4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
27 #include <asm/atomic.h>
28 #include <asm/uaccess.h>
29 #include <asm/tlbflush.h>
32 /*** Page table manipulation functions ***/
34 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
38 pte = pte_offset_kernel(pmd, addr);
40 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
41 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
42 } while (pte++, addr += PAGE_SIZE, addr != end);
45 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
50 pmd = pmd_offset(pud, addr);
52 next = pmd_addr_end(addr, end);
53 if (pmd_none_or_clear_bad(pmd))
55 vunmap_pte_range(pmd, addr, next);
56 } while (pmd++, addr = next, addr != end);
59 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
64 pud = pud_offset(pgd, addr);
66 next = pud_addr_end(addr, end);
67 if (pud_none_or_clear_bad(pud))
69 vunmap_pmd_range(pud, addr, next);
70 } while (pud++, addr = next, addr != end);
73 static void vunmap_page_range(unsigned long addr, unsigned long end)
79 pgd = pgd_offset_k(addr);
81 next = pgd_addr_end(addr, end);
82 if (pgd_none_or_clear_bad(pgd))
84 vunmap_pud_range(pgd, addr, next);
85 } while (pgd++, addr = next, addr != end);
88 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
89 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
94 * nr is a running index into the array which helps higher level
95 * callers keep track of where we're up to.
98 pte = pte_alloc_kernel(pmd, addr);
102 struct page *page = pages[*nr];
104 if (WARN_ON(!pte_none(*pte)))
108 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
110 } while (pte++, addr += PAGE_SIZE, addr != end);
114 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
115 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
120 pmd = pmd_alloc(&init_mm, pud, addr);
124 next = pmd_addr_end(addr, end);
125 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
127 } while (pmd++, addr = next, addr != end);
131 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
132 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
137 pud = pud_alloc(&init_mm, pgd, addr);
141 next = pud_addr_end(addr, end);
142 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
144 } while (pud++, addr = next, addr != end);
149 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
150 * will have pfns corresponding to the "pages" array.
152 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
154 static int vmap_page_range(unsigned long start, unsigned long end,
155 pgprot_t prot, struct page **pages)
159 unsigned long addr = start;
164 pgd = pgd_offset_k(addr);
166 next = pgd_addr_end(addr, end);
167 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
170 } while (pgd++, addr = next, addr != end);
171 flush_cache_vmap(start, end);
178 static inline int is_vmalloc_or_module_addr(const void *x)
181 * ARM, x86-64 and sparc64 put modules in a special place,
182 * and fall back on vmalloc() if that fails. Others
183 * just put it in the vmalloc space.
185 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
186 unsigned long addr = (unsigned long)x;
187 if (addr >= MODULES_VADDR && addr < MODULES_END)
190 return is_vmalloc_addr(x);
194 * Walk a vmap address to the struct page it maps.
196 struct page *vmalloc_to_page(const void *vmalloc_addr)
198 unsigned long addr = (unsigned long) vmalloc_addr;
199 struct page *page = NULL;
200 pgd_t *pgd = pgd_offset_k(addr);
203 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
204 * architectures that do not vmalloc module space
206 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
208 if (!pgd_none(*pgd)) {
209 pud_t *pud = pud_offset(pgd, addr);
210 if (!pud_none(*pud)) {
211 pmd_t *pmd = pmd_offset(pud, addr);
212 if (!pmd_none(*pmd)) {
215 ptep = pte_offset_map(pmd, addr);
217 if (pte_present(pte))
218 page = pte_page(pte);
225 EXPORT_SYMBOL(vmalloc_to_page);
228 * Map a vmalloc()-space virtual address to the physical page frame number.
230 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
232 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
234 EXPORT_SYMBOL(vmalloc_to_pfn);
237 /*** Global kva allocator ***/
239 #define VM_LAZY_FREE 0x01
240 #define VM_LAZY_FREEING 0x02
241 #define VM_VM_AREA 0x04
244 unsigned long va_start;
245 unsigned long va_end;
247 struct rb_node rb_node; /* address sorted rbtree */
248 struct list_head list; /* address sorted list */
249 struct list_head purge_list; /* "lazy purge" list */
251 struct rcu_head rcu_head;
254 static DEFINE_SPINLOCK(vmap_area_lock);
255 static struct rb_root vmap_area_root = RB_ROOT;
256 static LIST_HEAD(vmap_area_list);
258 static struct vmap_area *__find_vmap_area(unsigned long addr)
260 struct rb_node *n = vmap_area_root.rb_node;
263 struct vmap_area *va;
265 va = rb_entry(n, struct vmap_area, rb_node);
266 if (addr < va->va_start)
268 else if (addr > va->va_start)
277 static void __insert_vmap_area(struct vmap_area *va)
279 struct rb_node **p = &vmap_area_root.rb_node;
280 struct rb_node *parent = NULL;
284 struct vmap_area *tmp;
287 tmp = rb_entry(parent, struct vmap_area, rb_node);
288 if (va->va_start < tmp->va_end)
290 else if (va->va_end > tmp->va_start)
296 rb_link_node(&va->rb_node, parent, p);
297 rb_insert_color(&va->rb_node, &vmap_area_root);
299 /* address-sort this list so it is usable like the vmlist */
300 tmp = rb_prev(&va->rb_node);
302 struct vmap_area *prev;
303 prev = rb_entry(tmp, struct vmap_area, rb_node);
304 list_add_rcu(&va->list, &prev->list);
306 list_add_rcu(&va->list, &vmap_area_list);
309 static void purge_vmap_area_lazy(void);
312 * Allocate a region of KVA of the specified size and alignment, within the
315 static struct vmap_area *alloc_vmap_area(unsigned long size,
317 unsigned long vstart, unsigned long vend,
318 int node, gfp_t gfp_mask)
320 struct vmap_area *va;
325 BUG_ON(size & ~PAGE_MASK);
327 va = kmalloc_node(sizeof(struct vmap_area),
328 gfp_mask & GFP_RECLAIM_MASK, node);
330 return ERR_PTR(-ENOMEM);
333 addr = ALIGN(vstart, align);
335 spin_lock(&vmap_area_lock);
336 /* XXX: could have a last_hole cache */
337 n = vmap_area_root.rb_node;
339 struct vmap_area *first = NULL;
342 struct vmap_area *tmp;
343 tmp = rb_entry(n, struct vmap_area, rb_node);
344 if (tmp->va_end >= addr) {
345 if (!first && tmp->va_start < addr + size)
357 if (first->va_end < addr) {
358 n = rb_next(&first->rb_node);
360 first = rb_entry(n, struct vmap_area, rb_node);
365 while (addr + size > first->va_start && addr + size <= vend) {
366 addr = ALIGN(first->va_end + PAGE_SIZE, align);
368 n = rb_next(&first->rb_node);
370 first = rb_entry(n, struct vmap_area, rb_node);
376 if (addr + size > vend) {
377 spin_unlock(&vmap_area_lock);
379 purge_vmap_area_lazy();
383 if (printk_ratelimit())
384 printk(KERN_WARNING "vmap allocation failed: "
385 "use vmalloc=<size> to increase size.\n");
386 return ERR_PTR(-EBUSY);
389 BUG_ON(addr & (align-1));
392 va->va_end = addr + size;
394 __insert_vmap_area(va);
395 spin_unlock(&vmap_area_lock);
400 static void rcu_free_va(struct rcu_head *head)
402 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
407 static void __free_vmap_area(struct vmap_area *va)
409 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
410 rb_erase(&va->rb_node, &vmap_area_root);
411 RB_CLEAR_NODE(&va->rb_node);
412 list_del_rcu(&va->list);
414 call_rcu(&va->rcu_head, rcu_free_va);
418 * Free a region of KVA allocated by alloc_vmap_area
420 static void free_vmap_area(struct vmap_area *va)
422 spin_lock(&vmap_area_lock);
423 __free_vmap_area(va);
424 spin_unlock(&vmap_area_lock);
428 * Clear the pagetable entries of a given vmap_area
430 static void unmap_vmap_area(struct vmap_area *va)
432 vunmap_page_range(va->va_start, va->va_end);
436 * lazy_max_pages is the maximum amount of virtual address space we gather up
437 * before attempting to purge with a TLB flush.
439 * There is a tradeoff here: a larger number will cover more kernel page tables
440 * and take slightly longer to purge, but it will linearly reduce the number of
441 * global TLB flushes that must be performed. It would seem natural to scale
442 * this number up linearly with the number of CPUs (because vmapping activity
443 * could also scale linearly with the number of CPUs), however it is likely
444 * that in practice, workloads might be constrained in other ways that mean
445 * vmap activity will not scale linearly with CPUs. Also, I want to be
446 * conservative and not introduce a big latency on huge systems, so go with
447 * a less aggressive log scale. It will still be an improvement over the old
448 * code, and it will be simple to change the scale factor if we find that it
449 * becomes a problem on bigger systems.
451 static unsigned long lazy_max_pages(void)
455 log = fls(num_online_cpus());
457 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
460 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
463 * Purges all lazily-freed vmap areas.
465 * If sync is 0 then don't purge if there is already a purge in progress.
466 * If force_flush is 1, then flush kernel TLBs between *start and *end even
467 * if we found no lazy vmap areas to unmap (callers can use this to optimise
468 * their own TLB flushing).
469 * Returns with *start = min(*start, lowest purged address)
470 * *end = max(*end, highest purged address)
472 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
473 int sync, int force_flush)
475 static DEFINE_SPINLOCK(purge_lock);
477 struct vmap_area *va;
481 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
482 * should not expect such behaviour. This just simplifies locking for
483 * the case that isn't actually used at the moment anyway.
485 if (!sync && !force_flush) {
486 if (!spin_trylock(&purge_lock))
489 spin_lock(&purge_lock);
492 list_for_each_entry_rcu(va, &vmap_area_list, list) {
493 if (va->flags & VM_LAZY_FREE) {
494 if (va->va_start < *start)
495 *start = va->va_start;
496 if (va->va_end > *end)
498 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
500 list_add_tail(&va->purge_list, &valist);
501 va->flags |= VM_LAZY_FREEING;
502 va->flags &= ~VM_LAZY_FREE;
508 BUG_ON(nr > atomic_read(&vmap_lazy_nr));
509 atomic_sub(nr, &vmap_lazy_nr);
512 if (nr || force_flush)
513 flush_tlb_kernel_range(*start, *end);
516 spin_lock(&vmap_area_lock);
517 list_for_each_entry(va, &valist, purge_list)
518 __free_vmap_area(va);
519 spin_unlock(&vmap_area_lock);
521 spin_unlock(&purge_lock);
525 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
526 * is already purging.
528 static void try_purge_vmap_area_lazy(void)
530 unsigned long start = ULONG_MAX, end = 0;
532 __purge_vmap_area_lazy(&start, &end, 0, 0);
536 * Kick off a purge of the outstanding lazy areas.
538 static void purge_vmap_area_lazy(void)
540 unsigned long start = ULONG_MAX, end = 0;
542 __purge_vmap_area_lazy(&start, &end, 1, 0);
546 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
547 * called for the correct range previously.
549 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
551 va->flags |= VM_LAZY_FREE;
552 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
553 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
554 try_purge_vmap_area_lazy();
558 * Free and unmap a vmap area
560 static void free_unmap_vmap_area(struct vmap_area *va)
562 flush_cache_vunmap(va->va_start, va->va_end);
563 free_unmap_vmap_area_noflush(va);
566 static struct vmap_area *find_vmap_area(unsigned long addr)
568 struct vmap_area *va;
570 spin_lock(&vmap_area_lock);
571 va = __find_vmap_area(addr);
572 spin_unlock(&vmap_area_lock);
577 static void free_unmap_vmap_area_addr(unsigned long addr)
579 struct vmap_area *va;
581 va = find_vmap_area(addr);
583 free_unmap_vmap_area(va);
587 /*** Per cpu kva allocator ***/
590 * vmap space is limited especially on 32 bit architectures. Ensure there is
591 * room for at least 16 percpu vmap blocks per CPU.
594 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
595 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
596 * instead (we just need a rough idea)
598 #if BITS_PER_LONG == 32
599 #define VMALLOC_SPACE (128UL*1024*1024)
601 #define VMALLOC_SPACE (128UL*1024*1024*1024)
604 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
605 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
606 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
607 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
608 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
609 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
610 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
611 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
612 VMALLOC_PAGES / NR_CPUS / 16))
614 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
616 static bool vmap_initialized __read_mostly = false;
618 struct vmap_block_queue {
620 struct list_head free;
621 struct list_head dirty;
622 unsigned int nr_dirty;
627 struct vmap_area *va;
628 struct vmap_block_queue *vbq;
629 unsigned long free, dirty;
630 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
631 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
634 struct list_head free_list;
635 struct list_head dirty_list;
637 struct rcu_head rcu_head;
641 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
642 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
645 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
646 * in the free path. Could get rid of this if we change the API to return a
647 * "cookie" from alloc, to be passed to free. But no big deal yet.
649 static DEFINE_SPINLOCK(vmap_block_tree_lock);
650 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
653 * We should probably have a fallback mechanism to allocate virtual memory
654 * out of partially filled vmap blocks. However vmap block sizing should be
655 * fairly reasonable according to the vmalloc size, so it shouldn't be a
659 static unsigned long addr_to_vb_idx(unsigned long addr)
661 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
662 addr /= VMAP_BLOCK_SIZE;
666 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
668 struct vmap_block_queue *vbq;
669 struct vmap_block *vb;
670 struct vmap_area *va;
671 unsigned long vb_idx;
674 node = numa_node_id();
676 vb = kmalloc_node(sizeof(struct vmap_block),
677 gfp_mask & GFP_RECLAIM_MASK, node);
679 return ERR_PTR(-ENOMEM);
681 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
682 VMALLOC_START, VMALLOC_END,
684 if (unlikely(IS_ERR(va))) {
686 return ERR_PTR(PTR_ERR(va));
689 err = radix_tree_preload(gfp_mask);
696 spin_lock_init(&vb->lock);
698 vb->free = VMAP_BBMAP_BITS;
700 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
701 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
702 INIT_LIST_HEAD(&vb->free_list);
703 INIT_LIST_HEAD(&vb->dirty_list);
705 vb_idx = addr_to_vb_idx(va->va_start);
706 spin_lock(&vmap_block_tree_lock);
707 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
708 spin_unlock(&vmap_block_tree_lock);
710 radix_tree_preload_end();
712 vbq = &get_cpu_var(vmap_block_queue);
714 spin_lock(&vbq->lock);
715 list_add(&vb->free_list, &vbq->free);
716 spin_unlock(&vbq->lock);
717 put_cpu_var(vmap_cpu_blocks);
722 static void rcu_free_vb(struct rcu_head *head)
724 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
729 static void free_vmap_block(struct vmap_block *vb)
731 struct vmap_block *tmp;
732 unsigned long vb_idx;
734 spin_lock(&vb->vbq->lock);
735 if (!list_empty(&vb->free_list))
736 list_del(&vb->free_list);
737 if (!list_empty(&vb->dirty_list))
738 list_del(&vb->dirty_list);
739 spin_unlock(&vb->vbq->lock);
741 vb_idx = addr_to_vb_idx(vb->va->va_start);
742 spin_lock(&vmap_block_tree_lock);
743 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
744 spin_unlock(&vmap_block_tree_lock);
747 free_unmap_vmap_area_noflush(vb->va);
748 call_rcu(&vb->rcu_head, rcu_free_vb);
751 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
753 struct vmap_block_queue *vbq;
754 struct vmap_block *vb;
755 unsigned long addr = 0;
758 BUG_ON(size & ~PAGE_MASK);
759 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
760 order = get_order(size);
764 vbq = &get_cpu_var(vmap_block_queue);
765 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
768 spin_lock(&vb->lock);
769 i = bitmap_find_free_region(vb->alloc_map,
770 VMAP_BBMAP_BITS, order);
773 addr = vb->va->va_start + (i << PAGE_SHIFT);
774 BUG_ON(addr_to_vb_idx(addr) !=
775 addr_to_vb_idx(vb->va->va_start));
776 vb->free -= 1UL << order;
778 spin_lock(&vbq->lock);
779 list_del_init(&vb->free_list);
780 spin_unlock(&vbq->lock);
782 spin_unlock(&vb->lock);
785 spin_unlock(&vb->lock);
787 put_cpu_var(vmap_cpu_blocks);
791 vb = new_vmap_block(gfp_mask);
800 static void vb_free(const void *addr, unsigned long size)
802 unsigned long offset;
803 unsigned long vb_idx;
805 struct vmap_block *vb;
807 BUG_ON(size & ~PAGE_MASK);
808 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
810 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
812 order = get_order(size);
814 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
816 vb_idx = addr_to_vb_idx((unsigned long)addr);
818 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
822 spin_lock(&vb->lock);
823 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
825 spin_lock(&vb->vbq->lock);
826 list_add(&vb->dirty_list, &vb->vbq->dirty);
827 spin_unlock(&vb->vbq->lock);
829 vb->dirty += 1UL << order;
830 if (vb->dirty == VMAP_BBMAP_BITS) {
831 BUG_ON(vb->free || !list_empty(&vb->free_list));
832 spin_unlock(&vb->lock);
835 spin_unlock(&vb->lock);
839 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
841 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
842 * to amortize TLB flushing overheads. What this means is that any page you
843 * have now, may, in a former life, have been mapped into kernel virtual
844 * address by the vmap layer and so there might be some CPUs with TLB entries
845 * still referencing that page (additional to the regular 1:1 kernel mapping).
847 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
848 * be sure that none of the pages we have control over will have any aliases
849 * from the vmap layer.
851 void vm_unmap_aliases(void)
853 unsigned long start = ULONG_MAX, end = 0;
857 if (unlikely(!vmap_initialized))
860 for_each_possible_cpu(cpu) {
861 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
862 struct vmap_block *vb;
865 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
868 spin_lock(&vb->lock);
869 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
870 while (i < VMAP_BBMAP_BITS) {
873 j = find_next_zero_bit(vb->dirty_map,
876 s = vb->va->va_start + (i << PAGE_SHIFT);
877 e = vb->va->va_start + (j << PAGE_SHIFT);
878 vunmap_page_range(s, e);
887 i = find_next_bit(vb->dirty_map,
890 spin_unlock(&vb->lock);
895 __purge_vmap_area_lazy(&start, &end, 1, flush);
897 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
900 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
901 * @mem: the pointer returned by vm_map_ram
902 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
904 void vm_unmap_ram(const void *mem, unsigned int count)
906 unsigned long size = count << PAGE_SHIFT;
907 unsigned long addr = (unsigned long)mem;
910 BUG_ON(addr < VMALLOC_START);
911 BUG_ON(addr > VMALLOC_END);
912 BUG_ON(addr & (PAGE_SIZE-1));
914 debug_check_no_locks_freed(mem, size);
916 if (likely(count <= VMAP_MAX_ALLOC))
919 free_unmap_vmap_area_addr(addr);
921 EXPORT_SYMBOL(vm_unmap_ram);
924 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
925 * @pages: an array of pointers to the pages to be mapped
926 * @count: number of pages
927 * @node: prefer to allocate data structures on this node
928 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
930 * Returns: a pointer to the address that has been mapped, or %NULL on failure
932 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
934 unsigned long size = count << PAGE_SHIFT;
938 if (likely(count <= VMAP_MAX_ALLOC)) {
939 mem = vb_alloc(size, GFP_KERNEL);
942 addr = (unsigned long)mem;
944 struct vmap_area *va;
945 va = alloc_vmap_area(size, PAGE_SIZE,
946 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
953 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
954 vm_unmap_ram(mem, count);
959 EXPORT_SYMBOL(vm_map_ram);
961 void __init vmalloc_init(void)
965 for_each_possible_cpu(i) {
966 struct vmap_block_queue *vbq;
968 vbq = &per_cpu(vmap_block_queue, i);
969 spin_lock_init(&vbq->lock);
970 INIT_LIST_HEAD(&vbq->free);
971 INIT_LIST_HEAD(&vbq->dirty);
975 vmap_initialized = true;
978 void unmap_kernel_range(unsigned long addr, unsigned long size)
980 unsigned long end = addr + size;
981 vunmap_page_range(addr, end);
982 flush_tlb_kernel_range(addr, end);
985 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
987 unsigned long addr = (unsigned long)area->addr;
988 unsigned long end = addr + area->size - PAGE_SIZE;
991 err = vmap_page_range(addr, end, prot, *pages);
999 EXPORT_SYMBOL_GPL(map_vm_area);
1001 /*** Old vmalloc interfaces ***/
1002 DEFINE_RWLOCK(vmlist_lock);
1003 struct vm_struct *vmlist;
1005 static struct vm_struct *__get_vm_area_node(unsigned long size,
1006 unsigned long flags, unsigned long start, unsigned long end,
1007 int node, gfp_t gfp_mask, void *caller)
1009 static struct vmap_area *va;
1010 struct vm_struct *area;
1011 struct vm_struct *tmp, **p;
1012 unsigned long align = 1;
1014 BUG_ON(in_interrupt());
1015 if (flags & VM_IOREMAP) {
1016 int bit = fls(size);
1018 if (bit > IOREMAP_MAX_ORDER)
1019 bit = IOREMAP_MAX_ORDER;
1020 else if (bit < PAGE_SHIFT)
1026 size = PAGE_ALIGN(size);
1027 if (unlikely(!size))
1030 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1031 if (unlikely(!area))
1035 * We always allocate a guard page.
1039 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1045 area->flags = flags;
1046 area->addr = (void *)va->va_start;
1050 area->phys_addr = 0;
1051 area->caller = caller;
1053 va->flags |= VM_VM_AREA;
1055 write_lock(&vmlist_lock);
1056 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1057 if (tmp->addr >= area->addr)
1062 write_unlock(&vmlist_lock);
1067 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1068 unsigned long start, unsigned long end)
1070 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1071 __builtin_return_address(0));
1073 EXPORT_SYMBOL_GPL(__get_vm_area);
1076 * get_vm_area - reserve a contiguous kernel virtual area
1077 * @size: size of the area
1078 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1080 * Search an area of @size in the kernel virtual mapping area,
1081 * and reserved it for out purposes. Returns the area descriptor
1082 * on success or %NULL on failure.
1084 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1086 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1087 -1, GFP_KERNEL, __builtin_return_address(0));
1090 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1093 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1094 -1, GFP_KERNEL, caller);
1097 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1098 int node, gfp_t gfp_mask)
1100 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
1101 gfp_mask, __builtin_return_address(0));
1104 static struct vm_struct *find_vm_area(const void *addr)
1106 struct vmap_area *va;
1108 va = find_vmap_area((unsigned long)addr);
1109 if (va && va->flags & VM_VM_AREA)
1116 * remove_vm_area - find and remove a continuous kernel virtual area
1117 * @addr: base address
1119 * Search for the kernel VM area starting at @addr, and remove it.
1120 * This function returns the found VM area, but using it is NOT safe
1121 * on SMP machines, except for its size or flags.
1123 struct vm_struct *remove_vm_area(const void *addr)
1125 struct vmap_area *va;
1127 va = find_vmap_area((unsigned long)addr);
1128 if (va && va->flags & VM_VM_AREA) {
1129 struct vm_struct *vm = va->private;
1130 struct vm_struct *tmp, **p;
1131 free_unmap_vmap_area(va);
1132 vm->size -= PAGE_SIZE;
1134 write_lock(&vmlist_lock);
1135 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1138 write_unlock(&vmlist_lock);
1145 static void __vunmap(const void *addr, int deallocate_pages)
1147 struct vm_struct *area;
1152 if ((PAGE_SIZE-1) & (unsigned long)addr) {
1153 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1157 area = remove_vm_area(addr);
1158 if (unlikely(!area)) {
1159 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1164 debug_check_no_locks_freed(addr, area->size);
1165 debug_check_no_obj_freed(addr, area->size);
1167 if (deallocate_pages) {
1170 for (i = 0; i < area->nr_pages; i++) {
1171 struct page *page = area->pages[i];
1177 if (area->flags & VM_VPAGES)
1188 * vfree - release memory allocated by vmalloc()
1189 * @addr: memory base address
1191 * Free the virtually continuous memory area starting at @addr, as
1192 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1193 * NULL, no operation is performed.
1195 * Must not be called in interrupt context.
1197 void vfree(const void *addr)
1199 BUG_ON(in_interrupt());
1202 EXPORT_SYMBOL(vfree);
1205 * vunmap - release virtual mapping obtained by vmap()
1206 * @addr: memory base address
1208 * Free the virtually contiguous memory area starting at @addr,
1209 * which was created from the page array passed to vmap().
1211 * Must not be called in interrupt context.
1213 void vunmap(const void *addr)
1215 BUG_ON(in_interrupt());
1218 EXPORT_SYMBOL(vunmap);
1221 * vmap - map an array of pages into virtually contiguous space
1222 * @pages: array of page pointers
1223 * @count: number of pages to map
1224 * @flags: vm_area->flags
1225 * @prot: page protection for the mapping
1227 * Maps @count pages from @pages into contiguous kernel virtual
1230 void *vmap(struct page **pages, unsigned int count,
1231 unsigned long flags, pgprot_t prot)
1233 struct vm_struct *area;
1235 if (count > num_physpages)
1238 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1239 __builtin_return_address(0));
1243 if (map_vm_area(area, prot, &pages)) {
1250 EXPORT_SYMBOL(vmap);
1252 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1253 int node, void *caller);
1254 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1255 pgprot_t prot, int node, void *caller)
1257 struct page **pages;
1258 unsigned int nr_pages, array_size, i;
1260 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1261 array_size = (nr_pages * sizeof(struct page *));
1263 area->nr_pages = nr_pages;
1264 /* Please note that the recursion is strictly bounded. */
1265 if (array_size > PAGE_SIZE) {
1266 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
1267 PAGE_KERNEL, node, caller);
1268 area->flags |= VM_VPAGES;
1270 pages = kmalloc_node(array_size,
1271 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1274 area->pages = pages;
1275 area->caller = caller;
1277 remove_vm_area(area->addr);
1282 for (i = 0; i < area->nr_pages; i++) {
1286 page = alloc_page(gfp_mask);
1288 page = alloc_pages_node(node, gfp_mask, 0);
1290 if (unlikely(!page)) {
1291 /* Successfully allocated i pages, free them in __vunmap() */
1295 area->pages[i] = page;
1298 if (map_vm_area(area, prot, &pages))
1307 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1309 return __vmalloc_area_node(area, gfp_mask, prot, -1,
1310 __builtin_return_address(0));
1314 * __vmalloc_node - allocate virtually contiguous memory
1315 * @size: allocation size
1316 * @gfp_mask: flags for the page level allocator
1317 * @prot: protection mask for the allocated pages
1318 * @node: node to use for allocation or -1
1319 * @caller: caller's return address
1321 * Allocate enough pages to cover @size from the page level
1322 * allocator with @gfp_mask flags. Map them into contiguous
1323 * kernel virtual space, using a pagetable protection of @prot.
1325 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1326 int node, void *caller)
1328 struct vm_struct *area;
1330 size = PAGE_ALIGN(size);
1331 if (!size || (size >> PAGE_SHIFT) > num_physpages)
1334 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1335 node, gfp_mask, caller);
1340 return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1343 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1345 return __vmalloc_node(size, gfp_mask, prot, -1,
1346 __builtin_return_address(0));
1348 EXPORT_SYMBOL(__vmalloc);
1351 * vmalloc - allocate virtually contiguous memory
1352 * @size: allocation size
1353 * Allocate enough pages to cover @size from the page level
1354 * allocator and map them into contiguous kernel virtual space.
1356 * For tight control over page level allocator and protection flags
1357 * use __vmalloc() instead.
1359 void *vmalloc(unsigned long size)
1361 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1362 -1, __builtin_return_address(0));
1364 EXPORT_SYMBOL(vmalloc);
1367 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1368 * @size: allocation size
1370 * The resulting memory area is zeroed so it can be mapped to userspace
1371 * without leaking data.
1373 void *vmalloc_user(unsigned long size)
1375 struct vm_struct *area;
1378 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
1380 area = find_vm_area(ret);
1381 area->flags |= VM_USERMAP;
1385 EXPORT_SYMBOL(vmalloc_user);
1388 * vmalloc_node - allocate memory on a specific node
1389 * @size: allocation size
1392 * Allocate enough pages to cover @size from the page level
1393 * allocator and map them into contiguous kernel virtual space.
1395 * For tight control over page level allocator and protection flags
1396 * use __vmalloc() instead.
1398 void *vmalloc_node(unsigned long size, int node)
1400 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1401 node, __builtin_return_address(0));
1403 EXPORT_SYMBOL(vmalloc_node);
1405 #ifndef PAGE_KERNEL_EXEC
1406 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1410 * vmalloc_exec - allocate virtually contiguous, executable memory
1411 * @size: allocation size
1413 * Kernel-internal function to allocate enough pages to cover @size
1414 * the page level allocator and map them into contiguous and
1415 * executable kernel virtual space.
1417 * For tight control over page level allocator and protection flags
1418 * use __vmalloc() instead.
1421 void *vmalloc_exec(unsigned long size)
1423 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
1426 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1427 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1428 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1429 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1431 #define GFP_VMALLOC32 GFP_KERNEL
1435 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1436 * @size: allocation size
1438 * Allocate enough 32bit PA addressable pages to cover @size from the
1439 * page level allocator and map them into contiguous kernel virtual space.
1441 void *vmalloc_32(unsigned long size)
1443 return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
1445 EXPORT_SYMBOL(vmalloc_32);
1448 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1449 * @size: allocation size
1451 * The resulting memory area is 32bit addressable and zeroed so it can be
1452 * mapped to userspace without leaking data.
1454 void *vmalloc_32_user(unsigned long size)
1456 struct vm_struct *area;
1459 ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
1461 area = find_vm_area(ret);
1462 area->flags |= VM_USERMAP;
1466 EXPORT_SYMBOL(vmalloc_32_user);
1468 long vread(char *buf, char *addr, unsigned long count)
1470 struct vm_struct *tmp;
1471 char *vaddr, *buf_start = buf;
1474 /* Don't allow overflow */
1475 if ((unsigned long) addr + count < count)
1476 count = -(unsigned long) addr;
1478 read_lock(&vmlist_lock);
1479 for (tmp = vmlist; tmp; tmp = tmp->next) {
1480 vaddr = (char *) tmp->addr;
1481 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1483 while (addr < vaddr) {
1491 n = vaddr + tmp->size - PAGE_SIZE - addr;
1502 read_unlock(&vmlist_lock);
1503 return buf - buf_start;
1506 long vwrite(char *buf, char *addr, unsigned long count)
1508 struct vm_struct *tmp;
1509 char *vaddr, *buf_start = buf;
1512 /* Don't allow overflow */
1513 if ((unsigned long) addr + count < count)
1514 count = -(unsigned long) addr;
1516 read_lock(&vmlist_lock);
1517 for (tmp = vmlist; tmp; tmp = tmp->next) {
1518 vaddr = (char *) tmp->addr;
1519 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1521 while (addr < vaddr) {
1528 n = vaddr + tmp->size - PAGE_SIZE - addr;
1539 read_unlock(&vmlist_lock);
1540 return buf - buf_start;
1544 * remap_vmalloc_range - map vmalloc pages to userspace
1545 * @vma: vma to cover (map full range of vma)
1546 * @addr: vmalloc memory
1547 * @pgoff: number of pages into addr before first page to map
1549 * Returns: 0 for success, -Exxx on failure
1551 * This function checks that addr is a valid vmalloc'ed area, and
1552 * that it is big enough to cover the vma. Will return failure if
1553 * that criteria isn't met.
1555 * Similar to remap_pfn_range() (see mm/memory.c)
1557 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1558 unsigned long pgoff)
1560 struct vm_struct *area;
1561 unsigned long uaddr = vma->vm_start;
1562 unsigned long usize = vma->vm_end - vma->vm_start;
1564 if ((PAGE_SIZE-1) & (unsigned long)addr)
1567 area = find_vm_area(addr);
1571 if (!(area->flags & VM_USERMAP))
1574 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1577 addr += pgoff << PAGE_SHIFT;
1579 struct page *page = vmalloc_to_page(addr);
1582 ret = vm_insert_page(vma, uaddr, page);
1589 } while (usize > 0);
1591 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1592 vma->vm_flags |= VM_RESERVED;
1596 EXPORT_SYMBOL(remap_vmalloc_range);
1599 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1602 void __attribute__((weak)) vmalloc_sync_all(void)
1607 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1609 /* apply_to_page_range() does all the hard work. */
1614 * alloc_vm_area - allocate a range of kernel address space
1615 * @size: size of the area
1617 * Returns: NULL on failure, vm_struct on success
1619 * This function reserves a range of kernel address space, and
1620 * allocates pagetables to map that range. No actual mappings
1621 * are created. If the kernel address space is not shared
1622 * between processes, it syncs the pagetable across all
1625 struct vm_struct *alloc_vm_area(size_t size)
1627 struct vm_struct *area;
1629 area = get_vm_area_caller(size, VM_IOREMAP,
1630 __builtin_return_address(0));
1635 * This ensures that page tables are constructed for this region
1636 * of kernel virtual address space and mapped into init_mm.
1638 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1639 area->size, f, NULL)) {
1644 /* Make sure the pagetables are constructed in process kernel
1650 EXPORT_SYMBOL_GPL(alloc_vm_area);
1652 void free_vm_area(struct vm_struct *area)
1654 struct vm_struct *ret;
1655 ret = remove_vm_area(area->addr);
1656 BUG_ON(ret != area);
1659 EXPORT_SYMBOL_GPL(free_vm_area);
1662 #ifdef CONFIG_PROC_FS
1663 static void *s_start(struct seq_file *m, loff_t *pos)
1666 struct vm_struct *v;
1668 read_lock(&vmlist_lock);
1670 while (n > 0 && v) {
1681 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1683 struct vm_struct *v = p;
1689 static void s_stop(struct seq_file *m, void *p)
1691 read_unlock(&vmlist_lock);
1694 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1697 unsigned int nr, *counters = m->private;
1702 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1704 for (nr = 0; nr < v->nr_pages; nr++)
1705 counters[page_to_nid(v->pages[nr])]++;
1707 for_each_node_state(nr, N_HIGH_MEMORY)
1709 seq_printf(m, " N%u=%u", nr, counters[nr]);
1713 static int s_show(struct seq_file *m, void *p)
1715 struct vm_struct *v = p;
1717 seq_printf(m, "0x%p-0x%p %7ld",
1718 v->addr, v->addr + v->size, v->size);
1721 char buff[KSYM_SYMBOL_LEN];
1724 sprint_symbol(buff, (unsigned long)v->caller);
1729 seq_printf(m, " pages=%d", v->nr_pages);
1732 seq_printf(m, " phys=%lx", v->phys_addr);
1734 if (v->flags & VM_IOREMAP)
1735 seq_printf(m, " ioremap");
1737 if (v->flags & VM_ALLOC)
1738 seq_printf(m, " vmalloc");
1740 if (v->flags & VM_MAP)
1741 seq_printf(m, " vmap");
1743 if (v->flags & VM_USERMAP)
1744 seq_printf(m, " user");
1746 if (v->flags & VM_VPAGES)
1747 seq_printf(m, " vpages");
1749 show_numa_info(m, v);
1754 static const struct seq_operations vmalloc_op = {
1761 static int vmalloc_open(struct inode *inode, struct file *file)
1763 unsigned int *ptr = NULL;
1767 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1768 ret = seq_open(file, &vmalloc_op);
1770 struct seq_file *m = file->private_data;
1777 static const struct file_operations proc_vmalloc_operations = {
1778 .open = vmalloc_open,
1780 .llseek = seq_lseek,
1781 .release = seq_release_private,
1784 static int __init proc_vmalloc_init(void)
1786 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1789 module_init(proc_vmalloc_init);