4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/ima.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
57 #include <asm/uaccess.h>
58 #include <asm/mmu_context.h>
63 char core_pattern[CORENAME_MAX_SIZE] = "core";
64 int suid_dumpable = 0;
66 /* The maximal length of core_pattern is also specified in sysctl.c */
68 static LIST_HEAD(formats);
69 static DEFINE_RWLOCK(binfmt_lock);
71 int register_binfmt(struct linux_binfmt * fmt)
75 write_lock(&binfmt_lock);
76 list_add(&fmt->lh, &formats);
77 write_unlock(&binfmt_lock);
81 EXPORT_SYMBOL(register_binfmt);
83 void unregister_binfmt(struct linux_binfmt * fmt)
85 write_lock(&binfmt_lock);
87 write_unlock(&binfmt_lock);
90 EXPORT_SYMBOL(unregister_binfmt);
92 static inline void put_binfmt(struct linux_binfmt * fmt)
94 module_put(fmt->module);
98 * Note that a shared library must be both readable and executable due to
101 * Also note that we take the address to load from from the file itself.
103 SYSCALL_DEFINE1(uselib, const char __user *, library)
107 char *tmp = getname(library);
108 int error = PTR_ERR(tmp);
111 error = path_lookup_open(AT_FDCWD, tmp,
113 FMODE_READ|FMODE_EXEC);
120 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
124 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
127 error = inode_permission(nd.path.dentry->d_inode,
128 MAY_READ | MAY_EXEC | MAY_OPEN);
131 error = ima_path_check(&nd.path, MAY_READ | MAY_EXEC | MAY_OPEN);
135 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
136 error = PTR_ERR(file);
140 fsnotify_open(file->f_path.dentry);
144 struct linux_binfmt * fmt;
146 read_lock(&binfmt_lock);
147 list_for_each_entry(fmt, &formats, lh) {
148 if (!fmt->load_shlib)
150 if (!try_module_get(fmt->module))
152 read_unlock(&binfmt_lock);
153 error = fmt->load_shlib(file);
154 read_lock(&binfmt_lock);
156 if (error != -ENOEXEC)
159 read_unlock(&binfmt_lock);
165 release_open_intent(&nd);
172 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
178 #ifdef CONFIG_STACK_GROWSUP
180 ret = expand_stack_downwards(bprm->vma, pos);
185 ret = get_user_pages(current, bprm->mm, pos,
186 1, write, 1, &page, NULL);
191 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
195 * We've historically supported up to 32 pages (ARG_MAX)
196 * of argument strings even with small stacks
202 * Limit to 1/4-th the stack size for the argv+env strings.
204 * - the remaining binfmt code will not run out of stack space,
205 * - the program will have a reasonable amount of stack left
208 rlim = current->signal->rlim;
209 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
218 static void put_arg_page(struct page *page)
223 static void free_arg_page(struct linux_binprm *bprm, int i)
227 static void free_arg_pages(struct linux_binprm *bprm)
231 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
234 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
237 static int __bprm_mm_init(struct linux_binprm *bprm)
240 struct vm_area_struct *vma = NULL;
241 struct mm_struct *mm = bprm->mm;
243 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
247 down_write(&mm->mmap_sem);
251 * Place the stack at the largest stack address the architecture
252 * supports. Later, we'll move this to an appropriate place. We don't
253 * use STACK_TOP because that can depend on attributes which aren't
256 vma->vm_end = STACK_TOP_MAX;
257 vma->vm_start = vma->vm_end - PAGE_SIZE;
258 vma->vm_flags = VM_STACK_FLAGS;
259 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
260 err = insert_vm_struct(mm, vma);
264 mm->stack_vm = mm->total_vm = 1;
265 up_write(&mm->mmap_sem);
266 bprm->p = vma->vm_end - sizeof(void *);
269 up_write(&mm->mmap_sem);
271 kmem_cache_free(vm_area_cachep, vma);
275 static bool valid_arg_len(struct linux_binprm *bprm, long len)
277 return len <= MAX_ARG_STRLEN;
282 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
287 page = bprm->page[pos / PAGE_SIZE];
288 if (!page && write) {
289 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
292 bprm->page[pos / PAGE_SIZE] = page;
298 static void put_arg_page(struct page *page)
302 static void free_arg_page(struct linux_binprm *bprm, int i)
305 __free_page(bprm->page[i]);
306 bprm->page[i] = NULL;
310 static void free_arg_pages(struct linux_binprm *bprm)
314 for (i = 0; i < MAX_ARG_PAGES; i++)
315 free_arg_page(bprm, i);
318 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
323 static int __bprm_mm_init(struct linux_binprm *bprm)
325 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
329 static bool valid_arg_len(struct linux_binprm *bprm, long len)
331 return len <= bprm->p;
334 #endif /* CONFIG_MMU */
337 * Create a new mm_struct and populate it with a temporary stack
338 * vm_area_struct. We don't have enough context at this point to set the stack
339 * flags, permissions, and offset, so we use temporary values. We'll update
340 * them later in setup_arg_pages().
342 int bprm_mm_init(struct linux_binprm *bprm)
345 struct mm_struct *mm = NULL;
347 bprm->mm = mm = mm_alloc();
352 err = init_new_context(current, mm);
356 err = __bprm_mm_init(bprm);
372 * count() counts the number of strings in array ARGV.
374 static int count(char __user * __user * argv, int max)
382 if (get_user(p, argv))
396 * 'copy_strings()' copies argument/environment strings from the old
397 * processes's memory to the new process's stack. The call to get_user_pages()
398 * ensures the destination page is created and not swapped out.
400 static int copy_strings(int argc, char __user * __user * argv,
401 struct linux_binprm *bprm)
403 struct page *kmapped_page = NULL;
405 unsigned long kpos = 0;
413 if (get_user(str, argv+argc) ||
414 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
419 if (!valid_arg_len(bprm, len)) {
424 /* We're going to work our way backwords. */
430 int offset, bytes_to_copy;
432 offset = pos % PAGE_SIZE;
436 bytes_to_copy = offset;
437 if (bytes_to_copy > len)
440 offset -= bytes_to_copy;
441 pos -= bytes_to_copy;
442 str -= bytes_to_copy;
443 len -= bytes_to_copy;
445 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
448 page = get_arg_page(bprm, pos, 1);
455 flush_kernel_dcache_page(kmapped_page);
456 kunmap(kmapped_page);
457 put_arg_page(kmapped_page);
460 kaddr = kmap(kmapped_page);
461 kpos = pos & PAGE_MASK;
462 flush_arg_page(bprm, kpos, kmapped_page);
464 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
473 flush_kernel_dcache_page(kmapped_page);
474 kunmap(kmapped_page);
475 put_arg_page(kmapped_page);
481 * Like copy_strings, but get argv and its values from kernel memory.
483 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
486 mm_segment_t oldfs = get_fs();
488 r = copy_strings(argc, (char __user * __user *)argv, bprm);
492 EXPORT_SYMBOL(copy_strings_kernel);
497 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
498 * the binfmt code determines where the new stack should reside, we shift it to
499 * its final location. The process proceeds as follows:
501 * 1) Use shift to calculate the new vma endpoints.
502 * 2) Extend vma to cover both the old and new ranges. This ensures the
503 * arguments passed to subsequent functions are consistent.
504 * 3) Move vma's page tables to the new range.
505 * 4) Free up any cleared pgd range.
506 * 5) Shrink the vma to cover only the new range.
508 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
510 struct mm_struct *mm = vma->vm_mm;
511 unsigned long old_start = vma->vm_start;
512 unsigned long old_end = vma->vm_end;
513 unsigned long length = old_end - old_start;
514 unsigned long new_start = old_start - shift;
515 unsigned long new_end = old_end - shift;
516 struct mmu_gather *tlb;
518 BUG_ON(new_start > new_end);
521 * ensure there are no vmas between where we want to go
524 if (vma != find_vma(mm, new_start))
528 * cover the whole range: [new_start, old_end)
530 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
533 * move the page tables downwards, on failure we rely on
534 * process cleanup to remove whatever mess we made.
536 if (length != move_page_tables(vma, old_start,
537 vma, new_start, length))
541 tlb = tlb_gather_mmu(mm, 0);
542 if (new_end > old_start) {
544 * when the old and new regions overlap clear from new_end.
546 free_pgd_range(tlb, new_end, old_end, new_end,
547 vma->vm_next ? vma->vm_next->vm_start : 0);
550 * otherwise, clean from old_start; this is done to not touch
551 * the address space in [new_end, old_start) some architectures
552 * have constraints on va-space that make this illegal (IA64) -
553 * for the others its just a little faster.
555 free_pgd_range(tlb, old_start, old_end, new_end,
556 vma->vm_next ? vma->vm_next->vm_start : 0);
558 tlb_finish_mmu(tlb, new_end, old_end);
561 * shrink the vma to just the new range.
563 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
568 #define EXTRA_STACK_VM_PAGES 20 /* random */
571 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
572 * the stack is optionally relocated, and some extra space is added.
574 int setup_arg_pages(struct linux_binprm *bprm,
575 unsigned long stack_top,
576 int executable_stack)
579 unsigned long stack_shift;
580 struct mm_struct *mm = current->mm;
581 struct vm_area_struct *vma = bprm->vma;
582 struct vm_area_struct *prev = NULL;
583 unsigned long vm_flags;
584 unsigned long stack_base;
586 #ifdef CONFIG_STACK_GROWSUP
587 /* Limit stack size to 1GB */
588 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
589 if (stack_base > (1 << 30))
590 stack_base = 1 << 30;
592 /* Make sure we didn't let the argument array grow too large. */
593 if (vma->vm_end - vma->vm_start > stack_base)
596 stack_base = PAGE_ALIGN(stack_top - stack_base);
598 stack_shift = vma->vm_start - stack_base;
599 mm->arg_start = bprm->p - stack_shift;
600 bprm->p = vma->vm_end - stack_shift;
602 stack_top = arch_align_stack(stack_top);
603 stack_top = PAGE_ALIGN(stack_top);
604 stack_shift = vma->vm_end - stack_top;
606 bprm->p -= stack_shift;
607 mm->arg_start = bprm->p;
611 bprm->loader -= stack_shift;
612 bprm->exec -= stack_shift;
614 down_write(&mm->mmap_sem);
615 vm_flags = VM_STACK_FLAGS;
618 * Adjust stack execute permissions; explicitly enable for
619 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
620 * (arch default) otherwise.
622 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
624 else if (executable_stack == EXSTACK_DISABLE_X)
625 vm_flags &= ~VM_EXEC;
626 vm_flags |= mm->def_flags;
628 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
634 /* Move stack pages down in memory. */
636 ret = shift_arg_pages(vma, stack_shift);
638 up_write(&mm->mmap_sem);
643 #ifdef CONFIG_STACK_GROWSUP
644 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
646 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
648 ret = expand_stack(vma, stack_base);
653 up_write(&mm->mmap_sem);
656 EXPORT_SYMBOL(setup_arg_pages);
658 #endif /* CONFIG_MMU */
660 struct file *open_exec(const char *name)
666 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
667 FMODE_READ|FMODE_EXEC);
672 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
675 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
678 err = inode_permission(nd.path.dentry->d_inode, MAY_EXEC | MAY_OPEN);
681 err = ima_path_check(&nd.path, MAY_EXEC | MAY_OPEN);
685 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
689 fsnotify_open(file->f_path.dentry);
691 err = deny_write_access(file);
700 release_open_intent(&nd);
705 EXPORT_SYMBOL(open_exec);
707 int kernel_read(struct file *file, unsigned long offset,
708 char *addr, unsigned long count)
716 /* The cast to a user pointer is valid due to the set_fs() */
717 result = vfs_read(file, (void __user *)addr, count, &pos);
722 EXPORT_SYMBOL(kernel_read);
724 static int exec_mmap(struct mm_struct *mm)
726 struct task_struct *tsk;
727 struct mm_struct * old_mm, *active_mm;
729 /* Notify parent that we're no longer interested in the old VM */
731 old_mm = current->mm;
732 mm_release(tsk, old_mm);
736 * Make sure that if there is a core dump in progress
737 * for the old mm, we get out and die instead of going
738 * through with the exec. We must hold mmap_sem around
739 * checking core_state and changing tsk->mm.
741 down_read(&old_mm->mmap_sem);
742 if (unlikely(old_mm->core_state)) {
743 up_read(&old_mm->mmap_sem);
748 active_mm = tsk->active_mm;
751 activate_mm(active_mm, mm);
753 arch_pick_mmap_layout(mm);
755 up_read(&old_mm->mmap_sem);
756 BUG_ON(active_mm != old_mm);
757 mm_update_next_owner(old_mm);
766 * This function makes sure the current process has its own signal table,
767 * so that flush_signal_handlers can later reset the handlers without
768 * disturbing other processes. (Other processes might share the signal
769 * table via the CLONE_SIGHAND option to clone().)
771 static int de_thread(struct task_struct *tsk)
773 struct signal_struct *sig = tsk->signal;
774 struct sighand_struct *oldsighand = tsk->sighand;
775 spinlock_t *lock = &oldsighand->siglock;
778 if (thread_group_empty(tsk))
779 goto no_thread_group;
782 * Kill all other threads in the thread group.
785 if (signal_group_exit(sig)) {
787 * Another group action in progress, just
788 * return so that the signal is processed.
790 spin_unlock_irq(lock);
793 sig->group_exit_task = tsk;
794 zap_other_threads(tsk);
796 /* Account for the thread group leader hanging around: */
797 count = thread_group_leader(tsk) ? 1 : 2;
798 sig->notify_count = count;
799 while (atomic_read(&sig->count) > count) {
800 __set_current_state(TASK_UNINTERRUPTIBLE);
801 spin_unlock_irq(lock);
805 spin_unlock_irq(lock);
808 * At this point all other threads have exited, all we have to
809 * do is to wait for the thread group leader to become inactive,
810 * and to assume its PID:
812 if (!thread_group_leader(tsk)) {
813 struct task_struct *leader = tsk->group_leader;
815 sig->notify_count = -1; /* for exit_notify() */
817 write_lock_irq(&tasklist_lock);
818 if (likely(leader->exit_state))
820 __set_current_state(TASK_UNINTERRUPTIBLE);
821 write_unlock_irq(&tasklist_lock);
826 * The only record we have of the real-time age of a
827 * process, regardless of execs it's done, is start_time.
828 * All the past CPU time is accumulated in signal_struct
829 * from sister threads now dead. But in this non-leader
830 * exec, nothing survives from the original leader thread,
831 * whose birth marks the true age of this process now.
832 * When we take on its identity by switching to its PID, we
833 * also take its birthdate (always earlier than our own).
835 tsk->start_time = leader->start_time;
837 BUG_ON(!same_thread_group(leader, tsk));
838 BUG_ON(has_group_leader_pid(tsk));
840 * An exec() starts a new thread group with the
841 * TGID of the previous thread group. Rehash the
842 * two threads with a switched PID, and release
843 * the former thread group leader:
846 /* Become a process group leader with the old leader's pid.
847 * The old leader becomes a thread of the this thread group.
848 * Note: The old leader also uses this pid until release_task
849 * is called. Odd but simple and correct.
851 detach_pid(tsk, PIDTYPE_PID);
852 tsk->pid = leader->pid;
853 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
854 transfer_pid(leader, tsk, PIDTYPE_PGID);
855 transfer_pid(leader, tsk, PIDTYPE_SID);
856 list_replace_rcu(&leader->tasks, &tsk->tasks);
858 tsk->group_leader = tsk;
859 leader->group_leader = tsk;
861 tsk->exit_signal = SIGCHLD;
863 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
864 leader->exit_state = EXIT_DEAD;
865 write_unlock_irq(&tasklist_lock);
867 release_task(leader);
870 sig->group_exit_task = NULL;
871 sig->notify_count = 0;
875 flush_itimer_signals();
877 if (atomic_read(&oldsighand->count) != 1) {
878 struct sighand_struct *newsighand;
880 * This ->sighand is shared with the CLONE_SIGHAND
881 * but not CLONE_THREAD task, switch to the new one.
883 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
887 atomic_set(&newsighand->count, 1);
888 memcpy(newsighand->action, oldsighand->action,
889 sizeof(newsighand->action));
891 write_lock_irq(&tasklist_lock);
892 spin_lock(&oldsighand->siglock);
893 rcu_assign_pointer(tsk->sighand, newsighand);
894 spin_unlock(&oldsighand->siglock);
895 write_unlock_irq(&tasklist_lock);
897 __cleanup_sighand(oldsighand);
900 BUG_ON(!thread_group_leader(tsk));
905 * These functions flushes out all traces of the currently running executable
906 * so that a new one can be started
908 static void flush_old_files(struct files_struct * files)
913 spin_lock(&files->file_lock);
915 unsigned long set, i;
919 fdt = files_fdtable(files);
920 if (i >= fdt->max_fds)
922 set = fdt->close_on_exec->fds_bits[j];
925 fdt->close_on_exec->fds_bits[j] = 0;
926 spin_unlock(&files->file_lock);
927 for ( ; set ; i++,set >>= 1) {
932 spin_lock(&files->file_lock);
935 spin_unlock(&files->file_lock);
938 char *get_task_comm(char *buf, struct task_struct *tsk)
940 /* buf must be at least sizeof(tsk->comm) in size */
942 strncpy(buf, tsk->comm, sizeof(tsk->comm));
947 void set_task_comm(struct task_struct *tsk, char *buf)
950 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
954 int flush_old_exec(struct linux_binprm * bprm)
958 char tcomm[sizeof(current->comm)];
961 * Make sure we have a private signal table and that
962 * we are unassociated from the previous thread group.
964 retval = de_thread(current);
968 set_mm_exe_file(bprm->mm, bprm->file);
971 * Release all of the old mmap stuff
973 retval = exec_mmap(bprm->mm);
977 bprm->mm = NULL; /* We're using it now */
979 /* This is the point of no return */
980 current->sas_ss_sp = current->sas_ss_size = 0;
982 if (current_euid() == current_uid() && current_egid() == current_gid())
983 set_dumpable(current->mm, 1);
985 set_dumpable(current->mm, suid_dumpable);
987 name = bprm->filename;
989 /* Copies the binary name from after last slash */
990 for (i=0; (ch = *(name++)) != '\0';) {
992 i = 0; /* overwrite what we wrote */
994 if (i < (sizeof(tcomm) - 1))
998 set_task_comm(current, tcomm);
1000 current->flags &= ~PF_RANDOMIZE;
1003 /* Set the new mm task size. We have to do that late because it may
1004 * depend on TIF_32BIT which is only updated in flush_thread() on
1005 * some architectures like powerpc
1007 current->mm->task_size = TASK_SIZE;
1009 /* install the new credentials */
1010 if (bprm->cred->uid != current_euid() ||
1011 bprm->cred->gid != current_egid()) {
1012 current->pdeath_signal = 0;
1013 } else if (file_permission(bprm->file, MAY_READ) ||
1014 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1015 set_dumpable(current->mm, suid_dumpable);
1018 current->personality &= ~bprm->per_clear;
1020 /* An exec changes our domain. We are no longer part of the thread
1023 current->self_exec_id++;
1025 flush_signal_handlers(current, 0);
1026 flush_old_files(current->files);
1034 EXPORT_SYMBOL(flush_old_exec);
1037 * install the new credentials for this executable
1039 void install_exec_creds(struct linux_binprm *bprm)
1041 security_bprm_committing_creds(bprm);
1043 commit_creds(bprm->cred);
1046 /* cred_exec_mutex must be held at least to this point to prevent
1047 * ptrace_attach() from altering our determination of the task's
1048 * credentials; any time after this it may be unlocked */
1050 security_bprm_committed_creds(bprm);
1052 EXPORT_SYMBOL(install_exec_creds);
1055 * determine how safe it is to execute the proposed program
1056 * - the caller must hold current->cred_exec_mutex to protect against
1059 void check_unsafe_exec(struct linux_binprm *bprm)
1061 struct task_struct *p = current, *t;
1062 unsigned long flags;
1063 unsigned n_fs, n_sighand;
1065 bprm->unsafe = tracehook_unsafe_exec(p);
1069 lock_task_sighand(p, &flags);
1070 for (t = next_thread(p); t != p; t = next_thread(t)) {
1076 if (atomic_read(&p->fs->count) > n_fs ||
1077 atomic_read(&p->sighand->count) > n_sighand)
1078 bprm->unsafe |= LSM_UNSAFE_SHARE;
1080 unlock_task_sighand(p, &flags);
1084 * Fill the binprm structure from the inode.
1085 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1087 * This may be called multiple times for binary chains (scripts for example).
1089 int prepare_binprm(struct linux_binprm *bprm)
1092 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1095 mode = inode->i_mode;
1096 if (bprm->file->f_op == NULL)
1099 /* clear any previous set[ug]id data from a previous binary */
1100 bprm->cred->euid = current_euid();
1101 bprm->cred->egid = current_egid();
1103 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1105 if (mode & S_ISUID) {
1106 bprm->per_clear |= PER_CLEAR_ON_SETID;
1107 bprm->cred->euid = inode->i_uid;
1112 * If setgid is set but no group execute bit then this
1113 * is a candidate for mandatory locking, not a setgid
1116 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1117 bprm->per_clear |= PER_CLEAR_ON_SETID;
1118 bprm->cred->egid = inode->i_gid;
1122 /* fill in binprm security blob */
1123 retval = security_bprm_set_creds(bprm);
1126 bprm->cred_prepared = 1;
1128 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1129 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1132 EXPORT_SYMBOL(prepare_binprm);
1135 * Arguments are '\0' separated strings found at the location bprm->p
1136 * points to; chop off the first by relocating brpm->p to right after
1137 * the first '\0' encountered.
1139 int remove_arg_zero(struct linux_binprm *bprm)
1142 unsigned long offset;
1150 offset = bprm->p & ~PAGE_MASK;
1151 page = get_arg_page(bprm, bprm->p, 0);
1156 kaddr = kmap_atomic(page, KM_USER0);
1158 for (; offset < PAGE_SIZE && kaddr[offset];
1159 offset++, bprm->p++)
1162 kunmap_atomic(kaddr, KM_USER0);
1165 if (offset == PAGE_SIZE)
1166 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1167 } while (offset == PAGE_SIZE);
1176 EXPORT_SYMBOL(remove_arg_zero);
1179 * cycle the list of binary formats handler, until one recognizes the image
1181 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1183 unsigned int depth = bprm->recursion_depth;
1185 struct linux_binfmt *fmt;
1187 retval = security_bprm_check(bprm);
1190 retval = ima_bprm_check(bprm);
1194 /* kernel module loader fixup */
1195 /* so we don't try to load run modprobe in kernel space. */
1198 retval = audit_bprm(bprm);
1203 for (try=0; try<2; try++) {
1204 read_lock(&binfmt_lock);
1205 list_for_each_entry(fmt, &formats, lh) {
1206 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1209 if (!try_module_get(fmt->module))
1211 read_unlock(&binfmt_lock);
1212 retval = fn(bprm, regs);
1214 * Restore the depth counter to its starting value
1215 * in this call, so we don't have to rely on every
1216 * load_binary function to restore it on return.
1218 bprm->recursion_depth = depth;
1221 tracehook_report_exec(fmt, bprm, regs);
1223 allow_write_access(bprm->file);
1227 current->did_exec = 1;
1228 proc_exec_connector(current);
1231 read_lock(&binfmt_lock);
1233 if (retval != -ENOEXEC || bprm->mm == NULL)
1236 read_unlock(&binfmt_lock);
1240 read_unlock(&binfmt_lock);
1241 if (retval != -ENOEXEC || bprm->mm == NULL) {
1243 #ifdef CONFIG_MODULES
1245 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1246 if (printable(bprm->buf[0]) &&
1247 printable(bprm->buf[1]) &&
1248 printable(bprm->buf[2]) &&
1249 printable(bprm->buf[3]))
1250 break; /* -ENOEXEC */
1251 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1258 EXPORT_SYMBOL(search_binary_handler);
1260 void free_bprm(struct linux_binprm *bprm)
1262 free_arg_pages(bprm);
1264 abort_creds(bprm->cred);
1269 * sys_execve() executes a new program.
1271 int do_execve(char * filename,
1272 char __user *__user *argv,
1273 char __user *__user *envp,
1274 struct pt_regs * regs)
1276 struct linux_binprm *bprm;
1278 struct files_struct *displaced;
1281 retval = unshare_files(&displaced);
1286 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1290 retval = mutex_lock_interruptible(¤t->cred_exec_mutex);
1293 current->in_execve = 1;
1296 bprm->cred = prepare_exec_creds();
1299 check_unsafe_exec(bprm);
1301 file = open_exec(filename);
1302 retval = PTR_ERR(file);
1309 bprm->filename = filename;
1310 bprm->interp = filename;
1312 retval = bprm_mm_init(bprm);
1316 bprm->argc = count(argv, MAX_ARG_STRINGS);
1317 if ((retval = bprm->argc) < 0)
1320 bprm->envc = count(envp, MAX_ARG_STRINGS);
1321 if ((retval = bprm->envc) < 0)
1324 retval = prepare_binprm(bprm);
1328 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1332 bprm->exec = bprm->p;
1333 retval = copy_strings(bprm->envc, envp, bprm);
1337 retval = copy_strings(bprm->argc, argv, bprm);
1341 current->flags &= ~PF_KTHREAD;
1342 retval = search_binary_handler(bprm,regs);
1346 /* execve succeeded */
1347 current->in_execve = 0;
1348 mutex_unlock(¤t->cred_exec_mutex);
1349 acct_update_integrals(current);
1352 put_files_struct(displaced);
1361 allow_write_access(bprm->file);
1366 current->in_execve = 0;
1367 mutex_unlock(¤t->cred_exec_mutex);
1374 reset_files_struct(displaced);
1379 int set_binfmt(struct linux_binfmt *new)
1381 struct linux_binfmt *old = current->binfmt;
1384 if (!try_module_get(new->module))
1387 current->binfmt = new;
1389 module_put(old->module);
1393 EXPORT_SYMBOL(set_binfmt);
1395 /* format_corename will inspect the pattern parameter, and output a
1396 * name into corename, which must have space for at least
1397 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1399 static int format_corename(char *corename, long signr)
1401 const struct cred *cred = current_cred();
1402 const char *pat_ptr = core_pattern;
1403 int ispipe = (*pat_ptr == '|');
1404 char *out_ptr = corename;
1405 char *const out_end = corename + CORENAME_MAX_SIZE;
1407 int pid_in_pattern = 0;
1409 /* Repeat as long as we have more pattern to process and more output
1412 if (*pat_ptr != '%') {
1413 if (out_ptr == out_end)
1415 *out_ptr++ = *pat_ptr++;
1417 switch (*++pat_ptr) {
1420 /* Double percent, output one percent */
1422 if (out_ptr == out_end)
1429 rc = snprintf(out_ptr, out_end - out_ptr,
1430 "%d", task_tgid_vnr(current));
1431 if (rc > out_end - out_ptr)
1437 rc = snprintf(out_ptr, out_end - out_ptr,
1439 if (rc > out_end - out_ptr)
1445 rc = snprintf(out_ptr, out_end - out_ptr,
1447 if (rc > out_end - out_ptr)
1451 /* signal that caused the coredump */
1453 rc = snprintf(out_ptr, out_end - out_ptr,
1455 if (rc > out_end - out_ptr)
1459 /* UNIX time of coredump */
1462 do_gettimeofday(&tv);
1463 rc = snprintf(out_ptr, out_end - out_ptr,
1465 if (rc > out_end - out_ptr)
1472 down_read(&uts_sem);
1473 rc = snprintf(out_ptr, out_end - out_ptr,
1474 "%s", utsname()->nodename);
1476 if (rc > out_end - out_ptr)
1482 rc = snprintf(out_ptr, out_end - out_ptr,
1483 "%s", current->comm);
1484 if (rc > out_end - out_ptr)
1488 /* core limit size */
1490 rc = snprintf(out_ptr, out_end - out_ptr,
1491 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1492 if (rc > out_end - out_ptr)
1502 /* Backward compatibility with core_uses_pid:
1504 * If core_pattern does not include a %p (as is the default)
1505 * and core_uses_pid is set, then .%pid will be appended to
1506 * the filename. Do not do this for piped commands. */
1507 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1508 rc = snprintf(out_ptr, out_end - out_ptr,
1509 ".%d", task_tgid_vnr(current));
1510 if (rc > out_end - out_ptr)
1519 static int zap_process(struct task_struct *start)
1521 struct task_struct *t;
1524 start->signal->flags = SIGNAL_GROUP_EXIT;
1525 start->signal->group_stop_count = 0;
1529 if (t != current && t->mm) {
1530 sigaddset(&t->pending.signal, SIGKILL);
1531 signal_wake_up(t, 1);
1534 } while_each_thread(start, t);
1539 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1540 struct core_state *core_state, int exit_code)
1542 struct task_struct *g, *p;
1543 unsigned long flags;
1546 spin_lock_irq(&tsk->sighand->siglock);
1547 if (!signal_group_exit(tsk->signal)) {
1548 mm->core_state = core_state;
1549 tsk->signal->group_exit_code = exit_code;
1550 nr = zap_process(tsk);
1552 spin_unlock_irq(&tsk->sighand->siglock);
1553 if (unlikely(nr < 0))
1556 if (atomic_read(&mm->mm_users) == nr + 1)
1559 * We should find and kill all tasks which use this mm, and we should
1560 * count them correctly into ->nr_threads. We don't take tasklist
1561 * lock, but this is safe wrt:
1564 * None of sub-threads can fork after zap_process(leader). All
1565 * processes which were created before this point should be
1566 * visible to zap_threads() because copy_process() adds the new
1567 * process to the tail of init_task.tasks list, and lock/unlock
1568 * of ->siglock provides a memory barrier.
1571 * The caller holds mm->mmap_sem. This means that the task which
1572 * uses this mm can't pass exit_mm(), so it can't exit or clear
1576 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1577 * we must see either old or new leader, this does not matter.
1578 * However, it can change p->sighand, so lock_task_sighand(p)
1579 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1582 * Note also that "g" can be the old leader with ->mm == NULL
1583 * and already unhashed and thus removed from ->thread_group.
1584 * This is OK, __unhash_process()->list_del_rcu() does not
1585 * clear the ->next pointer, we will find the new leader via
1589 for_each_process(g) {
1590 if (g == tsk->group_leader)
1592 if (g->flags & PF_KTHREAD)
1597 if (unlikely(p->mm == mm)) {
1598 lock_task_sighand(p, &flags);
1599 nr += zap_process(p);
1600 unlock_task_sighand(p, &flags);
1604 } while_each_thread(g, p);
1608 atomic_set(&core_state->nr_threads, nr);
1612 static int coredump_wait(int exit_code, struct core_state *core_state)
1614 struct task_struct *tsk = current;
1615 struct mm_struct *mm = tsk->mm;
1616 struct completion *vfork_done;
1619 init_completion(&core_state->startup);
1620 core_state->dumper.task = tsk;
1621 core_state->dumper.next = NULL;
1622 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1623 up_write(&mm->mmap_sem);
1625 if (unlikely(core_waiters < 0))
1629 * Make sure nobody is waiting for us to release the VM,
1630 * otherwise we can deadlock when we wait on each other
1632 vfork_done = tsk->vfork_done;
1634 tsk->vfork_done = NULL;
1635 complete(vfork_done);
1639 wait_for_completion(&core_state->startup);
1641 return core_waiters;
1644 static void coredump_finish(struct mm_struct *mm)
1646 struct core_thread *curr, *next;
1647 struct task_struct *task;
1649 next = mm->core_state->dumper.next;
1650 while ((curr = next) != NULL) {
1654 * see exit_mm(), curr->task must not see
1655 * ->task == NULL before we read ->next.
1659 wake_up_process(task);
1662 mm->core_state = NULL;
1666 * set_dumpable converts traditional three-value dumpable to two flags and
1667 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1668 * these bits are not changed atomically. So get_dumpable can observe the
1669 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1670 * return either old dumpable or new one by paying attention to the order of
1671 * modifying the bits.
1673 * dumpable | mm->flags (binary)
1674 * old new | initial interim final
1675 * ---------+-----------------------
1683 * (*) get_dumpable regards interim value of 10 as 11.
1685 void set_dumpable(struct mm_struct *mm, int value)
1689 clear_bit(MMF_DUMPABLE, &mm->flags);
1691 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1694 set_bit(MMF_DUMPABLE, &mm->flags);
1696 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1699 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1701 set_bit(MMF_DUMPABLE, &mm->flags);
1706 int get_dumpable(struct mm_struct *mm)
1710 ret = mm->flags & 0x3;
1711 return (ret >= 2) ? 2 : ret;
1714 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1716 struct core_state core_state;
1717 char corename[CORENAME_MAX_SIZE + 1];
1718 struct mm_struct *mm = current->mm;
1719 struct linux_binfmt * binfmt;
1720 struct inode * inode;
1722 const struct cred *old_cred;
1727 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1728 char **helper_argv = NULL;
1729 int helper_argc = 0;
1732 audit_core_dumps(signr);
1734 binfmt = current->binfmt;
1735 if (!binfmt || !binfmt->core_dump)
1738 cred = prepare_creds();
1744 down_write(&mm->mmap_sem);
1746 * If another thread got here first, or we are not dumpable, bail out.
1748 if (mm->core_state || !get_dumpable(mm)) {
1749 up_write(&mm->mmap_sem);
1755 * We cannot trust fsuid as being the "true" uid of the
1756 * process nor do we know its entire history. We only know it
1757 * was tainted so we dump it as root in mode 2.
1759 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1760 flag = O_EXCL; /* Stop rewrite attacks */
1761 cred->fsuid = 0; /* Dump root private */
1764 retval = coredump_wait(exit_code, &core_state);
1770 old_cred = override_creds(cred);
1773 * Clear any false indication of pending signals that might
1774 * be seen by the filesystem code called to write the core file.
1776 clear_thread_flag(TIF_SIGPENDING);
1779 * lock_kernel() because format_corename() is controlled by sysctl, which
1780 * uses lock_kernel()
1783 ispipe = format_corename(corename, signr);
1786 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1787 * to a pipe. Since we're not writing directly to the filesystem
1788 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1789 * created unless the pipe reader choses to write out the core file
1790 * at which point file size limits and permissions will be imposed
1791 * as it does with any other process
1793 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1797 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1799 printk(KERN_WARNING "%s failed to allocate memory\n",
1803 /* Terminate the string before the first option */
1804 delimit = strchr(corename, ' ');
1807 delimit = strrchr(helper_argv[0], '/');
1811 delimit = helper_argv[0];
1812 if (!strcmp(delimit, current->comm)) {
1813 printk(KERN_NOTICE "Recursive core dump detected, "
1818 core_limit = RLIM_INFINITY;
1820 /* SIGPIPE can happen, but it's just never processed */
1821 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1823 printk(KERN_INFO "Core dump to %s pipe failed\n",
1828 file = filp_open(corename,
1829 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1833 inode = file->f_path.dentry->d_inode;
1834 if (inode->i_nlink > 1)
1835 goto close_fail; /* multiple links - don't dump */
1836 if (!ispipe && d_unhashed(file->f_path.dentry))
1839 /* AK: actually i see no reason to not allow this for named pipes etc.,
1840 but keep the previous behaviour for now. */
1841 if (!ispipe && !S_ISREG(inode->i_mode))
1844 * Dont allow local users get cute and trick others to coredump
1845 * into their pre-created files:
1847 if (inode->i_uid != current_fsuid())
1851 if (!file->f_op->write)
1853 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1856 retval = binfmt->core_dump(signr, regs, file, core_limit);
1859 current->signal->group_exit_code |= 0x80;
1861 filp_close(file, NULL);
1864 argv_free(helper_argv);
1866 revert_creds(old_cred);
1868 coredump_finish(mm);