2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
52 static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
57 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58 rt2x00pci_register_read(rt2x00dev, BBPCSR, ®);
59 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
61 udelay(REGISTER_BUSY_DELAY);
67 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 const unsigned int word, const u8 value)
73 * Wait until the BBP becomes ready.
75 reg = rt2500pci_bbp_check(rt2x00dev);
76 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
82 * Write the data into the BBP.
85 rt2x00_set_field32(®, BBPCSR_VALUE, value);
86 rt2x00_set_field32(®, BBPCSR_REGNUM, word);
87 rt2x00_set_field32(®, BBPCSR_BUSY, 1);
88 rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 1);
90 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
93 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94 const unsigned int word, u8 *value)
99 * Wait until the BBP becomes ready.
101 reg = rt2500pci_bbp_check(rt2x00dev);
102 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
108 * Write the request into the BBP.
111 rt2x00_set_field32(®, BBPCSR_REGNUM, word);
112 rt2x00_set_field32(®, BBPCSR_BUSY, 1);
113 rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 0);
115 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
118 * Wait until the BBP becomes ready.
120 reg = rt2500pci_bbp_check(rt2x00dev);
121 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
127 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
130 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
131 const unsigned int word, const u32 value)
139 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140 rt2x00pci_register_read(rt2x00dev, RFCSR, ®);
141 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
143 udelay(REGISTER_BUSY_DELAY);
146 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
151 rt2x00_set_field32(®, RFCSR_VALUE, value);
152 rt2x00_set_field32(®, RFCSR_NUMBER_OF_BITS, 20);
153 rt2x00_set_field32(®, RFCSR_IF_SELECT, 0);
154 rt2x00_set_field32(®, RFCSR_BUSY, 1);
156 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157 rt2x00_rf_write(rt2x00dev, word, value);
160 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
162 struct rt2x00_dev *rt2x00dev = eeprom->data;
165 rt2x00pci_register_read(rt2x00dev, CSR21, ®);
167 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169 eeprom->reg_data_clock =
170 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171 eeprom->reg_chip_select =
172 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
175 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
177 struct rt2x00_dev *rt2x00dev = eeprom->data;
180 rt2x00_set_field32(®, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181 rt2x00_set_field32(®, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182 rt2x00_set_field32(®, CSR21_EEPROM_DATA_CLOCK,
183 !!eeprom->reg_data_clock);
184 rt2x00_set_field32(®, CSR21_EEPROM_CHIP_SELECT,
185 !!eeprom->reg_chip_select);
187 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
193 static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
194 const unsigned int word, u32 *data)
196 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
199 static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
200 const unsigned int word, u32 data)
202 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
205 static const struct rt2x00debug rt2500pci_rt2x00debug = {
206 .owner = THIS_MODULE,
208 .read = rt2500pci_read_csr,
209 .write = rt2500pci_write_csr,
210 .word_size = sizeof(u32),
211 .word_count = CSR_REG_SIZE / sizeof(u32),
214 .read = rt2x00_eeprom_read,
215 .write = rt2x00_eeprom_write,
216 .word_size = sizeof(u16),
217 .word_count = EEPROM_SIZE / sizeof(u16),
220 .read = rt2500pci_bbp_read,
221 .write = rt2500pci_bbp_write,
222 .word_size = sizeof(u8),
223 .word_count = BBP_SIZE / sizeof(u8),
226 .read = rt2x00_rf_read,
227 .write = rt2500pci_rf_write,
228 .word_size = sizeof(u32),
229 .word_count = RF_SIZE / sizeof(u32),
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
234 #ifdef CONFIG_RT2500PCI_RFKILL
235 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
239 rt2x00pci_register_read(rt2x00dev, GPIOCSR, ®);
240 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
243 #define rt2500pci_rfkill_poll NULL
244 #endif /* CONFIG_RT2500PCI_RFKILL */
247 * Configuration handlers.
249 static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,
252 rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,
253 (2 * sizeof(__le32)));
256 static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev,
259 rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,
260 (2 * sizeof(__le32)));
263 static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,
266 struct data_queue *queue =
267 rt2x00queue_get_queue(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
270 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
273 * Enable beacon config
275 rt2x00pci_register_read(rt2x00dev, BCNCSR1, ®);
276 rt2x00_set_field32(®, BCNCSR1_PRELOAD,
277 PREAMBLE + get_duration(IEEE80211_HEADER, 20));
278 rt2x00_set_field32(®, BCNCSR1_BEACON_CWMIN, queue->cw_min);
279 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
282 * Enable synchronisation.
284 rt2x00pci_register_read(rt2x00dev, CSR14, ®);
285 rt2x00_set_field32(®, CSR14_TSF_COUNT, 1);
286 rt2x00_set_field32(®, CSR14_TBCN, (tsf_sync == TSF_SYNC_BEACON));
287 rt2x00_set_field32(®, CSR14_BEACON_GEN, 0);
288 rt2x00_set_field32(®, CSR14_TSF_SYNC, tsf_sync);
289 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
292 static void rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev,
293 const int short_preamble,
294 const int ack_timeout,
295 const int ack_consume_time)
301 * When short preamble is enabled, we should set bit 0x08
303 preamble_mask = short_preamble << 3;
305 rt2x00pci_register_read(rt2x00dev, TXCSR1, ®);
306 rt2x00_set_field32(®, TXCSR1_ACK_TIMEOUT, ack_timeout);
307 rt2x00_set_field32(®, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
308 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
310 rt2x00pci_register_read(rt2x00dev, ARCSR2, ®);
311 rt2x00_set_field32(®, ARCSR2_SIGNAL, 0x00 | preamble_mask);
312 rt2x00_set_field32(®, ARCSR2_SERVICE, 0x04);
313 rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
314 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
316 rt2x00pci_register_read(rt2x00dev, ARCSR3, ®);
317 rt2x00_set_field32(®, ARCSR3_SIGNAL, 0x01 | preamble_mask);
318 rt2x00_set_field32(®, ARCSR3_SERVICE, 0x04);
319 rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
320 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
322 rt2x00pci_register_read(rt2x00dev, ARCSR4, ®);
323 rt2x00_set_field32(®, ARCSR4_SIGNAL, 0x02 | preamble_mask);
324 rt2x00_set_field32(®, ARCSR4_SERVICE, 0x04);
325 rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
326 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
328 rt2x00pci_register_read(rt2x00dev, ARCSR5, ®);
329 rt2x00_set_field32(®, ARCSR5_SIGNAL, 0x03 | preamble_mask);
330 rt2x00_set_field32(®, ARCSR5_SERVICE, 0x84);
331 rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
332 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
335 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
336 const int basic_rate_mask)
338 rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
341 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
342 struct rf_channel *rf, const int txpower)
349 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
352 * Switch on tuning bits.
353 * For RT2523 devices we do not need to update the R1 register.
355 if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
356 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
357 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
360 * For RT2525 we should first set the channel to half band higher.
362 if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
363 static const u32 vals[] = {
364 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
365 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
366 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
367 0x00080d2e, 0x00080d3a
370 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
371 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
372 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
374 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
377 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
378 rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
379 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
381 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
384 * Channel 14 requires the Japan filter bit to be set.
387 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
388 rt2500pci_bbp_write(rt2x00dev, 70, r70);
393 * Switch off tuning bits.
394 * For RT2523 devices we do not need to update the R1 register.
396 if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
397 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
398 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
401 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
402 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
405 * Clear false CRC during channel switch.
407 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
410 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
415 rt2x00_rf_read(rt2x00dev, 3, &rf3);
416 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
417 rt2500pci_rf_write(rt2x00dev, 3, rf3);
420 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
421 struct antenna_setup *ant)
427 rt2x00pci_register_read(rt2x00dev, BBPCSR1, ®);
428 rt2500pci_bbp_read(rt2x00dev, 14, &r14);
429 rt2500pci_bbp_read(rt2x00dev, 2, &r2);
432 * Configure the TX antenna.
436 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
437 rt2x00_set_field32(®, BBPCSR1_CCK, 0);
438 rt2x00_set_field32(®, BBPCSR1_OFDM, 0);
440 case ANTENNA_HW_DIVERSITY:
441 case ANTENNA_SW_DIVERSITY:
443 * NOTE: We should never come here because rt2x00lib is
444 * supposed to catch this and send us the correct antenna
445 * explicitely. However we are nog going to bug about this.
446 * Instead, just default to antenna B.
449 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
450 rt2x00_set_field32(®, BBPCSR1_CCK, 2);
451 rt2x00_set_field32(®, BBPCSR1_OFDM, 2);
456 * Configure the RX antenna.
460 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
462 case ANTENNA_HW_DIVERSITY:
463 case ANTENNA_SW_DIVERSITY:
465 * NOTE: We should never come here because rt2x00lib is
466 * supposed to catch this and send us the correct antenna
467 * explicitely. However we are nog going to bug about this.
468 * Instead, just default to antenna B.
471 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
476 * RT2525E and RT5222 need to flip TX I/Q
478 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
479 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
480 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
481 rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 1);
482 rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 1);
485 * RT2525E does not need RX I/Q Flip.
487 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
488 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
490 rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 0);
491 rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 0);
494 rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
495 rt2500pci_bbp_write(rt2x00dev, 14, r14);
496 rt2500pci_bbp_write(rt2x00dev, 2, r2);
499 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
500 struct rt2x00lib_conf *libconf)
504 rt2x00pci_register_read(rt2x00dev, CSR11, ®);
505 rt2x00_set_field32(®, CSR11_SLOT_TIME, libconf->slot_time);
506 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
508 rt2x00pci_register_read(rt2x00dev, CSR18, ®);
509 rt2x00_set_field32(®, CSR18_SIFS, libconf->sifs);
510 rt2x00_set_field32(®, CSR18_PIFS, libconf->pifs);
511 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
513 rt2x00pci_register_read(rt2x00dev, CSR19, ®);
514 rt2x00_set_field32(®, CSR19_DIFS, libconf->difs);
515 rt2x00_set_field32(®, CSR19_EIFS, libconf->eifs);
516 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
518 rt2x00pci_register_read(rt2x00dev, TXCSR1, ®);
519 rt2x00_set_field32(®, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
520 rt2x00_set_field32(®, TXCSR1_AUTORESPONDER, 1);
521 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
523 rt2x00pci_register_read(rt2x00dev, CSR12, ®);
524 rt2x00_set_field32(®, CSR12_BEACON_INTERVAL,
525 libconf->conf->beacon_int * 16);
526 rt2x00_set_field32(®, CSR12_CFP_MAX_DURATION,
527 libconf->conf->beacon_int * 16);
528 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
531 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
532 const unsigned int flags,
533 struct rt2x00lib_conf *libconf)
535 if (flags & CONFIG_UPDATE_PHYMODE)
536 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
537 if (flags & CONFIG_UPDATE_CHANNEL)
538 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
539 libconf->conf->power_level);
540 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
541 rt2500pci_config_txpower(rt2x00dev,
542 libconf->conf->power_level);
543 if (flags & CONFIG_UPDATE_ANTENNA)
544 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
545 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
546 rt2500pci_config_duration(rt2x00dev, libconf);
552 static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
556 rt2x00pci_register_read(rt2x00dev, LEDCSR, ®);
558 rt2x00_set_field32(®, LEDCSR_ON_PERIOD, 70);
559 rt2x00_set_field32(®, LEDCSR_OFF_PERIOD, 30);
560 rt2x00_set_field32(®, LEDCSR_LINK,
561 (rt2x00dev->led_mode != LED_MODE_ASUS));
562 rt2x00_set_field32(®, LEDCSR_ACTIVITY,
563 (rt2x00dev->led_mode != LED_MODE_TXRX_ACTIVITY));
564 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
567 static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
571 rt2x00pci_register_read(rt2x00dev, LEDCSR, ®);
572 rt2x00_set_field32(®, LEDCSR_LINK, 0);
573 rt2x00_set_field32(®, LEDCSR_ACTIVITY, 0);
574 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
580 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
581 struct link_qual *qual)
586 * Update FCS error count from register.
588 rt2x00pci_register_read(rt2x00dev, CNT0, ®);
589 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
592 * Update False CCA count from register.
594 rt2x00pci_register_read(rt2x00dev, CNT3, ®);
595 qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
598 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
600 rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
601 rt2x00dev->link.vgc_level = 0x48;
604 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
606 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
610 * To prevent collisions with MAC ASIC on chipsets
611 * up to version C the link tuning should halt after 20
614 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
615 rt2x00dev->link.count > 20)
618 rt2500pci_bbp_read(rt2x00dev, 17, &r17);
621 * Chipset versions C and lower should directly continue
622 * to the dynamic CCA tuning.
624 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D)
625 goto dynamic_cca_tune;
628 * A too low RSSI will cause too much false CCA which will
629 * then corrupt the R17 tuning. To remidy this the tuning should
630 * be stopped (While making sure the R17 value will not exceed limits)
632 if (rssi < -80 && rt2x00dev->link.count > 20) {
634 r17 = rt2x00dev->link.vgc_level;
635 rt2500pci_bbp_write(rt2x00dev, 17, r17);
641 * Special big-R17 for short distance
645 rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
650 * Special mid-R17 for middle distance
654 rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
659 * Leave short or middle distance condition, restore r17
660 * to the dynamic tuning range.
663 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
670 * R17 is inside the dynamic tuning range,
671 * start tuning the link based on the false cca counter.
673 if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
674 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
675 rt2x00dev->link.vgc_level = r17;
676 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
677 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
678 rt2x00dev->link.vgc_level = r17;
683 * Initialization functions.
685 static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
686 struct queue_entry *entry)
688 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
691 rt2x00_desc_read(priv_rx->desc, 1, &word);
692 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->dma);
693 rt2x00_desc_write(priv_rx->desc, 1, word);
695 rt2x00_desc_read(priv_rx->desc, 0, &word);
696 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
697 rt2x00_desc_write(priv_rx->desc, 0, word);
700 static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
701 struct queue_entry *entry)
703 struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
706 rt2x00_desc_read(priv_tx->desc, 1, &word);
707 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->dma);
708 rt2x00_desc_write(priv_tx->desc, 1, word);
710 rt2x00_desc_read(priv_tx->desc, 0, &word);
711 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
712 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
713 rt2x00_desc_write(priv_tx->desc, 0, word);
716 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
718 struct queue_entry_priv_pci_rx *priv_rx;
719 struct queue_entry_priv_pci_tx *priv_tx;
723 * Initialize registers.
725 rt2x00pci_register_read(rt2x00dev, TXCSR2, ®);
726 rt2x00_set_field32(®, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
727 rt2x00_set_field32(®, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
728 rt2x00_set_field32(®, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
729 rt2x00_set_field32(®, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
730 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
732 priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
733 rt2x00pci_register_read(rt2x00dev, TXCSR3, ®);
734 rt2x00_set_field32(®, TXCSR3_TX_RING_REGISTER, priv_tx->dma);
735 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
737 priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
738 rt2x00pci_register_read(rt2x00dev, TXCSR5, ®);
739 rt2x00_set_field32(®, TXCSR5_PRIO_RING_REGISTER, priv_tx->dma);
740 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
742 priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
743 rt2x00pci_register_read(rt2x00dev, TXCSR4, ®);
744 rt2x00_set_field32(®, TXCSR4_ATIM_RING_REGISTER, priv_tx->dma);
745 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
747 priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
748 rt2x00pci_register_read(rt2x00dev, TXCSR6, ®);
749 rt2x00_set_field32(®, TXCSR6_BEACON_RING_REGISTER, priv_tx->dma);
750 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
752 rt2x00pci_register_read(rt2x00dev, RXCSR1, ®);
753 rt2x00_set_field32(®, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
754 rt2x00_set_field32(®, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
755 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
757 priv_rx = rt2x00dev->rx->entries[0].priv_data;
758 rt2x00pci_register_read(rt2x00dev, RXCSR2, ®);
759 rt2x00_set_field32(®, RXCSR2_RX_RING_REGISTER, priv_tx->dma);
760 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
765 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
769 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
770 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
771 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
772 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
774 rt2x00pci_register_read(rt2x00dev, TIMECSR, ®);
775 rt2x00_set_field32(®, TIMECSR_US_COUNT, 33);
776 rt2x00_set_field32(®, TIMECSR_US_64_COUNT, 63);
777 rt2x00_set_field32(®, TIMECSR_BEACON_EXPECT, 0);
778 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
780 rt2x00pci_register_read(rt2x00dev, CSR9, ®);
781 rt2x00_set_field32(®, CSR9_MAX_FRAME_UNIT,
782 rt2x00dev->rx->data_size / 128);
783 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
786 * Always use CWmin and CWmax set in descriptor.
788 rt2x00pci_register_read(rt2x00dev, CSR11, ®);
789 rt2x00_set_field32(®, CSR11_CW_SELECT, 0);
790 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
792 rt2x00pci_register_write(rt2x00dev, CNT3, 0);
794 rt2x00pci_register_read(rt2x00dev, TXCSR8, ®);
795 rt2x00_set_field32(®, TXCSR8_BBP_ID0, 10);
796 rt2x00_set_field32(®, TXCSR8_BBP_ID0_VALID, 1);
797 rt2x00_set_field32(®, TXCSR8_BBP_ID1, 11);
798 rt2x00_set_field32(®, TXCSR8_BBP_ID1_VALID, 1);
799 rt2x00_set_field32(®, TXCSR8_BBP_ID2, 13);
800 rt2x00_set_field32(®, TXCSR8_BBP_ID2_VALID, 1);
801 rt2x00_set_field32(®, TXCSR8_BBP_ID3, 12);
802 rt2x00_set_field32(®, TXCSR8_BBP_ID3_VALID, 1);
803 rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
805 rt2x00pci_register_read(rt2x00dev, ARTCSR0, ®);
806 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_1MBS, 112);
807 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_2MBS, 56);
808 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_5_5MBS, 20);
809 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_11MBS, 10);
810 rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
812 rt2x00pci_register_read(rt2x00dev, ARTCSR1, ®);
813 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_6MBS, 45);
814 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_9MBS, 37);
815 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_12MBS, 33);
816 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_18MBS, 29);
817 rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
819 rt2x00pci_register_read(rt2x00dev, ARTCSR2, ®);
820 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_24MBS, 29);
821 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_36MBS, 25);
822 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_48MBS, 25);
823 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_54MBS, 25);
824 rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
826 rt2x00pci_register_read(rt2x00dev, RXCSR3, ®);
827 rt2x00_set_field32(®, RXCSR3_BBP_ID0, 47); /* CCK Signal */
828 rt2x00_set_field32(®, RXCSR3_BBP_ID0_VALID, 1);
829 rt2x00_set_field32(®, RXCSR3_BBP_ID1, 51); /* Rssi */
830 rt2x00_set_field32(®, RXCSR3_BBP_ID1_VALID, 1);
831 rt2x00_set_field32(®, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
832 rt2x00_set_field32(®, RXCSR3_BBP_ID2_VALID, 1);
833 rt2x00_set_field32(®, RXCSR3_BBP_ID3, 51); /* RSSI */
834 rt2x00_set_field32(®, RXCSR3_BBP_ID3_VALID, 1);
835 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
837 rt2x00pci_register_read(rt2x00dev, PCICSR, ®);
838 rt2x00_set_field32(®, PCICSR_BIG_ENDIAN, 0);
839 rt2x00_set_field32(®, PCICSR_RX_TRESHOLD, 0);
840 rt2x00_set_field32(®, PCICSR_TX_TRESHOLD, 3);
841 rt2x00_set_field32(®, PCICSR_BURST_LENTH, 1);
842 rt2x00_set_field32(®, PCICSR_ENABLE_CLK, 1);
843 rt2x00_set_field32(®, PCICSR_READ_MULTIPLE, 1);
844 rt2x00_set_field32(®, PCICSR_WRITE_INVALID, 1);
845 rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
847 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
849 rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
850 rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
852 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
855 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
856 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
858 rt2x00pci_register_read(rt2x00dev, MACCSR2, ®);
859 rt2x00_set_field32(®, MACCSR2_DELAY, 64);
860 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
862 rt2x00pci_register_read(rt2x00dev, RALINKCSR, ®);
863 rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA0, 17);
864 rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID0, 26);
865 rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID0, 1);
866 rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA1, 0);
867 rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID1, 26);
868 rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID1, 1);
869 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
871 rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
873 rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
875 rt2x00pci_register_read(rt2x00dev, CSR1, ®);
876 rt2x00_set_field32(®, CSR1_SOFT_RESET, 1);
877 rt2x00_set_field32(®, CSR1_BBP_RESET, 0);
878 rt2x00_set_field32(®, CSR1_HOST_READY, 0);
879 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
881 rt2x00pci_register_read(rt2x00dev, CSR1, ®);
882 rt2x00_set_field32(®, CSR1_SOFT_RESET, 0);
883 rt2x00_set_field32(®, CSR1_HOST_READY, 1);
884 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
887 * We must clear the FCS and FIFO error count.
888 * These registers are cleared on read,
889 * so we may pass a useless variable to store the value.
891 rt2x00pci_register_read(rt2x00dev, CNT0, ®);
892 rt2x00pci_register_read(rt2x00dev, CNT4, ®);
897 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
904 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
905 rt2500pci_bbp_read(rt2x00dev, 0, &value);
906 if ((value != 0xff) && (value != 0x00))
907 goto continue_csr_init;
908 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
909 udelay(REGISTER_BUSY_DELAY);
912 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
916 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
917 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
918 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
919 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
920 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
921 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
922 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
923 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
924 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
925 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
926 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
927 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
928 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
929 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
930 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
931 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
932 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
933 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
934 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
935 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
936 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
937 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
938 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
939 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
940 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
941 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
942 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
943 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
944 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
945 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
947 DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
948 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
949 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
951 if (eeprom != 0xffff && eeprom != 0x0000) {
952 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
953 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
954 DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
956 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
959 DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
965 * Device state switch handlers.
967 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
968 enum dev_state state)
972 rt2x00pci_register_read(rt2x00dev, RXCSR0, ®);
973 rt2x00_set_field32(®, RXCSR0_DISABLE_RX,
974 state == STATE_RADIO_RX_OFF);
975 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
978 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
979 enum dev_state state)
981 int mask = (state == STATE_RADIO_IRQ_OFF);
985 * When interrupts are being enabled, the interrupt registers
986 * should clear the register to assure a clean state.
988 if (state == STATE_RADIO_IRQ_ON) {
989 rt2x00pci_register_read(rt2x00dev, CSR7, ®);
990 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
994 * Only toggle the interrupts bits we are going to use.
995 * Non-checked interrupt bits are disabled by default.
997 rt2x00pci_register_read(rt2x00dev, CSR8, ®);
998 rt2x00_set_field32(®, CSR8_TBCN_EXPIRE, mask);
999 rt2x00_set_field32(®, CSR8_TXDONE_TXRING, mask);
1000 rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, mask);
1001 rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, mask);
1002 rt2x00_set_field32(®, CSR8_RXDONE, mask);
1003 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1006 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1009 * Initialize all registers.
1011 if (rt2500pci_init_queues(rt2x00dev) ||
1012 rt2500pci_init_registers(rt2x00dev) ||
1013 rt2500pci_init_bbp(rt2x00dev)) {
1014 ERROR(rt2x00dev, "Register initialization failed.\n");
1019 * Enable interrupts.
1021 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1026 rt2500pci_enable_led(rt2x00dev);
1031 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1038 rt2500pci_disable_led(rt2x00dev);
1040 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1043 * Disable synchronisation.
1045 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1050 rt2x00pci_register_read(rt2x00dev, TXCSR0, ®);
1051 rt2x00_set_field32(®, TXCSR0_ABORT, 1);
1052 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1055 * Disable interrupts.
1057 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1060 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1061 enum dev_state state)
1069 put_to_sleep = (state != STATE_AWAKE);
1071 rt2x00pci_register_read(rt2x00dev, PWRCSR1, ®);
1072 rt2x00_set_field32(®, PWRCSR1_SET_STATE, 1);
1073 rt2x00_set_field32(®, PWRCSR1_BBP_DESIRE_STATE, state);
1074 rt2x00_set_field32(®, PWRCSR1_RF_DESIRE_STATE, state);
1075 rt2x00_set_field32(®, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1076 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1079 * Device is not guaranteed to be in the requested state yet.
1080 * We must wait until the register indicates that the
1081 * device has entered the correct state.
1083 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1084 rt2x00pci_register_read(rt2x00dev, PWRCSR1, ®);
1085 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1086 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1087 if (bbp_state == state && rf_state == state)
1092 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1093 "current device state: bbp %d and rf %d.\n",
1094 state, bbp_state, rf_state);
1099 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1100 enum dev_state state)
1105 case STATE_RADIO_ON:
1106 retval = rt2500pci_enable_radio(rt2x00dev);
1108 case STATE_RADIO_OFF:
1109 rt2500pci_disable_radio(rt2x00dev);
1111 case STATE_RADIO_RX_ON:
1112 case STATE_RADIO_RX_ON_LINK:
1113 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1115 case STATE_RADIO_RX_OFF:
1116 case STATE_RADIO_RX_OFF_LINK:
1117 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1119 case STATE_DEEP_SLEEP:
1123 retval = rt2500pci_set_state(rt2x00dev, state);
1134 * TX descriptor initialization
1136 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1137 struct sk_buff *skb,
1138 struct txentry_desc *txdesc,
1139 struct ieee80211_tx_control *control)
1141 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1142 __le32 *txd = skbdesc->desc;
1146 * Start writing the descriptor words.
1148 rt2x00_desc_read(txd, 2, &word);
1149 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1150 rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1151 rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1152 rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1153 rt2x00_desc_write(txd, 2, word);
1155 rt2x00_desc_read(txd, 3, &word);
1156 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1157 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1158 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1159 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1160 rt2x00_desc_write(txd, 3, word);
1162 rt2x00_desc_read(txd, 10, &word);
1163 rt2x00_set_field32(&word, TXD_W10_RTS,
1164 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1165 rt2x00_desc_write(txd, 10, word);
1167 rt2x00_desc_read(txd, 0, &word);
1168 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1169 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1170 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1171 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1172 rt2x00_set_field32(&word, TXD_W0_ACK,
1173 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1174 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1175 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1176 rt2x00_set_field32(&word, TXD_W0_OFDM,
1177 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1178 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1179 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1180 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1182 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1183 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1184 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1185 rt2x00_desc_write(txd, 0, word);
1189 * TX data initialization
1191 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1196 if (queue == IEEE80211_TX_QUEUE_BEACON) {
1197 rt2x00pci_register_read(rt2x00dev, CSR14, ®);
1198 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1199 rt2x00_set_field32(®, CSR14_BEACON_GEN, 1);
1200 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1205 rt2x00pci_register_read(rt2x00dev, TXCSR0, ®);
1206 rt2x00_set_field32(®, TXCSR0_KICK_PRIO,
1207 (queue == IEEE80211_TX_QUEUE_DATA0));
1208 rt2x00_set_field32(®, TXCSR0_KICK_TX,
1209 (queue == IEEE80211_TX_QUEUE_DATA1));
1210 rt2x00_set_field32(®, TXCSR0_KICK_ATIM,
1211 (queue == IEEE80211_TX_QUEUE_AFTER_BEACON));
1212 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1216 * RX control handlers
1218 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1219 struct rxdone_entry_desc *rxdesc)
1221 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1225 rt2x00_desc_read(priv_rx->desc, 0, &word0);
1226 rt2x00_desc_read(priv_rx->desc, 2, &word2);
1229 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1230 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1231 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1232 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1234 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1235 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1236 entry->queue->rt2x00dev->rssi_offset;
1237 rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1238 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1239 rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1243 * Interrupt functions.
1245 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1246 const enum ieee80211_tx_queue queue_idx)
1248 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1249 struct queue_entry_priv_pci_tx *priv_tx;
1250 struct queue_entry *entry;
1251 struct txdone_entry_desc txdesc;
1254 while (!rt2x00queue_empty(queue)) {
1255 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1256 priv_tx = entry->priv_data;
1257 rt2x00_desc_read(priv_tx->desc, 0, &word);
1259 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1260 !rt2x00_get_field32(word, TXD_W0_VALID))
1264 * Obtain the status about this packet.
1266 txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
1267 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1269 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1273 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1275 struct rt2x00_dev *rt2x00dev = dev_instance;
1279 * Get the interrupt sources & saved to local variable.
1280 * Write register value back to clear pending interrupts.
1282 rt2x00pci_register_read(rt2x00dev, CSR7, ®);
1283 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1288 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1292 * Handle interrupts, walk through all bits
1293 * and run the tasks, the bits are checked in order of
1298 * 1 - Beacon timer expired interrupt.
1300 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1301 rt2x00lib_beacondone(rt2x00dev);
1304 * 2 - Rx ring done interrupt.
1306 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1307 rt2x00pci_rxdone(rt2x00dev);
1310 * 3 - Atim ring transmit done interrupt.
1312 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1313 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1316 * 4 - Priority ring transmit done interrupt.
1318 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1319 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1322 * 5 - Tx ring transmit done interrupt.
1324 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1325 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1331 * Device probe functions.
1333 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1335 struct eeprom_93cx6 eeprom;
1340 rt2x00pci_register_read(rt2x00dev, CSR21, ®);
1342 eeprom.data = rt2x00dev;
1343 eeprom.register_read = rt2500pci_eepromregister_read;
1344 eeprom.register_write = rt2500pci_eepromregister_write;
1345 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1346 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1347 eeprom.reg_data_in = 0;
1348 eeprom.reg_data_out = 0;
1349 eeprom.reg_data_clock = 0;
1350 eeprom.reg_chip_select = 0;
1352 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1353 EEPROM_SIZE / sizeof(u16));
1356 * Start validation of the data that has been read.
1358 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1359 if (!is_valid_ether_addr(mac)) {
1360 DECLARE_MAC_BUF(macbuf);
1362 random_ether_addr(mac);
1363 EEPROM(rt2x00dev, "MAC: %s\n",
1364 print_mac(macbuf, mac));
1367 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1368 if (word == 0xffff) {
1369 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1370 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1371 ANTENNA_SW_DIVERSITY);
1372 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1373 ANTENNA_SW_DIVERSITY);
1374 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1376 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1377 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1378 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1379 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1380 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1383 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1384 if (word == 0xffff) {
1385 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1386 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1387 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1388 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1389 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1392 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1393 if (word == 0xffff) {
1394 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1395 DEFAULT_RSSI_OFFSET);
1396 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1397 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1403 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1410 * Read EEPROM word for configuration.
1412 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1415 * Identify RF chipset.
1417 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1418 rt2x00pci_register_read(rt2x00dev, CSR0, ®);
1419 rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1421 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1422 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1423 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1424 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1425 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1426 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1427 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1432 * Identify default antenna configuration.
1434 rt2x00dev->default_ant.tx =
1435 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1436 rt2x00dev->default_ant.rx =
1437 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1440 * Store led mode, for correct led behaviour.
1442 rt2x00dev->led_mode =
1443 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1446 * Detect if this device has an hardware controlled radio.
1448 #ifdef CONFIG_RT2500PCI_RFKILL
1449 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1450 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1451 #endif /* CONFIG_RT2500PCI_RFKILL */
1454 * Check if the BBP tuning should be enabled.
1456 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1458 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1459 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1462 * Read the RSSI <-> dBm offset information.
1464 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1465 rt2x00dev->rssi_offset =
1466 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1472 * RF value list for RF2522
1475 static const struct rf_channel rf_vals_bg_2522[] = {
1476 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1477 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1478 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1479 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1480 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1481 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1482 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1483 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1484 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1485 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1486 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1487 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1488 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1489 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1493 * RF value list for RF2523
1496 static const struct rf_channel rf_vals_bg_2523[] = {
1497 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1498 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1499 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1500 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1501 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1502 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1503 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1504 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1505 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1506 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1507 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1508 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1509 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1510 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1514 * RF value list for RF2524
1517 static const struct rf_channel rf_vals_bg_2524[] = {
1518 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1519 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1520 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1521 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1522 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1523 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1524 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1525 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1526 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1527 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1528 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1529 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1530 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1531 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1535 * RF value list for RF2525
1538 static const struct rf_channel rf_vals_bg_2525[] = {
1539 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1540 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1541 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1542 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1543 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1544 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1545 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1546 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1547 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1548 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1549 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1550 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1551 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1552 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1556 * RF value list for RF2525e
1559 static const struct rf_channel rf_vals_bg_2525e[] = {
1560 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1561 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1562 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1563 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1564 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1565 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1566 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1567 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1568 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1569 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1570 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1571 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1572 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1573 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1577 * RF value list for RF5222
1578 * Supports: 2.4 GHz & 5.2 GHz
1580 static const struct rf_channel rf_vals_5222[] = {
1581 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1582 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1583 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1584 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1585 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1586 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1587 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1588 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1589 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1590 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1591 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1592 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1593 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1594 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1596 /* 802.11 UNI / HyperLan 2 */
1597 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1598 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1599 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1600 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1601 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1602 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1603 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1604 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1606 /* 802.11 HyperLan 2 */
1607 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1608 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1609 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1610 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1611 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1612 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1613 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1614 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1615 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1616 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1619 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1620 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1621 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1622 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1623 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1626 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1628 struct hw_mode_spec *spec = &rt2x00dev->spec;
1633 * Initialize all hw fields.
1635 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1636 rt2x00dev->hw->extra_tx_headroom = 0;
1637 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1638 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1639 rt2x00dev->hw->queues = 2;
1641 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1642 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1643 rt2x00_eeprom_addr(rt2x00dev,
1644 EEPROM_MAC_ADDR_0));
1647 * Convert tx_power array in eeprom.
1649 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1650 for (i = 0; i < 14; i++)
1651 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1654 * Initialize hw_mode information.
1656 spec->num_modes = 2;
1657 spec->num_rates = 12;
1658 spec->tx_power_a = NULL;
1659 spec->tx_power_bg = txpower;
1660 spec->tx_power_default = DEFAULT_TXPOWER;
1662 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1663 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1664 spec->channels = rf_vals_bg_2522;
1665 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1666 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1667 spec->channels = rf_vals_bg_2523;
1668 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1669 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1670 spec->channels = rf_vals_bg_2524;
1671 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1672 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1673 spec->channels = rf_vals_bg_2525;
1674 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1675 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1676 spec->channels = rf_vals_bg_2525e;
1677 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1678 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1679 spec->channels = rf_vals_5222;
1680 spec->num_modes = 3;
1684 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1689 * Allocate eeprom data.
1691 retval = rt2500pci_validate_eeprom(rt2x00dev);
1695 retval = rt2500pci_init_eeprom(rt2x00dev);
1700 * Initialize hw specifications.
1702 rt2500pci_probe_hw_mode(rt2x00dev);
1705 * This device requires the atim queue
1707 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1710 * Set the rssi offset.
1712 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1718 * IEEE80211 stack callback functions.
1720 static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
1721 unsigned int changed_flags,
1722 unsigned int *total_flags,
1724 struct dev_addr_list *mc_list)
1726 struct rt2x00_dev *rt2x00dev = hw->priv;
1730 * Mask off any flags we are going to ignore from
1731 * the total_flags field.
1742 * Apply some rules to the filters:
1743 * - Some filters imply different filters to be set.
1744 * - Some things we can't filter out at all.
1747 *total_flags |= FIF_ALLMULTI;
1748 if (*total_flags & FIF_OTHER_BSS ||
1749 *total_flags & FIF_PROMISC_IN_BSS)
1750 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1753 * Check if there is any work left for us.
1755 if (rt2x00dev->packet_filter == *total_flags)
1757 rt2x00dev->packet_filter = *total_flags;
1760 * Start configuration steps.
1761 * Note that the version error will always be dropped
1762 * and broadcast frames will always be accepted since
1763 * there is no filter for it at this time.
1765 rt2x00pci_register_read(rt2x00dev, RXCSR0, ®);
1766 rt2x00_set_field32(®, RXCSR0_DROP_CRC,
1767 !(*total_flags & FIF_FCSFAIL));
1768 rt2x00_set_field32(®, RXCSR0_DROP_PHYSICAL,
1769 !(*total_flags & FIF_PLCPFAIL));
1770 rt2x00_set_field32(®, RXCSR0_DROP_CONTROL,
1771 !(*total_flags & FIF_CONTROL));
1772 rt2x00_set_field32(®, RXCSR0_DROP_NOT_TO_ME,
1773 !(*total_flags & FIF_PROMISC_IN_BSS));
1774 rt2x00_set_field32(®, RXCSR0_DROP_TODS,
1775 !(*total_flags & FIF_PROMISC_IN_BSS));
1776 rt2x00_set_field32(®, RXCSR0_DROP_VERSION_ERROR, 1);
1777 rt2x00_set_field32(®, RXCSR0_DROP_MCAST,
1778 !(*total_flags & FIF_ALLMULTI));
1779 rt2x00_set_field32(®, RXCSR0_DROP_BCAST, 0);
1780 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1783 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1784 u32 short_retry, u32 long_retry)
1786 struct rt2x00_dev *rt2x00dev = hw->priv;
1789 rt2x00pci_register_read(rt2x00dev, CSR11, ®);
1790 rt2x00_set_field32(®, CSR11_LONG_RETRY, long_retry);
1791 rt2x00_set_field32(®, CSR11_SHORT_RETRY, short_retry);
1792 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1797 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1799 struct rt2x00_dev *rt2x00dev = hw->priv;
1803 rt2x00pci_register_read(rt2x00dev, CSR17, ®);
1804 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1805 rt2x00pci_register_read(rt2x00dev, CSR16, ®);
1806 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1811 static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
1813 struct rt2x00_dev *rt2x00dev = hw->priv;
1815 rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1816 rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1819 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1821 struct rt2x00_dev *rt2x00dev = hw->priv;
1824 rt2x00pci_register_read(rt2x00dev, CSR15, ®);
1825 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1828 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1830 .start = rt2x00mac_start,
1831 .stop = rt2x00mac_stop,
1832 .add_interface = rt2x00mac_add_interface,
1833 .remove_interface = rt2x00mac_remove_interface,
1834 .config = rt2x00mac_config,
1835 .config_interface = rt2x00mac_config_interface,
1836 .configure_filter = rt2500pci_configure_filter,
1837 .get_stats = rt2x00mac_get_stats,
1838 .set_retry_limit = rt2500pci_set_retry_limit,
1839 .bss_info_changed = rt2x00mac_bss_info_changed,
1840 .conf_tx = rt2x00mac_conf_tx,
1841 .get_tx_stats = rt2x00mac_get_tx_stats,
1842 .get_tsf = rt2500pci_get_tsf,
1843 .reset_tsf = rt2500pci_reset_tsf,
1844 .beacon_update = rt2x00pci_beacon_update,
1845 .tx_last_beacon = rt2500pci_tx_last_beacon,
1848 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1849 .irq_handler = rt2500pci_interrupt,
1850 .probe_hw = rt2500pci_probe_hw,
1851 .initialize = rt2x00pci_initialize,
1852 .uninitialize = rt2x00pci_uninitialize,
1853 .init_rxentry = rt2500pci_init_rxentry,
1854 .init_txentry = rt2500pci_init_txentry,
1855 .set_device_state = rt2500pci_set_device_state,
1856 .rfkill_poll = rt2500pci_rfkill_poll,
1857 .link_stats = rt2500pci_link_stats,
1858 .reset_tuner = rt2500pci_reset_tuner,
1859 .link_tuner = rt2500pci_link_tuner,
1860 .write_tx_desc = rt2500pci_write_tx_desc,
1861 .write_tx_data = rt2x00pci_write_tx_data,
1862 .kick_tx_queue = rt2500pci_kick_tx_queue,
1863 .fill_rxdone = rt2500pci_fill_rxdone,
1864 .config_mac_addr = rt2500pci_config_mac_addr,
1865 .config_bssid = rt2500pci_config_bssid,
1866 .config_type = rt2500pci_config_type,
1867 .config_preamble = rt2500pci_config_preamble,
1868 .config = rt2500pci_config,
1871 static const struct data_queue_desc rt2500pci_queue_rx = {
1872 .entry_num = RX_ENTRIES,
1873 .data_size = DATA_FRAME_SIZE,
1874 .desc_size = RXD_DESC_SIZE,
1875 .priv_size = sizeof(struct queue_entry_priv_pci_rx),
1878 static const struct data_queue_desc rt2500pci_queue_tx = {
1879 .entry_num = TX_ENTRIES,
1880 .data_size = DATA_FRAME_SIZE,
1881 .desc_size = TXD_DESC_SIZE,
1882 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1885 static const struct data_queue_desc rt2500pci_queue_bcn = {
1886 .entry_num = BEACON_ENTRIES,
1887 .data_size = MGMT_FRAME_SIZE,
1888 .desc_size = TXD_DESC_SIZE,
1889 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1892 static const struct data_queue_desc rt2500pci_queue_atim = {
1893 .entry_num = ATIM_ENTRIES,
1894 .data_size = DATA_FRAME_SIZE,
1895 .desc_size = TXD_DESC_SIZE,
1896 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1899 static const struct rt2x00_ops rt2500pci_ops = {
1900 .name = KBUILD_MODNAME,
1901 .eeprom_size = EEPROM_SIZE,
1903 .rx = &rt2500pci_queue_rx,
1904 .tx = &rt2500pci_queue_tx,
1905 .bcn = &rt2500pci_queue_bcn,
1906 .atim = &rt2500pci_queue_atim,
1907 .lib = &rt2500pci_rt2x00_ops,
1908 .hw = &rt2500pci_mac80211_ops,
1909 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1910 .debugfs = &rt2500pci_rt2x00debug,
1911 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1915 * RT2500pci module information.
1917 static struct pci_device_id rt2500pci_device_table[] = {
1918 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1922 MODULE_AUTHOR(DRV_PROJECT);
1923 MODULE_VERSION(DRV_VERSION);
1924 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1925 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1926 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1927 MODULE_LICENSE("GPL");
1929 static struct pci_driver rt2500pci_driver = {
1930 .name = KBUILD_MODNAME,
1931 .id_table = rt2500pci_device_table,
1932 .probe = rt2x00pci_probe,
1933 .remove = __devexit_p(rt2x00pci_remove),
1934 .suspend = rt2x00pci_suspend,
1935 .resume = rt2x00pci_resume,
1938 static int __init rt2500pci_init(void)
1940 return pci_register_driver(&rt2500pci_driver);
1943 static void __exit rt2500pci_exit(void)
1945 pci_unregister_driver(&rt2500pci_driver);
1948 module_init(rt2500pci_init);
1949 module_exit(rt2500pci_exit);