2 * Intel SMP support routines.
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
6 * (c) 2002,2003 Andi Kleen, SuSE Labs.
8 * This code is released under the GNU General Public License version 2 or
12 #include <linux/init.h>
15 #include <linux/delay.h>
16 #include <linux/spinlock.h>
17 #include <linux/smp_lock.h>
18 #include <linux/smp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mc146818rtc.h>
21 #include <linux/interrupt.h>
24 #include <asm/pgalloc.h>
25 #include <asm/tlbflush.h>
26 #include <asm/mach_apic.h>
27 #include <asm/mmu_context.h>
28 #include <asm/proto.h>
29 #include <asm/apicdef.h>
31 #define __cpuinit __init
34 * Smarter SMP flushing macros.
37 * These mean you can really definitely utterly forget about
38 * writing to user space from interrupts. (Its not allowed anyway).
40 * Optimizations Manfred Spraul <manfred@colorfullife.com>
42 * More scalable flush, from Andi Kleen
44 * To avoid global state use 8 different call vectors.
45 * Each CPU uses a specific vector to trigger flushes on other
46 * CPUs. Depending on the received vector the target CPUs look into
47 * the right per cpu variable for the flush data.
49 * With more than 8 CPUs they are hashed to the 8 available
50 * vectors. The limited global vector space forces us to this right now.
51 * In future when interrupts are split into per CPU domains this could be
52 * fixed, at the cost of triggering multiple IPIs in some cases.
55 union smp_flush_state {
57 cpumask_t flush_cpumask;
58 struct mm_struct *flush_mm;
59 unsigned long flush_va;
60 #define FLUSH_ALL -1ULL
61 spinlock_t tlbstate_lock;
63 char pad[SMP_CACHE_BYTES];
64 } ____cacheline_aligned;
66 /* State is put into the per CPU data section, but padded
67 to a full cache line because other CPUs can access it and we don't
68 want false sharing in the per cpu data segment. */
69 static DEFINE_PER_CPU(union smp_flush_state, flush_state);
72 * We cannot call mmdrop() because we are in interrupt context,
73 * instead update mm->cpu_vm_mask.
75 static inline void leave_mm(int cpu)
77 if (read_pda(mmu_state) == TLBSTATE_OK)
79 clear_bit(cpu, &read_pda(active_mm)->cpu_vm_mask);
80 load_cr3(swapper_pg_dir);
85 * The flush IPI assumes that a thread switch happens in this order:
86 * [cpu0: the cpu that switches]
87 * 1) switch_mm() either 1a) or 1b)
88 * 1a) thread switch to a different mm
89 * 1a1) clear_bit(cpu, &old_mm->cpu_vm_mask);
90 * Stop ipi delivery for the old mm. This is not synchronized with
91 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
92 * for the wrong mm, and in the worst case we perform a superfluous
94 * 1a2) set cpu mmu_state to TLBSTATE_OK
95 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
96 * was in lazy tlb mode.
97 * 1a3) update cpu active_mm
98 * Now cpu0 accepts tlb flushes for the new mm.
99 * 1a4) set_bit(cpu, &new_mm->cpu_vm_mask);
100 * Now the other cpus will send tlb flush ipis.
102 * 1b) thread switch without mm change
103 * cpu active_mm is correct, cpu0 already handles
105 * 1b1) set cpu mmu_state to TLBSTATE_OK
106 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
107 * Atomically set the bit [other cpus will start sending flush ipis],
109 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
110 * 2) switch %%esp, ie current
112 * The interrupt must handle 2 special cases:
113 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
114 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
115 * runs in kernel space, the cpu could load tlb entries for user space
118 * The good news is that cpu mmu_state is local to each cpu, no
119 * write/read ordering problems.
125 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
126 * 2) Leave the mm if we are in the lazy tlb mode.
128 * Interrupts are disabled.
131 asmlinkage void smp_invalidate_interrupt(struct pt_regs *regs)
135 union smp_flush_state *f;
137 cpu = smp_processor_id();
139 * orig_rax contains the interrupt vector - 256.
140 * Use that to determine where the sender put the data.
142 sender = regs->orig_rax + 256 - INVALIDATE_TLB_VECTOR_START;
143 f = &per_cpu(flush_state, sender);
145 if (!cpu_isset(cpu, f->flush_cpumask))
148 * This was a BUG() but until someone can quote me the
149 * line from the intel manual that guarantees an IPI to
150 * multiple CPUs is retried _only_ on the erroring CPUs
151 * its staying as a return
156 if (f->flush_mm == read_pda(active_mm)) {
157 if (read_pda(mmu_state) == TLBSTATE_OK) {
158 if (f->flush_va == FLUSH_ALL)
161 __flush_tlb_one(f->flush_va);
167 cpu_clear(cpu, f->flush_cpumask);
170 static void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
174 union smp_flush_state *f;
176 /* Caller has disabled preemption */
177 sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS;
178 f = &per_cpu(flush_state, sender);
180 /* Could avoid this lock when
181 num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is
182 probably not worth checking this for a cache-hot lock. */
183 spin_lock(&f->tlbstate_lock);
187 cpus_or(f->flush_cpumask, cpumask, f->flush_cpumask);
190 * We have to send the IPI only to
193 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR_START + sender);
195 while (!cpus_empty(f->flush_cpumask))
200 spin_unlock(&f->tlbstate_lock);
203 int __cpuinit init_smp_flush(void)
206 for_each_cpu_mask(i, cpu_possible_map) {
207 spin_lock_init(&per_cpu(flush_state.tlbstate_lock, i));
212 core_initcall(init_smp_flush);
214 void flush_tlb_current_task(void)
216 struct mm_struct *mm = current->mm;
220 cpu_mask = mm->cpu_vm_mask;
221 cpu_clear(smp_processor_id(), cpu_mask);
224 if (!cpus_empty(cpu_mask))
225 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
229 void flush_tlb_mm (struct mm_struct * mm)
234 cpu_mask = mm->cpu_vm_mask;
235 cpu_clear(smp_processor_id(), cpu_mask);
237 if (current->active_mm == mm) {
241 leave_mm(smp_processor_id());
243 if (!cpus_empty(cpu_mask))
244 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
249 void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
251 struct mm_struct *mm = vma->vm_mm;
255 cpu_mask = mm->cpu_vm_mask;
256 cpu_clear(smp_processor_id(), cpu_mask);
258 if (current->active_mm == mm) {
262 leave_mm(smp_processor_id());
265 if (!cpus_empty(cpu_mask))
266 flush_tlb_others(cpu_mask, mm, va);
271 static void do_flush_tlb_all(void* info)
273 unsigned long cpu = smp_processor_id();
276 if (read_pda(mmu_state) == TLBSTATE_LAZY)
280 void flush_tlb_all(void)
282 on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
285 void smp_kdb_stop(void)
287 send_IPI_allbutself(KDB_VECTOR);
291 * this function sends a 'reschedule' IPI to another CPU.
292 * it goes straight through and wastes no time serializing
293 * anything. Worst case is that we lose a reschedule ...
296 void smp_send_reschedule(int cpu)
298 send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
302 * Structure and data for smp_call_function(). This is designed to minimise
303 * static memory requirements. It also looks cleaner.
305 static DEFINE_SPINLOCK(call_lock);
307 struct call_data_struct {
308 void (*func) (void *info);
315 static struct call_data_struct * call_data;
317 void lock_ipi_call_lock(void)
319 spin_lock_irq(&call_lock);
322 void unlock_ipi_call_lock(void)
324 spin_unlock_irq(&call_lock);
328 * this function sends a 'generic call function' IPI to one other CPU
331 * cpu is a standard Linux logical CPU number.
334 __smp_call_function_single(int cpu, void (*func) (void *info), void *info,
335 int nonatomic, int wait)
337 struct call_data_struct data;
342 atomic_set(&data.started, 0);
345 atomic_set(&data.finished, 0);
349 /* Send a message to all other CPUs and wait for them to respond */
350 send_IPI_mask(cpumask_of_cpu(cpu), CALL_FUNCTION_VECTOR);
352 /* Wait for response */
353 while (atomic_read(&data.started) != cpus)
359 while (atomic_read(&data.finished) != cpus)
364 * smp_call_function_single - Run a function on another CPU
365 * @func: The function to run. This must be fast and non-blocking.
366 * @info: An arbitrary pointer to pass to the function.
367 * @nonatomic: Currently unused.
368 * @wait: If true, wait until function has completed on other CPUs.
370 * Retrurns 0 on success, else a negative status code.
372 * Does not return until the remote CPU is nearly ready to execute <func>
373 * or is or has executed.
376 int smp_call_function_single (int cpu, void (*func) (void *info), void *info,
377 int nonatomic, int wait)
379 /* prevent preemption and reschedule on another processor */
386 spin_lock_bh(&call_lock);
387 __smp_call_function_single(cpu, func, info, nonatomic, wait);
388 spin_unlock_bh(&call_lock);
394 * this function sends a 'generic call function' IPI to all other CPUs
397 static void __smp_call_function (void (*func) (void *info), void *info,
398 int nonatomic, int wait)
400 struct call_data_struct data;
401 int cpus = num_online_cpus()-1;
408 atomic_set(&data.started, 0);
411 atomic_set(&data.finished, 0);
415 /* Send a message to all other CPUs and wait for them to respond */
416 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
418 /* Wait for response */
419 while (atomic_read(&data.started) != cpus)
425 while (atomic_read(&data.finished) != cpus)
430 * smp_call_function - run a function on all other CPUs.
431 * @func: The function to run. This must be fast and non-blocking.
432 * @info: An arbitrary pointer to pass to the function.
433 * @nonatomic: currently unused.
434 * @wait: If true, wait (atomically) until function has completed on other
437 * Returns 0 on success, else a negative status code. Does not return until
438 * remote CPUs are nearly ready to execute func or are or have executed.
440 * You must not call this function with disabled interrupts or from a
441 * hardware interrupt handler or from a bottom half handler.
442 * Actually there are a few legal cases, like panic.
444 int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
447 spin_lock(&call_lock);
448 __smp_call_function(func,info,nonatomic,wait);
449 spin_unlock(&call_lock);
453 void smp_stop_cpu(void)
458 cpu_clear(smp_processor_id(), cpu_online_map);
460 disable_local_APIC();
464 static void smp_really_stop_cpu(void *dummy)
471 void smp_send_stop(void)
476 /* Don't deadlock on the call lock in panic */
477 if (!spin_trylock(&call_lock)) {
478 /* ignore locking because we have paniced anyways */
481 __smp_call_function(smp_really_stop_cpu, NULL, 0, 0);
483 spin_unlock(&call_lock);
486 disable_local_APIC();
491 * Reschedule call back. Nothing to do,
492 * all the work is done automatically when
493 * we return from the interrupt.
495 asmlinkage void smp_reschedule_interrupt(void)
500 asmlinkage void smp_call_function_interrupt(void)
502 void (*func) (void *info) = call_data->func;
503 void *info = call_data->info;
504 int wait = call_data->wait;
508 * Notify initiating CPU that I've grabbed the data and am
509 * about to execute the function
512 atomic_inc(&call_data->started);
514 * At this point the info structure may be out of scope unless wait==1
521 atomic_inc(&call_data->finished);
525 int safe_smp_processor_id(void)
532 apicid = hard_smp_processor_id();
533 if (x86_cpu_to_apicid[apicid] == apicid)
536 for (i = 0; i < NR_CPUS; ++i) {
537 if (x86_cpu_to_apicid[i] == apicid)
541 /* No entries in x86_cpu_to_apicid? Either no MPS|ACPI,
542 * or called too early. Either way, we must be CPU 0. */
543 if (x86_cpu_to_apicid[0] == BAD_APICID)
546 return 0; /* Should not happen */