2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <asm/cacheflush.h>
40 #include <asm/iommu.h>
43 #define ROOT_SIZE VTD_PAGE_SIZE
44 #define CONTEXT_SIZE VTD_PAGE_SIZE
46 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
47 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
49 #define IOAPIC_RANGE_START (0xfee00000)
50 #define IOAPIC_RANGE_END (0xfeefffff)
51 #define IOVA_START_ADDR (0x1000)
53 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
55 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
57 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
58 #define DMA_32BIT_PFN IOVA_PFN(DMA_32BIT_MASK)
59 #define DMA_64BIT_PFN IOVA_PFN(DMA_64BIT_MASK)
61 /* global iommu list, set NULL for ignored DMAR units */
62 static struct intel_iommu **g_iommus;
64 static int rwbf_quirk;
69 * 12-63: Context Ptr (12 - (haw-1))
76 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
77 static inline bool root_present(struct root_entry *root)
79 return (root->val & 1);
81 static inline void set_root_present(struct root_entry *root)
85 static inline void set_root_value(struct root_entry *root, unsigned long value)
87 root->val |= value & VTD_PAGE_MASK;
90 static inline struct context_entry *
91 get_context_addr_from_root(struct root_entry *root)
93 return (struct context_entry *)
94 (root_present(root)?phys_to_virt(
95 root->val & VTD_PAGE_MASK) :
102 * 1: fault processing disable
103 * 2-3: translation type
104 * 12-63: address space root
110 struct context_entry {
115 static inline bool context_present(struct context_entry *context)
117 return (context->lo & 1);
119 static inline void context_set_present(struct context_entry *context)
124 static inline void context_set_fault_enable(struct context_entry *context)
126 context->lo &= (((u64)-1) << 2) | 1;
129 #define CONTEXT_TT_MULTI_LEVEL 0
131 static inline void context_set_translation_type(struct context_entry *context,
134 context->lo &= (((u64)-1) << 4) | 3;
135 context->lo |= (value & 3) << 2;
138 static inline void context_set_address_root(struct context_entry *context,
141 context->lo |= value & VTD_PAGE_MASK;
144 static inline void context_set_address_width(struct context_entry *context,
147 context->hi |= value & 7;
150 static inline void context_set_domain_id(struct context_entry *context,
153 context->hi |= (value & ((1 << 16) - 1)) << 8;
156 static inline void context_clear_entry(struct context_entry *context)
168 * 12-63: Host physcial address
174 static inline void dma_clear_pte(struct dma_pte *pte)
179 static inline void dma_set_pte_readable(struct dma_pte *pte)
181 pte->val |= DMA_PTE_READ;
184 static inline void dma_set_pte_writable(struct dma_pte *pte)
186 pte->val |= DMA_PTE_WRITE;
189 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
191 pte->val = (pte->val & ~3) | (prot & 3);
194 static inline u64 dma_pte_addr(struct dma_pte *pte)
196 return (pte->val & VTD_PAGE_MASK);
199 static inline void dma_set_pte_addr(struct dma_pte *pte, u64 addr)
201 pte->val |= (addr & VTD_PAGE_MASK);
204 static inline bool dma_pte_present(struct dma_pte *pte)
206 return (pte->val & 3) != 0;
209 /* devices under the same p2p bridge are owned in one domain */
210 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
212 /* domain represents a virtual machine, more than one devices
213 * across iommus may be owned in one domain, e.g. kvm guest.
215 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
218 int id; /* domain id */
219 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
221 struct list_head devices; /* all devices' list */
222 struct iova_domain iovad; /* iova's that belong to this domain */
224 struct dma_pte *pgd; /* virtual address */
225 spinlock_t mapping_lock; /* page table lock */
226 int gaw; /* max guest address width */
228 /* adjusted guest address width, 0 is level 2 30-bit */
231 int flags; /* flags to find out type of domain */
233 int iommu_coherency;/* indicate coherency of iommu access */
234 int iommu_count; /* reference count of iommu */
235 spinlock_t iommu_lock; /* protect iommu set in domain */
236 u64 max_addr; /* maximum mapped address */
239 /* PCI domain-device relationship */
240 struct device_domain_info {
241 struct list_head link; /* link to domain siblings */
242 struct list_head global; /* link to global list */
243 u8 bus; /* PCI bus numer */
244 u8 devfn; /* PCI devfn number */
245 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
246 struct dmar_domain *domain; /* pointer to domain */
249 static void flush_unmaps_timeout(unsigned long data);
251 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
253 #define HIGH_WATER_MARK 250
254 struct deferred_flush_tables {
256 struct iova *iova[HIGH_WATER_MARK];
257 struct dmar_domain *domain[HIGH_WATER_MARK];
260 static struct deferred_flush_tables *deferred_flush;
262 /* bitmap for indexing intel_iommus */
263 static int g_num_of_iommus;
265 static DEFINE_SPINLOCK(async_umap_flush_lock);
266 static LIST_HEAD(unmaps_to_do);
269 static long list_size;
271 static void domain_remove_dev_info(struct dmar_domain *domain);
273 #ifdef CONFIG_DMAR_DEFAULT_ON
274 int dmar_disabled = 0;
276 int dmar_disabled = 1;
277 #endif /*CONFIG_DMAR_DEFAULT_ON*/
279 static int __initdata dmar_map_gfx = 1;
280 static int dmar_forcedac;
281 static int intel_iommu_strict;
283 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
284 static DEFINE_SPINLOCK(device_domain_lock);
285 static LIST_HEAD(device_domain_list);
287 static struct iommu_ops intel_iommu_ops;
289 static int __init intel_iommu_setup(char *str)
294 if (!strncmp(str, "on", 2)) {
296 printk(KERN_INFO "Intel-IOMMU: enabled\n");
297 } else if (!strncmp(str, "off", 3)) {
299 printk(KERN_INFO "Intel-IOMMU: disabled\n");
300 } else if (!strncmp(str, "igfx_off", 8)) {
303 "Intel-IOMMU: disable GFX device mapping\n");
304 } else if (!strncmp(str, "forcedac", 8)) {
306 "Intel-IOMMU: Forcing DAC for PCI devices\n");
308 } else if (!strncmp(str, "strict", 6)) {
310 "Intel-IOMMU: disable batched IOTLB flush\n");
311 intel_iommu_strict = 1;
314 str += strcspn(str, ",");
320 __setup("intel_iommu=", intel_iommu_setup);
322 static struct kmem_cache *iommu_domain_cache;
323 static struct kmem_cache *iommu_devinfo_cache;
324 static struct kmem_cache *iommu_iova_cache;
326 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
331 /* trying to avoid low memory issues */
332 flags = current->flags & PF_MEMALLOC;
333 current->flags |= PF_MEMALLOC;
334 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
335 current->flags &= (~PF_MEMALLOC | flags);
340 static inline void *alloc_pgtable_page(void)
345 /* trying to avoid low memory issues */
346 flags = current->flags & PF_MEMALLOC;
347 current->flags |= PF_MEMALLOC;
348 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
349 current->flags &= (~PF_MEMALLOC | flags);
353 static inline void free_pgtable_page(void *vaddr)
355 free_page((unsigned long)vaddr);
358 static inline void *alloc_domain_mem(void)
360 return iommu_kmem_cache_alloc(iommu_domain_cache);
363 static void free_domain_mem(void *vaddr)
365 kmem_cache_free(iommu_domain_cache, vaddr);
368 static inline void * alloc_devinfo_mem(void)
370 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
373 static inline void free_devinfo_mem(void *vaddr)
375 kmem_cache_free(iommu_devinfo_cache, vaddr);
378 struct iova *alloc_iova_mem(void)
380 return iommu_kmem_cache_alloc(iommu_iova_cache);
383 void free_iova_mem(struct iova *iova)
385 kmem_cache_free(iommu_iova_cache, iova);
389 static inline int width_to_agaw(int width);
391 /* calculate agaw for each iommu.
392 * "SAGAW" may be different across iommus, use a default agaw, and
393 * get a supported less agaw for iommus that don't support the default agaw.
395 int iommu_calculate_agaw(struct intel_iommu *iommu)
400 sagaw = cap_sagaw(iommu->cap);
401 for (agaw = width_to_agaw(DEFAULT_DOMAIN_ADDRESS_WIDTH);
403 if (test_bit(agaw, &sagaw))
410 /* in native case, each domain is related to only one iommu */
411 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
415 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
417 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
418 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
421 return g_iommus[iommu_id];
424 /* "Coherency" capability may be different across iommus */
425 static void domain_update_iommu_coherency(struct dmar_domain *domain)
429 domain->iommu_coherency = 1;
431 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
432 for (; i < g_num_of_iommus; ) {
433 if (!ecap_coherent(g_iommus[i]->ecap)) {
434 domain->iommu_coherency = 0;
437 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
441 static struct intel_iommu *device_to_iommu(u8 bus, u8 devfn)
443 struct dmar_drhd_unit *drhd = NULL;
446 for_each_drhd_unit(drhd) {
450 for (i = 0; i < drhd->devices_cnt; i++)
451 if (drhd->devices[i] &&
452 drhd->devices[i]->bus->number == bus &&
453 drhd->devices[i]->devfn == devfn)
456 if (drhd->include_all)
463 static void domain_flush_cache(struct dmar_domain *domain,
464 void *addr, int size)
466 if (!domain->iommu_coherency)
467 clflush_cache_range(addr, size);
470 /* Gets context entry for a given bus and devfn */
471 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
474 struct root_entry *root;
475 struct context_entry *context;
476 unsigned long phy_addr;
479 spin_lock_irqsave(&iommu->lock, flags);
480 root = &iommu->root_entry[bus];
481 context = get_context_addr_from_root(root);
483 context = (struct context_entry *)alloc_pgtable_page();
485 spin_unlock_irqrestore(&iommu->lock, flags);
488 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
489 phy_addr = virt_to_phys((void *)context);
490 set_root_value(root, phy_addr);
491 set_root_present(root);
492 __iommu_flush_cache(iommu, root, sizeof(*root));
494 spin_unlock_irqrestore(&iommu->lock, flags);
495 return &context[devfn];
498 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
500 struct root_entry *root;
501 struct context_entry *context;
505 spin_lock_irqsave(&iommu->lock, flags);
506 root = &iommu->root_entry[bus];
507 context = get_context_addr_from_root(root);
512 ret = context_present(&context[devfn]);
514 spin_unlock_irqrestore(&iommu->lock, flags);
518 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
520 struct root_entry *root;
521 struct context_entry *context;
524 spin_lock_irqsave(&iommu->lock, flags);
525 root = &iommu->root_entry[bus];
526 context = get_context_addr_from_root(root);
528 context_clear_entry(&context[devfn]);
529 __iommu_flush_cache(iommu, &context[devfn], \
532 spin_unlock_irqrestore(&iommu->lock, flags);
535 static void free_context_table(struct intel_iommu *iommu)
537 struct root_entry *root;
540 struct context_entry *context;
542 spin_lock_irqsave(&iommu->lock, flags);
543 if (!iommu->root_entry) {
546 for (i = 0; i < ROOT_ENTRY_NR; i++) {
547 root = &iommu->root_entry[i];
548 context = get_context_addr_from_root(root);
550 free_pgtable_page(context);
552 free_pgtable_page(iommu->root_entry);
553 iommu->root_entry = NULL;
555 spin_unlock_irqrestore(&iommu->lock, flags);
558 /* page table handling */
559 #define LEVEL_STRIDE (9)
560 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
562 static inline int agaw_to_level(int agaw)
567 static inline int agaw_to_width(int agaw)
569 return 30 + agaw * LEVEL_STRIDE;
573 static inline int width_to_agaw(int width)
575 return (width - 30) / LEVEL_STRIDE;
578 static inline unsigned int level_to_offset_bits(int level)
580 return (12 + (level - 1) * LEVEL_STRIDE);
583 static inline int address_level_offset(u64 addr, int level)
585 return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
588 static inline u64 level_mask(int level)
590 return ((u64)-1 << level_to_offset_bits(level));
593 static inline u64 level_size(int level)
595 return ((u64)1 << level_to_offset_bits(level));
598 static inline u64 align_to_level(u64 addr, int level)
600 return ((addr + level_size(level) - 1) & level_mask(level));
603 static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
605 int addr_width = agaw_to_width(domain->agaw);
606 struct dma_pte *parent, *pte = NULL;
607 int level = agaw_to_level(domain->agaw);
611 BUG_ON(!domain->pgd);
613 addr &= (((u64)1) << addr_width) - 1;
614 parent = domain->pgd;
616 spin_lock_irqsave(&domain->mapping_lock, flags);
620 offset = address_level_offset(addr, level);
621 pte = &parent[offset];
625 if (!dma_pte_present(pte)) {
626 tmp_page = alloc_pgtable_page();
629 spin_unlock_irqrestore(&domain->mapping_lock,
633 domain_flush_cache(domain, tmp_page, PAGE_SIZE);
634 dma_set_pte_addr(pte, virt_to_phys(tmp_page));
636 * high level table always sets r/w, last level page
637 * table control read/write
639 dma_set_pte_readable(pte);
640 dma_set_pte_writable(pte);
641 domain_flush_cache(domain, pte, sizeof(*pte));
643 parent = phys_to_virt(dma_pte_addr(pte));
647 spin_unlock_irqrestore(&domain->mapping_lock, flags);
651 /* return address's pte at specific level */
652 static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
655 struct dma_pte *parent, *pte = NULL;
656 int total = agaw_to_level(domain->agaw);
659 parent = domain->pgd;
660 while (level <= total) {
661 offset = address_level_offset(addr, total);
662 pte = &parent[offset];
666 if (!dma_pte_present(pte))
668 parent = phys_to_virt(dma_pte_addr(pte));
674 /* clear one page's page table */
675 static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
677 struct dma_pte *pte = NULL;
679 /* get last level pte */
680 pte = dma_addr_level_pte(domain, addr, 1);
684 domain_flush_cache(domain, pte, sizeof(*pte));
688 /* clear last level pte, a tlb flush should be followed */
689 static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
691 int addr_width = agaw_to_width(domain->agaw);
693 start &= (((u64)1) << addr_width) - 1;
694 end &= (((u64)1) << addr_width) - 1;
695 /* in case it's partial page */
696 start = PAGE_ALIGN(start);
699 /* we don't need lock here, nobody else touches the iova range */
700 while (start < end) {
701 dma_pte_clear_one(domain, start);
702 start += VTD_PAGE_SIZE;
706 /* free page table pages. last level pte should already be cleared */
707 static void dma_pte_free_pagetable(struct dmar_domain *domain,
710 int addr_width = agaw_to_width(domain->agaw);
712 int total = agaw_to_level(domain->agaw);
716 start &= (((u64)1) << addr_width) - 1;
717 end &= (((u64)1) << addr_width) - 1;
719 /* we don't need lock here, nobody else touches the iova range */
721 while (level <= total) {
722 tmp = align_to_level(start, level);
723 if (tmp >= end || (tmp + level_size(level) > end))
727 pte = dma_addr_level_pte(domain, tmp, level);
730 phys_to_virt(dma_pte_addr(pte)));
732 domain_flush_cache(domain, pte, sizeof(*pte));
734 tmp += level_size(level);
739 if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
740 free_pgtable_page(domain->pgd);
746 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
748 struct root_entry *root;
751 root = (struct root_entry *)alloc_pgtable_page();
755 __iommu_flush_cache(iommu, root, ROOT_SIZE);
757 spin_lock_irqsave(&iommu->lock, flags);
758 iommu->root_entry = root;
759 spin_unlock_irqrestore(&iommu->lock, flags);
764 static void iommu_set_root_entry(struct intel_iommu *iommu)
770 addr = iommu->root_entry;
772 spin_lock_irqsave(&iommu->register_lock, flag);
773 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
775 cmd = iommu->gcmd | DMA_GCMD_SRTP;
776 writel(cmd, iommu->reg + DMAR_GCMD_REG);
778 /* Make sure hardware complete it */
779 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
780 readl, (sts & DMA_GSTS_RTPS), sts);
782 spin_unlock_irqrestore(&iommu->register_lock, flag);
785 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
790 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
792 val = iommu->gcmd | DMA_GCMD_WBF;
794 spin_lock_irqsave(&iommu->register_lock, flag);
795 writel(val, iommu->reg + DMAR_GCMD_REG);
797 /* Make sure hardware complete it */
798 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
799 readl, (!(val & DMA_GSTS_WBFS)), val);
801 spin_unlock_irqrestore(&iommu->register_lock, flag);
804 /* return value determine if we need a write buffer flush */
805 static int __iommu_flush_context(struct intel_iommu *iommu,
806 u16 did, u16 source_id, u8 function_mask, u64 type,
807 int non_present_entry_flush)
813 * In the non-present entry flush case, if hardware doesn't cache
814 * non-present entry we do nothing and if hardware cache non-present
815 * entry, we flush entries of domain 0 (the domain id is used to cache
816 * any non-present entries)
818 if (non_present_entry_flush) {
819 if (!cap_caching_mode(iommu->cap))
826 case DMA_CCMD_GLOBAL_INVL:
827 val = DMA_CCMD_GLOBAL_INVL;
829 case DMA_CCMD_DOMAIN_INVL:
830 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
832 case DMA_CCMD_DEVICE_INVL:
833 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
834 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
841 spin_lock_irqsave(&iommu->register_lock, flag);
842 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
844 /* Make sure hardware complete it */
845 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
846 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
848 spin_unlock_irqrestore(&iommu->register_lock, flag);
850 /* flush context entry will implicitly flush write buffer */
854 /* return value determine if we need a write buffer flush */
855 static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
856 u64 addr, unsigned int size_order, u64 type,
857 int non_present_entry_flush)
859 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
860 u64 val = 0, val_iva = 0;
864 * In the non-present entry flush case, if hardware doesn't cache
865 * non-present entry we do nothing and if hardware cache non-present
866 * entry, we flush entries of domain 0 (the domain id is used to cache
867 * any non-present entries)
869 if (non_present_entry_flush) {
870 if (!cap_caching_mode(iommu->cap))
877 case DMA_TLB_GLOBAL_FLUSH:
878 /* global flush doesn't need set IVA_REG */
879 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
881 case DMA_TLB_DSI_FLUSH:
882 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
884 case DMA_TLB_PSI_FLUSH:
885 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
886 /* Note: always flush non-leaf currently */
887 val_iva = size_order | addr;
892 /* Note: set drain read/write */
895 * This is probably to be super secure.. Looks like we can
896 * ignore it without any impact.
898 if (cap_read_drain(iommu->cap))
899 val |= DMA_TLB_READ_DRAIN;
901 if (cap_write_drain(iommu->cap))
902 val |= DMA_TLB_WRITE_DRAIN;
904 spin_lock_irqsave(&iommu->register_lock, flag);
905 /* Note: Only uses first TLB reg currently */
907 dmar_writeq(iommu->reg + tlb_offset, val_iva);
908 dmar_writeq(iommu->reg + tlb_offset + 8, val);
910 /* Make sure hardware complete it */
911 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
912 dmar_readq, (!(val & DMA_TLB_IVT)), val);
914 spin_unlock_irqrestore(&iommu->register_lock, flag);
916 /* check IOTLB invalidation granularity */
917 if (DMA_TLB_IAIG(val) == 0)
918 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
919 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
920 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
921 (unsigned long long)DMA_TLB_IIRG(type),
922 (unsigned long long)DMA_TLB_IAIG(val));
923 /* flush iotlb entry will implicitly flush write buffer */
927 static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
928 u64 addr, unsigned int pages, int non_present_entry_flush)
932 BUG_ON(addr & (~VTD_PAGE_MASK));
935 /* Fallback to domain selective flush if no PSI support */
936 if (!cap_pgsel_inv(iommu->cap))
937 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
939 non_present_entry_flush);
942 * PSI requires page size to be 2 ^ x, and the base address is naturally
943 * aligned to the size
945 mask = ilog2(__roundup_pow_of_two(pages));
946 /* Fallback to domain selective flush if size is too big */
947 if (mask > cap_max_amask_val(iommu->cap))
948 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
949 DMA_TLB_DSI_FLUSH, non_present_entry_flush);
951 return iommu->flush.flush_iotlb(iommu, did, addr, mask,
953 non_present_entry_flush);
956 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
961 spin_lock_irqsave(&iommu->register_lock, flags);
962 pmen = readl(iommu->reg + DMAR_PMEN_REG);
963 pmen &= ~DMA_PMEN_EPM;
964 writel(pmen, iommu->reg + DMAR_PMEN_REG);
966 /* wait for the protected region status bit to clear */
967 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
968 readl, !(pmen & DMA_PMEN_PRS), pmen);
970 spin_unlock_irqrestore(&iommu->register_lock, flags);
973 static int iommu_enable_translation(struct intel_iommu *iommu)
978 spin_lock_irqsave(&iommu->register_lock, flags);
979 writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);
981 /* Make sure hardware complete it */
982 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
983 readl, (sts & DMA_GSTS_TES), sts);
985 iommu->gcmd |= DMA_GCMD_TE;
986 spin_unlock_irqrestore(&iommu->register_lock, flags);
990 static int iommu_disable_translation(struct intel_iommu *iommu)
995 spin_lock_irqsave(&iommu->register_lock, flag);
996 iommu->gcmd &= ~DMA_GCMD_TE;
997 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
999 /* Make sure hardware complete it */
1000 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1001 readl, (!(sts & DMA_GSTS_TES)), sts);
1003 spin_unlock_irqrestore(&iommu->register_lock, flag);
1008 static int iommu_init_domains(struct intel_iommu *iommu)
1010 unsigned long ndomains;
1011 unsigned long nlongs;
1013 ndomains = cap_ndoms(iommu->cap);
1014 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1015 nlongs = BITS_TO_LONGS(ndomains);
1017 /* TBD: there might be 64K domains,
1018 * consider other allocation for future chip
1020 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1021 if (!iommu->domain_ids) {
1022 printk(KERN_ERR "Allocating domain id array failed\n");
1025 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1027 if (!iommu->domains) {
1028 printk(KERN_ERR "Allocating domain array failed\n");
1029 kfree(iommu->domain_ids);
1033 spin_lock_init(&iommu->lock);
1036 * if Caching mode is set, then invalid translations are tagged
1037 * with domainid 0. Hence we need to pre-allocate it.
1039 if (cap_caching_mode(iommu->cap))
1040 set_bit(0, iommu->domain_ids);
1045 static void domain_exit(struct dmar_domain *domain);
1046 static void vm_domain_exit(struct dmar_domain *domain);
1048 void free_dmar_iommu(struct intel_iommu *iommu)
1050 struct dmar_domain *domain;
1052 unsigned long flags;
1054 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1055 for (; i < cap_ndoms(iommu->cap); ) {
1056 domain = iommu->domains[i];
1057 clear_bit(i, iommu->domain_ids);
1059 spin_lock_irqsave(&domain->iommu_lock, flags);
1060 if (--domain->iommu_count == 0) {
1061 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1062 vm_domain_exit(domain);
1064 domain_exit(domain);
1066 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1068 i = find_next_bit(iommu->domain_ids,
1069 cap_ndoms(iommu->cap), i+1);
1072 if (iommu->gcmd & DMA_GCMD_TE)
1073 iommu_disable_translation(iommu);
1076 set_irq_data(iommu->irq, NULL);
1077 /* This will mask the irq */
1078 free_irq(iommu->irq, iommu);
1079 destroy_irq(iommu->irq);
1082 kfree(iommu->domains);
1083 kfree(iommu->domain_ids);
1085 g_iommus[iommu->seq_id] = NULL;
1087 /* if all iommus are freed, free g_iommus */
1088 for (i = 0; i < g_num_of_iommus; i++) {
1093 if (i == g_num_of_iommus)
1096 /* free context mapping */
1097 free_context_table(iommu);
1100 static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
1103 unsigned long ndomains;
1104 struct dmar_domain *domain;
1105 unsigned long flags;
1107 domain = alloc_domain_mem();
1111 ndomains = cap_ndoms(iommu->cap);
1113 spin_lock_irqsave(&iommu->lock, flags);
1114 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1115 if (num >= ndomains) {
1116 spin_unlock_irqrestore(&iommu->lock, flags);
1117 free_domain_mem(domain);
1118 printk(KERN_ERR "IOMMU: no free domain ids\n");
1122 set_bit(num, iommu->domain_ids);
1124 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1125 set_bit(iommu->seq_id, &domain->iommu_bmp);
1127 iommu->domains[num] = domain;
1128 spin_unlock_irqrestore(&iommu->lock, flags);
1133 static void iommu_free_domain(struct dmar_domain *domain)
1135 unsigned long flags;
1136 struct intel_iommu *iommu;
1138 iommu = domain_get_iommu(domain);
1140 spin_lock_irqsave(&iommu->lock, flags);
1141 clear_bit(domain->id, iommu->domain_ids);
1142 spin_unlock_irqrestore(&iommu->lock, flags);
1145 static struct iova_domain reserved_iova_list;
1146 static struct lock_class_key reserved_alloc_key;
1147 static struct lock_class_key reserved_rbtree_key;
1149 static void dmar_init_reserved_ranges(void)
1151 struct pci_dev *pdev = NULL;
1156 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1158 lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1159 &reserved_alloc_key);
1160 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1161 &reserved_rbtree_key);
1163 /* IOAPIC ranges shouldn't be accessed by DMA */
1164 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1165 IOVA_PFN(IOAPIC_RANGE_END));
1167 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1169 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1170 for_each_pci_dev(pdev) {
1173 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1174 r = &pdev->resource[i];
1175 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1179 size = r->end - addr;
1180 size = PAGE_ALIGN(size);
1181 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1182 IOVA_PFN(size + addr) - 1);
1184 printk(KERN_ERR "Reserve iova failed\n");
1190 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1192 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1195 static inline int guestwidth_to_adjustwidth(int gaw)
1198 int r = (gaw - 12) % 9;
1209 static int domain_init(struct dmar_domain *domain, int guest_width)
1211 struct intel_iommu *iommu;
1212 int adjust_width, agaw;
1213 unsigned long sagaw;
1215 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1216 spin_lock_init(&domain->mapping_lock);
1217 spin_lock_init(&domain->iommu_lock);
1219 domain_reserve_special_ranges(domain);
1221 /* calculate AGAW */
1222 iommu = domain_get_iommu(domain);
1223 if (guest_width > cap_mgaw(iommu->cap))
1224 guest_width = cap_mgaw(iommu->cap);
1225 domain->gaw = guest_width;
1226 adjust_width = guestwidth_to_adjustwidth(guest_width);
1227 agaw = width_to_agaw(adjust_width);
1228 sagaw = cap_sagaw(iommu->cap);
1229 if (!test_bit(agaw, &sagaw)) {
1230 /* hardware doesn't support it, choose a bigger one */
1231 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1232 agaw = find_next_bit(&sagaw, 5, agaw);
1236 domain->agaw = agaw;
1237 INIT_LIST_HEAD(&domain->devices);
1239 if (ecap_coherent(iommu->ecap))
1240 domain->iommu_coherency = 1;
1242 domain->iommu_coherency = 0;
1244 domain->iommu_count = 1;
1246 /* always allocate the top pgd */
1247 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1250 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1254 static void domain_exit(struct dmar_domain *domain)
1258 /* Domain 0 is reserved, so dont process it */
1262 domain_remove_dev_info(domain);
1264 put_iova_domain(&domain->iovad);
1265 end = DOMAIN_MAX_ADDR(domain->gaw);
1266 end = end & (~PAGE_MASK);
1269 dma_pte_clear_range(domain, 0, end);
1271 /* free page tables */
1272 dma_pte_free_pagetable(domain, 0, end);
1274 iommu_free_domain(domain);
1275 free_domain_mem(domain);
1278 static int domain_context_mapping_one(struct dmar_domain *domain,
1281 struct context_entry *context;
1282 unsigned long flags;
1283 struct intel_iommu *iommu;
1284 struct dma_pte *pgd;
1286 unsigned long ndomains;
1290 pr_debug("Set context mapping for %02x:%02x.%d\n",
1291 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1292 BUG_ON(!domain->pgd);
1294 iommu = device_to_iommu(bus, devfn);
1298 context = device_to_context_entry(iommu, bus, devfn);
1301 spin_lock_irqsave(&iommu->lock, flags);
1302 if (context_present(context)) {
1303 spin_unlock_irqrestore(&iommu->lock, flags);
1310 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
1313 /* find an available domain id for this device in iommu */
1314 ndomains = cap_ndoms(iommu->cap);
1315 num = find_first_bit(iommu->domain_ids, ndomains);
1316 for (; num < ndomains; ) {
1317 if (iommu->domains[num] == domain) {
1322 num = find_next_bit(iommu->domain_ids,
1323 cap_ndoms(iommu->cap), num+1);
1327 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1328 if (num >= ndomains) {
1329 spin_unlock_irqrestore(&iommu->lock, flags);
1330 printk(KERN_ERR "IOMMU: no free domain ids\n");
1334 set_bit(num, iommu->domain_ids);
1335 iommu->domains[num] = domain;
1339 /* Skip top levels of page tables for
1340 * iommu which has less agaw than default.
1342 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1343 pgd = phys_to_virt(dma_pte_addr(pgd));
1344 if (!dma_pte_present(pgd)) {
1345 spin_unlock_irqrestore(&iommu->lock, flags);
1351 context_set_domain_id(context, id);
1352 context_set_address_width(context, iommu->agaw);
1353 context_set_address_root(context, virt_to_phys(pgd));
1354 context_set_translation_type(context, CONTEXT_TT_MULTI_LEVEL);
1355 context_set_fault_enable(context);
1356 context_set_present(context);
1357 domain_flush_cache(domain, context, sizeof(*context));
1359 /* it's a non-present to present mapping */
1360 if (iommu->flush.flush_context(iommu, domain->id,
1361 (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT,
1362 DMA_CCMD_DEVICE_INVL, 1))
1363 iommu_flush_write_buffer(iommu);
1365 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH, 0);
1367 spin_unlock_irqrestore(&iommu->lock, flags);
1369 spin_lock_irqsave(&domain->iommu_lock, flags);
1370 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1371 domain->iommu_count++;
1372 domain_update_iommu_coherency(domain);
1374 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1379 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev)
1382 struct pci_dev *tmp, *parent;
1384 ret = domain_context_mapping_one(domain, pdev->bus->number,
1389 /* dependent device mapping */
1390 tmp = pci_find_upstream_pcie_bridge(pdev);
1393 /* Secondary interface's bus number and devfn 0 */
1394 parent = pdev->bus->self;
1395 while (parent != tmp) {
1396 ret = domain_context_mapping_one(domain, parent->bus->number,
1400 parent = parent->bus->self;
1402 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1403 return domain_context_mapping_one(domain,
1404 tmp->subordinate->number, 0);
1405 else /* this is a legacy PCI bridge */
1406 return domain_context_mapping_one(domain,
1407 tmp->bus->number, tmp->devfn);
1410 static int domain_context_mapped(struct pci_dev *pdev)
1413 struct pci_dev *tmp, *parent;
1414 struct intel_iommu *iommu;
1416 iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
1420 ret = device_context_mapped(iommu,
1421 pdev->bus->number, pdev->devfn);
1424 /* dependent device mapping */
1425 tmp = pci_find_upstream_pcie_bridge(pdev);
1428 /* Secondary interface's bus number and devfn 0 */
1429 parent = pdev->bus->self;
1430 while (parent != tmp) {
1431 ret = device_context_mapped(iommu, parent->bus->number,
1435 parent = parent->bus->self;
1438 return device_context_mapped(iommu,
1439 tmp->subordinate->number, 0);
1441 return device_context_mapped(iommu,
1442 tmp->bus->number, tmp->devfn);
1446 domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1447 u64 hpa, size_t size, int prot)
1449 u64 start_pfn, end_pfn;
1450 struct dma_pte *pte;
1452 int addr_width = agaw_to_width(domain->agaw);
1454 hpa &= (((u64)1) << addr_width) - 1;
1456 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1459 start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT;
1460 end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT;
1462 while (start_pfn < end_pfn) {
1463 pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index);
1466 /* We don't need lock here, nobody else
1467 * touches the iova range
1469 BUG_ON(dma_pte_addr(pte));
1470 dma_set_pte_addr(pte, start_pfn << VTD_PAGE_SHIFT);
1471 dma_set_pte_prot(pte, prot);
1472 domain_flush_cache(domain, pte, sizeof(*pte));
1479 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1484 clear_context_table(iommu, bus, devfn);
1485 iommu->flush.flush_context(iommu, 0, 0, 0,
1486 DMA_CCMD_GLOBAL_INVL, 0);
1487 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
1488 DMA_TLB_GLOBAL_FLUSH, 0);
1491 static void domain_remove_dev_info(struct dmar_domain *domain)
1493 struct device_domain_info *info;
1494 unsigned long flags;
1495 struct intel_iommu *iommu;
1497 spin_lock_irqsave(&device_domain_lock, flags);
1498 while (!list_empty(&domain->devices)) {
1499 info = list_entry(domain->devices.next,
1500 struct device_domain_info, link);
1501 list_del(&info->link);
1502 list_del(&info->global);
1504 info->dev->dev.archdata.iommu = NULL;
1505 spin_unlock_irqrestore(&device_domain_lock, flags);
1507 iommu = device_to_iommu(info->bus, info->devfn);
1508 iommu_detach_dev(iommu, info->bus, info->devfn);
1509 free_devinfo_mem(info);
1511 spin_lock_irqsave(&device_domain_lock, flags);
1513 spin_unlock_irqrestore(&device_domain_lock, flags);
1518 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1520 static struct dmar_domain *
1521 find_domain(struct pci_dev *pdev)
1523 struct device_domain_info *info;
1525 /* No lock here, assumes no domain exit in normal case */
1526 info = pdev->dev.archdata.iommu;
1528 return info->domain;
1532 /* domain is initialized */
1533 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1535 struct dmar_domain *domain, *found = NULL;
1536 struct intel_iommu *iommu;
1537 struct dmar_drhd_unit *drhd;
1538 struct device_domain_info *info, *tmp;
1539 struct pci_dev *dev_tmp;
1540 unsigned long flags;
1541 int bus = 0, devfn = 0;
1543 domain = find_domain(pdev);
1547 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1549 if (dev_tmp->is_pcie) {
1550 bus = dev_tmp->subordinate->number;
1553 bus = dev_tmp->bus->number;
1554 devfn = dev_tmp->devfn;
1556 spin_lock_irqsave(&device_domain_lock, flags);
1557 list_for_each_entry(info, &device_domain_list, global) {
1558 if (info->bus == bus && info->devfn == devfn) {
1559 found = info->domain;
1563 spin_unlock_irqrestore(&device_domain_lock, flags);
1564 /* pcie-pci bridge already has a domain, uses it */
1571 /* Allocate new domain for the device */
1572 drhd = dmar_find_matched_drhd_unit(pdev);
1574 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1578 iommu = drhd->iommu;
1580 domain = iommu_alloc_domain(iommu);
1584 if (domain_init(domain, gaw)) {
1585 domain_exit(domain);
1589 /* register pcie-to-pci device */
1591 info = alloc_devinfo_mem();
1593 domain_exit(domain);
1597 info->devfn = devfn;
1599 info->domain = domain;
1600 /* This domain is shared by devices under p2p bridge */
1601 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1603 /* pcie-to-pci bridge already has a domain, uses it */
1605 spin_lock_irqsave(&device_domain_lock, flags);
1606 list_for_each_entry(tmp, &device_domain_list, global) {
1607 if (tmp->bus == bus && tmp->devfn == devfn) {
1608 found = tmp->domain;
1613 free_devinfo_mem(info);
1614 domain_exit(domain);
1617 list_add(&info->link, &domain->devices);
1618 list_add(&info->global, &device_domain_list);
1620 spin_unlock_irqrestore(&device_domain_lock, flags);
1624 info = alloc_devinfo_mem();
1627 info->bus = pdev->bus->number;
1628 info->devfn = pdev->devfn;
1630 info->domain = domain;
1631 spin_lock_irqsave(&device_domain_lock, flags);
1632 /* somebody is fast */
1633 found = find_domain(pdev);
1634 if (found != NULL) {
1635 spin_unlock_irqrestore(&device_domain_lock, flags);
1636 if (found != domain) {
1637 domain_exit(domain);
1640 free_devinfo_mem(info);
1643 list_add(&info->link, &domain->devices);
1644 list_add(&info->global, &device_domain_list);
1645 pdev->dev.archdata.iommu = info;
1646 spin_unlock_irqrestore(&device_domain_lock, flags);
1649 /* recheck it here, maybe others set it */
1650 return find_domain(pdev);
1653 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1654 unsigned long long start,
1655 unsigned long long end)
1657 struct dmar_domain *domain;
1659 unsigned long long base;
1663 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1664 pci_name(pdev), start, end);
1665 /* page table init */
1666 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1670 /* The address might not be aligned */
1671 base = start & PAGE_MASK;
1673 size = PAGE_ALIGN(size);
1674 if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1675 IOVA_PFN(base + size) - 1)) {
1676 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1681 pr_debug("Mapping reserved region %lx@%llx for %s\n",
1682 size, base, pci_name(pdev));
1684 * RMRR range might have overlap with physical memory range,
1687 dma_pte_clear_range(domain, base, base + size);
1689 ret = domain_page_mapping(domain, base, base, size,
1690 DMA_PTE_READ|DMA_PTE_WRITE);
1694 /* context entry init */
1695 ret = domain_context_mapping(domain, pdev);
1699 domain_exit(domain);
1704 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1705 struct pci_dev *pdev)
1707 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1709 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1710 rmrr->end_address + 1);
1713 #ifdef CONFIG_DMAR_GFX_WA
1714 struct iommu_prepare_data {
1715 struct pci_dev *pdev;
1719 static int __init iommu_prepare_work_fn(unsigned long start_pfn,
1720 unsigned long end_pfn, void *datax)
1722 struct iommu_prepare_data *data;
1724 data = (struct iommu_prepare_data *)datax;
1726 data->ret = iommu_prepare_identity_map(data->pdev,
1727 start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
1732 static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev)
1735 struct iommu_prepare_data data;
1740 for_each_online_node(nid) {
1741 work_with_active_regions(nid, iommu_prepare_work_fn, &data);
1748 static void __init iommu_prepare_gfx_mapping(void)
1750 struct pci_dev *pdev = NULL;
1753 for_each_pci_dev(pdev) {
1754 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
1755 !IS_GFX_DEVICE(pdev))
1757 printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
1759 ret = iommu_prepare_with_active_regions(pdev);
1761 printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
1764 #else /* !CONFIG_DMAR_GFX_WA */
1765 static inline void iommu_prepare_gfx_mapping(void)
1771 #ifdef CONFIG_DMAR_FLOPPY_WA
1772 static inline void iommu_prepare_isa(void)
1774 struct pci_dev *pdev;
1777 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1781 printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
1782 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1785 printk("IOMMU: Failed to create 0-64M identity map, "
1786 "floppy might not work\n");
1790 static inline void iommu_prepare_isa(void)
1794 #endif /* !CONFIG_DMAR_FLPY_WA */
1796 static int __init init_dmars(void)
1798 struct dmar_drhd_unit *drhd;
1799 struct dmar_rmrr_unit *rmrr;
1800 struct pci_dev *pdev;
1801 struct intel_iommu *iommu;
1807 * initialize and program root entry to not present
1810 for_each_drhd_unit(drhd) {
1813 * lock not needed as this is only incremented in the single
1814 * threaded kernel __init code path all other access are read
1819 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
1822 printk(KERN_ERR "Allocating global iommu array failed\n");
1827 deferred_flush = kzalloc(g_num_of_iommus *
1828 sizeof(struct deferred_flush_tables), GFP_KERNEL);
1829 if (!deferred_flush) {
1835 for_each_drhd_unit(drhd) {
1839 iommu = drhd->iommu;
1840 g_iommus[iommu->seq_id] = iommu;
1842 ret = iommu_init_domains(iommu);
1848 * we could share the same root & context tables
1849 * amoung all IOMMU's. Need to Split it later.
1851 ret = iommu_alloc_root_entry(iommu);
1853 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
1859 * Start from the sane iommu hardware state.
1861 for_each_drhd_unit(drhd) {
1865 iommu = drhd->iommu;
1868 * If the queued invalidation is already initialized by us
1869 * (for example, while enabling interrupt-remapping) then
1870 * we got the things already rolling from a sane state.
1876 * Clear any previous faults.
1878 dmar_fault(-1, iommu);
1880 * Disable queued invalidation if supported and already enabled
1881 * before OS handover.
1883 dmar_disable_qi(iommu);
1886 for_each_drhd_unit(drhd) {
1890 iommu = drhd->iommu;
1892 if (dmar_enable_qi(iommu)) {
1894 * Queued Invalidate not enabled, use Register Based
1897 iommu->flush.flush_context = __iommu_flush_context;
1898 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
1899 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
1901 (unsigned long long)drhd->reg_base_addr);
1903 iommu->flush.flush_context = qi_flush_context;
1904 iommu->flush.flush_iotlb = qi_flush_iotlb;
1905 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
1907 (unsigned long long)drhd->reg_base_addr);
1913 * for each dev attached to rmrr
1915 * locate drhd for dev, alloc domain for dev
1916 * allocate free domain
1917 * allocate page table entries for rmrr
1918 * if context not allocated for bus
1919 * allocate and init context
1920 * set present in root table for this bus
1921 * init context with domain, translation etc
1925 for_each_rmrr_units(rmrr) {
1926 for (i = 0; i < rmrr->devices_cnt; i++) {
1927 pdev = rmrr->devices[i];
1928 /* some BIOS lists non-exist devices in DMAR table */
1931 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
1934 "IOMMU: mapping reserved region failed\n");
1938 iommu_prepare_gfx_mapping();
1940 iommu_prepare_isa();
1945 * global invalidate context cache
1946 * global invalidate iotlb
1947 * enable translation
1949 for_each_drhd_unit(drhd) {
1952 iommu = drhd->iommu;
1954 iommu_flush_write_buffer(iommu);
1956 ret = dmar_set_interrupt(iommu);
1960 iommu_set_root_entry(iommu);
1962 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL,
1964 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH,
1966 iommu_disable_protect_mem_regions(iommu);
1968 ret = iommu_enable_translation(iommu);
1975 for_each_drhd_unit(drhd) {
1978 iommu = drhd->iommu;
1985 static inline u64 aligned_size(u64 host_addr, size_t size)
1988 addr = (host_addr & (~PAGE_MASK)) + size;
1989 return PAGE_ALIGN(addr);
1993 iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
1997 /* Make sure it's in range */
1998 end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
1999 if (!size || (IOVA_START_ADDR + size > end))
2002 piova = alloc_iova(&domain->iovad,
2003 size >> PAGE_SHIFT, IOVA_PFN(end), 1);
2007 static struct iova *
2008 __intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
2009 size_t size, u64 dma_mask)
2011 struct pci_dev *pdev = to_pci_dev(dev);
2012 struct iova *iova = NULL;
2014 if (dma_mask <= DMA_32BIT_MASK || dmar_forcedac)
2015 iova = iommu_alloc_iova(domain, size, dma_mask);
2018 * First try to allocate an io virtual address in
2019 * DMA_32BIT_MASK and if that fails then try allocating
2022 iova = iommu_alloc_iova(domain, size, DMA_32BIT_MASK);
2024 iova = iommu_alloc_iova(domain, size, dma_mask);
2028 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
2035 static struct dmar_domain *
2036 get_valid_domain_for_dev(struct pci_dev *pdev)
2038 struct dmar_domain *domain;
2041 domain = get_domain_for_dev(pdev,
2042 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2045 "Allocating domain for %s failed", pci_name(pdev));
2049 /* make sure context mapping is ok */
2050 if (unlikely(!domain_context_mapped(pdev))) {
2051 ret = domain_context_mapping(domain, pdev);
2054 "Domain context map for %s failed",
2063 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2064 size_t size, int dir, u64 dma_mask)
2066 struct pci_dev *pdev = to_pci_dev(hwdev);
2067 struct dmar_domain *domain;
2068 phys_addr_t start_paddr;
2072 struct intel_iommu *iommu;
2074 BUG_ON(dir == DMA_NONE);
2075 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2078 domain = get_valid_domain_for_dev(pdev);
2082 iommu = domain_get_iommu(domain);
2083 size = aligned_size((u64)paddr, size);
2085 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2089 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2092 * Check if DMAR supports zero-length reads on write only
2095 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2096 !cap_zlr(iommu->cap))
2097 prot |= DMA_PTE_READ;
2098 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2099 prot |= DMA_PTE_WRITE;
2101 * paddr - (paddr + size) might be partial page, we should map the whole
2102 * page. Note: if two part of one page are separately mapped, we
2103 * might have two guest_addr mapping to the same host paddr, but this
2104 * is not a big problem
2106 ret = domain_page_mapping(domain, start_paddr,
2107 ((u64)paddr) & PAGE_MASK, size, prot);
2111 /* it's a non-present to present mapping */
2112 ret = iommu_flush_iotlb_psi(iommu, domain->id,
2113 start_paddr, size >> VTD_PAGE_SHIFT, 1);
2115 iommu_flush_write_buffer(iommu);
2117 return start_paddr + ((u64)paddr & (~PAGE_MASK));
2121 __free_iova(&domain->iovad, iova);
2122 printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n",
2123 pci_name(pdev), size, (unsigned long long)paddr, dir);
2127 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2128 unsigned long offset, size_t size,
2129 enum dma_data_direction dir,
2130 struct dma_attrs *attrs)
2132 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2133 dir, to_pci_dev(dev)->dma_mask);
2136 static void flush_unmaps(void)
2142 /* just flush them all */
2143 for (i = 0; i < g_num_of_iommus; i++) {
2144 struct intel_iommu *iommu = g_iommus[i];
2148 if (deferred_flush[i].next) {
2149 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2150 DMA_TLB_GLOBAL_FLUSH, 0);
2151 for (j = 0; j < deferred_flush[i].next; j++) {
2152 __free_iova(&deferred_flush[i].domain[j]->iovad,
2153 deferred_flush[i].iova[j]);
2155 deferred_flush[i].next = 0;
2162 static void flush_unmaps_timeout(unsigned long data)
2164 unsigned long flags;
2166 spin_lock_irqsave(&async_umap_flush_lock, flags);
2168 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2171 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2173 unsigned long flags;
2175 struct intel_iommu *iommu;
2177 spin_lock_irqsave(&async_umap_flush_lock, flags);
2178 if (list_size == HIGH_WATER_MARK)
2181 iommu = domain_get_iommu(dom);
2182 iommu_id = iommu->seq_id;
2184 next = deferred_flush[iommu_id].next;
2185 deferred_flush[iommu_id].domain[next] = dom;
2186 deferred_flush[iommu_id].iova[next] = iova;
2187 deferred_flush[iommu_id].next++;
2190 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2194 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2197 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2198 size_t size, enum dma_data_direction dir,
2199 struct dma_attrs *attrs)
2201 struct pci_dev *pdev = to_pci_dev(dev);
2202 struct dmar_domain *domain;
2203 unsigned long start_addr;
2205 struct intel_iommu *iommu;
2207 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2209 domain = find_domain(pdev);
2212 iommu = domain_get_iommu(domain);
2214 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2218 start_addr = iova->pfn_lo << PAGE_SHIFT;
2219 size = aligned_size((u64)dev_addr, size);
2221 pr_debug("Device %s unmapping: %lx@%llx\n",
2222 pci_name(pdev), size, (unsigned long long)start_addr);
2224 /* clear the whole page */
2225 dma_pte_clear_range(domain, start_addr, start_addr + size);
2226 /* free page tables */
2227 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2228 if (intel_iommu_strict) {
2229 if (iommu_flush_iotlb_psi(iommu,
2230 domain->id, start_addr, size >> VTD_PAGE_SHIFT, 0))
2231 iommu_flush_write_buffer(iommu);
2233 __free_iova(&domain->iovad, iova);
2235 add_unmap(domain, iova);
2237 * queue up the release of the unmap to save the 1/6th of the
2238 * cpu used up by the iotlb flush operation...
2243 static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2246 intel_unmap_page(dev, dev_addr, size, dir, NULL);
2249 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2250 dma_addr_t *dma_handle, gfp_t flags)
2255 size = PAGE_ALIGN(size);
2256 order = get_order(size);
2257 flags &= ~(GFP_DMA | GFP_DMA32);
2259 vaddr = (void *)__get_free_pages(flags, order);
2262 memset(vaddr, 0, size);
2264 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2266 hwdev->coherent_dma_mask);
2269 free_pages((unsigned long)vaddr, order);
2273 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2274 dma_addr_t dma_handle)
2278 size = PAGE_ALIGN(size);
2279 order = get_order(size);
2281 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2282 free_pages((unsigned long)vaddr, order);
2285 #define SG_ENT_VIRT_ADDRESS(sg) (sg_virt((sg)))
2287 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2288 int nelems, enum dma_data_direction dir,
2289 struct dma_attrs *attrs)
2292 struct pci_dev *pdev = to_pci_dev(hwdev);
2293 struct dmar_domain *domain;
2294 unsigned long start_addr;
2298 struct scatterlist *sg;
2299 struct intel_iommu *iommu;
2301 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2304 domain = find_domain(pdev);
2307 iommu = domain_get_iommu(domain);
2309 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2312 for_each_sg(sglist, sg, nelems, i) {
2313 addr = SG_ENT_VIRT_ADDRESS(sg);
2314 size += aligned_size((u64)addr, sg->length);
2317 start_addr = iova->pfn_lo << PAGE_SHIFT;
2319 /* clear the whole page */
2320 dma_pte_clear_range(domain, start_addr, start_addr + size);
2321 /* free page tables */
2322 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2324 if (iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
2325 size >> VTD_PAGE_SHIFT, 0))
2326 iommu_flush_write_buffer(iommu);
2329 __free_iova(&domain->iovad, iova);
2332 static int intel_nontranslate_map_sg(struct device *hddev,
2333 struct scatterlist *sglist, int nelems, int dir)
2336 struct scatterlist *sg;
2338 for_each_sg(sglist, sg, nelems, i) {
2339 BUG_ON(!sg_page(sg));
2340 sg->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(sg));
2341 sg->dma_length = sg->length;
2346 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2347 enum dma_data_direction dir, struct dma_attrs *attrs)
2351 struct pci_dev *pdev = to_pci_dev(hwdev);
2352 struct dmar_domain *domain;
2356 struct iova *iova = NULL;
2358 struct scatterlist *sg;
2359 unsigned long start_addr;
2360 struct intel_iommu *iommu;
2362 BUG_ON(dir == DMA_NONE);
2363 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2364 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2366 domain = get_valid_domain_for_dev(pdev);
2370 iommu = domain_get_iommu(domain);
2372 for_each_sg(sglist, sg, nelems, i) {
2373 addr = SG_ENT_VIRT_ADDRESS(sg);
2374 addr = (void *)virt_to_phys(addr);
2375 size += aligned_size((u64)addr, sg->length);
2378 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2380 sglist->dma_length = 0;
2385 * Check if DMAR supports zero-length reads on write only
2388 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2389 !cap_zlr(iommu->cap))
2390 prot |= DMA_PTE_READ;
2391 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2392 prot |= DMA_PTE_WRITE;
2394 start_addr = iova->pfn_lo << PAGE_SHIFT;
2396 for_each_sg(sglist, sg, nelems, i) {
2397 addr = SG_ENT_VIRT_ADDRESS(sg);
2398 addr = (void *)virt_to_phys(addr);
2399 size = aligned_size((u64)addr, sg->length);
2400 ret = domain_page_mapping(domain, start_addr + offset,
2401 ((u64)addr) & PAGE_MASK,
2404 /* clear the page */
2405 dma_pte_clear_range(domain, start_addr,
2406 start_addr + offset);
2407 /* free page tables */
2408 dma_pte_free_pagetable(domain, start_addr,
2409 start_addr + offset);
2411 __free_iova(&domain->iovad, iova);
2414 sg->dma_address = start_addr + offset +
2415 ((u64)addr & (~PAGE_MASK));
2416 sg->dma_length = sg->length;
2420 /* it's a non-present to present mapping */
2421 if (iommu_flush_iotlb_psi(iommu, domain->id,
2422 start_addr, offset >> VTD_PAGE_SHIFT, 1))
2423 iommu_flush_write_buffer(iommu);
2427 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2432 struct dma_map_ops intel_dma_ops = {
2433 .alloc_coherent = intel_alloc_coherent,
2434 .free_coherent = intel_free_coherent,
2435 .map_sg = intel_map_sg,
2436 .unmap_sg = intel_unmap_sg,
2437 .map_page = intel_map_page,
2438 .unmap_page = intel_unmap_page,
2439 .mapping_error = intel_mapping_error,
2442 static inline int iommu_domain_cache_init(void)
2446 iommu_domain_cache = kmem_cache_create("iommu_domain",
2447 sizeof(struct dmar_domain),
2452 if (!iommu_domain_cache) {
2453 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2460 static inline int iommu_devinfo_cache_init(void)
2464 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2465 sizeof(struct device_domain_info),
2469 if (!iommu_devinfo_cache) {
2470 printk(KERN_ERR "Couldn't create devinfo cache\n");
2477 static inline int iommu_iova_cache_init(void)
2481 iommu_iova_cache = kmem_cache_create("iommu_iova",
2482 sizeof(struct iova),
2486 if (!iommu_iova_cache) {
2487 printk(KERN_ERR "Couldn't create iova cache\n");
2494 static int __init iommu_init_mempool(void)
2497 ret = iommu_iova_cache_init();
2501 ret = iommu_domain_cache_init();
2505 ret = iommu_devinfo_cache_init();
2509 kmem_cache_destroy(iommu_domain_cache);
2511 kmem_cache_destroy(iommu_iova_cache);
2516 static void __init iommu_exit_mempool(void)
2518 kmem_cache_destroy(iommu_devinfo_cache);
2519 kmem_cache_destroy(iommu_domain_cache);
2520 kmem_cache_destroy(iommu_iova_cache);
2524 static void __init init_no_remapping_devices(void)
2526 struct dmar_drhd_unit *drhd;
2528 for_each_drhd_unit(drhd) {
2529 if (!drhd->include_all) {
2531 for (i = 0; i < drhd->devices_cnt; i++)
2532 if (drhd->devices[i] != NULL)
2534 /* ignore DMAR unit if no pci devices exist */
2535 if (i == drhd->devices_cnt)
2543 for_each_drhd_unit(drhd) {
2545 if (drhd->ignored || drhd->include_all)
2548 for (i = 0; i < drhd->devices_cnt; i++)
2549 if (drhd->devices[i] &&
2550 !IS_GFX_DEVICE(drhd->devices[i]))
2553 if (i < drhd->devices_cnt)
2556 /* bypass IOMMU if it is just for gfx devices */
2558 for (i = 0; i < drhd->devices_cnt; i++) {
2559 if (!drhd->devices[i])
2561 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2566 int __init intel_iommu_init(void)
2570 if (dmar_table_init())
2573 if (dmar_dev_scope_init())
2577 * Check the need for DMA-remapping initialization now.
2578 * Above initialization will also be used by Interrupt-remapping.
2580 if (no_iommu || swiotlb || dmar_disabled)
2583 iommu_init_mempool();
2584 dmar_init_reserved_ranges();
2586 init_no_remapping_devices();
2590 printk(KERN_ERR "IOMMU: dmar init failed\n");
2591 put_iova_domain(&reserved_iova_list);
2592 iommu_exit_mempool();
2596 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
2598 init_timer(&unmap_timer);
2600 dma_ops = &intel_dma_ops;
2602 register_iommu(&intel_iommu_ops);
2607 static int vm_domain_add_dev_info(struct dmar_domain *domain,
2608 struct pci_dev *pdev)
2610 struct device_domain_info *info;
2611 unsigned long flags;
2613 info = alloc_devinfo_mem();
2617 info->bus = pdev->bus->number;
2618 info->devfn = pdev->devfn;
2620 info->domain = domain;
2622 spin_lock_irqsave(&device_domain_lock, flags);
2623 list_add(&info->link, &domain->devices);
2624 list_add(&info->global, &device_domain_list);
2625 pdev->dev.archdata.iommu = info;
2626 spin_unlock_irqrestore(&device_domain_lock, flags);
2631 static void vm_domain_remove_one_dev_info(struct dmar_domain *domain,
2632 struct pci_dev *pdev)
2634 struct device_domain_info *info;
2635 struct intel_iommu *iommu;
2636 unsigned long flags;
2638 struct list_head *entry, *tmp;
2640 iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
2644 spin_lock_irqsave(&device_domain_lock, flags);
2645 list_for_each_safe(entry, tmp, &domain->devices) {
2646 info = list_entry(entry, struct device_domain_info, link);
2647 if (info->bus == pdev->bus->number &&
2648 info->devfn == pdev->devfn) {
2649 list_del(&info->link);
2650 list_del(&info->global);
2652 info->dev->dev.archdata.iommu = NULL;
2653 spin_unlock_irqrestore(&device_domain_lock, flags);
2655 iommu_detach_dev(iommu, info->bus, info->devfn);
2656 free_devinfo_mem(info);
2658 spin_lock_irqsave(&device_domain_lock, flags);
2666 /* if there is no other devices under the same iommu
2667 * owned by this domain, clear this iommu in iommu_bmp
2668 * update iommu count and coherency
2670 if (device_to_iommu(info->bus, info->devfn) == iommu)
2675 unsigned long tmp_flags;
2676 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
2677 clear_bit(iommu->seq_id, &domain->iommu_bmp);
2678 domain->iommu_count--;
2679 domain_update_iommu_coherency(domain);
2680 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
2683 spin_unlock_irqrestore(&device_domain_lock, flags);
2686 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
2688 struct device_domain_info *info;
2689 struct intel_iommu *iommu;
2690 unsigned long flags1, flags2;
2692 spin_lock_irqsave(&device_domain_lock, flags1);
2693 while (!list_empty(&domain->devices)) {
2694 info = list_entry(domain->devices.next,
2695 struct device_domain_info, link);
2696 list_del(&info->link);
2697 list_del(&info->global);
2699 info->dev->dev.archdata.iommu = NULL;
2701 spin_unlock_irqrestore(&device_domain_lock, flags1);
2703 iommu = device_to_iommu(info->bus, info->devfn);
2704 iommu_detach_dev(iommu, info->bus, info->devfn);
2706 /* clear this iommu in iommu_bmp, update iommu count
2709 spin_lock_irqsave(&domain->iommu_lock, flags2);
2710 if (test_and_clear_bit(iommu->seq_id,
2711 &domain->iommu_bmp)) {
2712 domain->iommu_count--;
2713 domain_update_iommu_coherency(domain);
2715 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
2717 free_devinfo_mem(info);
2718 spin_lock_irqsave(&device_domain_lock, flags1);
2720 spin_unlock_irqrestore(&device_domain_lock, flags1);
2723 /* domain id for virtual machine, it won't be set in context */
2724 static unsigned long vm_domid;
2726 static int vm_domain_min_agaw(struct dmar_domain *domain)
2729 int min_agaw = domain->agaw;
2731 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
2732 for (; i < g_num_of_iommus; ) {
2733 if (min_agaw > g_iommus[i]->agaw)
2734 min_agaw = g_iommus[i]->agaw;
2736 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
2742 static struct dmar_domain *iommu_alloc_vm_domain(void)
2744 struct dmar_domain *domain;
2746 domain = alloc_domain_mem();
2750 domain->id = vm_domid++;
2751 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
2752 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
2757 static int vm_domain_init(struct dmar_domain *domain, int guest_width)
2761 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
2762 spin_lock_init(&domain->mapping_lock);
2763 spin_lock_init(&domain->iommu_lock);
2765 domain_reserve_special_ranges(domain);
2767 /* calculate AGAW */
2768 domain->gaw = guest_width;
2769 adjust_width = guestwidth_to_adjustwidth(guest_width);
2770 domain->agaw = width_to_agaw(adjust_width);
2772 INIT_LIST_HEAD(&domain->devices);
2774 domain->iommu_count = 0;
2775 domain->iommu_coherency = 0;
2776 domain->max_addr = 0;
2778 /* always allocate the top pgd */
2779 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
2782 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
2786 static void iommu_free_vm_domain(struct dmar_domain *domain)
2788 unsigned long flags;
2789 struct dmar_drhd_unit *drhd;
2790 struct intel_iommu *iommu;
2792 unsigned long ndomains;
2794 for_each_drhd_unit(drhd) {
2797 iommu = drhd->iommu;
2799 ndomains = cap_ndoms(iommu->cap);
2800 i = find_first_bit(iommu->domain_ids, ndomains);
2801 for (; i < ndomains; ) {
2802 if (iommu->domains[i] == domain) {
2803 spin_lock_irqsave(&iommu->lock, flags);
2804 clear_bit(i, iommu->domain_ids);
2805 iommu->domains[i] = NULL;
2806 spin_unlock_irqrestore(&iommu->lock, flags);
2809 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
2814 static void vm_domain_exit(struct dmar_domain *domain)
2818 /* Domain 0 is reserved, so dont process it */
2822 vm_domain_remove_all_dev_info(domain);
2824 put_iova_domain(&domain->iovad);
2825 end = DOMAIN_MAX_ADDR(domain->gaw);
2826 end = end & (~VTD_PAGE_MASK);
2829 dma_pte_clear_range(domain, 0, end);
2831 /* free page tables */
2832 dma_pte_free_pagetable(domain, 0, end);
2834 iommu_free_vm_domain(domain);
2835 free_domain_mem(domain);
2838 static int intel_iommu_domain_init(struct iommu_domain *domain)
2840 struct dmar_domain *dmar_domain;
2842 dmar_domain = iommu_alloc_vm_domain();
2845 "intel_iommu_domain_init: dmar_domain == NULL\n");
2848 if (vm_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2850 "intel_iommu_domain_init() failed\n");
2851 vm_domain_exit(dmar_domain);
2854 domain->priv = dmar_domain;
2859 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
2861 struct dmar_domain *dmar_domain = domain->priv;
2863 domain->priv = NULL;
2864 vm_domain_exit(dmar_domain);
2867 static int intel_iommu_attach_device(struct iommu_domain *domain,
2870 struct dmar_domain *dmar_domain = domain->priv;
2871 struct pci_dev *pdev = to_pci_dev(dev);
2872 struct intel_iommu *iommu;
2877 /* normally pdev is not mapped */
2878 if (unlikely(domain_context_mapped(pdev))) {
2879 struct dmar_domain *old_domain;
2881 old_domain = find_domain(pdev);
2883 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
2884 vm_domain_remove_one_dev_info(old_domain, pdev);
2886 domain_remove_dev_info(old_domain);
2890 iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
2894 /* check if this iommu agaw is sufficient for max mapped address */
2895 addr_width = agaw_to_width(iommu->agaw);
2896 end = DOMAIN_MAX_ADDR(addr_width);
2897 end = end & VTD_PAGE_MASK;
2898 if (end < dmar_domain->max_addr) {
2899 printk(KERN_ERR "%s: iommu agaw (%d) is not "
2900 "sufficient for the mapped address (%llx)\n",
2901 __func__, iommu->agaw, dmar_domain->max_addr);
2905 ret = domain_context_mapping(dmar_domain, pdev);
2909 ret = vm_domain_add_dev_info(dmar_domain, pdev);
2913 static void intel_iommu_detach_device(struct iommu_domain *domain,
2916 struct dmar_domain *dmar_domain = domain->priv;
2917 struct pci_dev *pdev = to_pci_dev(dev);
2919 vm_domain_remove_one_dev_info(dmar_domain, pdev);
2922 static int intel_iommu_map_range(struct iommu_domain *domain,
2923 unsigned long iova, phys_addr_t hpa,
2924 size_t size, int iommu_prot)
2926 struct dmar_domain *dmar_domain = domain->priv;
2932 if (iommu_prot & IOMMU_READ)
2933 prot |= DMA_PTE_READ;
2934 if (iommu_prot & IOMMU_WRITE)
2935 prot |= DMA_PTE_WRITE;
2937 max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size);
2938 if (dmar_domain->max_addr < max_addr) {
2942 /* check if minimum agaw is sufficient for mapped address */
2943 min_agaw = vm_domain_min_agaw(dmar_domain);
2944 addr_width = agaw_to_width(min_agaw);
2945 end = DOMAIN_MAX_ADDR(addr_width);
2946 end = end & VTD_PAGE_MASK;
2947 if (end < max_addr) {
2948 printk(KERN_ERR "%s: iommu agaw (%d) is not "
2949 "sufficient for the mapped address (%llx)\n",
2950 __func__, min_agaw, max_addr);
2953 dmar_domain->max_addr = max_addr;
2956 ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
2960 static void intel_iommu_unmap_range(struct iommu_domain *domain,
2961 unsigned long iova, size_t size)
2963 struct dmar_domain *dmar_domain = domain->priv;
2966 /* The address might not be aligned */
2967 base = iova & VTD_PAGE_MASK;
2968 size = VTD_PAGE_ALIGN(size);
2969 dma_pte_clear_range(dmar_domain, base, base + size);
2971 if (dmar_domain->max_addr == base + size)
2972 dmar_domain->max_addr = base;
2975 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
2978 struct dmar_domain *dmar_domain = domain->priv;
2979 struct dma_pte *pte;
2982 pte = addr_to_dma_pte(dmar_domain, iova);
2984 phys = dma_pte_addr(pte);
2989 static struct iommu_ops intel_iommu_ops = {
2990 .domain_init = intel_iommu_domain_init,
2991 .domain_destroy = intel_iommu_domain_destroy,
2992 .attach_dev = intel_iommu_attach_device,
2993 .detach_dev = intel_iommu_detach_device,
2994 .map = intel_iommu_map_range,
2995 .unmap = intel_iommu_unmap_range,
2996 .iova_to_phys = intel_iommu_iova_to_phys,
2999 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3002 * Mobile 4 Series Chipset neglects to set RWBF capability,
3005 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3009 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);