2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (c) 2000-2007 Silicon Graphics, Inc. All Rights Reserved.
9 #include <linux/module.h>
10 #include <asm/sn/nodepda.h>
11 #include <asm/sn/addrs.h>
12 #include <asm/sn/arch.h>
13 #include <asm/sn/sn_cpuid.h>
14 #include <asm/sn/pda.h>
15 #include <asm/sn/shubio.h>
16 #include <asm/nodedata.h>
17 #include <asm/delay.h>
19 #include <linux/bootmem.h>
20 #include <linux/string.h>
21 #include <linux/sched.h>
23 #include <asm/sn/bte.h>
26 #define L1_CACHE_MASK (L1_CACHE_BYTES - 1)
29 /* two interfaces on two btes */
30 #define MAX_INTERFACES_TO_TRY 4
31 #define MAX_NODES_TO_TRY 2
33 static struct bteinfo_s *bte_if_on_node(nasid_t nasid, int interface)
35 nodepda_t *tmp_nodepda;
37 if (nasid_to_cnodeid(nasid) == -1)
38 return (struct bteinfo_s *)NULL;
40 tmp_nodepda = NODEPDA(nasid_to_cnodeid(nasid));
41 return &tmp_nodepda->bte_if[interface];
45 static inline void bte_start_transfer(struct bteinfo_s *bte, u64 len, u64 mode)
48 BTE_CTRL_STORE(bte, (IBLS_BUSY | ((len) | (mode) << 24)));
50 BTE_LNSTAT_STORE(bte, len);
51 BTE_CTRL_STORE(bte, mode);
55 /************************************************************************
56 * Block Transfer Engine copy related functions.
58 ***********************************************************************/
61 * bte_copy(src, dest, len, mode, notification)
63 * Use the block transfer engine to move kernel memory from src to dest
64 * using the assigned mode.
67 * src - physical address of the transfer source.
68 * dest - physical address of the transfer destination.
69 * len - number of bytes to transfer from source to dest.
70 * mode - hardware defined. See reference information
71 * for IBCT0/1 in the SHUB Programmers Reference
72 * notification - kernel virtual address of the notification cache
73 * line. If NULL, the default is used and
74 * the bte_copy is synchronous.
76 * NOTE: This function requires src, dest, and len to
77 * be cacheline aligned.
79 bte_result_t bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification)
84 struct bteinfo_s *bte;
85 bte_result_t bte_status;
86 unsigned long irq_flags;
87 unsigned long itc_end = 0;
88 int nasid_to_try[MAX_NODES_TO_TRY];
89 int my_nasid = cpuid_to_nasid(raw_smp_processor_id());
90 int bte_if_index, nasid_index;
91 int bte_first, btes_per_node = BTES_PER_NODE;
93 BTE_PRINTK(("bte_copy(0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%p)\n",
94 src, dest, len, mode, notification));
100 BUG_ON((len & L1_CACHE_MASK) ||
101 (src & L1_CACHE_MASK) || (dest & L1_CACHE_MASK));
102 BUG_ON(!(len < ((BTE_LEN_MASK + 1) << L1_CACHE_SHIFT)));
105 * Start with interface corresponding to cpu number
107 bte_first = raw_smp_processor_id() % btes_per_node;
109 if (mode & BTE_USE_DEST) {
110 /* try remote then local */
111 nasid_to_try[0] = NASID_GET(dest);
112 if (mode & BTE_USE_ANY) {
113 nasid_to_try[1] = my_nasid;
115 nasid_to_try[1] = (int)NULL;
118 /* try local then remote */
119 nasid_to_try[0] = my_nasid;
120 if (mode & BTE_USE_ANY) {
121 nasid_to_try[1] = NASID_GET(dest);
123 nasid_to_try[1] = (int)NULL;
129 local_irq_save(irq_flags);
131 bte_if_index = bte_first;
134 /* Attempt to lock one of the BTE interfaces. */
135 while (nasid_index < MAX_NODES_TO_TRY) {
136 bte = bte_if_on_node(nasid_to_try[nasid_index],bte_if_index);
143 if (spin_trylock(&bte->spinlock)) {
144 if (!(*bte->most_rcnt_na & BTE_WORD_AVAILABLE) ||
145 (BTE_LNSTAT_LOAD(bte) & BTE_ACTIVE)) {
146 /* Got the lock but BTE still busy */
147 spin_unlock(&bte->spinlock);
149 /* we got the lock and it's not busy */
154 bte_if_index = (bte_if_index + 1) % btes_per_node; /* Next interface */
155 if (bte_if_index == bte_first) {
157 * We've tried all interfaces on this node
169 local_irq_restore(irq_flags);
171 if (!(mode & BTE_WACQUIRE)) {
172 return BTEFAIL_NOTAVAIL;
176 if (notification == NULL) {
177 /* User does not want to be notified. */
178 bte->most_rcnt_na = &bte->notify;
180 bte->most_rcnt_na = notification;
183 /* Calculate the number of cache lines to transfer. */
184 transfer_size = ((len >> L1_CACHE_SHIFT) & BTE_LEN_MASK);
186 /* Initialize the notification to a known value. */
187 *bte->most_rcnt_na = BTE_WORD_BUSY;
188 notif_phys_addr = (u64)bte->most_rcnt_na;
190 /* Set the source and destination registers */
191 BTE_PRINTKV(("IBSA = 0x%lx)\n", src));
192 BTE_SRC_STORE(bte, src);
193 BTE_PRINTKV(("IBDA = 0x%lx)\n", dest));
194 BTE_DEST_STORE(bte, dest);
196 /* Set the notification register */
197 BTE_PRINTKV(("IBNA = 0x%lx)\n", notif_phys_addr));
198 BTE_NOTIF_STORE(bte, notif_phys_addr);
200 /* Initiate the transfer */
201 BTE_PRINTK(("IBCT = 0x%lx)\n", BTE_VALID_MODE(mode)));
202 bte_start_transfer(bte, transfer_size, BTE_VALID_MODE(mode));
204 itc_end = ia64_get_itc() + (40000000 * local_cpu_data->cyc_per_usec);
206 spin_unlock_irqrestore(&bte->spinlock, irq_flags);
208 if (notification != NULL) {
212 while ((transfer_stat = *bte->most_rcnt_na) == BTE_WORD_BUSY) {
214 if (ia64_get_itc() > itc_end) {
215 BTE_PRINTK(("BTE timeout nasid 0x%x bte%d IBLS = 0x%lx na 0x%lx\n",
216 NASID_GET(bte->bte_base_addr), bte->bte_num,
217 BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na) );
218 bte->bte_error_count++;
219 bte->bh_error = IBLS_ERROR;
220 bte_error_handler((unsigned long)NODEPDA(bte->bte_cnode));
221 *bte->most_rcnt_na = BTE_WORD_AVAILABLE;
226 BTE_PRINTKV((" Delay Done. IBLS = 0x%lx, most_rcnt_na = 0x%lx\n",
227 BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));
229 if (transfer_stat & IBLS_ERROR) {
230 bte_status = BTE_GET_ERROR_STATUS(transfer_stat);
232 bte_status = BTE_SUCCESS;
234 *bte->most_rcnt_na = BTE_WORD_AVAILABLE;
236 BTE_PRINTK(("Returning status is 0x%lx and most_rcnt_na is 0x%lx\n",
237 BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));
242 EXPORT_SYMBOL(bte_copy);
245 * bte_unaligned_copy(src, dest, len, mode)
247 * use the block transfer engine to move kernel
248 * memory from src to dest using the assigned mode.
251 * src - physical address of the transfer source.
252 * dest - physical address of the transfer destination.
253 * len - number of bytes to transfer from source to dest.
254 * mode - hardware defined. See reference information
255 * for IBCT0/1 in the SGI documentation.
257 * NOTE: If the source, dest, and len are all cache line aligned,
258 * then it would be _FAR_ preferable to use bte_copy instead.
260 bte_result_t bte_unaligned_copy(u64 src, u64 dest, u64 len, u64 mode)
262 int destFirstCacheOffset;
265 u64 headBcopySrcOffset;
273 char *bteBlock, *bteBlock_unaligned;
279 /* temporary buffer used during unaligned transfers */
280 bteBlock_unaligned = kmalloc(len + 3 * L1_CACHE_BYTES, GFP_KERNEL);
281 if (bteBlock_unaligned == NULL) {
282 return BTEFAIL_NOTAVAIL;
284 bteBlock = (char *)L1_CACHE_ALIGN((u64) bteBlock_unaligned);
286 headBcopySrcOffset = src & L1_CACHE_MASK;
287 destFirstCacheOffset = dest & L1_CACHE_MASK;
290 * At this point, the transfer is broken into
291 * (up to) three sections. The first section is
292 * from the start address to the first physical
293 * cache line, the second is from the first physical
294 * cache line to the last complete cache line,
295 * and the third is from the last cache line to the
296 * end of the buffer. The first and third sections
297 * are handled by bte copying into a temporary buffer
298 * and then bcopy'ing the necessary section into the
299 * final location. The middle section is handled with
300 * a standard bte copy.
302 * One nasty exception to the above rule is when the
303 * source and destination are not symmetrically
304 * mis-aligned. If the source offset from the first
305 * cache line is different from the destination offset,
306 * we make the first section be the entire transfer
307 * and the bcopy the entire block into place.
309 if (headBcopySrcOffset == destFirstCacheOffset) {
312 * Both the source and destination are the same
313 * distance from a cache line boundary so we can
314 * use the bte to transfer the bulk of the
317 headBteSource = src & ~L1_CACHE_MASK;
318 headBcopyDest = dest;
319 if (headBcopySrcOffset) {
323 headBcopySrcOffset) ? L1_CACHE_BYTES
324 - headBcopySrcOffset : len);
325 headBteLen = L1_CACHE_BYTES;
331 if (len > headBcopyLen) {
332 footBcopyLen = (len - headBcopyLen) & L1_CACHE_MASK;
333 footBteLen = L1_CACHE_BYTES;
335 footBteSource = src + len - footBcopyLen;
336 footBcopyDest = dest + len - footBcopyLen;
338 if (footBcopyDest == (headBcopyDest + headBcopyLen)) {
340 * We have two contiguous bcopy
341 * blocks. Merge them.
343 headBcopyLen += footBcopyLen;
344 headBteLen += footBteLen;
345 } else if (footBcopyLen > 0) {
346 rv = bte_copy(footBteSource,
347 ia64_tpa((unsigned long)bteBlock),
348 footBteLen, mode, NULL);
349 if (rv != BTE_SUCCESS) {
350 kfree(bteBlock_unaligned);
354 memcpy(__va(footBcopyDest),
355 (char *)bteBlock, footBcopyLen);
362 if (len > (headBcopyLen + footBcopyLen)) {
363 /* now transfer the middle. */
364 rv = bte_copy((src + headBcopyLen),
367 (len - headBcopyLen -
368 footBcopyLen), mode, NULL);
369 if (rv != BTE_SUCCESS) {
370 kfree(bteBlock_unaligned);
378 * The transfer is not symmetric, we will
379 * allocate a buffer large enough for all the
380 * data, bte_copy into that buffer and then
381 * bcopy to the destination.
384 headBcopySrcOffset = src & L1_CACHE_MASK;
385 headBcopyDest = dest;
388 headBteSource = src - headBcopySrcOffset;
389 /* Add the leading and trailing bytes from source */
390 headBteLen = L1_CACHE_ALIGN(len + headBcopySrcOffset);
393 if (headBcopyLen > 0) {
394 rv = bte_copy(headBteSource,
395 ia64_tpa((unsigned long)bteBlock), headBteLen,
397 if (rv != BTE_SUCCESS) {
398 kfree(bteBlock_unaligned);
402 memcpy(__va(headBcopyDest), ((char *)bteBlock +
403 headBcopySrcOffset), headBcopyLen);
405 kfree(bteBlock_unaligned);
409 EXPORT_SYMBOL(bte_unaligned_copy);
411 /************************************************************************
412 * Block Transfer Engine initialization functions.
414 ***********************************************************************/
417 * bte_init_node(nodepda, cnode)
419 * Initialize the nodepda structure with BTE base addresses and
422 void bte_init_node(nodepda_t * mynodepda, cnodeid_t cnode)
427 * Indicate that all the block transfer engines on this node
432 * Allocate one bte_recover_t structure per node. It holds
433 * the recovery lock for node. All the bte interface structures
434 * will point at this one bte_recover structure to get the lock.
436 spin_lock_init(&mynodepda->bte_recovery_lock);
437 init_timer(&mynodepda->bte_recovery_timer);
438 mynodepda->bte_recovery_timer.function = bte_error_handler;
439 mynodepda->bte_recovery_timer.data = (unsigned long)mynodepda;
441 for (i = 0; i < BTES_PER_NODE; i++) {
444 /* Which link status register should we use? */
446 REMOTE_HUB_ADDR(cnodeid_to_nasid(cnode), BTE_BASE_ADDR(i));
447 mynodepda->bte_if[i].bte_base_addr = base_addr;
448 mynodepda->bte_if[i].bte_source_addr = BTE_SOURCE_ADDR(base_addr);
449 mynodepda->bte_if[i].bte_destination_addr = BTE_DEST_ADDR(base_addr);
450 mynodepda->bte_if[i].bte_control_addr = BTE_CTRL_ADDR(base_addr);
451 mynodepda->bte_if[i].bte_notify_addr = BTE_NOTIF_ADDR(base_addr);
454 * Initialize the notification and spinlock
455 * so the first transfer can occur.
457 mynodepda->bte_if[i].most_rcnt_na =
458 &(mynodepda->bte_if[i].notify);
459 mynodepda->bte_if[i].notify = BTE_WORD_AVAILABLE;
460 spin_lock_init(&mynodepda->bte_if[i].spinlock);
462 mynodepda->bte_if[i].bte_cnode = cnode;
463 mynodepda->bte_if[i].bte_error_count = 0;
464 mynodepda->bte_if[i].bte_num = i;
465 mynodepda->bte_if[i].cleanup_active = 0;
466 mynodepda->bte_if[i].bh_error = 0;