 if (cable && !strncmp(cable, "80-", 3))
922 return ATA_CBL_PATA80;
925 * G5's seem to have incorrect cable type in device-tree.
926 * Let's assume they have a 80 conductor cable, this seem
927 * to be always the case unless the user mucked around.
929 if (of_device_is_compatible(np, "K2-UATA") ||
930 of_device_is_compatible(np, "shasta-ata"))
931 return ATA_CBL_PATA80;
933 return ATA_CBL_PATA40;
936 static void pmac_ide_init_dev(ide_drive_t *drive)
938 ide_hwif_t *hwif = drive->hwif;
939 pmac_ide_hwif_t *pmif =
940 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
942 if (pmif->mediabay) {
943 #ifdef CONFIG_PMAC_MEDIABAY
944 if (check_media_bay_by_base(pmif->regbase, MB_CD) == 0) {
945 drive->dev_flags &= ~IDE_DFLAG_NOPROBE;
949 drive->dev_flags |= IDE_DFLAG_NOPROBE;
953 static const struct ide_tp_ops pmac_tp_ops = {
954 .exec_command = pmac_exec_command,
955 .read_status = ide_read_status,
956 .read_altstatus = ide_read_altstatus,
958 .set_irq = pmac_set_irq,
960 .tf_load = ide_tf_load,
961 .tf_read = ide_tf_read,
963 .input_data = ide_input_data,
964 .output_data = ide_output_data,
967 static const struct ide_port_ops pmac_ide_ata6_port_ops = {
968 .init_dev = pmac_ide_init_dev,
969 .set_pio_mode = pmac_ide_set_pio_mode,
970 .set_dma_mode = pmac_ide_set_dma_mode,
971 .selectproc = pmac_ide_kauai_selectproc,
972 .cable_detect = pmac_ide_cable_detect,
975 static const struct ide_port_ops pmac_ide_ata4_port_ops = {
976 .init_dev = pmac_ide_init_dev,
977 .set_pio_mode = pmac_ide_set_pio_mode,
978 .set_dma_mode = pmac_ide_set_dma_mode,
979 .selectproc = pmac_ide_selectproc,
980 .cable_detect = pmac_ide_cable_detect,
983 static const struct ide_port_ops pmac_ide_port_ops = {
984 .init_dev = pmac_ide_init_dev,
985 .set_pio_mode = pmac_ide_set_pio_mode,
986 .set_dma_mode = pmac_ide_set_dma_mode,
987 .selectproc = pmac_ide_selectproc,
990 static const struct ide_dma_ops pmac_dma_ops;
992 static const struct ide_port_info pmac_port_info = {
994 .init_dma = pmac_ide_init_dma,
996 .tp_ops = &pmac_tp_ops,
997 .port_ops = &pmac_ide_port_ops,
998 .dma_ops = &pmac_dma_ops,
999 .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
1000 IDE_HFLAG_POST_SET_MODE |
1002 IDE_HFLAG_UNMASK_IRQS,
1003 .pio_mask = ATA_PIO4,
1004 .mwdma_mask = ATA_MWDMA2,
1008 * Setup, register & probe an IDE channel driven by this driver, this is
1009 * called by one of the 2 probe functions (macio or PCI).
1011 static int __devinit pmac_ide_setup_device(pmac_ide_hwif_t *pmif, hw_regs_t *hw)
1013 struct device_node *np = pmif->node;
1015 struct ide_host *host;
1017 hw_regs_t *hws[] = { hw, NULL, NULL, NULL };
1018 struct ide_port_info d = pmac_port_info;
1021 pmif->broken_dma = pmif->broken_dma_warn = 0;
1022 if (of_device_is_compatible(np, "shasta-ata")) {
1023 pmif->kind = controller_sh_ata6;
1024 d.port_ops = &pmac_ide_ata6_port_ops;
1025 d.udma_mask = ATA_UDMA6;
1026 } else if (of_device_is_compatible(np, "kauai-ata")) {
1027 pmif->kind = controller_un_ata6;
1028 d.port_ops = &pmac_ide_ata6_port_ops;
1029 d.udma_mask = ATA_UDMA5;
1030 } else if (of_device_is_compatible(np, "K2-UATA")) {
1031 pmif->kind = controller_k2_ata6;
1032 d.port_ops = &pmac_ide_ata6_port_ops;
1033 d.udma_mask = ATA_UDMA5;
1034 } else if (of_device_is_compatible(np, "keylargo-ata")) {
1035 if (strcmp(np->name, "ata-4") == 0) {
1036 pmif->kind = controller_kl_ata4;
1037 d.port_ops = &pmac_ide_ata4_port_ops;
1038 d.udma_mask = ATA_UDMA4;
1040 pmif->kind = controller_kl_ata3;
1041 } else if (of_device_is_compatible(np, "heathrow-ata")) {
1042 pmif->kind = controller_heathrow;
1044 pmif->kind = controller_ohare;
1045 pmif->broken_dma = 1;
1048 bidp = of_get_property(np, "AAPL,bus-id", NULL);
1049 pmif->aapl_bus_id = bidp ? *bidp : 0;
1051 /* On Kauai-type controllers, we make sure the FCR is correct */
1052 if (pmif->kauai_fcr)
1053 writel(KAUAI_FCR_UATA_MAGIC |
1054 KAUAI_FCR_UATA_RESET_N |
1055 KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1059 /* Make sure we have sane timings */
1060 sanitize_timings(pmif);
1062 host = ide_host_alloc(&d, hws);
1065 hwif = host->ports[0];
1067 #ifndef CONFIG_PPC64
1068 /* XXX FIXME: Media bay stuff need re-organizing */
1069 if (np->parent && np->parent->name
1070 && strcasecmp(np->parent->name, "media-bay") == 0) {
1071 #ifdef CONFIG_PMAC_MEDIABAY
1072 media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq,
1074 #endif /* CONFIG_PMAC_MEDIABAY */
1077 pmif->aapl_bus_id = 1;
1078 } else if (pmif->kind == controller_ohare) {
1079 /* The code below is having trouble on some ohare machines
1080 * (timing related ?). Until I can put my hand on one of these
1081 * units, I keep the old way
1083 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1087 /* This is necessary to enable IDE when net-booting */
1088 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1089 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1091 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1092 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1095 printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
1096 "bus ID %d%s, irq %d\n", model_name[pmif->kind],
1097 pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
1098 pmif->mediabay ? " (mediabay)" : "", hw->irq);
1100 rc = ide_host_register(host, &d, hws);
1102 ide_host_free(host);
1109 static void __devinit pmac_ide_init_ports(hw_regs_t *hw, unsigned long base)
1113 for (i = 0; i < 8; ++i)
1114 hw->io_ports_array[i] = base + i * 0x10;
1116 hw->io_ports.ctl_addr = base + 0x160;
1120 * Attach to a macio probed interface
1122 static int __devinit
1123 pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1126 unsigned long regbase;
1127 pmac_ide_hwif_t *pmif;
1131 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1135 if (macio_resource_count(mdev) == 0) {
1136 printk(KERN_WARNING "ide-pmac: no address for %s\n",
1137 mdev->ofdev.node->full_name);
1142 /* Request memory resource for IO ports */
1143 if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1144 printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1145 "%s!\n", mdev->ofdev.node->full_name);
1150 /* XXX This is bogus. Should be fixed in the registry by checking
1151 * the kind of host interrupt controller, a bit like gatwick
1152 * fixes in irq.c. That works well enough for the single case
1153 * where that happens though...
1155 if (macio_irq_count(mdev) == 0) {
1156 printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
1157 "13\n", mdev->ofdev.node->full_name);
1158 irq = irq_create_mapping(NULL, 13);
1160 irq = macio_irq(mdev, 0);
1162 base = ioremap(macio_resource_start(mdev, 0), 0x400);
1163 regbase = (unsigned long) base;
1166 pmif->node = mdev->ofdev.node;
1167 pmif->regbase = regbase;
1169 pmif->kauai_fcr = NULL;
1171 if (macio_resource_count(mdev) >= 2) {
1172 if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1173 printk(KERN_WARNING "ide-pmac: can't request DMA "
1174 "resource for %s!\n",
1175 mdev->ofdev.node->full_name);
1177 pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1179 pmif->dma_regs = NULL;
1181 dev_set_drvdata(&mdev->ofdev.dev, pmif);
1183 memset(&hw, 0, sizeof(hw));
1184 pmac_ide_init_ports(&hw, pmif->regbase);
1186 hw.dev = &mdev->bus->pdev->dev;
1187 hw.parent = &mdev->ofdev.dev;
1189 rc = pmac_ide_setup_device(pmif, &hw);
1191 /* The inteface is released to the common IDE layer */
1192 dev_set_drvdata(&mdev->ofdev.dev, NULL);
1194 if (pmif->dma_regs) {
1195 iounmap(pmif->dma_regs);
1196 macio_release_resource(mdev, 1);
1198 macio_release_resource(mdev, 0);
1210 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1212 pmac_ide_hwif_t *pmif =
1213 (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1216 if (mesg.event != mdev->ofdev.dev.power.power_state.event
1217 && (mesg.event & PM_EVENT_SLEEP)) {
1218 rc = pmac_ide_do_suspend(pmif);
1220 mdev->ofdev.dev.power.power_state = mesg;
1227 pmac_ide_macio_resume(struct macio_dev *mdev)
1229 pmac_ide_hwif_t *pmif =
1230 (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1233 if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1234 rc = pmac_ide_do_resume(pmif);
1236 mdev->ofdev.dev.power.power_state = PMSG_ON;
1243 * Attach to a PCI probed interface
1245 static int __devinit
1246 pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1248 struct device_node *np;
1249 pmac_ide_hwif_t *pmif;
1251 unsigned long rbase, rlen;
1255 np = pci_device_to_OF_node(pdev);
1257 printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1261 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1265 if (pci_enable_device(pdev)) {
1266 printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1267 "%s\n", np->full_name);
1271 pci_set_master(pdev);
1273 if (pci_request_regions(pdev, "Kauai ATA")) {
1274 printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1275 "%s\n", np->full_name);
1283 rbase = pci_resource_start(pdev, 0);
1284 rlen = pci_resource_len(pdev, 0);
1286 base = ioremap(rbase, rlen);
1287 pmif->regbase = (unsigned long) base + 0x2000;
1288 pmif->dma_regs = base + 0x1000;
1289 pmif->kauai_fcr = base;
1290 pmif->irq = pdev->irq;
1292 pci_set_drvdata(pdev, pmif);
1294 memset(&hw, 0, sizeof(hw));
1295 pmac_ide_init_ports(&hw, pmif->regbase);
1297 hw.dev = &pdev->dev;
1299 rc = pmac_ide_setup_device(pmif, &hw);
1301 /* The inteface is released to the common IDE layer */
1302 pci_set_drvdata(pdev, NULL);
1304 pci_release_regions(pdev);
1316 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1318 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)pci_get_drvdata(pdev);
1321 if (mesg.event != pdev->dev.power.power_state.event
1322 && (mesg.event & PM_EVENT_SLEEP)) {
1323 rc = pmac_ide_do_suspend(pmif);
1325 pdev->dev.power.power_state = mesg;
1332 pmac_ide_pci_resume(struct pci_dev *pdev)
1334 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)pci_get_drvdata(pdev);
1337 if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1338 rc = pmac_ide_do_resume(pmif);
1340 pdev->dev.power.power_state = PMSG_ON;
1346 static struct of_device_id pmac_ide_macio_match[] =
1363 static struct macio_driver pmac_ide_macio_driver =
1366 .match_table = pmac_ide_macio_match,
1367 .probe = pmac_ide_macio_attach,
1368 .suspend = pmac_ide_macio_suspend,
1369 .resume = pmac_ide_macio_resume,
1372 static const struct pci_device_id pmac_ide_pci_match[] = {
1373 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
1374 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
1375 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
1376 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
1377 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
1381 static struct pci_driver pmac_ide_pci_driver = {
1383 .id_table = pmac_ide_pci_match,
1384 .probe = pmac_ide_pci_attach,
1385 .suspend = pmac_ide_pci_suspend,
1386 .resume = pmac_ide_pci_resume,
1388 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1390 int __init pmac_ide_probe(void)
1394 if (!machine_is(powermac))
1397 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1398 error = pci_register_driver(&pmac_ide_pci_driver);
1401 error = macio_register_driver(&pmac_ide_macio_driver);
1403 pci_unregister_driver(&pmac_ide_pci_driver);
1407 error = macio_register_driver(&pmac_ide_macio_driver);
1410 error = pci_register_driver(&pmac_ide_pci_driver);
1412 macio_unregister_driver(&pmac_ide_macio_driver);
1421 * pmac_ide_build_dmatable builds the DBDMA command list
1422 * for a transfer and sets the DBDMA channel to point to it.
1424 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd)
1426 ide_hwif_t *hwif = drive->hwif;
1427 pmac_ide_hwif_t *pmif =
1428 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1429 struct dbdma_cmd *table;
1430 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1431 struct scatterlist *sg;
1432 int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1433 int i = cmd->sg_nents, count = 0;
1435 /* DMA table is already aligned */
1436 table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1438 /* Make sure DMA controller is stopped (necessary ?) */
1439 writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1440 while (readl(&dma->status) & RUN)
1443 /* Build DBDMA commands list */
1444 sg = hwif->sg_table;
1445 while (i && sg_dma_len(sg)) {
1449 cur_addr = sg_dma_address(sg);
1450 cur_len = sg_dma_len(sg);
1452 if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1453 if (pmif->broken_dma_warn == 0) {
1454 printk(KERN_WARNING "%s: DMA on non aligned address, "
1455 "switching to PIO on Ohare chipset\n", drive->name);
1456 pmif->broken_dma_warn = 1;
1458 goto use_pio_instead;
1461 unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1463 if (count++ >= MAX_DCMDS) {
1464 printk(KERN_WARNING "%s: DMA table too small\n",
1466 goto use_pio_instead;
1468 st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1469 st_le16(&table->req_count, tc);
1470 st_le32(&table->phy_addr, cur_addr);
1472 table->xfer_status = 0;
1473 table->res_count = 0;
1482 /* convert the last command to an input/output last command */
1484 st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1485 /* add the stop command to the end of the list */
1486 memset(table, 0, sizeof(struct dbdma_cmd));
1487 st_le16(&table->command, DBDMA_STOP);
1489 writel(hwif->dmatable_dma, &dma->cmdptr);
1493 printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1496 ide_destroy_dmatable(drive);
1498 return 0; /* revert to PIO for this request */
1502 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1503 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1505 static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd)
1507 ide_hwif_t *hwif = drive->hwif;
1508 pmac_ide_hwif_t *pmif =
1509 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1510 u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4);
1511 u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1513 if (pmac_ide_build_dmatable(drive, cmd) == 0) {
1514 ide_map_sg(drive, cmd);
1518 /* Apple adds 60ns to wrDataSetup on reads */
1519 if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1520 writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL),
1521 PMAC_IDE_REG(IDE_TIMING_CONFIG));
1522 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1525 drive->waiting_for_dma = 1;
1531 * Kick the DMA controller into life after the DMA command has been issued
1535 pmac_ide_dma_start(ide_drive_t *drive)
1537 ide_hwif_t *hwif = drive->hwif;
1538 pmac_ide_hwif_t *pmif =
1539 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1540 volatile struct dbdma_regs __iomem *dma;
1542 dma = pmif->dma_regs;
1544 writel((RUN << 16) | RUN, &dma->control);
1545 /* Make sure it gets to the controller right now */
1546 (void)readl(&dma->control);
1550 * After a DMA transfer, make sure the controller is stopped
1553 pmac_ide_dma_end (ide_drive_t *drive)
1555 ide_hwif_t *hwif = drive->hwif;
1556 pmac_ide_hwif_t *pmif =
1557 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1558 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1561 drive->waiting_for_dma = 0;
1562 dstat = readl(&dma->status);
1563 writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1565 ide_destroy_dmatable(drive);
1567 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1568 * in theory, but with ATAPI decices doing buffer underruns, that would
1569 * cause us to disable DMA, which isn't what we want
1571 return (dstat & (RUN|DEAD)) != RUN;
1575 * Check out that the interrupt we got was for us. We can't always know this
1576 * for sure with those Apple interfaces (well, we could on the recent ones but
1577 * that's not implemented yet), on the other hand, we don't have shared interrupts
1578 * so it's not really a problem
1581 pmac_ide_dma_test_irq (ide_drive_t *drive)
1583 ide_hwif_t *hwif = drive->hwif;
1584 pmac_ide_hwif_t *pmif =
1585 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1586 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1587 unsigned long status, timeout;
1589 /* We have to things to deal with here:
1591 * - The dbdma won't stop if the command was started
1592 * but completed with an error without transferring all
1593 * datas. This happens when bad blocks are met during
1594 * a multi-block transfer.
1596 * - The dbdma fifo hasn't yet finished flushing to
1597 * to system memory when the disk interrupt occurs.
1601 /* If ACTIVE is cleared, the STOP command have passed and
1602 * transfer is complete.
1604 status = readl(&dma->status);
1605 if (!(status & ACTIVE))
1608 /* If dbdma didn't execute the STOP command yet, the
1609 * active bit is still set. We consider that we aren't
1610 * sharing interrupts (which is hopefully the case with
1611 * those controllers) and so we just try to flush the
1612 * channel for pending data in the fifo
1615 writel((FLUSH << 16) | FLUSH, &dma->control);
1619 status = readl(&dma->status);
1620 if ((status & FLUSH) == 0)
1622 if (++timeout > 100) {
1623 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1624 timeout flushing channel\n", hwif->index);
1631 static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1636 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1638 ide_hwif_t *hwif = drive->hwif;
1639 pmac_ide_hwif_t *pmif =
1640 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1641 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1642 unsigned long status = readl(&dma->status);
1644 printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1647 static const struct ide_dma_ops pmac_dma_ops = {
1648 .dma_host_set = pmac_ide_dma_host_set,
1649 .dma_setup = pmac_ide_dma_setup,
1650 .dma_start = pmac_ide_dma_start,
1651 .dma_end = pmac_ide_dma_end,
1652 .dma_test_irq = pmac_ide_dma_test_irq,
1653 .dma_timeout = ide_dma_timeout,
1654 .dma_lost_irq = pmac_ide_dma_lost_irq,
1658 * Allocate the data structures needed for using DMA with an interface
1659 * and fill the proper list of functions pointers
1661 static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
1662 const struct ide_port_info *d)
1664 pmac_ide_hwif_t *pmif =
1665 (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1666 struct pci_dev *dev = to_pci_dev(hwif->dev);
1668 /* We won't need pci_dev if we switch to generic consistent
1671 if (dev == NULL || pmif->dma_regs == 0)
1674 * Allocate space for the DBDMA commands.
1675 * The +2 is +1 for the stop command and +1 to allow for
1676 * aligning the start address to a multiple of 16 bytes.
1678 pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
1680 (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1681 &hwif->dmatable_dma);
1682 if (pmif->dma_table_cpu == NULL) {
1683 printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1688 hwif->sg_max_nents = MAX_DCMDS;
1693 module_init(pmac_ide_probe);
1695 MODULE_LICENSE("GPL");