1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/smp_lock.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/uaccess.h>
38 #include <asm/timer.h>
39 #include <asm/starfire.h>
42 extern int linux_num_cpus;
43 extern void calibrate_delay(void);
45 /* Please don't make this stuff initdata!!! --DaveM */
46 static unsigned char boot_cpu_id;
48 cpumask_t cpu_online_map = CPU_MASK_NONE;
49 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
50 static cpumask_t smp_commenced_mask;
51 static cpumask_t cpu_callout_map;
53 void smp_info(struct seq_file *m)
57 seq_printf(m, "State:\n");
58 for (i = 0; i < NR_CPUS; i++) {
61 "CPU%d:\t\tonline\n", i);
65 void smp_bogo(struct seq_file *m)
69 for (i = 0; i < NR_CPUS; i++)
72 "Cpu%dBogo\t: %lu.%02lu\n"
73 "Cpu%dClkTck\t: %016lx\n",
74 i, cpu_data(i).udelay_val / (500000/HZ),
75 (cpu_data(i).udelay_val / (5000/HZ)) % 100,
76 i, cpu_data(i).clock_tick);
79 void __init smp_store_cpu_info(int id)
83 /* multiplier and counter set by
84 smp_setup_percpu_timer() */
85 cpu_data(id).udelay_val = loops_per_jiffy;
87 cpu_find_by_mid(id, &cpu_node);
88 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
89 "clock-frequency", 0);
91 cpu_data(id).pgcache_size = 0;
92 cpu_data(id).pte_cache[0] = NULL;
93 cpu_data(id).pte_cache[1] = NULL;
94 cpu_data(id).pgd_cache = NULL;
95 cpu_data(id).idle_volume = 1;
98 static void smp_setup_percpu_timer(void);
100 static volatile unsigned long callin_flag = 0;
102 extern void inherit_locked_prom_mappings(int save_p);
104 static inline void cpu_setup_percpu_base(unsigned long cpu_id)
106 __asm__ __volatile__("mov %0, %%g5\n\t"
107 "stxa %0, [%1] %2\n\t"
110 : "r" (__per_cpu_offset(cpu_id)),
111 "r" (TSB_REG), "i" (ASI_IMMU));
114 void __init smp_callin(void)
116 int cpuid = hard_smp_processor_id();
118 inherit_locked_prom_mappings(0);
122 cpu_setup_percpu_base(cpuid);
124 smp_setup_percpu_timer();
126 if (cheetah_pcache_forced_on)
127 cheetah_enable_pcache();
132 smp_store_cpu_info(cpuid);
134 __asm__ __volatile__("membar #Sync\n\t"
135 "flush %%g6" : : : "memory");
137 /* Clear this or we will die instantly when we
138 * schedule back to this idler...
140 clear_thread_flag(TIF_NEWCHILD);
142 /* Attach to the address space of init_task. */
143 atomic_inc(&init_mm.mm_count);
144 current->active_mm = &init_mm;
146 while (!cpu_isset(cpuid, smp_commenced_mask))
149 cpu_set(cpuid, cpu_online_map);
154 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
155 panic("SMP bolixed\n");
158 static unsigned long current_tick_offset;
160 /* This tick register synchronization scheme is taken entirely from
161 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
163 * The only change I've made is to rework it so that the master
164 * initiates the synchonization instead of the slave. -DaveM
168 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
170 #define NUM_ROUNDS 64 /* magic value */
171 #define NUM_ITERS 5 /* likewise */
173 static DEFINE_SPINLOCK(itc_sync_lock);
174 static unsigned long go[SLAVE + 1];
176 #define DEBUG_TICK_SYNC 0
178 static inline long get_delta (long *rt, long *master)
180 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
181 unsigned long tcenter, t0, t1, tm;
184 for (i = 0; i < NUM_ITERS; i++) {
185 t0 = tick_ops->get_tick();
187 membar("#StoreLoad");
188 while (!(tm = go[SLAVE]))
191 membar("#StoreStore");
192 t1 = tick_ops->get_tick();
194 if (t1 - t0 < best_t1 - best_t0)
195 best_t0 = t0, best_t1 = t1, best_tm = tm;
198 *rt = best_t1 - best_t0;
199 *master = best_tm - best_t0;
201 /* average best_t0 and best_t1 without overflow: */
202 tcenter = (best_t0/2 + best_t1/2);
203 if (best_t0 % 2 + best_t1 % 2 == 2)
205 return tcenter - best_tm;
208 void smp_synchronize_tick_client(void)
210 long i, delta, adj, adjust_latency = 0, done = 0;
211 unsigned long flags, rt, master_time_stamp, bound;
214 long rt; /* roundtrip time */
215 long master; /* master's timestamp */
216 long diff; /* difference between midpoint and master's timestamp */
217 long lat; /* estimate of itc adjustment latency */
226 local_irq_save(flags);
228 for (i = 0; i < NUM_ROUNDS; i++) {
229 delta = get_delta(&rt, &master_time_stamp);
231 done = 1; /* let's lock on to this... */
237 adjust_latency += -delta;
238 adj = -delta + adjust_latency/4;
242 tick_ops->add_tick(adj, current_tick_offset);
246 t[i].master = master_time_stamp;
248 t[i].lat = adjust_latency/4;
252 local_irq_restore(flags);
255 for (i = 0; i < NUM_ROUNDS; i++)
256 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
257 t[i].rt, t[i].master, t[i].diff, t[i].lat);
260 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
261 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
264 static void smp_start_sync_tick_client(int cpu);
266 static void smp_synchronize_one_tick(int cpu)
268 unsigned long flags, i;
272 smp_start_sync_tick_client(cpu);
274 /* wait for client to be ready */
278 /* now let the client proceed into his loop */
280 membar("#StoreLoad");
282 spin_lock_irqsave(&itc_sync_lock, flags);
284 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
288 membar("#StoreStore");
289 go[SLAVE] = tick_ops->get_tick();
290 membar("#StoreLoad");
293 spin_unlock_irqrestore(&itc_sync_lock, flags);
296 extern unsigned long sparc64_cpu_startup;
298 /* The OBP cpu startup callback truncates the 3rd arg cookie to
299 * 32-bits (I think) so to be safe we have it read the pointer
300 * contained here so we work on >4GB machines. -DaveM
302 static struct thread_info *cpu_new_thread = NULL;
304 static int __devinit smp_boot_one_cpu(unsigned int cpu)
306 unsigned long entry =
307 (unsigned long)(&sparc64_cpu_startup);
308 unsigned long cookie =
309 (unsigned long)(&cpu_new_thread);
310 struct task_struct *p;
311 int timeout, ret, cpu_node;
315 cpu_new_thread = p->thread_info;
316 cpu_set(cpu, cpu_callout_map);
318 cpu_find_by_mid(cpu, &cpu_node);
319 prom_startcpu(cpu_node, entry, cookie);
321 for (timeout = 0; timeout < 5000000; timeout++) {
329 printk("Processor %d is stuck.\n", cpu);
330 cpu_clear(cpu, cpu_callout_map);
333 cpu_new_thread = NULL;
338 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
343 if (this_is_starfire) {
344 /* map to real upaid */
345 cpu = (((cpu & 0x3c) << 1) |
346 ((cpu & 0x40) >> 4) |
350 target = (cpu << 14) | 0x70;
352 /* Ok, this is the real Spitfire Errata #54.
353 * One must read back from a UDB internal register
354 * after writes to the UDB interrupt dispatch, but
355 * before the membar Sync for that write.
356 * So we use the high UDB control register (ASI 0x7f,
357 * ADDR 0x20) for the dummy read. -DaveM
360 __asm__ __volatile__(
361 "wrpr %1, %2, %%pstate\n\t"
362 "stxa %4, [%0] %3\n\t"
363 "stxa %5, [%0+%8] %3\n\t"
365 "stxa %6, [%0+%8] %3\n\t"
367 "stxa %%g0, [%7] %3\n\t"
370 "ldxa [%%g1] 0x7f, %%g0\n\t"
373 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
374 "r" (data0), "r" (data1), "r" (data2), "r" (target),
375 "r" (0x10), "0" (tmp)
378 /* NOTE: PSTATE_IE is still clear. */
381 __asm__ __volatile__("ldxa [%%g0] %1, %0"
383 : "i" (ASI_INTR_DISPATCH_STAT));
385 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
392 } while (result & 0x1);
393 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
396 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
397 smp_processor_id(), result);
404 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
409 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
410 for_each_cpu_mask(i, mask)
411 spitfire_xcall_helper(data0, data1, data2, pstate, i);
414 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
415 * packet, but we have no use for that. However we do take advantage of
416 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
418 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
421 int nack_busy_id, is_jalapeno;
423 if (cpus_empty(mask))
426 /* Unfortunately, someone at Sun had the brilliant idea to make the
427 * busy/nack fields hard-coded by ITID number for this Ultra-III
428 * derivative processor.
430 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
431 is_jalapeno = ((ver >> 32) == 0x003e0016);
433 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
436 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
437 : : "r" (pstate), "i" (PSTATE_IE));
439 /* Setup the dispatch data registers. */
440 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
441 "stxa %1, [%4] %6\n\t"
442 "stxa %2, [%5] %6\n\t"
445 : "r" (data0), "r" (data1), "r" (data2),
446 "r" (0x40), "r" (0x50), "r" (0x60),
453 for_each_cpu_mask(i, mask) {
454 u64 target = (i << 14) | 0x70;
457 target |= (nack_busy_id << 24);
458 __asm__ __volatile__(
459 "stxa %%g0, [%0] %1\n\t"
462 : "r" (target), "i" (ASI_INTR_W));
467 /* Now, poll for completion. */
472 stuck = 100000 * nack_busy_id;
474 __asm__ __volatile__("ldxa [%%g0] %1, %0"
475 : "=r" (dispatch_stat)
476 : "i" (ASI_INTR_DISPATCH_STAT));
477 if (dispatch_stat == 0UL) {
478 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
484 } while (dispatch_stat & 0x5555555555555555UL);
486 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
489 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
490 /* Busy bits will not clear, continue instead
491 * of freezing up on this cpu.
493 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
494 smp_processor_id(), dispatch_stat);
496 int i, this_busy_nack = 0;
498 /* Delay some random time with interrupts enabled
499 * to prevent deadlock.
501 udelay(2 * nack_busy_id);
503 /* Clear out the mask bits for cpus which did not
506 for_each_cpu_mask(i, mask) {
510 check_mask = (0x2UL << (2*i));
512 check_mask = (0x2UL <<
514 if ((dispatch_stat & check_mask) == 0)
524 /* Send cross call to all processors mentioned in MASK
527 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
529 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
530 int this_cpu = get_cpu();
532 cpus_and(mask, mask, cpu_online_map);
533 cpu_clear(this_cpu, mask);
535 if (tlb_type == spitfire)
536 spitfire_xcall_deliver(data0, data1, data2, mask);
538 cheetah_xcall_deliver(data0, data1, data2, mask);
539 /* NOTE: Caller runs local copy on master. */
544 extern unsigned long xcall_sync_tick;
546 static void smp_start_sync_tick_client(int cpu)
548 cpumask_t mask = cpumask_of_cpu(cpu);
550 smp_cross_call_masked(&xcall_sync_tick,
554 /* Send cross call to all processors except self. */
555 #define smp_cross_call(func, ctx, data1, data2) \
556 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
558 struct call_data_struct {
559 void (*func) (void *info);
565 static DEFINE_SPINLOCK(call_lock);
566 static struct call_data_struct *call_data;
568 extern unsigned long xcall_call_function;
571 * You must not call this function with disabled interrupts or from a
572 * hardware interrupt handler or from a bottom half handler.
574 int smp_call_function(void (*func)(void *info), void *info,
575 int nonatomic, int wait)
577 struct call_data_struct data;
578 int cpus = num_online_cpus() - 1;
584 /* Can deadlock when called with interrupts disabled */
585 WARN_ON(irqs_disabled());
589 atomic_set(&data.finished, 0);
592 spin_lock(&call_lock);
596 smp_cross_call(&xcall_call_function, 0, 0, 0);
599 * Wait for other cpus to complete function or at
600 * least snap the call data.
603 while (atomic_read(&data.finished) != cpus) {
610 spin_unlock(&call_lock);
615 spin_unlock(&call_lock);
616 printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n",
617 (long) num_online_cpus() - 1L,
618 (long) atomic_read(&data.finished));
622 void smp_call_function_client(int irq, struct pt_regs *regs)
624 void (*func) (void *info) = call_data->func;
625 void *info = call_data->info;
627 clear_softint(1 << irq);
628 if (call_data->wait) {
629 /* let initiator proceed only after completion */
631 atomic_inc(&call_data->finished);
633 /* let initiator proceed after getting data */
634 atomic_inc(&call_data->finished);
639 extern unsigned long xcall_flush_tlb_mm;
640 extern unsigned long xcall_flush_tlb_pending;
641 extern unsigned long xcall_flush_tlb_kernel_range;
642 extern unsigned long xcall_flush_tlb_all_spitfire;
643 extern unsigned long xcall_flush_tlb_all_cheetah;
644 extern unsigned long xcall_report_regs;
645 extern unsigned long xcall_receive_signal;
647 #ifdef DCACHE_ALIASING_POSSIBLE
648 extern unsigned long xcall_flush_dcache_page_cheetah;
650 extern unsigned long xcall_flush_dcache_page_spitfire;
652 #ifdef CONFIG_DEBUG_DCFLUSH
653 extern atomic_t dcpage_flushes;
654 extern atomic_t dcpage_flushes_xcall;
657 static __inline__ void __local_flush_dcache_page(struct page *page)
659 #ifdef DCACHE_ALIASING_POSSIBLE
660 __flush_dcache_page(page_address(page),
661 ((tlb_type == spitfire) &&
662 page_mapping(page) != NULL));
664 if (page_mapping(page) != NULL &&
665 tlb_type == spitfire)
666 __flush_icache_page(__pa(page_address(page)));
670 void smp_flush_dcache_page_impl(struct page *page, int cpu)
672 cpumask_t mask = cpumask_of_cpu(cpu);
673 int this_cpu = get_cpu();
675 #ifdef CONFIG_DEBUG_DCFLUSH
676 atomic_inc(&dcpage_flushes);
678 if (cpu == this_cpu) {
679 __local_flush_dcache_page(page);
680 } else if (cpu_online(cpu)) {
681 void *pg_addr = page_address(page);
684 if (tlb_type == spitfire) {
686 ((u64)&xcall_flush_dcache_page_spitfire);
687 if (page_mapping(page) != NULL)
688 data0 |= ((u64)1 << 32);
689 spitfire_xcall_deliver(data0,
694 #ifdef DCACHE_ALIASING_POSSIBLE
696 ((u64)&xcall_flush_dcache_page_cheetah);
697 cheetah_xcall_deliver(data0,
702 #ifdef CONFIG_DEBUG_DCFLUSH
703 atomic_inc(&dcpage_flushes_xcall);
710 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
712 void *pg_addr = page_address(page);
713 cpumask_t mask = cpu_online_map;
715 int this_cpu = get_cpu();
717 cpu_clear(this_cpu, mask);
719 #ifdef CONFIG_DEBUG_DCFLUSH
720 atomic_inc(&dcpage_flushes);
722 if (cpus_empty(mask))
724 if (tlb_type == spitfire) {
725 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
726 if (page_mapping(page) != NULL)
727 data0 |= ((u64)1 << 32);
728 spitfire_xcall_deliver(data0,
733 #ifdef DCACHE_ALIASING_POSSIBLE
734 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
735 cheetah_xcall_deliver(data0,
740 #ifdef CONFIG_DEBUG_DCFLUSH
741 atomic_inc(&dcpage_flushes_xcall);
744 __local_flush_dcache_page(page);
749 void smp_receive_signal(int cpu)
751 cpumask_t mask = cpumask_of_cpu(cpu);
753 if (cpu_online(cpu)) {
754 u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff);
756 if (tlb_type == spitfire)
757 spitfire_xcall_deliver(data0, 0, 0, mask);
759 cheetah_xcall_deliver(data0, 0, 0, mask);
763 void smp_receive_signal_client(int irq, struct pt_regs *regs)
765 /* Just return, rtrap takes care of the rest. */
766 clear_softint(1 << irq);
769 void smp_report_regs(void)
771 smp_cross_call(&xcall_report_regs, 0, 0, 0);
774 void smp_flush_tlb_all(void)
776 if (tlb_type == spitfire)
777 smp_cross_call(&xcall_flush_tlb_all_spitfire, 0, 0, 0);
779 smp_cross_call(&xcall_flush_tlb_all_cheetah, 0, 0, 0);
783 /* We know that the window frames of the user have been flushed
784 * to the stack before we get here because all callers of us
785 * are flush_tlb_*() routines, and these run after flush_cache_*()
786 * which performs the flushw.
788 * The SMP TLB coherency scheme we use works as follows:
790 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
791 * space has (potentially) executed on, this is the heuristic
792 * we use to avoid doing cross calls.
794 * Also, for flushing from kswapd and also for clones, we
795 * use cpu_vm_mask as the list of cpus to make run the TLB.
797 * 2) TLB context numbers are shared globally across all processors
798 * in the system, this allows us to play several games to avoid
801 * One invariant is that when a cpu switches to a process, and
802 * that processes tsk->active_mm->cpu_vm_mask does not have the
803 * current cpu's bit set, that tlb context is flushed locally.
805 * If the address space is non-shared (ie. mm->count == 1) we avoid
806 * cross calls when we want to flush the currently running process's
807 * tlb state. This is done by clearing all cpu bits except the current
808 * processor's in current->active_mm->cpu_vm_mask and performing the
809 * flush locally only. This will force any subsequent cpus which run
810 * this task to flush the context from the local tlb if the process
811 * migrates to another cpu (again).
813 * 3) For shared address spaces (threads) and swapping we bite the
814 * bullet for most cases and perform the cross call (but only to
815 * the cpus listed in cpu_vm_mask).
817 * The performance gain from "optimizing" away the cross call for threads is
818 * questionable (in theory the big win for threads is the massive sharing of
819 * address space state across processors).
821 void smp_flush_tlb_mm(struct mm_struct *mm)
824 * This code is called from two places, dup_mmap and exit_mmap. In the
825 * former case, we really need a flush. In the later case, the callers
826 * are single threaded exec_mmap (really need a flush), multithreaded
827 * exec_mmap case (do not need to flush, since the caller gets a new
828 * context via activate_mm), and all other callers of mmput() whence
829 * the flush can be optimized since the associated threads are dead and
830 * the mm is being torn down (__exit_mm and other mmput callers) or the
831 * owning thread is dissociating itself from the mm. The
832 * (atomic_read(&mm->mm_users) == 0) check ensures real work is done
833 * for single thread exec and dup_mmap cases. An alternate check might
834 * have been (current->mm != mm).
837 if (atomic_read(&mm->mm_users) == 0)
841 u32 ctx = CTX_HWBITS(mm->context);
844 if (atomic_read(&mm->mm_users) == 1) {
845 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
846 goto local_flush_and_out;
849 smp_cross_call_masked(&xcall_flush_tlb_mm,
854 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
860 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
862 u32 ctx = CTX_HWBITS(mm->context);
865 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1) {
866 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
867 goto local_flush_and_out;
869 /* This optimization is not valid. Normally
870 * we will be holding the page_table_lock, but
871 * there is an exception which is copy_page_range()
872 * when forking. The lock is held during the individual
873 * page table updates in the parent, but not at the
874 * top level, which is where we are invoked.
877 cpumask_t this_cpu_mask = cpumask_of_cpu(cpu);
879 /* By virtue of running under the mm->page_table_lock,
880 * and mmu_context.h:switch_mm doing the same, the
881 * following operation is safe.
883 if (cpus_equal(mm->cpu_vm_mask, this_cpu_mask))
884 goto local_flush_and_out;
888 smp_cross_call_masked(&xcall_flush_tlb_pending,
889 ctx, nr, (unsigned long) vaddrs,
893 __flush_tlb_pending(ctx, nr, vaddrs);
898 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
901 end = PAGE_ALIGN(end);
903 smp_cross_call(&xcall_flush_tlb_kernel_range,
906 __flush_tlb_kernel_range(start, end);
911 /* #define CAPTURE_DEBUG */
912 extern unsigned long xcall_capture;
914 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
915 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
916 static unsigned long penguins_are_doing_time;
918 void smp_capture(void)
920 int result = atomic_add_ret(1, &smp_capture_depth);
923 int ncpus = num_online_cpus();
926 printk("CPU[%d]: Sending penguins to jail...",
929 penguins_are_doing_time = 1;
930 membar("#StoreStore | #LoadStore");
931 atomic_inc(&smp_capture_registry);
932 smp_cross_call(&xcall_capture, 0, 0, 0);
933 while (atomic_read(&smp_capture_registry) != ncpus)
941 void smp_release(void)
943 if (atomic_dec_and_test(&smp_capture_depth)) {
945 printk("CPU[%d]: Giving pardon to "
946 "imprisoned penguins\n",
949 penguins_are_doing_time = 0;
950 membar("#StoreStore | #StoreLoad");
951 atomic_dec(&smp_capture_registry);
955 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
956 * can service tlb flush xcalls...
958 extern void prom_world(int);
959 extern void save_alternate_globals(unsigned long *);
960 extern void restore_alternate_globals(unsigned long *);
961 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
963 unsigned long global_save[24];
965 clear_softint(1 << irq);
969 __asm__ __volatile__("flushw");
970 save_alternate_globals(global_save);
972 atomic_inc(&smp_capture_registry);
973 membar("#StoreLoad | #StoreStore");
974 while (penguins_are_doing_time)
976 restore_alternate_globals(global_save);
977 atomic_dec(&smp_capture_registry);
983 extern unsigned long xcall_promstop;
985 void smp_promstop_others(void)
987 smp_cross_call(&xcall_promstop, 0, 0, 0);
990 #define prof_multiplier(__cpu) cpu_data(__cpu).multiplier
991 #define prof_counter(__cpu) cpu_data(__cpu).counter
993 void smp_percpu_timer_interrupt(struct pt_regs *regs)
995 unsigned long compare, tick, pstate;
996 int cpu = smp_processor_id();
997 int user = user_mode(regs);
1000 * Check for level 14 softint.
1003 unsigned long tick_mask = tick_ops->softint_mask;
1005 if (!(get_softint() & tick_mask)) {
1006 extern void handler_irq(int, struct pt_regs *);
1008 handler_irq(14, regs);
1011 clear_softint(tick_mask);
1015 profile_tick(CPU_PROFILING, regs);
1016 if (!--prof_counter(cpu)) {
1019 if (cpu == boot_cpu_id) {
1020 kstat_this_cpu.irqs[0]++;
1021 timer_tick_interrupt(regs);
1024 update_process_times(user);
1028 prof_counter(cpu) = prof_multiplier(cpu);
1031 /* Guarantee that the following sequences execute
1034 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1035 "wrpr %0, %1, %%pstate"
1039 compare = tick_ops->add_compare(current_tick_offset);
1040 tick = tick_ops->get_tick();
1042 /* Restore PSTATE_IE. */
1043 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1046 } while (time_after_eq(tick, compare));
1049 static void __init smp_setup_percpu_timer(void)
1051 int cpu = smp_processor_id();
1052 unsigned long pstate;
1054 prof_counter(cpu) = prof_multiplier(cpu) = 1;
1056 /* Guarantee that the following sequences execute
1059 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1060 "wrpr %0, %1, %%pstate"
1064 tick_ops->init_tick(current_tick_offset);
1066 /* Restore PSTATE_IE. */
1067 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1072 void __init smp_tick_init(void)
1074 boot_cpu_id = hard_smp_processor_id();
1075 current_tick_offset = timer_tick_offset;
1077 cpu_set(boot_cpu_id, cpu_online_map);
1078 prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1081 /* /proc/profile writes can call this, don't __init it please. */
1082 static DEFINE_SPINLOCK(prof_setup_lock);
1084 int setup_profiling_timer(unsigned int multiplier)
1086 unsigned long flags;
1089 if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1092 spin_lock_irqsave(&prof_setup_lock, flags);
1093 for (i = 0; i < NR_CPUS; i++)
1094 prof_multiplier(i) = multiplier;
1095 current_tick_offset = (timer_tick_offset / multiplier);
1096 spin_unlock_irqrestore(&prof_setup_lock, flags);
1101 void __init smp_prepare_cpus(unsigned int max_cpus)
1106 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1108 cpu_set(mid, phys_cpu_present_map);
1112 if (num_possible_cpus() > max_cpus) {
1114 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1115 if (mid != boot_cpu_id) {
1116 cpu_clear(mid, phys_cpu_present_map);
1117 if (num_possible_cpus() <= max_cpus)
1124 smp_store_cpu_info(boot_cpu_id);
1127 void __devinit smp_prepare_boot_cpu(void)
1129 if (hard_smp_processor_id() >= NR_CPUS) {
1130 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
1134 current_thread_info()->cpu = hard_smp_processor_id();
1136 cpu_set(smp_processor_id(), cpu_online_map);
1137 cpu_set(smp_processor_id(), phys_cpu_present_map);
1140 int __devinit __cpu_up(unsigned int cpu)
1142 int ret = smp_boot_one_cpu(cpu);
1145 cpu_set(cpu, smp_commenced_mask);
1146 while (!cpu_isset(cpu, cpu_online_map))
1148 if (!cpu_isset(cpu, cpu_online_map)) {
1151 smp_synchronize_one_tick(cpu);
1157 void __init smp_cpus_done(unsigned int max_cpus)
1159 unsigned long bogosum = 0;
1162 for (i = 0; i < NR_CPUS; i++) {
1164 bogosum += cpu_data(i).udelay_val;
1166 printk("Total of %ld processors activated "
1167 "(%lu.%02lu BogoMIPS).\n",
1168 (long) num_online_cpus(),
1169 bogosum/(500000/HZ),
1170 (bogosum/(5000/HZ))%100);
1173 /* This needn't do anything as we do not sleep the cpu
1174 * inside of the idler task, so an interrupt is not needed
1175 * to get a clean fast response.
1177 * XXX Reverify this assumption... -DaveM
1179 * Addendum: We do want it to do something for the signal
1180 * delivery case, we detect that by just seeing
1181 * if we are trying to send this to an idler or not.
1183 void smp_send_reschedule(int cpu)
1185 if (cpu_data(cpu).idle_volume == 0)
1186 smp_receive_signal(cpu);
1189 /* This is a nop because we capture all other cpus
1190 * anyways when making the PROM active.
1192 void smp_send_stop(void)
1196 unsigned long __per_cpu_base;
1197 unsigned long __per_cpu_shift;
1199 EXPORT_SYMBOL(__per_cpu_base);
1200 EXPORT_SYMBOL(__per_cpu_shift);
1202 void __init setup_per_cpu_areas(void)
1204 unsigned long goal, size, i;
1206 /* Created by linker magic */
1207 extern char __per_cpu_start[], __per_cpu_end[];
1209 /* Copy section for each CPU (we discard the original) */
1210 goal = ALIGN(__per_cpu_end - __per_cpu_start, PAGE_SIZE);
1212 #ifdef CONFIG_MODULES
1213 if (goal < PERCPU_ENOUGH_ROOM)
1214 goal = PERCPU_ENOUGH_ROOM;
1216 __per_cpu_shift = 0;
1217 for (size = 1UL; size < goal; size <<= 1UL)
1220 /* Make sure the resulting __per_cpu_base value
1221 * will fit in the 43-bit sign extended IMMU
1224 ptr = __alloc_bootmem(size * NR_CPUS, PAGE_SIZE,
1225 (unsigned long) __per_cpu_start);
1227 __per_cpu_base = ptr - __per_cpu_start;
1229 if ((__per_cpu_shift < PAGE_SHIFT) ||
1230 (__per_cpu_base & ~PAGE_MASK) ||
1231 (__per_cpu_base != (((long) __per_cpu_base << 20) >> 20))) {
1232 prom_printf("PER_CPU: Invalid layout, "
1233 "ptr[%p] shift[%lx] base[%lx]\n",
1234 ptr, __per_cpu_shift, __per_cpu_base);
1238 for (i = 0; i < NR_CPUS; i++, ptr += size)
1239 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1241 /* Finally, load in the boot cpu's base value.
1242 * We abuse the IMMU TSB register for trap handler
1243 * entry and exit loading of %g5. That is why it
1244 * has to be page aligned.
1246 cpu_setup_percpu_base(hard_smp_processor_id());