2 * linux/net/sunrpc/xdr.c
6 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
9 #include <linux/types.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/pagemap.h>
14 #include <linux/errno.h>
16 #include <linux/net.h>
18 #include <linux/sunrpc/xdr.h>
19 #include <linux/sunrpc/msg_prot.h>
22 * XDR functions for basic NFS types
25 xdr_encode_netobj(u32 *p, const struct xdr_netobj *obj)
27 unsigned int quadlen = XDR_QUADLEN(obj->len);
29 p[quadlen] = 0; /* zero trailing bytes */
30 *p++ = htonl(obj->len);
31 memcpy(p, obj->data, obj->len);
32 return p + XDR_QUADLEN(obj->len);
36 xdr_decode_netobj(u32 *p, struct xdr_netobj *obj)
40 if ((len = ntohl(*p++)) > XDR_MAX_NETOBJ)
44 return p + XDR_QUADLEN(len);
48 * xdr_encode_opaque_fixed - Encode fixed length opaque data
49 * @p: pointer to current position in XDR buffer.
50 * @ptr: pointer to data to encode (or NULL)
51 * @nbytes: size of data.
53 * Copy the array of data of length nbytes at ptr to the XDR buffer
54 * at position p, then align to the next 32-bit boundary by padding
55 * with zero bytes (see RFC1832).
56 * Note: if ptr is NULL, only the padding is performed.
58 * Returns the updated current XDR buffer position
61 u32 *xdr_encode_opaque_fixed(u32 *p, const void *ptr, unsigned int nbytes)
63 if (likely(nbytes != 0)) {
64 unsigned int quadlen = XDR_QUADLEN(nbytes);
65 unsigned int padding = (quadlen << 2) - nbytes;
68 memcpy(p, ptr, nbytes);
70 memset((char *)p + nbytes, 0, padding);
75 EXPORT_SYMBOL(xdr_encode_opaque_fixed);
78 * xdr_encode_opaque - Encode variable length opaque data
79 * @p: pointer to current position in XDR buffer.
80 * @ptr: pointer to data to encode (or NULL)
81 * @nbytes: size of data.
83 * Returns the updated current XDR buffer position
85 u32 *xdr_encode_opaque(u32 *p, const void *ptr, unsigned int nbytes)
88 return xdr_encode_opaque_fixed(p, ptr, nbytes);
90 EXPORT_SYMBOL(xdr_encode_opaque);
93 xdr_encode_string(u32 *p, const char *string)
95 return xdr_encode_array(p, string, strlen(string));
99 xdr_decode_string(u32 *p, char **sp, int *lenp, int maxlen)
104 if ((len = ntohl(*p++)) > maxlen)
108 if ((len % 4) != 0) {
111 string = (char *) (p - 1);
112 memmove(string, p, len);
116 return p + XDR_QUADLEN(len);
120 xdr_decode_string_inplace(u32 *p, char **sp, int *lenp, int maxlen)
124 if ((len = ntohl(*p++)) > maxlen)
128 return p + XDR_QUADLEN(len);
132 xdr_encode_pages(struct xdr_buf *xdr, struct page **pages, unsigned int base,
135 struct kvec *tail = xdr->tail;
139 xdr->page_base = base;
142 p = (u32 *)xdr->head[0].iov_base + XDR_QUADLEN(xdr->head[0].iov_len);
147 unsigned int pad = 4 - (len & 3);
150 tail->iov_base = (char *)p + (len & 3);
159 xdr_inline_pages(struct xdr_buf *xdr, unsigned int offset,
160 struct page **pages, unsigned int base, unsigned int len)
162 struct kvec *head = xdr->head;
163 struct kvec *tail = xdr->tail;
164 char *buf = (char *)head->iov_base;
165 unsigned int buflen = head->iov_len;
167 head->iov_len = offset;
170 xdr->page_base = base;
173 tail->iov_base = buf + offset;
174 tail->iov_len = buflen - offset;
180 xdr_partial_copy_from_skb(struct xdr_buf *xdr, unsigned int base,
182 skb_read_actor_t copy_actor)
184 struct page **ppage = xdr->pages;
185 unsigned int len, pglen = xdr->page_len;
189 len = xdr->head[0].iov_len;
192 ret = copy_actor(desc, (char *)xdr->head[0].iov_base + base, len);
194 if (ret != len || !desc->count)
206 if (base || xdr->page_base) {
208 base += xdr->page_base;
209 ppage += base >> PAGE_CACHE_SHIFT;
210 base &= ~PAGE_CACHE_MASK;
215 /* ACL likes to be lazy in allocating pages - ACLs
216 * are small by default but can get huge. */
217 if (unlikely(*ppage == NULL)) {
218 *ppage = alloc_page(GFP_ATOMIC);
219 if (unlikely(*ppage == NULL)) {
226 len = PAGE_CACHE_SIZE;
227 kaddr = kmap_atomic(*ppage, KM_SKB_SUNRPC_DATA);
232 ret = copy_actor(desc, kaddr + base, len);
237 ret = copy_actor(desc, kaddr, len);
239 flush_dcache_page(*ppage);
240 kunmap_atomic(kaddr, KM_SKB_SUNRPC_DATA);
242 if (ret != len || !desc->count)
245 } while ((pglen -= len) != 0);
247 len = xdr->tail[0].iov_len;
249 copied += copy_actor(desc, (char *)xdr->tail[0].iov_base + base, len - base);
256 xdr_sendpages(struct socket *sock, struct sockaddr *addr, int addrlen,
257 struct xdr_buf *xdr, unsigned int base, int msgflags)
259 struct page **ppage = xdr->pages;
260 unsigned int len, pglen = xdr->page_len;
262 ssize_t (*sendpage)(struct socket *, struct page *, int, size_t, int);
264 len = xdr->head[0].iov_len;
265 if (base < len || (addr != NULL && base == 0)) {
267 .iov_base = xdr->head[0].iov_base + base,
268 .iov_len = len - base,
270 struct msghdr msg = {
272 .msg_namelen = addrlen,
273 .msg_flags = msgflags,
276 msg.msg_flags |= MSG_MORE;
278 if (iov.iov_len != 0)
279 err = kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len);
281 err = kernel_sendmsg(sock, &msg, NULL, 0, 0);
286 if (err != iov.iov_len)
298 if (base || xdr->page_base) {
300 base += xdr->page_base;
301 ppage += base >> PAGE_CACHE_SHIFT;
302 base &= ~PAGE_CACHE_MASK;
305 sendpage = sock->ops->sendpage ? : sock_no_sendpage;
307 int flags = msgflags;
309 len = PAGE_CACHE_SIZE;
315 if (pglen != len || xdr->tail[0].iov_len != 0)
318 /* Hmm... We might be dealing with highmem pages */
319 if (PageHighMem(*ppage))
320 sendpage = sock_no_sendpage;
321 err = sendpage(sock, *ppage, base, len, flags);
330 } while ((pglen -= len) != 0);
332 len = xdr->tail[0].iov_len;
335 .iov_base = xdr->tail[0].iov_base + base,
336 .iov_len = len - base,
338 struct msghdr msg = {
339 .msg_flags = msgflags,
341 err = kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len);
353 * Helper routines for doing 'memmove' like operations on a struct xdr_buf
355 * _shift_data_right_pages
356 * @pages: vector of pages containing both the source and dest memory area.
357 * @pgto_base: page vector address of destination
358 * @pgfrom_base: page vector address of source
359 * @len: number of bytes to copy
361 * Note: the addresses pgto_base and pgfrom_base are both calculated in
363 * if a memory area starts at byte 'base' in page 'pages[i]',
364 * then its address is given as (i << PAGE_CACHE_SHIFT) + base
365 * Also note: pgfrom_base must be < pgto_base, but the memory areas
366 * they point to may overlap.
369 _shift_data_right_pages(struct page **pages, size_t pgto_base,
370 size_t pgfrom_base, size_t len)
372 struct page **pgfrom, **pgto;
376 BUG_ON(pgto_base <= pgfrom_base);
381 pgto = pages + (pgto_base >> PAGE_CACHE_SHIFT);
382 pgfrom = pages + (pgfrom_base >> PAGE_CACHE_SHIFT);
384 pgto_base &= ~PAGE_CACHE_MASK;
385 pgfrom_base &= ~PAGE_CACHE_MASK;
388 /* Are any pointers crossing a page boundary? */
389 if (pgto_base == 0) {
390 flush_dcache_page(*pgto);
391 pgto_base = PAGE_CACHE_SIZE;
394 if (pgfrom_base == 0) {
395 pgfrom_base = PAGE_CACHE_SIZE;
400 if (copy > pgto_base)
402 if (copy > pgfrom_base)
407 vto = kmap_atomic(*pgto, KM_USER0);
408 vfrom = kmap_atomic(*pgfrom, KM_USER1);
409 memmove(vto + pgto_base, vfrom + pgfrom_base, copy);
410 kunmap_atomic(vfrom, KM_USER1);
411 kunmap_atomic(vto, KM_USER0);
413 } while ((len -= copy) != 0);
414 flush_dcache_page(*pgto);
419 * @pages: array of pages
420 * @pgbase: page vector address of destination
421 * @p: pointer to source data
424 * Copies data from an arbitrary memory location into an array of pages
425 * The copy is assumed to be non-overlapping.
428 _copy_to_pages(struct page **pages, size_t pgbase, const char *p, size_t len)
434 pgto = pages + (pgbase >> PAGE_CACHE_SHIFT);
435 pgbase &= ~PAGE_CACHE_MASK;
438 copy = PAGE_CACHE_SIZE - pgbase;
442 vto = kmap_atomic(*pgto, KM_USER0);
443 memcpy(vto + pgbase, p, copy);
444 kunmap_atomic(vto, KM_USER0);
447 if (pgbase == PAGE_CACHE_SIZE) {
448 flush_dcache_page(*pgto);
454 } while ((len -= copy) != 0);
455 flush_dcache_page(*pgto);
460 * @p: pointer to destination
461 * @pages: array of pages
462 * @pgbase: offset of source data
465 * Copies data into an arbitrary memory location from an array of pages
466 * The copy is assumed to be non-overlapping.
469 _copy_from_pages(char *p, struct page **pages, size_t pgbase, size_t len)
471 struct page **pgfrom;
475 pgfrom = pages + (pgbase >> PAGE_CACHE_SHIFT);
476 pgbase &= ~PAGE_CACHE_MASK;
479 copy = PAGE_CACHE_SIZE - pgbase;
483 vfrom = kmap_atomic(*pgfrom, KM_USER0);
484 memcpy(p, vfrom + pgbase, copy);
485 kunmap_atomic(vfrom, KM_USER0);
488 if (pgbase == PAGE_CACHE_SIZE) {
494 } while ((len -= copy) != 0);
500 * @len: bytes to remove from buf->head[0]
502 * Shrinks XDR buffer's header kvec buf->head[0] by
503 * 'len' bytes. The extra data is not lost, but is instead
504 * moved into the inlined pages and/or the tail.
507 xdr_shrink_bufhead(struct xdr_buf *buf, size_t len)
509 struct kvec *head, *tail;
511 unsigned int pglen = buf->page_len;
515 BUG_ON (len > head->iov_len);
517 /* Shift the tail first */
518 if (tail->iov_len != 0) {
519 if (tail->iov_len > len) {
520 copy = tail->iov_len - len;
521 memmove((char *)tail->iov_base + len,
522 tail->iov_base, copy);
524 /* Copy from the inlined pages into the tail */
529 if (offs >= tail->iov_len)
531 else if (copy > tail->iov_len - offs)
532 copy = tail->iov_len - offs;
534 _copy_from_pages((char *)tail->iov_base + offs,
536 buf->page_base + pglen + offs - len,
538 /* Do we also need to copy data from the head into the tail ? */
540 offs = copy = len - pglen;
541 if (copy > tail->iov_len)
542 copy = tail->iov_len;
543 memcpy(tail->iov_base,
544 (char *)head->iov_base +
545 head->iov_len - offs,
549 /* Now handle pages */
552 _shift_data_right_pages(buf->pages,
553 buf->page_base + len,
559 _copy_to_pages(buf->pages, buf->page_base,
560 (char *)head->iov_base + head->iov_len - len,
563 head->iov_len -= len;
565 /* Have we truncated the message? */
566 if (buf->len > buf->buflen)
567 buf->len = buf->buflen;
573 * @len: bytes to remove from buf->pages
575 * Shrinks XDR buffer's page array buf->pages by
576 * 'len' bytes. The extra data is not lost, but is instead
577 * moved into the tail.
580 xdr_shrink_pagelen(struct xdr_buf *buf, size_t len)
585 unsigned int pglen = buf->page_len;
588 BUG_ON (len > pglen);
590 /* Shift the tail first */
591 if (tail->iov_len != 0) {
592 p = (char *)tail->iov_base + len;
593 if (tail->iov_len > len) {
594 copy = tail->iov_len - len;
595 memmove(p, tail->iov_base, copy);
598 /* Copy from the inlined pages into the tail */
600 if (copy > tail->iov_len)
601 copy = tail->iov_len;
602 _copy_from_pages((char *)tail->iov_base,
603 buf->pages, buf->page_base + pglen - len,
606 buf->page_len -= len;
608 /* Have we truncated the message? */
609 if (buf->len > buf->buflen)
610 buf->len = buf->buflen;
614 xdr_shift_buf(struct xdr_buf *buf, size_t len)
616 xdr_shrink_bufhead(buf, len);
620 * xdr_init_encode - Initialize a struct xdr_stream for sending data.
621 * @xdr: pointer to xdr_stream struct
622 * @buf: pointer to XDR buffer in which to encode data
623 * @p: current pointer inside XDR buffer
625 * Note: at the moment the RPC client only passes the length of our
626 * scratch buffer in the xdr_buf's header kvec. Previously this
627 * meant we needed to call xdr_adjust_iovec() after encoding the
628 * data. With the new scheme, the xdr_stream manages the details
629 * of the buffer length, and takes care of adjusting the kvec
632 void xdr_init_encode(struct xdr_stream *xdr, struct xdr_buf *buf, uint32_t *p)
634 struct kvec *iov = buf->head;
635 int scratch_len = buf->buflen - buf->page_len - buf->tail[0].iov_len;
637 BUG_ON(scratch_len < 0);
640 xdr->p = (uint32_t *)((char *)iov->iov_base + iov->iov_len);
641 xdr->end = (uint32_t *)((char *)iov->iov_base + scratch_len);
642 BUG_ON(iov->iov_len > scratch_len);
644 if (p != xdr->p && p != NULL) {
647 BUG_ON(p < xdr->p || p > xdr->end);
648 len = (char *)p - (char *)xdr->p;
654 EXPORT_SYMBOL(xdr_init_encode);
657 * xdr_reserve_space - Reserve buffer space for sending
658 * @xdr: pointer to xdr_stream
659 * @nbytes: number of bytes to reserve
661 * Checks that we have enough buffer space to encode 'nbytes' more
662 * bytes of data. If so, update the total xdr_buf length, and
663 * adjust the length of the current kvec.
665 uint32_t * xdr_reserve_space(struct xdr_stream *xdr, size_t nbytes)
667 uint32_t *p = xdr->p;
670 /* align nbytes on the next 32-bit boundary */
673 q = p + (nbytes >> 2);
674 if (unlikely(q > xdr->end || q < p))
677 xdr->iov->iov_len += nbytes;
678 xdr->buf->len += nbytes;
681 EXPORT_SYMBOL(xdr_reserve_space);
684 * xdr_write_pages - Insert a list of pages into an XDR buffer for sending
685 * @xdr: pointer to xdr_stream
686 * @pages: list of pages
687 * @base: offset of first byte
688 * @len: length of data in bytes
691 void xdr_write_pages(struct xdr_stream *xdr, struct page **pages, unsigned int base,
694 struct xdr_buf *buf = xdr->buf;
695 struct kvec *iov = buf->tail;
697 buf->page_base = base;
700 iov->iov_base = (char *)xdr->p;
705 unsigned int pad = 4 - (len & 3);
707 BUG_ON(xdr->p >= xdr->end);
708 iov->iov_base = (char *)xdr->p + (len & 3);
716 EXPORT_SYMBOL(xdr_write_pages);
719 * xdr_init_decode - Initialize an xdr_stream for decoding data.
720 * @xdr: pointer to xdr_stream struct
721 * @buf: pointer to XDR buffer from which to decode data
722 * @p: current pointer inside XDR buffer
724 void xdr_init_decode(struct xdr_stream *xdr, struct xdr_buf *buf, uint32_t *p)
726 struct kvec *iov = buf->head;
727 unsigned int len = iov->iov_len;
734 xdr->end = (uint32_t *)((char *)iov->iov_base + len);
736 EXPORT_SYMBOL(xdr_init_decode);
739 * xdr_inline_decode - Retrieve non-page XDR data to decode
740 * @xdr: pointer to xdr_stream struct
741 * @nbytes: number of bytes of data to decode
743 * Check if the input buffer is long enough to enable us to decode
744 * 'nbytes' more bytes of data starting at the current position.
745 * If so return the current pointer, then update the current
748 uint32_t * xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes)
750 uint32_t *p = xdr->p;
751 uint32_t *q = p + XDR_QUADLEN(nbytes);
753 if (unlikely(q > xdr->end || q < p))
758 EXPORT_SYMBOL(xdr_inline_decode);
761 * xdr_read_pages - Ensure page-based XDR data to decode is aligned at current pointer position
762 * @xdr: pointer to xdr_stream struct
763 * @len: number of bytes of page data
765 * Moves data beyond the current pointer position from the XDR head[] buffer
766 * into the page list. Any data that lies beyond current position + "len"
767 * bytes is moved into the XDR tail[]. The current pointer is then
768 * repositioned at the beginning of the XDR tail.
770 void xdr_read_pages(struct xdr_stream *xdr, unsigned int len)
772 struct xdr_buf *buf = xdr->buf;
778 /* Realign pages to current pointer position */
780 shift = iov->iov_len + (char *)iov->iov_base - (char *)xdr->p;
782 xdr_shrink_bufhead(buf, shift);
784 /* Truncate page data and move it into the tail */
785 if (buf->page_len > len)
786 xdr_shrink_pagelen(buf, buf->page_len - len);
787 padding = (XDR_QUADLEN(len) << 2) - len;
788 xdr->iov = iov = buf->tail;
789 /* Compute remaining message length. */
791 shift = buf->buflen - buf->len;
797 * Position current pointer at beginning of tail, and
798 * set remaining message length.
800 xdr->p = (uint32_t *)((char *)iov->iov_base + padding);
801 xdr->end = (uint32_t *)((char *)iov->iov_base + end);
803 EXPORT_SYMBOL(xdr_read_pages);
805 static struct kvec empty_iov = {.iov_base = NULL, .iov_len = 0};
808 xdr_buf_from_iov(struct kvec *iov, struct xdr_buf *buf)
811 buf->tail[0] = empty_iov;
813 buf->buflen = buf->len = iov->iov_len;
816 /* Sets subiov to the intersection of iov with the buffer of length len
817 * starting base bytes after iov. Indicates empty intersection by setting
818 * length of subiov to zero. Decrements len by length of subiov, sets base
819 * to zero (or decrements it by length of iov if subiov is empty). */
821 iov_subsegment(struct kvec *iov, struct kvec *subiov, int *base, int *len)
823 if (*base > iov->iov_len) {
824 subiov->iov_base = NULL;
826 *base -= iov->iov_len;
828 subiov->iov_base = iov->iov_base + *base;
829 subiov->iov_len = min(*len, (int)iov->iov_len - *base);
832 *len -= subiov->iov_len;
835 /* Sets subbuf to the portion of buf of length len beginning base bytes
836 * from the start of buf. Returns -1 if base of length are out of bounds. */
838 xdr_buf_subsegment(struct xdr_buf *buf, struct xdr_buf *subbuf,
843 subbuf->buflen = subbuf->len = len;
844 iov_subsegment(buf->head, subbuf->head, &base, &len);
846 if (base < buf->page_len) {
847 i = (base + buf->page_base) >> PAGE_CACHE_SHIFT;
848 subbuf->pages = &buf->pages[i];
849 subbuf->page_base = (base + buf->page_base) & ~PAGE_CACHE_MASK;
850 subbuf->page_len = min((int)buf->page_len - base, len);
851 len -= subbuf->page_len;
854 base -= buf->page_len;
855 subbuf->page_len = 0;
858 iov_subsegment(buf->tail, subbuf->tail, &base, &len);
864 /* obj is assumed to point to allocated memory of size at least len: */
866 read_bytes_from_xdr_buf(struct xdr_buf *buf, int base, void *obj, int len)
868 struct xdr_buf subbuf;
872 status = xdr_buf_subsegment(buf, &subbuf, base, len);
875 this_len = min(len, (int)subbuf.head[0].iov_len);
876 memcpy(obj, subbuf.head[0].iov_base, this_len);
879 this_len = min(len, (int)subbuf.page_len);
881 _copy_from_pages(obj, subbuf.pages, subbuf.page_base, this_len);
884 this_len = min(len, (int)subbuf.tail[0].iov_len);
885 memcpy(obj, subbuf.tail[0].iov_base, this_len);
890 /* obj is assumed to point to allocated memory of size at least len: */
892 write_bytes_to_xdr_buf(struct xdr_buf *buf, int base, void *obj, int len)
894 struct xdr_buf subbuf;
898 status = xdr_buf_subsegment(buf, &subbuf, base, len);
901 this_len = min(len, (int)subbuf.head[0].iov_len);
902 memcpy(subbuf.head[0].iov_base, obj, this_len);
905 this_len = min(len, (int)subbuf.page_len);
907 _copy_to_pages(subbuf.pages, subbuf.page_base, obj, this_len);
910 this_len = min(len, (int)subbuf.tail[0].iov_len);
911 memcpy(subbuf.tail[0].iov_base, obj, this_len);
917 xdr_decode_word(struct xdr_buf *buf, int base, u32 *obj)
922 status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj));
930 xdr_encode_word(struct xdr_buf *buf, int base, u32 obj)
932 u32 raw = htonl(obj);
934 return write_bytes_to_xdr_buf(buf, base, &raw, sizeof(obj));
937 /* If the netobj starting offset bytes from the start of xdr_buf is contained
938 * entirely in the head or the tail, set object to point to it; otherwise
939 * try to find space for it at the end of the tail, copy it there, and
940 * set obj to point to it. */
942 xdr_buf_read_netobj(struct xdr_buf *buf, struct xdr_netobj *obj, int offset)
944 u32 tail_offset = buf->head[0].iov_len + buf->page_len;
947 if (xdr_decode_word(buf, offset, &obj->len))
949 obj_end_offset = offset + 4 + obj->len;
951 if (obj_end_offset <= buf->head[0].iov_len) {
952 /* The obj is contained entirely in the head: */
953 obj->data = buf->head[0].iov_base + offset + 4;
954 } else if (offset + 4 >= tail_offset) {
955 if (obj_end_offset - tail_offset
956 > buf->tail[0].iov_len)
958 /* The obj is contained entirely in the tail: */
959 obj->data = buf->tail[0].iov_base
960 + offset - tail_offset + 4;
962 /* use end of tail as storage for obj:
963 * (We don't copy to the beginning because then we'd have
964 * to worry about doing a potentially overlapping copy.
965 * This assumes the object is at most half the length of the
967 if (obj->len > buf->tail[0].iov_len)
969 obj->data = buf->tail[0].iov_base + buf->tail[0].iov_len -
971 if (read_bytes_from_xdr_buf(buf, offset + 4,
972 obj->data, obj->len))
981 /* Returns 0 on success, or else a negative error code. */
983 xdr_xcode_array2(struct xdr_buf *buf, unsigned int base,
984 struct xdr_array2_desc *desc, int encode)
986 char *elem = NULL, *c;
987 unsigned int copied = 0, todo, avail_here;
988 struct page **ppages = NULL;
992 if (xdr_encode_word(buf, base, desc->array_len) != 0)
995 if (xdr_decode_word(buf, base, &desc->array_len) != 0 ||
996 desc->array_len > desc->array_maxlen ||
997 (unsigned long) base + 4 + desc->array_len *
998 desc->elem_size > buf->len)
1006 todo = desc->array_len * desc->elem_size;
1009 if (todo && base < buf->head->iov_len) {
1010 c = buf->head->iov_base + base;
1011 avail_here = min_t(unsigned int, todo,
1012 buf->head->iov_len - base);
1015 while (avail_here >= desc->elem_size) {
1016 err = desc->xcode(desc, c);
1019 c += desc->elem_size;
1020 avail_here -= desc->elem_size;
1024 elem = kmalloc(desc->elem_size, GFP_KERNEL);
1030 err = desc->xcode(desc, elem);
1033 memcpy(c, elem, avail_here);
1035 memcpy(elem, c, avail_here);
1036 copied = avail_here;
1038 base = buf->head->iov_len; /* align to start of pages */
1041 /* process pages array */
1042 base -= buf->head->iov_len;
1043 if (todo && base < buf->page_len) {
1044 unsigned int avail_page;
1046 avail_here = min(todo, buf->page_len - base);
1049 base += buf->page_base;
1050 ppages = buf->pages + (base >> PAGE_CACHE_SHIFT);
1051 base &= ~PAGE_CACHE_MASK;
1052 avail_page = min_t(unsigned int, PAGE_CACHE_SIZE - base,
1054 c = kmap(*ppages) + base;
1056 while (avail_here) {
1057 avail_here -= avail_page;
1058 if (copied || avail_page < desc->elem_size) {
1059 unsigned int l = min(avail_page,
1060 desc->elem_size - copied);
1062 elem = kmalloc(desc->elem_size,
1070 err = desc->xcode(desc, elem);
1074 memcpy(c, elem + copied, l);
1076 if (copied == desc->elem_size)
1079 memcpy(elem + copied, c, l);
1081 if (copied == desc->elem_size) {
1082 err = desc->xcode(desc, elem);
1091 while (avail_page >= desc->elem_size) {
1092 err = desc->xcode(desc, c);
1095 c += desc->elem_size;
1096 avail_page -= desc->elem_size;
1099 unsigned int l = min(avail_page,
1100 desc->elem_size - copied);
1102 elem = kmalloc(desc->elem_size,
1110 err = desc->xcode(desc, elem);
1114 memcpy(c, elem + copied, l);
1116 if (copied == desc->elem_size)
1119 memcpy(elem + copied, c, l);
1121 if (copied == desc->elem_size) {
1122 err = desc->xcode(desc, elem);
1135 avail_page = min(avail_here,
1136 (unsigned int) PAGE_CACHE_SIZE);
1138 base = buf->page_len; /* align to start of tail */
1142 base -= buf->page_len;
1144 c = buf->tail->iov_base + base;
1146 unsigned int l = desc->elem_size - copied;
1149 memcpy(c, elem + copied, l);
1151 memcpy(elem + copied, c, l);
1152 err = desc->xcode(desc, elem);
1160 err = desc->xcode(desc, c);
1163 c += desc->elem_size;
1164 todo -= desc->elem_size;
1178 xdr_decode_array2(struct xdr_buf *buf, unsigned int base,
1179 struct xdr_array2_desc *desc)
1181 if (base >= buf->len)
1184 return xdr_xcode_array2(buf, base, desc, 0);
1188 xdr_encode_array2(struct xdr_buf *buf, unsigned int base,
1189 struct xdr_array2_desc *desc)
1191 if ((unsigned long) base + 4 + desc->array_len * desc->elem_size >
1192 buf->head->iov_len + buf->page_len + buf->tail->iov_len)
1195 return xdr_xcode_array2(buf, base, desc, 1);