rt2x00: Queue handling overhaul
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
37
38 /*
39  * Register access.
40  * All access to the CSR registers will go through the methods
41  * rt2500usb_register_read and rt2500usb_register_write.
42  * BBP and RF register require indirect register access,
43  * and use the CSR registers BBPCSR and RFCSR to achieve this.
44  * These indirect registers work with busy bits,
45  * and we will try maximal REGISTER_BUSY_COUNT times to access
46  * the register while taking a REGISTER_BUSY_DELAY us delay
47  * between each attampt. When the busy bit is still set at that time,
48  * the access attempt is considered to have failed,
49  * and we will print an error.
50  * If the usb_cache_mutex is already held then the _lock variants must
51  * be used instead.
52  */
53 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
54                                            const unsigned int offset,
55                                            u16 *value)
56 {
57         __le16 reg;
58         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
59                                       USB_VENDOR_REQUEST_IN, offset,
60                                       &reg, sizeof(u16), REGISTER_TIMEOUT);
61         *value = le16_to_cpu(reg);
62 }
63
64 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
65                                                 const unsigned int offset,
66                                                 u16 *value)
67 {
68         __le16 reg;
69         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
70                                        USB_VENDOR_REQUEST_IN, offset,
71                                        &reg, sizeof(u16), REGISTER_TIMEOUT);
72         *value = le16_to_cpu(reg);
73 }
74
75 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
76                                                 const unsigned int offset,
77                                                 void *value, const u16 length)
78 {
79         int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
80         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
81                                       USB_VENDOR_REQUEST_IN, offset,
82                                       value, length, timeout);
83 }
84
85 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
86                                             const unsigned int offset,
87                                             u16 value)
88 {
89         __le16 reg = cpu_to_le16(value);
90         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
91                                       USB_VENDOR_REQUEST_OUT, offset,
92                                       &reg, sizeof(u16), REGISTER_TIMEOUT);
93 }
94
95 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
96                                                  const unsigned int offset,
97                                                  u16 value)
98 {
99         __le16 reg = cpu_to_le16(value);
100         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
101                                        USB_VENDOR_REQUEST_OUT, offset,
102                                        &reg, sizeof(u16), REGISTER_TIMEOUT);
103 }
104
105 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
106                                                  const unsigned int offset,
107                                                  void *value, const u16 length)
108 {
109         int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
110         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
111                                       USB_VENDOR_REQUEST_OUT, offset,
112                                       value, length, timeout);
113 }
114
115 static u16 rt2500usb_bbp_check(struct rt2x00_dev *rt2x00dev)
116 {
117         u16 reg;
118         unsigned int i;
119
120         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
121                 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR8, &reg);
122                 if (!rt2x00_get_field16(reg, PHY_CSR8_BUSY))
123                         break;
124                 udelay(REGISTER_BUSY_DELAY);
125         }
126
127         return reg;
128 }
129
130 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
131                                 const unsigned int word, const u8 value)
132 {
133         u16 reg;
134
135         mutex_lock(&rt2x00dev->usb_cache_mutex);
136
137         /*
138          * Wait until the BBP becomes ready.
139          */
140         reg = rt2500usb_bbp_check(rt2x00dev);
141         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
142                 ERROR(rt2x00dev, "PHY_CSR8 register busy. Write failed.\n");
143                 mutex_unlock(&rt2x00dev->usb_cache_mutex);
144                 return;
145         }
146
147         /*
148          * Write the data into the BBP.
149          */
150         reg = 0;
151         rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
152         rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
153         rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
154
155         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
156
157         mutex_unlock(&rt2x00dev->usb_cache_mutex);
158 }
159
160 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
161                                const unsigned int word, u8 *value)
162 {
163         u16 reg;
164
165         mutex_lock(&rt2x00dev->usb_cache_mutex);
166
167         /*
168          * Wait until the BBP becomes ready.
169          */
170         reg = rt2500usb_bbp_check(rt2x00dev);
171         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
172                 ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
173                 return;
174         }
175
176         /*
177          * Write the request into the BBP.
178          */
179         reg = 0;
180         rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
181         rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
182
183         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
184
185         /*
186          * Wait until the BBP becomes ready.
187          */
188         reg = rt2500usb_bbp_check(rt2x00dev);
189         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
190                 ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
191                 *value = 0xff;
192                 mutex_unlock(&rt2x00dev->usb_cache_mutex);
193                 return;
194         }
195
196         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
197         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
198
199         mutex_unlock(&rt2x00dev->usb_cache_mutex);
200 }
201
202 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
203                                const unsigned int word, const u32 value)
204 {
205         u16 reg;
206         unsigned int i;
207
208         if (!word)
209                 return;
210
211         mutex_lock(&rt2x00dev->usb_cache_mutex);
212
213         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
214                 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR10, &reg);
215                 if (!rt2x00_get_field16(reg, PHY_CSR10_RF_BUSY))
216                         goto rf_write;
217                 udelay(REGISTER_BUSY_DELAY);
218         }
219
220         mutex_unlock(&rt2x00dev->usb_cache_mutex);
221         ERROR(rt2x00dev, "PHY_CSR10 register busy. Write failed.\n");
222         return;
223
224 rf_write:
225         reg = 0;
226         rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
227         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
228
229         reg = 0;
230         rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
231         rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
232         rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
233         rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
234
235         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
236         rt2x00_rf_write(rt2x00dev, word, value);
237
238         mutex_unlock(&rt2x00dev->usb_cache_mutex);
239 }
240
241 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
242 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u16)) )
243
244 static void rt2500usb_read_csr(struct rt2x00_dev *rt2x00dev,
245                                const unsigned int word, u32 *data)
246 {
247         rt2500usb_register_read(rt2x00dev, CSR_OFFSET(word), (u16 *) data);
248 }
249
250 static void rt2500usb_write_csr(struct rt2x00_dev *rt2x00dev,
251                                 const unsigned int word, u32 data)
252 {
253         rt2500usb_register_write(rt2x00dev, CSR_OFFSET(word), data);
254 }
255
256 static const struct rt2x00debug rt2500usb_rt2x00debug = {
257         .owner  = THIS_MODULE,
258         .csr    = {
259                 .read           = rt2500usb_read_csr,
260                 .write          = rt2500usb_write_csr,
261                 .word_size      = sizeof(u16),
262                 .word_count     = CSR_REG_SIZE / sizeof(u16),
263         },
264         .eeprom = {
265                 .read           = rt2x00_eeprom_read,
266                 .write          = rt2x00_eeprom_write,
267                 .word_size      = sizeof(u16),
268                 .word_count     = EEPROM_SIZE / sizeof(u16),
269         },
270         .bbp    = {
271                 .read           = rt2500usb_bbp_read,
272                 .write          = rt2500usb_bbp_write,
273                 .word_size      = sizeof(u8),
274                 .word_count     = BBP_SIZE / sizeof(u8),
275         },
276         .rf     = {
277                 .read           = rt2x00_rf_read,
278                 .write          = rt2500usb_rf_write,
279                 .word_size      = sizeof(u32),
280                 .word_count     = RF_SIZE / sizeof(u32),
281         },
282 };
283 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
284
285 /*
286  * Configuration handlers.
287  */
288 static void rt2500usb_config_mac_addr(struct rt2x00_dev *rt2x00dev,
289                                       __le32 *mac)
290 {
291         rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, mac,
292                                       (3 * sizeof(__le16)));
293 }
294
295 static void rt2500usb_config_bssid(struct rt2x00_dev *rt2x00dev,
296                                    __le32 *bssid)
297 {
298         rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, bssid,
299                                       (3 * sizeof(__le16)));
300 }
301
302 static void rt2500usb_config_type(struct rt2x00_dev *rt2x00dev, const int type,
303                                   const int tsf_sync)
304 {
305         u16 reg;
306
307         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
308
309         /*
310          * Enable beacon config
311          */
312         rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
313         rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET,
314                            (PREAMBLE + get_duration(IEEE80211_HEADER, 20)) >> 6);
315         if (type == IEEE80211_IF_TYPE_STA)
316                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW, 0);
317         else
318                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW, 2);
319         rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
320
321         /*
322          * Enable synchronisation.
323          */
324         rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
325         rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
326         rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
327
328         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
329         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
330         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN,
331                            (tsf_sync == TSF_SYNC_BEACON));
332         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
333         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, tsf_sync);
334         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
335 }
336
337 static void rt2500usb_config_preamble(struct rt2x00_dev *rt2x00dev,
338                                       const int short_preamble,
339                                       const int ack_timeout,
340                                       const int ack_consume_time)
341 {
342         u16 reg;
343
344         /*
345          * When in atomic context, reschedule and let rt2x00lib
346          * call this function again.
347          */
348         if (in_atomic()) {
349                 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->config_work);
350                 return;
351         }
352
353         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
354         rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, ack_timeout);
355         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
356
357         rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
358         rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
359                            !!short_preamble);
360         rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
361 }
362
363 static void rt2500usb_config_phymode(struct rt2x00_dev *rt2x00dev,
364                                      const int phymode,
365                                      const int basic_rate_mask)
366 {
367         rt2500usb_register_write(rt2x00dev, TXRX_CSR11, basic_rate_mask);
368
369         if (phymode == HWMODE_B) {
370                 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x000b);
371                 rt2500usb_register_write(rt2x00dev, MAC_CSR12, 0x0040);
372         } else {
373                 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0005);
374                 rt2500usb_register_write(rt2x00dev, MAC_CSR12, 0x016c);
375         }
376 }
377
378 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
379                                      struct rf_channel *rf, const int txpower)
380 {
381         /*
382          * Set TXpower.
383          */
384         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
385
386         /*
387          * For RT2525E we should first set the channel to half band higher.
388          */
389         if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
390                 static const u32 vals[] = {
391                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
392                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
393                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
394                         0x00000902, 0x00000906
395                 };
396
397                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
398                 if (rf->rf4)
399                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
400         }
401
402         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
403         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
404         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
405         if (rf->rf4)
406                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
407 }
408
409 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
410                                      const int txpower)
411 {
412         u32 rf3;
413
414         rt2x00_rf_read(rt2x00dev, 3, &rf3);
415         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
416         rt2500usb_rf_write(rt2x00dev, 3, rf3);
417 }
418
419 static void rt2500usb_config_antenna(struct rt2x00_dev *rt2x00dev,
420                                      struct antenna_setup *ant)
421 {
422         u8 r2;
423         u8 r14;
424         u16 csr5;
425         u16 csr6;
426
427         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
428         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
429         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
430         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
431
432         /*
433          * Configure the TX antenna.
434          */
435         switch (ant->tx) {
436         case ANTENNA_HW_DIVERSITY:
437                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
438                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
439                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
440                 break;
441         case ANTENNA_A:
442                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
443                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
444                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
445                 break;
446         case ANTENNA_SW_DIVERSITY:
447                 /*
448                  * NOTE: We should never come here because rt2x00lib is
449                  * supposed to catch this and send us the correct antenna
450                  * explicitely. However we are nog going to bug about this.
451                  * Instead, just default to antenna B.
452                  */
453         case ANTENNA_B:
454                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
455                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
456                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
457                 break;
458         }
459
460         /*
461          * Configure the RX antenna.
462          */
463         switch (ant->rx) {
464         case ANTENNA_HW_DIVERSITY:
465                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
466                 break;
467         case ANTENNA_A:
468                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
469                 break;
470         case ANTENNA_SW_DIVERSITY:
471                 /*
472                  * NOTE: We should never come here because rt2x00lib is
473                  * supposed to catch this and send us the correct antenna
474                  * explicitely. However we are nog going to bug about this.
475                  * Instead, just default to antenna B.
476                  */
477         case ANTENNA_B:
478                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
479                 break;
480         }
481
482         /*
483          * RT2525E and RT5222 need to flip TX I/Q
484          */
485         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
486             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
487                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
488                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
489                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
490
491                 /*
492                  * RT2525E does not need RX I/Q Flip.
493                  */
494                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
495                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
496         } else {
497                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
498                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
499         }
500
501         rt2500usb_bbp_write(rt2x00dev, 2, r2);
502         rt2500usb_bbp_write(rt2x00dev, 14, r14);
503         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
504         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
505 }
506
507 static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
508                                       struct rt2x00lib_conf *libconf)
509 {
510         u16 reg;
511
512         rt2500usb_register_write(rt2x00dev, MAC_CSR10, libconf->slot_time);
513
514         rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
515         rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
516                            libconf->conf->beacon_int * 4);
517         rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
518 }
519
520 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
521                              const unsigned int flags,
522                              struct rt2x00lib_conf *libconf)
523 {
524         if (flags & CONFIG_UPDATE_PHYMODE)
525                 rt2500usb_config_phymode(rt2x00dev, libconf->phymode,
526                                          libconf->basic_rates);
527         if (flags & CONFIG_UPDATE_CHANNEL)
528                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
529                                          libconf->conf->power_level);
530         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
531                 rt2500usb_config_txpower(rt2x00dev,
532                                          libconf->conf->power_level);
533         if (flags & CONFIG_UPDATE_ANTENNA)
534                 rt2500usb_config_antenna(rt2x00dev, &libconf->ant);
535         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
536                 rt2500usb_config_duration(rt2x00dev, libconf);
537 }
538
539 /*
540  * LED functions.
541  */
542 static void rt2500usb_enable_led(struct rt2x00_dev *rt2x00dev)
543 {
544         u16 reg;
545
546         rt2500usb_register_read(rt2x00dev, MAC_CSR21, &reg);
547         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, 70);
548         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, 30);
549         rt2500usb_register_write(rt2x00dev, MAC_CSR21, reg);
550
551         rt2500usb_register_read(rt2x00dev, MAC_CSR20, &reg);
552         rt2x00_set_field16(&reg, MAC_CSR20_LINK,
553                            (rt2x00dev->led_mode != LED_MODE_ASUS));
554         rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY,
555                            (rt2x00dev->led_mode != LED_MODE_TXRX_ACTIVITY));
556         rt2500usb_register_write(rt2x00dev, MAC_CSR20, reg);
557 }
558
559 static void rt2500usb_disable_led(struct rt2x00_dev *rt2x00dev)
560 {
561         u16 reg;
562
563         rt2500usb_register_read(rt2x00dev, MAC_CSR20, &reg);
564         rt2x00_set_field16(&reg, MAC_CSR20_LINK, 0);
565         rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, 0);
566         rt2500usb_register_write(rt2x00dev, MAC_CSR20, reg);
567 }
568
569 /*
570  * Link tuning
571  */
572 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
573                                  struct link_qual *qual)
574 {
575         u16 reg;
576
577         /*
578          * Update FCS error count from register.
579          */
580         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
581         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
582
583         /*
584          * Update False CCA count from register.
585          */
586         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
587         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
588 }
589
590 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
591 {
592         u16 eeprom;
593         u16 value;
594
595         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
596         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
597         rt2500usb_bbp_write(rt2x00dev, 24, value);
598
599         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
600         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
601         rt2500usb_bbp_write(rt2x00dev, 25, value);
602
603         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
604         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
605         rt2500usb_bbp_write(rt2x00dev, 61, value);
606
607         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
608         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
609         rt2500usb_bbp_write(rt2x00dev, 17, value);
610
611         rt2x00dev->link.vgc_level = value;
612 }
613
614 static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
615 {
616         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
617         u16 bbp_thresh;
618         u16 vgc_bound;
619         u16 sens;
620         u16 r24;
621         u16 r25;
622         u16 r61;
623         u16 r17_sens;
624         u8 r17;
625         u8 up_bound;
626         u8 low_bound;
627
628         /*
629          * Determine the BBP tuning threshold and correctly
630          * set BBP 24, 25 and 61.
631          */
632         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
633         bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
634
635         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
636         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
637         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
638
639         if ((rssi + bbp_thresh) > 0) {
640                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
641                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
642                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
643         } else {
644                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
645                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
646                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
647         }
648
649         rt2500usb_bbp_write(rt2x00dev, 24, r24);
650         rt2500usb_bbp_write(rt2x00dev, 25, r25);
651         rt2500usb_bbp_write(rt2x00dev, 61, r61);
652
653         /*
654          * Read current r17 value, as well as the sensitivity values
655          * for the r17 register.
656          */
657         rt2500usb_bbp_read(rt2x00dev, 17, &r17);
658         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
659
660         /*
661          * A too low RSSI will cause too much false CCA which will
662          * then corrupt the R17 tuning. To remidy this the tuning should
663          * be stopped (While making sure the R17 value will not exceed limits)
664          */
665         if (rssi >= -40) {
666                 if (r17 != 0x60)
667                         rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
668                 return;
669         }
670
671         /*
672          * Special big-R17 for short distance
673          */
674         if (rssi >= -58) {
675                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
676                 if (r17 != sens)
677                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
678                 return;
679         }
680
681         /*
682          * Special mid-R17 for middle distance
683          */
684         if (rssi >= -74) {
685                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
686                 if (r17 != sens)
687                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
688                 return;
689         }
690
691         /*
692          * Leave short or middle distance condition, restore r17
693          * to the dynamic tuning range.
694          */
695         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
696         vgc_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
697
698         low_bound = 0x32;
699         if (rssi >= -77)
700                 up_bound = vgc_bound;
701         else
702                 up_bound = vgc_bound - (-77 - rssi);
703
704         if (up_bound < low_bound)
705                 up_bound = low_bound;
706
707         if (r17 > up_bound) {
708                 rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
709                 rt2x00dev->link.vgc_level = up_bound;
710         } else if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
711                 rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
712                 rt2x00dev->link.vgc_level = r17;
713         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
714                 rt2500usb_bbp_write(rt2x00dev, 17, --r17);
715                 rt2x00dev->link.vgc_level = r17;
716         }
717 }
718
719 /*
720  * Initialization functions.
721  */
722 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
723 {
724         u16 reg;
725
726         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
727                                     USB_MODE_TEST, REGISTER_TIMEOUT);
728         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
729                                     0x00f0, REGISTER_TIMEOUT);
730
731         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
732         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
733         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
734
735         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
736         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
737
738         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
739         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
740         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
741         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
742         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
743
744         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
745         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
746         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
747         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
748         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
749
750         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
751         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
752         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
753         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
754         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
755         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
756
757         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
758         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
759         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
760         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
761         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
762         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
763
764         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
765         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
766         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
767         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
768         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
769         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
770
771         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
772         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
773         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
774         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
775         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
776         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
777
778         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
779         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
780
781         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
782                 return -EBUSY;
783
784         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
785         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
786         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
787         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
788         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
789
790         if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
791                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
792                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
793         } else {
794                 reg = 0;
795                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
796                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
797         }
798         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
799
800         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
801         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
802         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
803         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
804
805         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
806         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
807                            rt2x00dev->rx->data_size);
808         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
809
810         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
811         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
812         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0xff);
813         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
814
815         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
816         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
817         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
818
819         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
820         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
821         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
822
823         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
824         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
825         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
826
827         return 0;
828 }
829
830 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
831 {
832         unsigned int i;
833         u16 eeprom;
834         u8 value;
835         u8 reg_id;
836
837         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
838                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
839                 if ((value != 0xff) && (value != 0x00))
840                         goto continue_csr_init;
841                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
842                 udelay(REGISTER_BUSY_DELAY);
843         }
844
845         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
846         return -EACCES;
847
848 continue_csr_init:
849         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
850         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
851         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
852         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
853         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
854         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
855         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
856         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
857         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
858         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
859         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
860         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
861         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
862         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
863         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
864         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
865         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
866         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
867         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
868         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
869         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
870         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
871         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
872         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
873         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
874         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
875         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
876         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
877         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
878         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
879         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
880
881         DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
882         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
883                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
884
885                 if (eeprom != 0xffff && eeprom != 0x0000) {
886                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
887                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
888                         DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
889                               reg_id, value);
890                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
891                 }
892         }
893         DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
894
895         return 0;
896 }
897
898 /*
899  * Device state switch handlers.
900  */
901 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
902                                 enum dev_state state)
903 {
904         u16 reg;
905
906         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
907         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
908                            state == STATE_RADIO_RX_OFF);
909         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
910 }
911
912 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
913 {
914         /*
915          * Initialize all registers.
916          */
917         if (rt2500usb_init_registers(rt2x00dev) ||
918             rt2500usb_init_bbp(rt2x00dev)) {
919                 ERROR(rt2x00dev, "Register initialization failed.\n");
920                 return -EIO;
921         }
922
923         /*
924          * Enable LED
925          */
926         rt2500usb_enable_led(rt2x00dev);
927
928         return 0;
929 }
930
931 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
932 {
933         /*
934          * Disable LED
935          */
936         rt2500usb_disable_led(rt2x00dev);
937
938         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
939         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
940
941         /*
942          * Disable synchronisation.
943          */
944         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
945
946         rt2x00usb_disable_radio(rt2x00dev);
947 }
948
949 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
950                                enum dev_state state)
951 {
952         u16 reg;
953         u16 reg2;
954         unsigned int i;
955         char put_to_sleep;
956         char bbp_state;
957         char rf_state;
958
959         put_to_sleep = (state != STATE_AWAKE);
960
961         reg = 0;
962         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
963         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
964         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
965         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
966         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
967         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
968
969         /*
970          * Device is not guaranteed to be in the requested state yet.
971          * We must wait until the register indicates that the
972          * device has entered the correct state.
973          */
974         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
975                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
976                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
977                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
978                 if (bbp_state == state && rf_state == state)
979                         return 0;
980                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
981                 msleep(30);
982         }
983
984         NOTICE(rt2x00dev, "Device failed to enter state %d, "
985                "current device state: bbp %d and rf %d.\n",
986                state, bbp_state, rf_state);
987
988         return -EBUSY;
989 }
990
991 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
992                                       enum dev_state state)
993 {
994         int retval = 0;
995
996         switch (state) {
997         case STATE_RADIO_ON:
998                 retval = rt2500usb_enable_radio(rt2x00dev);
999                 break;
1000         case STATE_RADIO_OFF:
1001                 rt2500usb_disable_radio(rt2x00dev);
1002                 break;
1003         case STATE_RADIO_RX_ON:
1004         case STATE_RADIO_RX_ON_LINK:
1005                 rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1006                 break;
1007         case STATE_RADIO_RX_OFF:
1008         case STATE_RADIO_RX_OFF_LINK:
1009                 rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1010                 break;
1011         case STATE_DEEP_SLEEP:
1012         case STATE_SLEEP:
1013         case STATE_STANDBY:
1014         case STATE_AWAKE:
1015                 retval = rt2500usb_set_state(rt2x00dev, state);
1016                 break;
1017         default:
1018                 retval = -ENOTSUPP;
1019                 break;
1020         }
1021
1022         return retval;
1023 }
1024
1025 /*
1026  * TX descriptor initialization
1027  */
1028 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1029                                     struct sk_buff *skb,
1030                                     struct txentry_desc *txdesc,
1031                                     struct ieee80211_tx_control *control)
1032 {
1033         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1034         __le32 *txd = skbdesc->desc;
1035         u32 word;
1036
1037         /*
1038          * Start writing the descriptor words.
1039          */
1040         rt2x00_desc_read(txd, 1, &word);
1041         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1042         rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1043         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1044         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1045         rt2x00_desc_write(txd, 1, word);
1046
1047         rt2x00_desc_read(txd, 2, &word);
1048         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1049         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1050         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1051         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1052         rt2x00_desc_write(txd, 2, word);
1053
1054         rt2x00_desc_read(txd, 0, &word);
1055         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, control->retry_limit);
1056         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1057                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1058         rt2x00_set_field32(&word, TXD_W0_ACK,
1059                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1060         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1061                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1062         rt2x00_set_field32(&word, TXD_W0_OFDM,
1063                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1064         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1065                            !!(control->flags & IEEE80211_TXCTL_FIRST_FRAGMENT));
1066         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1067         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1068         rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
1069         rt2x00_desc_write(txd, 0, word);
1070 }
1071
1072 static int rt2500usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
1073                                      struct sk_buff *skb)
1074 {
1075         int length;
1076
1077         /*
1078          * The length _must_ be a multiple of 2,
1079          * but it must _not_ be a multiple of the USB packet size.
1080          */
1081         length = roundup(skb->len, 2);
1082         length += (2 * !(length % rt2x00dev->usb_maxpacket));
1083
1084         return length;
1085 }
1086
1087 /*
1088  * TX data initialization
1089  */
1090 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1091                                     unsigned int queue)
1092 {
1093         u16 reg;
1094
1095         if (queue != IEEE80211_TX_QUEUE_BEACON)
1096                 return;
1097
1098         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1099         if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1100                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1101                 /*
1102                  * Beacon generation will fail initially.
1103                  * To prevent this we need to register the TXRX_CSR19
1104                  * register several times.
1105                  */
1106                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1107                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1108                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1109                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1110                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1111         }
1112 }
1113
1114 /*
1115  * RX control handlers
1116  */
1117 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1118                                   struct rxdone_entry_desc *rxdesc)
1119 {
1120         struct queue_entry_priv_usb_rx *priv_rx = entry->priv_data;
1121         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1122         __le32 *rxd =
1123             (__le32 *)(entry->skb->data +
1124                        (priv_rx->urb->actual_length - entry->queue->desc_size));
1125         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
1126         int header_size = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
1127         u32 word0;
1128         u32 word1;
1129
1130         rt2x00_desc_read(rxd, 0, &word0);
1131         rt2x00_desc_read(rxd, 1, &word1);
1132
1133         rxdesc->flags = 0;
1134         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1135                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1136         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1137                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1138
1139         /*
1140          * Obtain the status about this packet.
1141          */
1142         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1143         rxdesc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
1144             entry->queue->rt2x00dev->rssi_offset;
1145         rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1146         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1147         rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1148
1149         /*
1150          * The data behind the ieee80211 header must be
1151          * aligned on a 4 byte boundary.
1152          */
1153         if (header_size % 4 == 0) {
1154                 skb_push(entry->skb, 2);
1155                 memmove(entry->skb->data, entry->skb->data + 2,
1156                         entry->skb->len - 2);
1157         }
1158
1159         /*
1160          * Set descriptor pointer.
1161          */
1162         skbdesc->data = entry->skb->data;
1163         skbdesc->data_len = entry->queue->data_size;
1164         skbdesc->desc = entry->skb->data + rxdesc->size;
1165         skbdesc->desc_len = entry->queue->desc_size;
1166
1167         /*
1168          * Remove descriptor from skb buffer and trim the whole thing
1169          * down to only contain data.
1170          */
1171         skb_trim(entry->skb, rxdesc->size);
1172 }
1173
1174 /*
1175  * Interrupt functions.
1176  */
1177 static void rt2500usb_beacondone(struct urb *urb)
1178 {
1179         struct queue_entry *entry = (struct queue_entry *)urb->context;
1180         struct queue_entry_priv_usb_bcn *priv_bcn = entry->priv_data;
1181
1182         if (!test_bit(DEVICE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1183                 return;
1184
1185         /*
1186          * Check if this was the guardian beacon,
1187          * if that was the case we need to send the real beacon now.
1188          * Otherwise we should free the sk_buffer, the device
1189          * should be doing the rest of the work now.
1190          */
1191         if (priv_bcn->guardian_urb == urb) {
1192                 usb_submit_urb(priv_bcn->urb, GFP_ATOMIC);
1193         } else if (priv_bcn->urb == urb) {
1194                 dev_kfree_skb(entry->skb);
1195                 entry->skb = NULL;
1196         }
1197 }
1198
1199 /*
1200  * Device probe functions.
1201  */
1202 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1203 {
1204         u16 word;
1205         u8 *mac;
1206
1207         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1208
1209         /*
1210          * Start validation of the data that has been read.
1211          */
1212         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1213         if (!is_valid_ether_addr(mac)) {
1214                 DECLARE_MAC_BUF(macbuf);
1215
1216                 random_ether_addr(mac);
1217                 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1218         }
1219
1220         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1221         if (word == 0xffff) {
1222                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1223                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1224                                    ANTENNA_SW_DIVERSITY);
1225                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1226                                    ANTENNA_SW_DIVERSITY);
1227                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1228                                    LED_MODE_DEFAULT);
1229                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1230                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1231                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1232                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1233                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1234         }
1235
1236         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1237         if (word == 0xffff) {
1238                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1239                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1240                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1241                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1242                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1243         }
1244
1245         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1246         if (word == 0xffff) {
1247                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1248                                    DEFAULT_RSSI_OFFSET);
1249                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1250                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1251         }
1252
1253         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1254         if (word == 0xffff) {
1255                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1256                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1257                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1258         }
1259
1260         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1261         if (word == 0xffff) {
1262                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1263                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1264                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1265         }
1266
1267         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1268         if (word == 0xffff) {
1269                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1270                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1271                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1272                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1273         }
1274
1275         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1276         if (word == 0xffff) {
1277                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1278                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1279                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1280                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1281         }
1282
1283         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1284         if (word == 0xffff) {
1285                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1286                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1287                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1288                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1289         }
1290
1291         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1292         if (word == 0xffff) {
1293                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1294                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1295                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1296                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1297         }
1298
1299         return 0;
1300 }
1301
1302 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1303 {
1304         u16 reg;
1305         u16 value;
1306         u16 eeprom;
1307
1308         /*
1309          * Read EEPROM word for configuration.
1310          */
1311         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1312
1313         /*
1314          * Identify RF chipset.
1315          */
1316         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1317         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1318         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1319
1320         if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
1321                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1322                 return -ENODEV;
1323         }
1324
1325         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1326             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1327             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1328             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1329             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1330             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1331                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1332                 return -ENODEV;
1333         }
1334
1335         /*
1336          * Identify default antenna configuration.
1337          */
1338         rt2x00dev->default_ant.tx =
1339             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1340         rt2x00dev->default_ant.rx =
1341             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1342
1343         /*
1344          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1345          * I am not 100% sure about this, but the legacy drivers do not
1346          * indicate antenna swapping in software is required when
1347          * diversity is enabled.
1348          */
1349         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1350                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1351         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1352                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1353
1354         /*
1355          * Store led mode, for correct led behaviour.
1356          */
1357         rt2x00dev->led_mode =
1358             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1359
1360         /*
1361          * Check if the BBP tuning should be disabled.
1362          */
1363         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1364         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1365                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1366
1367         /*
1368          * Read the RSSI <-> dBm offset information.
1369          */
1370         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1371         rt2x00dev->rssi_offset =
1372             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1373
1374         return 0;
1375 }
1376
1377 /*
1378  * RF value list for RF2522
1379  * Supports: 2.4 GHz
1380  */
1381 static const struct rf_channel rf_vals_bg_2522[] = {
1382         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1383         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1384         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1385         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1386         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1387         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1388         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1389         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1390         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1391         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1392         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1393         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1394         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1395         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1396 };
1397
1398 /*
1399  * RF value list for RF2523
1400  * Supports: 2.4 GHz
1401  */
1402 static const struct rf_channel rf_vals_bg_2523[] = {
1403         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1404         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1405         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1406         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1407         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1408         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1409         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1410         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1411         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1412         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1413         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1414         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1415         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1416         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1417 };
1418
1419 /*
1420  * RF value list for RF2524
1421  * Supports: 2.4 GHz
1422  */
1423 static const struct rf_channel rf_vals_bg_2524[] = {
1424         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1425         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1426         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1427         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1428         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1429         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1430         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1431         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1432         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1433         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1434         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1435         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1436         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1437         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1438 };
1439
1440 /*
1441  * RF value list for RF2525
1442  * Supports: 2.4 GHz
1443  */
1444 static const struct rf_channel rf_vals_bg_2525[] = {
1445         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1446         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1447         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1448         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1449         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1450         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1451         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1452         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1453         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1454         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1455         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1456         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1457         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1458         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1459 };
1460
1461 /*
1462  * RF value list for RF2525e
1463  * Supports: 2.4 GHz
1464  */
1465 static const struct rf_channel rf_vals_bg_2525e[] = {
1466         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1467         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1468         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1469         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1470         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1471         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1472         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1473         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1474         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1475         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1476         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1477         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1478         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1479         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1480 };
1481
1482 /*
1483  * RF value list for RF5222
1484  * Supports: 2.4 GHz & 5.2 GHz
1485  */
1486 static const struct rf_channel rf_vals_5222[] = {
1487         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1488         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1489         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1490         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1491         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1492         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1493         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1494         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1495         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1496         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1497         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1498         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1499         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1500         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1501
1502         /* 802.11 UNI / HyperLan 2 */
1503         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1504         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1505         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1506         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1507         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1508         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1509         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1510         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1511
1512         /* 802.11 HyperLan 2 */
1513         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1514         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1515         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1516         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1517         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1518         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1519         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1520         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1521         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1522         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1523
1524         /* 802.11 UNII */
1525         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1526         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1527         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1528         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1529         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1530 };
1531
1532 static void rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1533 {
1534         struct hw_mode_spec *spec = &rt2x00dev->spec;
1535         u8 *txpower;
1536         unsigned int i;
1537
1538         /*
1539          * Initialize all hw fields.
1540          */
1541         rt2x00dev->hw->flags =
1542             IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
1543             IEEE80211_HW_RX_INCLUDES_FCS |
1544             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1545         rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
1546         rt2x00dev->hw->max_signal = MAX_SIGNAL;
1547         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1548         rt2x00dev->hw->queues = 2;
1549
1550         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_usb(rt2x00dev)->dev);
1551         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1552                                 rt2x00_eeprom_addr(rt2x00dev,
1553                                                    EEPROM_MAC_ADDR_0));
1554
1555         /*
1556          * Convert tx_power array in eeprom.
1557          */
1558         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1559         for (i = 0; i < 14; i++)
1560                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1561
1562         /*
1563          * Initialize hw_mode information.
1564          */
1565         spec->num_modes = 2;
1566         spec->num_rates = 12;
1567         spec->tx_power_a = NULL;
1568         spec->tx_power_bg = txpower;
1569         spec->tx_power_default = DEFAULT_TXPOWER;
1570
1571         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1572                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1573                 spec->channels = rf_vals_bg_2522;
1574         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1575                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1576                 spec->channels = rf_vals_bg_2523;
1577         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1578                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1579                 spec->channels = rf_vals_bg_2524;
1580         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1581                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1582                 spec->channels = rf_vals_bg_2525;
1583         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1584                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1585                 spec->channels = rf_vals_bg_2525e;
1586         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1587                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1588                 spec->channels = rf_vals_5222;
1589                 spec->num_modes = 3;
1590         }
1591 }
1592
1593 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1594 {
1595         int retval;
1596
1597         /*
1598          * Allocate eeprom data.
1599          */
1600         retval = rt2500usb_validate_eeprom(rt2x00dev);
1601         if (retval)
1602                 return retval;
1603
1604         retval = rt2500usb_init_eeprom(rt2x00dev);
1605         if (retval)
1606                 return retval;
1607
1608         /*
1609          * Initialize hw specifications.
1610          */
1611         rt2500usb_probe_hw_mode(rt2x00dev);
1612
1613         /*
1614          * This device requires the atim queue
1615          */
1616         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1617         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1618
1619         /*
1620          * Set the rssi offset.
1621          */
1622         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1623
1624         return 0;
1625 }
1626
1627 /*
1628  * IEEE80211 stack callback functions.
1629  */
1630 static void rt2500usb_configure_filter(struct ieee80211_hw *hw,
1631                                        unsigned int changed_flags,
1632                                        unsigned int *total_flags,
1633                                        int mc_count,
1634                                        struct dev_addr_list *mc_list)
1635 {
1636         struct rt2x00_dev *rt2x00dev = hw->priv;
1637         u16 reg;
1638
1639         /*
1640          * Mask off any flags we are going to ignore from
1641          * the total_flags field.
1642          */
1643         *total_flags &=
1644             FIF_ALLMULTI |
1645             FIF_FCSFAIL |
1646             FIF_PLCPFAIL |
1647             FIF_CONTROL |
1648             FIF_OTHER_BSS |
1649             FIF_PROMISC_IN_BSS;
1650
1651         /*
1652          * Apply some rules to the filters:
1653          * - Some filters imply different filters to be set.
1654          * - Some things we can't filter out at all.
1655          */
1656         if (mc_count)
1657                 *total_flags |= FIF_ALLMULTI;
1658         if (*total_flags & FIF_OTHER_BSS ||
1659             *total_flags & FIF_PROMISC_IN_BSS)
1660                 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1661
1662         /*
1663          * Check if there is any work left for us.
1664          */
1665         if (rt2x00dev->packet_filter == *total_flags)
1666                 return;
1667         rt2x00dev->packet_filter = *total_flags;
1668
1669         /*
1670          * When in atomic context, reschedule and let rt2x00lib
1671          * call this function again.
1672          */
1673         if (in_atomic()) {
1674                 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->filter_work);
1675                 return;
1676         }
1677
1678         /*
1679          * Start configuration steps.
1680          * Note that the version error will always be dropped
1681          * and broadcast frames will always be accepted since
1682          * there is no filter for it at this time.
1683          */
1684         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1685         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
1686                            !(*total_flags & FIF_FCSFAIL));
1687         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
1688                            !(*total_flags & FIF_PLCPFAIL));
1689         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
1690                            !(*total_flags & FIF_CONTROL));
1691         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
1692                            !(*total_flags & FIF_PROMISC_IN_BSS));
1693         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
1694                            !(*total_flags & FIF_PROMISC_IN_BSS));
1695         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
1696         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
1697                            !(*total_flags & FIF_ALLMULTI));
1698         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
1699         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1700 }
1701
1702 static int rt2500usb_beacon_update(struct ieee80211_hw *hw,
1703                                    struct sk_buff *skb,
1704                                    struct ieee80211_tx_control *control)
1705 {
1706         struct rt2x00_dev *rt2x00dev = hw->priv;
1707         struct usb_device *usb_dev = rt2x00dev_usb_dev(rt2x00dev);
1708         struct queue_entry_priv_usb_bcn *priv_bcn;
1709         struct skb_frame_desc *skbdesc;
1710         struct data_queue *queue;
1711         struct queue_entry *entry;
1712         int pipe = usb_sndbulkpipe(usb_dev, 1);
1713         int length;
1714
1715         /*
1716          * Just in case the ieee80211 doesn't set this,
1717          * but we need this queue set for the descriptor
1718          * initialization.
1719          */
1720         control->queue = IEEE80211_TX_QUEUE_BEACON;
1721         queue = rt2x00queue_get_queue(rt2x00dev, control->queue);
1722         entry = rt2x00queue_get_entry(queue, Q_INDEX);
1723         priv_bcn = entry->priv_data;
1724
1725         /*
1726          * Add the descriptor in front of the skb.
1727          */
1728         skb_push(skb, queue->desc_size);
1729         memset(skb->data, 0, queue->desc_size);
1730
1731         /*
1732          * Fill in skb descriptor
1733          */
1734         skbdesc = get_skb_frame_desc(skb);
1735         memset(skbdesc, 0, sizeof(*skbdesc));
1736         skbdesc->data = skb->data + queue->desc_size;
1737         skbdesc->data_len = queue->data_size;
1738         skbdesc->desc = skb->data;
1739         skbdesc->desc_len = queue->desc_size;
1740         skbdesc->entry = entry;
1741
1742         rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1743
1744         /*
1745          * USB devices cannot blindly pass the skb->len as the
1746          * length of the data to usb_fill_bulk_urb. Pass the skb
1747          * to the driver to determine what the length should be.
1748          */
1749         length = rt2500usb_get_tx_data_len(rt2x00dev, skb);
1750
1751         usb_fill_bulk_urb(priv_bcn->urb, usb_dev, pipe,
1752                           skb->data, length, rt2500usb_beacondone, entry);
1753
1754         /*
1755          * Second we need to create the guardian byte.
1756          * We only need a single byte, so lets recycle
1757          * the 'flags' field we are not using for beacons.
1758          */
1759         priv_bcn->guardian_data = 0;
1760         usb_fill_bulk_urb(priv_bcn->guardian_urb, usb_dev, pipe,
1761                           &priv_bcn->guardian_data, 1, rt2500usb_beacondone,
1762                           entry);
1763
1764         /*
1765          * Send out the guardian byte.
1766          */
1767         usb_submit_urb(priv_bcn->guardian_urb, GFP_ATOMIC);
1768
1769         /*
1770          * Enable beacon generation.
1771          */
1772         rt2500usb_kick_tx_queue(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
1773
1774         return 0;
1775 }
1776
1777 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1778         .tx                     = rt2x00mac_tx,
1779         .start                  = rt2x00mac_start,
1780         .stop                   = rt2x00mac_stop,
1781         .add_interface          = rt2x00mac_add_interface,
1782         .remove_interface       = rt2x00mac_remove_interface,
1783         .config                 = rt2x00mac_config,
1784         .config_interface       = rt2x00mac_config_interface,
1785         .configure_filter       = rt2500usb_configure_filter,
1786         .get_stats              = rt2x00mac_get_stats,
1787         .bss_info_changed       = rt2x00mac_bss_info_changed,
1788         .conf_tx                = rt2x00mac_conf_tx,
1789         .get_tx_stats           = rt2x00mac_get_tx_stats,
1790         .beacon_update          = rt2500usb_beacon_update,
1791 };
1792
1793 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1794         .probe_hw               = rt2500usb_probe_hw,
1795         .initialize             = rt2x00usb_initialize,
1796         .uninitialize           = rt2x00usb_uninitialize,
1797         .init_rxentry           = rt2x00usb_init_rxentry,
1798         .init_txentry           = rt2x00usb_init_txentry,
1799         .set_device_state       = rt2500usb_set_device_state,
1800         .link_stats             = rt2500usb_link_stats,
1801         .reset_tuner            = rt2500usb_reset_tuner,
1802         .link_tuner             = rt2500usb_link_tuner,
1803         .write_tx_desc          = rt2500usb_write_tx_desc,
1804         .write_tx_data          = rt2x00usb_write_tx_data,
1805         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1806         .kick_tx_queue          = rt2500usb_kick_tx_queue,
1807         .fill_rxdone            = rt2500usb_fill_rxdone,
1808         .config_mac_addr        = rt2500usb_config_mac_addr,
1809         .config_bssid           = rt2500usb_config_bssid,
1810         .config_type            = rt2500usb_config_type,
1811         .config_preamble        = rt2500usb_config_preamble,
1812         .config                 = rt2500usb_config,
1813 };
1814
1815 static const struct data_queue_desc rt2500usb_queue_rx = {
1816         .entry_num              = RX_ENTRIES,
1817         .data_size              = DATA_FRAME_SIZE,
1818         .desc_size              = RXD_DESC_SIZE,
1819         .priv_size              = sizeof(struct queue_entry_priv_usb_rx),
1820 };
1821
1822 static const struct data_queue_desc rt2500usb_queue_tx = {
1823         .entry_num              = TX_ENTRIES,
1824         .data_size              = DATA_FRAME_SIZE,
1825         .desc_size              = TXD_DESC_SIZE,
1826         .priv_size              = sizeof(struct queue_entry_priv_usb_tx),
1827 };
1828
1829 static const struct data_queue_desc rt2500usb_queue_bcn = {
1830         .entry_num              = BEACON_ENTRIES,
1831         .data_size              = MGMT_FRAME_SIZE,
1832         .desc_size              = TXD_DESC_SIZE,
1833         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1834 };
1835
1836 static const struct data_queue_desc rt2500usb_queue_atim = {
1837         .entry_num              = ATIM_ENTRIES,
1838         .data_size              = DATA_FRAME_SIZE,
1839         .desc_size              = TXD_DESC_SIZE,
1840         .priv_size              = sizeof(struct queue_entry_priv_usb_tx),
1841 };
1842
1843 static const struct rt2x00_ops rt2500usb_ops = {
1844         .name           = KBUILD_MODNAME,
1845         .eeprom_size    = EEPROM_SIZE,
1846         .rf_size        = RF_SIZE,
1847         .rx             = &rt2500usb_queue_rx,
1848         .tx             = &rt2500usb_queue_tx,
1849         .bcn            = &rt2500usb_queue_bcn,
1850         .atim           = &rt2500usb_queue_atim,
1851         .lib            = &rt2500usb_rt2x00_ops,
1852         .hw             = &rt2500usb_mac80211_ops,
1853 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1854         .debugfs        = &rt2500usb_rt2x00debug,
1855 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1856 };
1857
1858 /*
1859  * rt2500usb module information.
1860  */
1861 static struct usb_device_id rt2500usb_device_table[] = {
1862         /* ASUS */
1863         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1864         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1865         /* Belkin */
1866         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1867         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1868         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1869         /* Cisco Systems */
1870         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1871         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1872         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1873         /* Conceptronic */
1874         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1875         /* D-LINK */
1876         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1877         /* Gigabyte */
1878         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1879         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1880         /* Hercules */
1881         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1882         /* Melco */
1883         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1884         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1885         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1886         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1887         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1888         /* MSI */
1889         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1890         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1891         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1892         /* Ralink */
1893         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1894         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1895         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1896         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1897         /* Siemens */
1898         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1899         /* SMC */
1900         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1901         /* Spairon */
1902         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1903         /* Trust */
1904         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1905         /* Zinwell */
1906         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1907         { 0, }
1908 };
1909
1910 MODULE_AUTHOR(DRV_PROJECT);
1911 MODULE_VERSION(DRV_VERSION);
1912 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1913 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1914 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1915 MODULE_LICENSE("GPL");
1916
1917 static struct usb_driver rt2500usb_driver = {
1918         .name           = KBUILD_MODNAME,
1919         .id_table       = rt2500usb_device_table,
1920         .probe          = rt2x00usb_probe,
1921         .disconnect     = rt2x00usb_disconnect,
1922         .suspend        = rt2x00usb_suspend,
1923         .resume         = rt2x00usb_resume,
1924 };
1925
1926 static int __init rt2500usb_init(void)
1927 {
1928         return usb_register(&rt2500usb_driver);
1929 }
1930
1931 static void __exit rt2500usb_exit(void)
1932 {
1933         usb_deregister(&rt2500usb_driver);
1934 }
1935
1936 module_init(rt2500usb_init);
1937 module_exit(rt2500usb_exit);