cxgb3 - private ioctl cleanup
[linux-2.6] / drivers / ieee1394 / eth1394.c
1 /*
2  * eth1394.c -- Ethernet driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24
25 /* This driver intends to support RFC 2734, which describes a method for
26  * transporting IPv4 datagrams over IEEE-1394 serial busses. This driver
27  * will ultimately support that method, but currently falls short in
28  * several areas.
29  *
30  * TODO:
31  * RFC 2734 related:
32  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
33  *
34  * Non-RFC 2734 related:
35  * - Handle fragmented skb's coming from the networking layer.
36  * - Move generic GASP reception to core 1394 code
37  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
38  * - Stability improvements
39  * - Performance enhancements
40  * - Consider garbage collecting old partial datagrams after X amount of time
41  */
42
43
44 #include <linux/module.h>
45
46 #include <linux/kernel.h>
47 #include <linux/slab.h>
48 #include <linux/errno.h>
49 #include <linux/types.h>
50 #include <linux/delay.h>
51 #include <linux/init.h>
52
53 #include <linux/netdevice.h>
54 #include <linux/inetdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/if_arp.h>
57 #include <linux/if_ether.h>
58 #include <linux/ip.h>
59 #include <linux/in.h>
60 #include <linux/tcp.h>
61 #include <linux/skbuff.h>
62 #include <linux/bitops.h>
63 #include <linux/ethtool.h>
64 #include <asm/uaccess.h>
65 #include <asm/delay.h>
66 #include <asm/unaligned.h>
67 #include <net/arp.h>
68
69 #include "config_roms.h"
70 #include "csr1212.h"
71 #include "eth1394.h"
72 #include "highlevel.h"
73 #include "ieee1394.h"
74 #include "ieee1394_core.h"
75 #include "ieee1394_hotplug.h"
76 #include "ieee1394_transactions.h"
77 #include "ieee1394_types.h"
78 #include "iso.h"
79 #include "nodemgr.h"
80
81 #define ETH1394_PRINT_G(level, fmt, args...) \
82         printk(level "%s: " fmt, driver_name, ## args)
83
84 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
85         printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
86
87 #define DEBUG(fmt, args...) \
88         printk(KERN_ERR "%s:%s[%d]: " fmt "\n", driver_name, __FUNCTION__, __LINE__, ## args)
89 #define TRACE() printk(KERN_ERR "%s:%s[%d] ---- TRACE\n", driver_name, __FUNCTION__, __LINE__)
90
91 struct fragment_info {
92         struct list_head list;
93         int offset;
94         int len;
95 };
96
97 struct partial_datagram {
98         struct list_head list;
99         u16 dgl;
100         u16 dg_size;
101         u16 ether_type;
102         struct sk_buff *skb;
103         char *pbuf;
104         struct list_head frag_info;
105 };
106
107 struct pdg_list {
108         struct list_head list;          /* partial datagram list per node       */
109         unsigned int sz;                /* partial datagram list size per node  */
110         spinlock_t lock;                /* partial datagram lock                */
111 };
112
113 struct eth1394_host_info {
114         struct hpsb_host *host;
115         struct net_device *dev;
116 };
117
118 struct eth1394_node_ref {
119         struct unit_directory *ud;
120         struct list_head list;
121 };
122
123 struct eth1394_node_info {
124         u16 maxpayload;                 /* Max payload                  */
125         u8 sspd;                        /* Max speed                    */
126         u64 fifo;                       /* FIFO address                 */
127         struct pdg_list pdg;            /* partial RX datagram lists    */
128         int dgl;                        /* Outgoing datagram label      */
129 };
130
131 /* Our ieee1394 highlevel driver */
132 #define ETH1394_DRIVER_NAME "eth1394"
133 static const char driver_name[] = ETH1394_DRIVER_NAME;
134
135 static struct kmem_cache *packet_task_cache;
136
137 static struct hpsb_highlevel eth1394_highlevel;
138
139 /* Use common.lf to determine header len */
140 static const int hdr_type_len[] = {
141         sizeof (struct eth1394_uf_hdr),
142         sizeof (struct eth1394_ff_hdr),
143         sizeof (struct eth1394_sf_hdr),
144         sizeof (struct eth1394_sf_hdr)
145 };
146
147 /* Change this to IEEE1394_SPEED_S100 to make testing easier */
148 #define ETH1394_SPEED_DEF       IEEE1394_SPEED_MAX
149
150 /* For now, this needs to be 1500, so that XP works with us */
151 #define ETH1394_DATA_LEN        ETH_DATA_LEN
152
153 static const u16 eth1394_speedto_maxpayload[] = {
154 /*     S100, S200, S400, S800, S1600, S3200 */
155         512, 1024, 2048, 4096,  4096,  4096
156 };
157
158 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
159 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
160 MODULE_LICENSE("GPL");
161
162 /* The max_partial_datagrams parameter is the maximum number of fragmented
163  * datagrams per node that eth1394 will keep in memory.  Providing an upper
164  * bound allows us to limit the amount of memory that partial datagrams
165  * consume in the event that some partial datagrams are never completed.
166  */
167 static int max_partial_datagrams = 25;
168 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
169 MODULE_PARM_DESC(max_partial_datagrams,
170                  "Maximum number of partially received fragmented datagrams "
171                  "(default = 25).");
172
173
174 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
175                             unsigned short type, void *daddr, void *saddr,
176                             unsigned len);
177 static int ether1394_rebuild_header(struct sk_buff *skb);
178 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
179 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
180 static void ether1394_header_cache_update(struct hh_cache *hh,
181                                           struct net_device *dev,
182                                           unsigned char * haddr);
183 static int ether1394_mac_addr(struct net_device *dev, void *p);
184
185 static void purge_partial_datagram(struct list_head *old);
186 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
187 static void ether1394_iso(struct hpsb_iso *iso);
188
189 static struct ethtool_ops ethtool_ops;
190
191 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
192                            quadlet_t *data, u64 addr, size_t len, u16 flags);
193 static void ether1394_add_host (struct hpsb_host *host);
194 static void ether1394_remove_host (struct hpsb_host *host);
195 static void ether1394_host_reset (struct hpsb_host *host);
196
197 /* Function for incoming 1394 packets */
198 static struct hpsb_address_ops addr_ops = {
199         .write =        ether1394_write,
200 };
201
202 /* Ieee1394 highlevel driver functions */
203 static struct hpsb_highlevel eth1394_highlevel = {
204         .name =         driver_name,
205         .add_host =     ether1394_add_host,
206         .remove_host =  ether1394_remove_host,
207         .host_reset =   ether1394_host_reset,
208 };
209
210
211 /* This is called after an "ifup" */
212 static int ether1394_open (struct net_device *dev)
213 {
214         struct eth1394_priv *priv = netdev_priv(dev);
215         int ret = 0;
216
217         /* Something bad happened, don't even try */
218         if (priv->bc_state == ETHER1394_BC_ERROR) {
219                 /* we'll try again */
220                 priv->iso = hpsb_iso_recv_init(priv->host,
221                                                ETHER1394_ISO_BUF_SIZE,
222                                                ETHER1394_GASP_BUFFERS,
223                                                priv->broadcast_channel,
224                                                HPSB_ISO_DMA_PACKET_PER_BUFFER,
225                                                1, ether1394_iso);
226                 if (priv->iso == NULL) {
227                         ETH1394_PRINT(KERN_ERR, dev->name,
228                                       "Could not allocate isochronous receive "
229                                       "context for the broadcast channel\n");
230                         priv->bc_state = ETHER1394_BC_ERROR;
231                         ret = -EAGAIN;
232                 } else {
233                         if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
234                                 priv->bc_state = ETHER1394_BC_STOPPED;
235                         else
236                                 priv->bc_state = ETHER1394_BC_RUNNING;
237                 }
238         }
239
240         if (ret)
241                 return ret;
242
243         netif_start_queue (dev);
244         return 0;
245 }
246
247 /* This is called after an "ifdown" */
248 static int ether1394_stop (struct net_device *dev)
249 {
250         netif_stop_queue (dev);
251         return 0;
252 }
253
254 /* Return statistics to the caller */
255 static struct net_device_stats *ether1394_stats (struct net_device *dev)
256 {
257         return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
258 }
259
260 /* What to do if we timeout. I think a host reset is probably in order, so
261  * that's what we do. Should we increment the stat counters too?  */
262 static void ether1394_tx_timeout (struct net_device *dev)
263 {
264         ETH1394_PRINT (KERN_ERR, dev->name, "Timeout, resetting host %s\n",
265                        ((struct eth1394_priv *)netdev_priv(dev))->host->driver->name);
266
267         highlevel_host_reset (((struct eth1394_priv *)netdev_priv(dev))->host);
268
269         netif_wake_queue (dev);
270 }
271
272 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
273 {
274         struct eth1394_priv *priv = netdev_priv(dev);
275
276         if ((new_mtu < 68) ||
277             (new_mtu > min(ETH1394_DATA_LEN,
278                            (int)((1 << (priv->host->csr.max_rec + 1)) -
279                                  (sizeof(union eth1394_hdr) +
280                                   ETHER1394_GASP_OVERHEAD)))))
281                 return -EINVAL;
282         dev->mtu = new_mtu;
283         return 0;
284 }
285
286 static void purge_partial_datagram(struct list_head *old)
287 {
288         struct partial_datagram *pd = list_entry(old, struct partial_datagram, list);
289         struct list_head *lh, *n;
290
291         list_for_each_safe(lh, n, &pd->frag_info) {
292                 struct fragment_info *fi = list_entry(lh, struct fragment_info, list);
293                 list_del(lh);
294                 kfree(fi);
295         }
296         list_del(old);
297         kfree_skb(pd->skb);
298         kfree(pd);
299 }
300
301 /******************************************
302  * 1394 bus activity functions
303  ******************************************/
304
305 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
306                                                   struct unit_directory *ud)
307 {
308         struct eth1394_node_ref *node;
309
310         list_for_each_entry(node, inl, list)
311                 if (node->ud == ud)
312                         return node;
313
314         return NULL;
315 }
316
317 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
318                                                        u64 guid)
319 {
320         struct eth1394_node_ref *node;
321
322         list_for_each_entry(node, inl, list)
323                 if (node->ud->ne->guid == guid)
324                         return node;
325
326         return NULL;
327 }
328
329 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
330                                                          nodeid_t nodeid)
331 {
332         struct eth1394_node_ref *node;
333         list_for_each_entry(node, inl, list) {
334                 if (node->ud->ne->nodeid == nodeid)
335                         return node;
336         }
337
338         return NULL;
339 }
340
341 static int eth1394_probe(struct device *dev)
342 {
343         struct unit_directory *ud;
344         struct eth1394_host_info *hi;
345         struct eth1394_priv *priv;
346         struct eth1394_node_ref *new_node;
347         struct eth1394_node_info *node_info;
348
349         ud = container_of(dev, struct unit_directory, device);
350
351         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
352         if (!hi)
353                 return -ENOENT;
354
355         new_node = kmalloc(sizeof(*new_node),
356                            in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
357         if (!new_node)
358                 return -ENOMEM;
359
360         node_info = kmalloc(sizeof(*node_info),
361                             in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
362         if (!node_info) {
363                 kfree(new_node);
364                 return -ENOMEM;
365         }
366
367         spin_lock_init(&node_info->pdg.lock);
368         INIT_LIST_HEAD(&node_info->pdg.list);
369         node_info->pdg.sz = 0;
370         node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
371
372         ud->device.driver_data = node_info;
373         new_node->ud = ud;
374
375         priv = netdev_priv(hi->dev);
376         list_add_tail(&new_node->list, &priv->ip_node_list);
377
378         return 0;
379 }
380
381 static int eth1394_remove(struct device *dev)
382 {
383         struct unit_directory *ud;
384         struct eth1394_host_info *hi;
385         struct eth1394_priv *priv;
386         struct eth1394_node_ref *old_node;
387         struct eth1394_node_info *node_info;
388         struct list_head *lh, *n;
389         unsigned long flags;
390
391         ud = container_of(dev, struct unit_directory, device);
392         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
393         if (!hi)
394                 return -ENOENT;
395
396         priv = netdev_priv(hi->dev);
397
398         old_node = eth1394_find_node(&priv->ip_node_list, ud);
399
400         if (old_node) {
401                 list_del(&old_node->list);
402                 kfree(old_node);
403
404                 node_info = (struct eth1394_node_info*)ud->device.driver_data;
405
406                 spin_lock_irqsave(&node_info->pdg.lock, flags);
407                 /* The partial datagram list should be empty, but we'll just
408                  * make sure anyway... */
409                 list_for_each_safe(lh, n, &node_info->pdg.list) {
410                         purge_partial_datagram(lh);
411                 }
412                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
413
414                 kfree(node_info);
415                 ud->device.driver_data = NULL;
416         }
417         return 0;
418 }
419
420 static int eth1394_update(struct unit_directory *ud)
421 {
422         struct eth1394_host_info *hi;
423         struct eth1394_priv *priv;
424         struct eth1394_node_ref *node;
425         struct eth1394_node_info *node_info;
426
427         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
428         if (!hi)
429                 return -ENOENT;
430
431         priv = netdev_priv(hi->dev);
432
433         node = eth1394_find_node(&priv->ip_node_list, ud);
434
435         if (!node) {
436                 node = kmalloc(sizeof(*node),
437                                in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
438                 if (!node)
439                         return -ENOMEM;
440
441                 node_info = kmalloc(sizeof(*node_info),
442                                     in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
443                 if (!node_info) {
444                         kfree(node);
445                         return -ENOMEM;
446                 }
447
448                 spin_lock_init(&node_info->pdg.lock);
449                 INIT_LIST_HEAD(&node_info->pdg.list);
450                 node_info->pdg.sz = 0;
451
452                 ud->device.driver_data = node_info;
453                 node->ud = ud;
454
455                 priv = netdev_priv(hi->dev);
456                 list_add_tail(&node->list, &priv->ip_node_list);
457         }
458
459         return 0;
460 }
461
462
463 static struct ieee1394_device_id eth1394_id_table[] = {
464         {
465                 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
466                                 IEEE1394_MATCH_VERSION),
467                 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
468                 .version = ETHER1394_GASP_VERSION,
469         },
470         {}
471 };
472
473 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
474
475 static struct hpsb_protocol_driver eth1394_proto_driver = {
476         .name           = ETH1394_DRIVER_NAME,
477         .id_table       = eth1394_id_table,
478         .update         = eth1394_update,
479         .driver         = {
480                 .probe          = eth1394_probe,
481                 .remove         = eth1394_remove,
482         },
483 };
484
485
486 static void ether1394_reset_priv (struct net_device *dev, int set_mtu)
487 {
488         unsigned long flags;
489         int i;
490         struct eth1394_priv *priv = netdev_priv(dev);
491         struct hpsb_host *host = priv->host;
492         u64 guid = get_unaligned((u64*)&(host->csr.rom->bus_info_data[3]));
493         u16 maxpayload = 1 << (host->csr.max_rec + 1);
494         int max_speed = IEEE1394_SPEED_MAX;
495
496         spin_lock_irqsave (&priv->lock, flags);
497
498         memset(priv->ud_list, 0, sizeof(struct node_entry*) * ALL_NODES);
499         priv->bc_maxpayload = 512;
500
501         /* Determine speed limit */
502         for (i = 0; i < host->node_count; i++)
503                 if (max_speed > host->speed[i])
504                         max_speed = host->speed[i];
505         priv->bc_sspd = max_speed;
506
507         /* We'll use our maxpayload as the default mtu */
508         if (set_mtu) {
509                 dev->mtu = min(ETH1394_DATA_LEN,
510                                (int)(maxpayload -
511                                      (sizeof(union eth1394_hdr) +
512                                       ETHER1394_GASP_OVERHEAD)));
513
514                 /* Set our hardware address while we're at it */
515                 memcpy(dev->dev_addr, &guid, sizeof(u64));
516                 memset(dev->broadcast, 0xff, sizeof(u64));
517         }
518
519         spin_unlock_irqrestore (&priv->lock, flags);
520 }
521
522 /* This function is called right before register_netdev */
523 static void ether1394_init_dev (struct net_device *dev)
524 {
525         /* Our functions */
526         dev->open               = ether1394_open;
527         dev->stop               = ether1394_stop;
528         dev->hard_start_xmit    = ether1394_tx;
529         dev->get_stats          = ether1394_stats;
530         dev->tx_timeout         = ether1394_tx_timeout;
531         dev->change_mtu         = ether1394_change_mtu;
532
533         dev->hard_header        = ether1394_header;
534         dev->rebuild_header     = ether1394_rebuild_header;
535         dev->hard_header_cache  = ether1394_header_cache;
536         dev->header_cache_update= ether1394_header_cache_update;
537         dev->hard_header_parse  = ether1394_header_parse;
538         dev->set_mac_address    = ether1394_mac_addr;
539         SET_ETHTOOL_OPS(dev, &ethtool_ops);
540
541         /* Some constants */
542         dev->watchdog_timeo     = ETHER1394_TIMEOUT;
543         dev->flags              = IFF_BROADCAST | IFF_MULTICAST;
544         dev->features           = NETIF_F_HIGHDMA;
545         dev->addr_len           = ETH1394_ALEN;
546         dev->hard_header_len    = ETH1394_HLEN;
547         dev->type               = ARPHRD_IEEE1394;
548
549         ether1394_reset_priv (dev, 1);
550 }
551
552 /*
553  * This function is called every time a card is found. It is generally called
554  * when the module is installed. This is where we add all of our ethernet
555  * devices. One for each host.
556  */
557 static void ether1394_add_host (struct hpsb_host *host)
558 {
559         struct eth1394_host_info *hi = NULL;
560         struct net_device *dev = NULL;
561         struct eth1394_priv *priv;
562         u64 fifo_addr;
563
564         if (!(host->config_roms & HPSB_CONFIG_ROM_ENTRY_IP1394))
565                 return;
566
567         fifo_addr = hpsb_allocate_and_register_addrspace(
568                         &eth1394_highlevel, host, &addr_ops,
569                         ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
570                         CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
571         if (fifo_addr == CSR1212_INVALID_ADDR_SPACE)
572                 goto out;
573
574         /* We should really have our own alloc_hpsbdev() function in
575          * net_init.c instead of calling the one for ethernet then hijacking
576          * it for ourselves.  That way we'd be a real networking device. */
577         dev = alloc_etherdev(sizeof (struct eth1394_priv));
578
579         if (dev == NULL) {
580                 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to allocate "
581                                  "etherdevice for IEEE 1394 device %s-%d\n",
582                                  host->driver->name, host->id);
583                 goto out;
584         }
585
586         SET_MODULE_OWNER(dev);
587         SET_NETDEV_DEV(dev, &host->device);
588
589         priv = netdev_priv(dev);
590
591         INIT_LIST_HEAD(&priv->ip_node_list);
592
593         spin_lock_init(&priv->lock);
594         priv->host = host;
595         priv->local_fifo = fifo_addr;
596
597         hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
598
599         if (hi == NULL) {
600                 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to create "
601                                  "hostinfo for IEEE 1394 device %s-%d\n",
602                                  host->driver->name, host->id);
603                 goto out;
604         }
605
606         ether1394_init_dev(dev);
607
608         if (register_netdev (dev)) {
609                 ETH1394_PRINT (KERN_ERR, dev->name, "Error registering network driver\n");
610                 goto out;
611         }
612
613         ETH1394_PRINT (KERN_INFO, dev->name, "IEEE-1394 IPv4 over 1394 Ethernet (fw-host%d)\n",
614                        host->id);
615
616         hi->host = host;
617         hi->dev = dev;
618
619         /* Ignore validity in hopes that it will be set in the future.  It'll
620          * be checked when the eth device is opened. */
621         priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
622
623         priv->iso = hpsb_iso_recv_init(host,
624                                        ETHER1394_ISO_BUF_SIZE,
625                                        ETHER1394_GASP_BUFFERS,
626                                        priv->broadcast_channel,
627                                        HPSB_ISO_DMA_PACKET_PER_BUFFER,
628                                        1, ether1394_iso);
629         if (priv->iso == NULL) {
630                 ETH1394_PRINT(KERN_ERR, dev->name,
631                               "Could not allocate isochronous receive context "
632                               "for the broadcast channel\n");
633                 priv->bc_state = ETHER1394_BC_ERROR;
634         } else {
635                 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
636                         priv->bc_state = ETHER1394_BC_STOPPED;
637                 else
638                         priv->bc_state = ETHER1394_BC_RUNNING;
639         }
640
641         return;
642
643 out:
644         if (dev != NULL)
645                 free_netdev(dev);
646         if (hi)
647                 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
648
649         return;
650 }
651
652 /* Remove a card from our list */
653 static void ether1394_remove_host (struct hpsb_host *host)
654 {
655         struct eth1394_host_info *hi;
656
657         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
658         if (hi != NULL) {
659                 struct eth1394_priv *priv = netdev_priv(hi->dev);
660
661                 hpsb_unregister_addrspace(&eth1394_highlevel, host,
662                                           priv->local_fifo);
663
664                 if (priv->iso != NULL)
665                         hpsb_iso_shutdown(priv->iso);
666
667                 if (hi->dev) {
668                         unregister_netdev (hi->dev);
669                         free_netdev(hi->dev);
670                 }
671         }
672
673         return;
674 }
675
676 /* A reset has just arisen */
677 static void ether1394_host_reset (struct hpsb_host *host)
678 {
679         struct eth1394_host_info *hi;
680         struct eth1394_priv *priv;
681         struct net_device *dev;
682         struct list_head *lh, *n;
683         struct eth1394_node_ref *node;
684         struct eth1394_node_info *node_info;
685         unsigned long flags;
686
687         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
688
689         /* This can happen for hosts that we don't use */
690         if (hi == NULL)
691                 return;
692
693         dev = hi->dev;
694         priv = (struct eth1394_priv *)netdev_priv(dev);
695
696         /* Reset our private host data, but not our mtu */
697         netif_stop_queue (dev);
698         ether1394_reset_priv (dev, 0);
699
700         list_for_each_entry(node, &priv->ip_node_list, list) {
701                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
702
703                 spin_lock_irqsave(&node_info->pdg.lock, flags);
704
705                 list_for_each_safe(lh, n, &node_info->pdg.list) {
706                         purge_partial_datagram(lh);
707                 }
708
709                 INIT_LIST_HEAD(&(node_info->pdg.list));
710                 node_info->pdg.sz = 0;
711
712                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
713         }
714
715         netif_wake_queue (dev);
716 }
717
718 /******************************************
719  * HW Header net device functions
720  ******************************************/
721 /* These functions have been adapted from net/ethernet/eth.c */
722
723
724 /* Create a fake MAC header for an arbitrary protocol layer.
725  * saddr=NULL means use device source address
726  * daddr=NULL means leave destination address (eg unresolved arp). */
727 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
728                             unsigned short type, void *daddr, void *saddr,
729                             unsigned len)
730 {
731         struct eth1394hdr *eth = (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
732
733         eth->h_proto = htons(type);
734
735         if (dev->flags & (IFF_LOOPBACK|IFF_NOARP)) {
736                 memset(eth->h_dest, 0, dev->addr_len);
737                 return(dev->hard_header_len);
738         }
739
740         if (daddr) {
741                 memcpy(eth->h_dest,daddr,dev->addr_len);
742                 return dev->hard_header_len;
743         }
744
745         return -dev->hard_header_len;
746
747 }
748
749
750 /* Rebuild the faked MAC header. This is called after an ARP
751  * (or in future other address resolution) has completed on this
752  * sk_buff. We now let ARP fill in the other fields.
753  *
754  * This routine CANNOT use cached dst->neigh!
755  * Really, it is used only when dst->neigh is wrong.
756  */
757 static int ether1394_rebuild_header(struct sk_buff *skb)
758 {
759         struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
760         struct net_device *dev = skb->dev;
761
762         switch (eth->h_proto) {
763
764 #ifdef CONFIG_INET
765         case __constant_htons(ETH_P_IP):
766                 return arp_find((unsigned char*)&eth->h_dest, skb);
767 #endif
768         default:
769                 ETH1394_PRINT(KERN_DEBUG, dev->name,
770                               "unable to resolve type %04x addresses.\n",
771                               ntohs(eth->h_proto));
772                 break;
773         }
774
775         return 0;
776 }
777
778 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
779 {
780         struct net_device *dev = skb->dev;
781         memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
782         return ETH1394_ALEN;
783 }
784
785
786 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
787 {
788         unsigned short type = hh->hh_type;
789         struct eth1394hdr *eth = (struct eth1394hdr*)(((u8*)hh->hh_data) +
790                                                       (16 - ETH1394_HLEN));
791         struct net_device *dev = neigh->dev;
792
793         if (type == htons(ETH_P_802_3))
794                 return -1;
795
796         eth->h_proto = type;
797         memcpy(eth->h_dest, neigh->ha, dev->addr_len);
798
799         hh->hh_len = ETH1394_HLEN;
800         return 0;
801 }
802
803 /* Called by Address Resolution module to notify changes in address. */
804 static void ether1394_header_cache_update(struct hh_cache *hh,
805                                           struct net_device *dev,
806                                           unsigned char * haddr)
807 {
808         memcpy(((u8*)hh->hh_data) + (16 - ETH1394_HLEN), haddr, dev->addr_len);
809 }
810
811 static int ether1394_mac_addr(struct net_device *dev, void *p)
812 {
813         if (netif_running(dev))
814                 return -EBUSY;
815
816         /* Not going to allow setting the MAC address, we really need to use
817          * the real one supplied by the hardware */
818          return -EINVAL;
819  }
820
821
822
823 /******************************************
824  * Datagram reception code
825  ******************************************/
826
827 /* Copied from net/ethernet/eth.c */
828 static inline u16 ether1394_type_trans(struct sk_buff *skb,
829                                        struct net_device *dev)
830 {
831         struct eth1394hdr *eth;
832         unsigned char *rawp;
833
834         skb->mac.raw = skb->data;
835         skb_pull (skb, ETH1394_HLEN);
836         eth = eth1394_hdr(skb);
837
838         if (*eth->h_dest & 1) {
839                 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len)==0)
840                         skb->pkt_type = PACKET_BROADCAST;
841 #if 0
842                 else
843                         skb->pkt_type = PACKET_MULTICAST;
844 #endif
845         } else {
846                 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
847                         skb->pkt_type = PACKET_OTHERHOST;
848         }
849
850         if (ntohs (eth->h_proto) >= 1536)
851                 return eth->h_proto;
852
853         rawp = skb->data;
854
855         if (*(unsigned short *)rawp == 0xFFFF)
856                 return htons (ETH_P_802_3);
857
858         return htons (ETH_P_802_2);
859 }
860
861 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
862  * We also perform ARP translation here, if need be.  */
863 static inline u16 ether1394_parse_encap(struct sk_buff *skb,
864                                         struct net_device *dev,
865                                         nodeid_t srcid, nodeid_t destid,
866                                         u16 ether_type)
867 {
868         struct eth1394_priv *priv = netdev_priv(dev);
869         u64 dest_hw;
870         unsigned short ret = 0;
871
872         /* Setup our hw addresses. We use these to build the
873          * ethernet header.  */
874         if (destid == (LOCAL_BUS | ALL_NODES))
875                 dest_hw = ~0ULL;  /* broadcast */
876         else
877                 dest_hw = cpu_to_be64((((u64)priv->host->csr.guid_hi) << 32) |
878                                       priv->host->csr.guid_lo);
879
880         /* If this is an ARP packet, convert it. First, we want to make
881          * use of some of the fields, since they tell us a little bit
882          * about the sending machine.  */
883         if (ether_type == htons(ETH_P_ARP)) {
884                 struct eth1394_arp *arp1394 = (struct eth1394_arp*)skb->data;
885                 struct arphdr *arp = (struct arphdr *)skb->data;
886                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
887                 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
888                         ntohl(arp1394->fifo_lo);
889                 u8 max_rec = min(priv->host->csr.max_rec,
890                                  (u8)(arp1394->max_rec));
891                 int sspd = arp1394->sspd;
892                 u16 maxpayload;
893                 struct eth1394_node_ref *node;
894                 struct eth1394_node_info *node_info;
895                 __be64 guid;
896
897                 /* Sanity check. MacOSX seems to be sending us 131 in this
898                  * field (atleast on my Panther G5). Not sure why. */
899                 if (sspd > 5 || sspd < 0)
900                         sspd = 0;
901
902                 maxpayload = min(eth1394_speedto_maxpayload[sspd], (u16)(1 << (max_rec + 1)));
903
904                 guid = get_unaligned(&arp1394->s_uniq_id);
905                 node = eth1394_find_node_guid(&priv->ip_node_list,
906                                               be64_to_cpu(guid));
907                 if (!node) {
908                         return 0;
909                 }
910
911                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
912
913                 /* Update our speed/payload/fifo_offset table */
914                 node_info->maxpayload = maxpayload;
915                 node_info->sspd =       sspd;
916                 node_info->fifo =       fifo_addr;
917
918                 /* Now that we're done with the 1394 specific stuff, we'll
919                  * need to alter some of the data.  Believe it or not, all
920                  * that needs to be done is sender_IP_address needs to be
921                  * moved, the destination hardware address get stuffed
922                  * in and the hardware address length set to 8.
923                  *
924                  * IMPORTANT: The code below overwrites 1394 specific data
925                  * needed above so keep the munging of the data for the
926                  * higher level IP stack last. */
927
928                 arp->ar_hln = 8;
929                 arp_ptr += arp->ar_hln;         /* skip over sender unique id */
930                 *(u32*)arp_ptr = arp1394->sip;  /* move sender IP addr */
931                 arp_ptr += arp->ar_pln;         /* skip over sender IP addr */
932
933                 if (arp->ar_op == htons(ARPOP_REQUEST))
934                         memset(arp_ptr, 0, sizeof(u64));
935                 else
936                         memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
937         }
938
939         /* Now add the ethernet header. */
940         if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
941                              skb->len) >= 0)
942                 ret = ether1394_type_trans(skb, dev);
943
944         return ret;
945 }
946
947 static inline int fragment_overlap(struct list_head *frag_list, int offset, int len)
948 {
949         struct fragment_info *fi;
950
951         list_for_each_entry(fi, frag_list, list) {
952                 if ( ! ((offset > (fi->offset + fi->len - 1)) ||
953                        ((offset + len - 1) < fi->offset)))
954                         return 1;
955         }
956         return 0;
957 }
958
959 static inline struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
960 {
961         struct partial_datagram *pd;
962
963         list_for_each_entry(pd, pdgl, list) {
964                 if (pd->dgl == dgl)
965                         return &pd->list;
966         }
967         return NULL;
968 }
969
970 /* Assumes that new fragment does not overlap any existing fragments */
971 static inline int new_fragment(struct list_head *frag_info, int offset, int len)
972 {
973         struct list_head *lh;
974         struct fragment_info *fi, *fi2, *new;
975
976         list_for_each(lh, frag_info) {
977                 fi = list_entry(lh, struct fragment_info, list);
978                 if ((fi->offset + fi->len) == offset) {
979                         /* The new fragment can be tacked on to the end */
980                         fi->len += len;
981                         /* Did the new fragment plug a hole? */
982                         fi2 = list_entry(lh->next, struct fragment_info, list);
983                         if ((fi->offset + fi->len) == fi2->offset) {
984                                 /* glue fragments together */
985                                 fi->len += fi2->len;
986                                 list_del(lh->next);
987                                 kfree(fi2);
988                         }
989                         return 0;
990                 } else if ((offset + len) == fi->offset) {
991                         /* The new fragment can be tacked on to the beginning */
992                         fi->offset = offset;
993                         fi->len += len;
994                         /* Did the new fragment plug a hole? */
995                         fi2 = list_entry(lh->prev, struct fragment_info, list);
996                         if ((fi2->offset + fi2->len) == fi->offset) {
997                                 /* glue fragments together */
998                                 fi2->len += fi->len;
999                                 list_del(lh);
1000                                 kfree(fi);
1001                         }
1002                         return 0;
1003                 } else if (offset > (fi->offset + fi->len)) {
1004                         break;
1005                 } else if ((offset + len) < fi->offset) {
1006                         lh = lh->prev;
1007                         break;
1008                 }
1009         }
1010
1011         new = kmalloc(sizeof(*new), GFP_ATOMIC);
1012         if (!new)
1013                 return -ENOMEM;
1014
1015         new->offset = offset;
1016         new->len = len;
1017
1018         list_add(&new->list, lh);
1019
1020         return 0;
1021 }
1022
1023 static inline int new_partial_datagram(struct net_device *dev,
1024                                        struct list_head *pdgl, int dgl,
1025                                        int dg_size, char *frag_buf,
1026                                        int frag_off, int frag_len)
1027 {
1028         struct partial_datagram *new;
1029
1030         new = kmalloc(sizeof(*new), GFP_ATOMIC);
1031         if (!new)
1032                 return -ENOMEM;
1033
1034         INIT_LIST_HEAD(&new->frag_info);
1035
1036         if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1037                 kfree(new);
1038                 return -ENOMEM;
1039         }
1040
1041         new->dgl = dgl;
1042         new->dg_size = dg_size;
1043
1044         new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1045         if (!new->skb) {
1046                 struct fragment_info *fi = list_entry(new->frag_info.next,
1047                                                       struct fragment_info,
1048                                                       list);
1049                 kfree(fi);
1050                 kfree(new);
1051                 return -ENOMEM;
1052         }
1053
1054         skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1055         new->pbuf = skb_put(new->skb, dg_size);
1056         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1057
1058         list_add(&new->list, pdgl);
1059
1060         return 0;
1061 }
1062
1063 static inline int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1064                                           char *frag_buf, int frag_off, int frag_len)
1065 {
1066         struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1067
1068         if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0) {
1069                 return -ENOMEM;
1070         }
1071
1072         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1073
1074         /* Move list entry to beginnig of list so that oldest partial
1075          * datagrams percolate to the end of the list */
1076         list_move(lh, pdgl);
1077
1078         return 0;
1079 }
1080
1081 static inline int is_datagram_complete(struct list_head *lh, int dg_size)
1082 {
1083         struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1084         struct fragment_info *fi = list_entry(pd->frag_info.next,
1085                                               struct fragment_info, list);
1086
1087         return (fi->len == dg_size);
1088 }
1089
1090 /* Packet reception. We convert the IP1394 encapsulation header to an
1091  * ethernet header, and fill it with some of our other fields. This is
1092  * an incoming packet from the 1394 bus.  */
1093 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1094                                   char *buf, int len)
1095 {
1096         struct sk_buff *skb;
1097         unsigned long flags;
1098         struct eth1394_priv *priv = netdev_priv(dev);
1099         union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1100         u16 ether_type = 0;  /* initialized to clear warning */
1101         int hdr_len;
1102         struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1103         struct eth1394_node_info *node_info;
1104
1105         if (!ud) {
1106                 struct eth1394_node_ref *node;
1107                 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1108                 if (!node) {
1109                         HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1110                                    "lookup failure: " NODE_BUS_FMT,
1111                                    NODE_BUS_ARGS(priv->host, srcid));
1112                         priv->stats.rx_dropped++;
1113                         return -1;
1114                 }
1115                 ud = node->ud;
1116
1117                 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1118         }
1119
1120         node_info = (struct eth1394_node_info*)ud->device.driver_data;
1121
1122         /* First, did we receive a fragmented or unfragmented datagram? */
1123         hdr->words.word1 = ntohs(hdr->words.word1);
1124
1125         hdr_len = hdr_type_len[hdr->common.lf];
1126
1127         if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1128                 /* An unfragmented datagram has been received by the ieee1394
1129                  * bus. Build an skbuff around it so we can pass it to the
1130                  * high level network layer. */
1131
1132                 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1133                 if (!skb) {
1134                         HPSB_PRINT (KERN_ERR, "ether1394 rx: low on mem\n");
1135                         priv->stats.rx_dropped++;
1136                         return -1;
1137                 }
1138                 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1139                 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len, len - hdr_len);
1140                 ether_type = hdr->uf.ether_type;
1141         } else {
1142                 /* A datagram fragment has been received, now the fun begins. */
1143
1144                 struct list_head *pdgl, *lh;
1145                 struct partial_datagram *pd;
1146                 int fg_off;
1147                 int fg_len = len - hdr_len;
1148                 int dg_size;
1149                 int dgl;
1150                 int retval;
1151                 struct pdg_list *pdg = &(node_info->pdg);
1152
1153                 hdr->words.word3 = ntohs(hdr->words.word3);
1154                 /* The 4th header word is reserved so no need to do ntohs() */
1155
1156                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1157                         ether_type = hdr->ff.ether_type;
1158                         dgl = hdr->ff.dgl;
1159                         dg_size = hdr->ff.dg_size + 1;
1160                         fg_off = 0;
1161                 } else {
1162                         hdr->words.word2 = ntohs(hdr->words.word2);
1163                         dgl = hdr->sf.dgl;
1164                         dg_size = hdr->sf.dg_size + 1;
1165                         fg_off = hdr->sf.fg_off;
1166                 }
1167                 spin_lock_irqsave(&pdg->lock, flags);
1168
1169                 pdgl = &(pdg->list);
1170                 lh = find_partial_datagram(pdgl, dgl);
1171
1172                 if (lh == NULL) {
1173                         while (pdg->sz >= max_partial_datagrams) {
1174                                 /* remove the oldest */
1175                                 purge_partial_datagram(pdgl->prev);
1176                                 pdg->sz--;
1177                         }
1178
1179                         retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1180                                                       buf + hdr_len, fg_off,
1181                                                       fg_len);
1182                         if (retval < 0) {
1183                                 spin_unlock_irqrestore(&pdg->lock, flags);
1184                                 goto bad_proto;
1185                         }
1186                         pdg->sz++;
1187                         lh = find_partial_datagram(pdgl, dgl);
1188                 } else {
1189                         struct partial_datagram *pd;
1190
1191                         pd = list_entry(lh, struct partial_datagram, list);
1192
1193                         if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1194                                 /* Overlapping fragments, obliterate old
1195                                  * datagram and start new one. */
1196                                 purge_partial_datagram(lh);
1197                                 retval = new_partial_datagram(dev, pdgl, dgl,
1198                                                               dg_size,
1199                                                               buf + hdr_len,
1200                                                               fg_off, fg_len);
1201                                 if (retval < 0) {
1202                                         pdg->sz--;
1203                                         spin_unlock_irqrestore(&pdg->lock, flags);
1204                                         goto bad_proto;
1205                                 }
1206                         } else {
1207                                 retval = update_partial_datagram(pdgl, lh,
1208                                                                  buf + hdr_len,
1209                                                                  fg_off, fg_len);
1210                                 if (retval < 0) {
1211                                         /* Couldn't save off fragment anyway
1212                                          * so might as well obliterate the
1213                                          * datagram now. */
1214                                         purge_partial_datagram(lh);
1215                                         pdg->sz--;
1216                                         spin_unlock_irqrestore(&pdg->lock, flags);
1217                                         goto bad_proto;
1218                                 }
1219                         } /* fragment overlap */
1220                 } /* new datagram or add to existing one */
1221
1222                 pd = list_entry(lh, struct partial_datagram, list);
1223
1224                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1225                         pd->ether_type = ether_type;
1226                 }
1227
1228                 if (is_datagram_complete(lh, dg_size)) {
1229                         ether_type = pd->ether_type;
1230                         pdg->sz--;
1231                         skb = skb_get(pd->skb);
1232                         purge_partial_datagram(lh);
1233                         spin_unlock_irqrestore(&pdg->lock, flags);
1234                 } else {
1235                         /* Datagram is not complete, we're done for the
1236                          * moment. */
1237                         spin_unlock_irqrestore(&pdg->lock, flags);
1238                         return 0;
1239                 }
1240         } /* unframgented datagram or fragmented one */
1241
1242         /* Write metadata, and then pass to the receive level */
1243         skb->dev = dev;
1244         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
1245
1246         /* Parse the encapsulation header. This actually does the job of
1247          * converting to an ethernet frame header, aswell as arp
1248          * conversion if needed. ARP conversion is easier in this
1249          * direction, since we are using ethernet as our backend.  */
1250         skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1251                                               ether_type);
1252
1253
1254         spin_lock_irqsave(&priv->lock, flags);
1255         if (!skb->protocol) {
1256                 priv->stats.rx_errors++;
1257                 priv->stats.rx_dropped++;
1258                 dev_kfree_skb_any(skb);
1259                 goto bad_proto;
1260         }
1261
1262         if (netif_rx(skb) == NET_RX_DROP) {
1263                 priv->stats.rx_errors++;
1264                 priv->stats.rx_dropped++;
1265                 goto bad_proto;
1266         }
1267
1268         /* Statistics */
1269         priv->stats.rx_packets++;
1270         priv->stats.rx_bytes += skb->len;
1271
1272 bad_proto:
1273         if (netif_queue_stopped(dev))
1274                 netif_wake_queue(dev);
1275         spin_unlock_irqrestore(&priv->lock, flags);
1276
1277         dev->last_rx = jiffies;
1278
1279         return 0;
1280 }
1281
1282 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1283                            quadlet_t *data, u64 addr, size_t len, u16 flags)
1284 {
1285         struct eth1394_host_info *hi;
1286
1287         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1288         if (hi == NULL) {
1289                 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1290                                 host->driver->name);
1291                 return RCODE_ADDRESS_ERROR;
1292         }
1293
1294         if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1295                 return RCODE_ADDRESS_ERROR;
1296         else
1297                 return RCODE_COMPLETE;
1298 }
1299
1300 static void ether1394_iso(struct hpsb_iso *iso)
1301 {
1302         quadlet_t *data;
1303         char *buf;
1304         struct eth1394_host_info *hi;
1305         struct net_device *dev;
1306         struct eth1394_priv *priv;
1307         unsigned int len;
1308         u32 specifier_id;
1309         u16 source_id;
1310         int i;
1311         int nready;
1312
1313         hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1314         if (hi == NULL) {
1315                 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1316                                 iso->host->driver->name);
1317                 return;
1318         }
1319
1320         dev = hi->dev;
1321
1322         nready = hpsb_iso_n_ready(iso);
1323         for (i = 0; i < nready; i++) {
1324                 struct hpsb_iso_packet_info *info =
1325                         &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1326                 data = (quadlet_t*) (iso->data_buf.kvirt + info->offset);
1327
1328                 /* skip over GASP header */
1329                 buf = (char *)data + 8;
1330                 len = info->len - 8;
1331
1332                 specifier_id = (((be32_to_cpu(data[0]) & 0xffff) << 8) |
1333                                 ((be32_to_cpu(data[1]) & 0xff000000) >> 24));
1334                 source_id = be32_to_cpu(data[0]) >> 16;
1335
1336                 priv = netdev_priv(dev);
1337
1338                 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f) ||
1339                    specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1340                         /* This packet is not for us */
1341                         continue;
1342                 }
1343                 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1344                                        buf, len);
1345         }
1346
1347         hpsb_iso_recv_release_packets(iso, i);
1348
1349         dev->last_rx = jiffies;
1350 }
1351
1352 /******************************************
1353  * Datagram transmission code
1354  ******************************************/
1355
1356 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1357  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1358  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1359  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1360  * judge.
1361  *
1362  * Now that the EUI is used for the hardware address all we need to do to make
1363  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1364  * speed, and unicast FIFO address information between the sender_unique_id
1365  * and the IP addresses.
1366  */
1367 static inline void ether1394_arp_to_1394arp(struct sk_buff *skb,
1368                                             struct net_device *dev)
1369 {
1370         struct eth1394_priv *priv = netdev_priv(dev);
1371
1372         struct arphdr *arp = (struct arphdr *)skb->data;
1373         unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1374         struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1375
1376         /* Believe it or not, all that need to happen is sender IP get moved
1377          * and set hw_addr_len, max_rec, sspd, fifo_hi and fifo_lo.  */
1378         arp1394->hw_addr_len    = 16;
1379         arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
1380         arp1394->max_rec        = priv->host->csr.max_rec;
1381         arp1394->sspd           = priv->host->csr.lnk_spd;
1382         arp1394->fifo_hi        = htons (priv->local_fifo >> 32);
1383         arp1394->fifo_lo        = htonl (priv->local_fifo & ~0x0);
1384
1385         return;
1386 }
1387
1388 /* We need to encapsulate the standard header with our own. We use the
1389  * ethernet header's proto for our own. */
1390 static inline unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1391                                                       __be16 proto,
1392                                                       union eth1394_hdr *hdr,
1393                                                       u16 dg_size, u16 dgl)
1394 {
1395         unsigned int adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1396
1397         /* Does it all fit in one packet? */
1398         if (dg_size <= adj_max_payload) {
1399                 hdr->uf.lf = ETH1394_HDR_LF_UF;
1400                 hdr->uf.ether_type = proto;
1401         } else {
1402                 hdr->ff.lf = ETH1394_HDR_LF_FF;
1403                 hdr->ff.ether_type = proto;
1404                 hdr->ff.dg_size = dg_size - 1;
1405                 hdr->ff.dgl = dgl;
1406                 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1407         }
1408         return((dg_size + (adj_max_payload - 1)) / adj_max_payload);
1409 }
1410
1411 static inline unsigned int ether1394_encapsulate(struct sk_buff *skb,
1412                                                  unsigned int max_payload,
1413                                                  union eth1394_hdr *hdr)
1414 {
1415         union eth1394_hdr *bufhdr;
1416         int ftype = hdr->common.lf;
1417         int hdrsz = hdr_type_len[ftype];
1418         unsigned int adj_max_payload = max_payload - hdrsz;
1419
1420         switch(ftype) {
1421         case ETH1394_HDR_LF_UF:
1422                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1423                 bufhdr->words.word1 = htons(hdr->words.word1);
1424                 bufhdr->words.word2 = hdr->words.word2;
1425                 break;
1426
1427         case ETH1394_HDR_LF_FF:
1428                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1429                 bufhdr->words.word1 = htons(hdr->words.word1);
1430                 bufhdr->words.word2 = hdr->words.word2;
1431                 bufhdr->words.word3 = htons(hdr->words.word3);
1432                 bufhdr->words.word4 = 0;
1433
1434                 /* Set frag type here for future interior fragments */
1435                 hdr->common.lf = ETH1394_HDR_LF_IF;
1436                 hdr->sf.fg_off = 0;
1437                 break;
1438
1439         default:
1440                 hdr->sf.fg_off += adj_max_payload;
1441                 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1442                 if (max_payload >= skb->len)
1443                         hdr->common.lf = ETH1394_HDR_LF_LF;
1444                 bufhdr->words.word1 = htons(hdr->words.word1);
1445                 bufhdr->words.word2 = htons(hdr->words.word2);
1446                 bufhdr->words.word3 = htons(hdr->words.word3);
1447                 bufhdr->words.word4 = 0;
1448         }
1449
1450         return min(max_payload, skb->len);
1451 }
1452
1453 static inline struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1454 {
1455         struct hpsb_packet *p;
1456
1457         p = hpsb_alloc_packet(0);
1458         if (p) {
1459                 p->host = host;
1460                 p->generation = get_hpsb_generation(host);
1461                 p->type = hpsb_async;
1462         }
1463         return p;
1464 }
1465
1466 static inline int ether1394_prep_write_packet(struct hpsb_packet *p,
1467                                               struct hpsb_host *host,
1468                                               nodeid_t node, u64 addr,
1469                                               void * data, int tx_len)
1470 {
1471         p->node_id = node;
1472         p->data = NULL;
1473
1474         p->tcode = TCODE_WRITEB;
1475         p->header[1] = (host->node_id << 16) | (addr >> 32);
1476         p->header[2] = addr & 0xffffffff;
1477
1478         p->header_size = 16;
1479         p->expect_response = 1;
1480
1481         if (hpsb_get_tlabel(p)) {
1482                 ETH1394_PRINT_G(KERN_ERR, "No more tlabels left while sending "
1483                                 "to node " NODE_BUS_FMT "\n", NODE_BUS_ARGS(host, node));
1484                 return -1;
1485         }
1486         p->header[0] = (p->node_id << 16) | (p->tlabel << 10)
1487                 | (1 << 8) | (TCODE_WRITEB << 4);
1488
1489         p->header[3] = tx_len << 16;
1490         p->data_size = (tx_len + 3) & ~3;
1491         p->data = (quadlet_t*)data;
1492
1493         return 0;
1494 }
1495
1496 static inline void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1497                                               struct eth1394_priv *priv,
1498                                               struct sk_buff *skb, int length)
1499 {
1500         p->header_size = 4;
1501         p->tcode = TCODE_STREAM_DATA;
1502
1503         p->header[0] = (length << 16) | (3 << 14)
1504                 | ((priv->broadcast_channel) << 8)
1505                 | (TCODE_STREAM_DATA << 4);
1506         p->data_size = length;
1507         p->data = ((quadlet_t*)skb->data) - 2;
1508         p->data[0] = cpu_to_be32((priv->host->node_id << 16) |
1509                                  ETHER1394_GASP_SPECIFIER_ID_HI);
1510         p->data[1] = cpu_to_be32((ETHER1394_GASP_SPECIFIER_ID_LO << 24) |
1511                                  ETHER1394_GASP_VERSION);
1512
1513         /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
1514          * prevents hpsb_send_packet() from setting the speed to an arbitrary
1515          * value based on packet->node_id if packet->node_id is not set. */
1516         p->node_id = ALL_NODES;
1517         p->speed_code = priv->bc_sspd;
1518 }
1519
1520 static inline void ether1394_free_packet(struct hpsb_packet *packet)
1521 {
1522         if (packet->tcode != TCODE_STREAM_DATA)
1523                 hpsb_free_tlabel(packet);
1524         hpsb_free_packet(packet);
1525 }
1526
1527 static void ether1394_complete_cb(void *__ptask);
1528
1529 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1530 {
1531         struct eth1394_priv *priv = ptask->priv;
1532         struct hpsb_packet *packet = NULL;
1533
1534         packet = ether1394_alloc_common_packet(priv->host);
1535         if (!packet)
1536                 return -1;
1537
1538         if (ptask->tx_type == ETH1394_GASP) {
1539                 int length = tx_len + (2 * sizeof(quadlet_t));
1540
1541                 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1542         } else if (ether1394_prep_write_packet(packet, priv->host,
1543                                                ptask->dest_node,
1544                                                ptask->addr, ptask->skb->data,
1545                                                tx_len)) {
1546                 hpsb_free_packet(packet);
1547                 return -1;
1548         }
1549
1550         ptask->packet = packet;
1551         hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1552                                       ptask);
1553
1554         if (hpsb_send_packet(packet) < 0) {
1555                 ether1394_free_packet(packet);
1556                 return -1;
1557         }
1558
1559         return 0;
1560 }
1561
1562
1563 /* Task function to be run when a datagram transmission is completed */
1564 static inline void ether1394_dg_complete(struct packet_task *ptask, int fail)
1565 {
1566         struct sk_buff *skb = ptask->skb;
1567         struct net_device *dev = skb->dev;
1568         struct eth1394_priv *priv = netdev_priv(dev);
1569         unsigned long flags;
1570
1571         /* Statistics */
1572         spin_lock_irqsave(&priv->lock, flags);
1573         if (fail) {
1574                 priv->stats.tx_dropped++;
1575                 priv->stats.tx_errors++;
1576         } else {
1577                 priv->stats.tx_bytes += skb->len;
1578                 priv->stats.tx_packets++;
1579         }
1580         spin_unlock_irqrestore(&priv->lock, flags);
1581
1582         dev_kfree_skb_any(skb);
1583         kmem_cache_free(packet_task_cache, ptask);
1584 }
1585
1586
1587 /* Callback for when a packet has been sent and the status of that packet is
1588  * known */
1589 static void ether1394_complete_cb(void *__ptask)
1590 {
1591         struct packet_task *ptask = (struct packet_task *)__ptask;
1592         struct hpsb_packet *packet = ptask->packet;
1593         int fail = 0;
1594
1595         if (packet->tcode != TCODE_STREAM_DATA)
1596                 fail = hpsb_packet_success(packet);
1597
1598         ether1394_free_packet(packet);
1599
1600         ptask->outstanding_pkts--;
1601         if (ptask->outstanding_pkts > 0 && !fail) {
1602                 int tx_len;
1603
1604                 /* Add the encapsulation header to the fragment */
1605                 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1606                                                &ptask->hdr);
1607                 if (ether1394_send_packet(ptask, tx_len))
1608                         ether1394_dg_complete(ptask, 1);
1609         } else {
1610                 ether1394_dg_complete(ptask, fail);
1611         }
1612 }
1613
1614
1615
1616 /* Transmit a packet (called by kernel) */
1617 static int ether1394_tx (struct sk_buff *skb, struct net_device *dev)
1618 {
1619         gfp_t kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
1620         struct eth1394hdr *eth;
1621         struct eth1394_priv *priv = netdev_priv(dev);
1622         __be16 proto;
1623         unsigned long flags;
1624         nodeid_t dest_node;
1625         eth1394_tx_type tx_type;
1626         int ret = 0;
1627         unsigned int tx_len;
1628         unsigned int max_payload;
1629         u16 dg_size;
1630         u16 dgl;
1631         struct packet_task *ptask;
1632         struct eth1394_node_ref *node;
1633         struct eth1394_node_info *node_info = NULL;
1634
1635         ptask = kmem_cache_alloc(packet_task_cache, kmflags);
1636         if (ptask == NULL) {
1637                 ret = -ENOMEM;
1638                 goto fail;
1639         }
1640
1641         /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1642          * it does not set our validity bit. We need to compensate for
1643          * that somewhere else, but not in eth1394. */
1644 #if 0
1645         if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
1646                 ret = -EAGAIN;
1647                 goto fail;
1648         }
1649 #endif
1650
1651         if ((skb = skb_share_check (skb, kmflags)) == NULL) {
1652                 ret = -ENOMEM;
1653                 goto fail;
1654         }
1655
1656         /* Get rid of the fake eth1394 header, but save a pointer */
1657         eth = (struct eth1394hdr*)skb->data;
1658         skb_pull(skb, ETH1394_HLEN);
1659
1660         proto = eth->h_proto;
1661         dg_size = skb->len;
1662
1663         /* Set the transmission type for the packet.  ARP packets and IP
1664          * broadcast packets are sent via GASP. */
1665         if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1666             proto == htons(ETH_P_ARP) ||
1667             (proto == htons(ETH_P_IP) &&
1668              IN_MULTICAST(ntohl(skb->nh.iph->daddr)))) {
1669                 tx_type = ETH1394_GASP;
1670                 dest_node = LOCAL_BUS | ALL_NODES;
1671                 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1672                 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1673                 dgl = priv->bc_dgl;
1674                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1675                         priv->bc_dgl++;
1676         } else {
1677                 __be64 guid = get_unaligned((u64 *)eth->h_dest);
1678
1679                 node = eth1394_find_node_guid(&priv->ip_node_list,
1680                                               be64_to_cpu(guid));
1681                 if (!node) {
1682                         ret = -EAGAIN;
1683                         goto fail;
1684                 }
1685                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
1686                 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE) {
1687                         ret = -EAGAIN;
1688                         goto fail;
1689                 }
1690
1691                 dest_node = node->ud->ne->nodeid;
1692                 max_payload = node_info->maxpayload;
1693                 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1694
1695                 dgl = node_info->dgl;
1696                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1697                         node_info->dgl++;
1698                 tx_type = ETH1394_WRREQ;
1699         }
1700
1701         /* If this is an ARP packet, convert it */
1702         if (proto == htons(ETH_P_ARP))
1703                 ether1394_arp_to_1394arp (skb, dev);
1704
1705         ptask->hdr.words.word1 = 0;
1706         ptask->hdr.words.word2 = 0;
1707         ptask->hdr.words.word3 = 0;
1708         ptask->hdr.words.word4 = 0;
1709         ptask->skb = skb;
1710         ptask->priv = priv;
1711         ptask->tx_type = tx_type;
1712
1713         if (tx_type != ETH1394_GASP) {
1714                 u64 addr;
1715
1716                 spin_lock_irqsave(&priv->lock, flags);
1717                 addr = node_info->fifo;
1718                 spin_unlock_irqrestore(&priv->lock, flags);
1719
1720                 ptask->addr = addr;
1721                 ptask->dest_node = dest_node;
1722         }
1723
1724         ptask->tx_type = tx_type;
1725         ptask->max_payload = max_payload;
1726         ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload, proto,
1727                                                              &ptask->hdr, dg_size,
1728                                                              dgl);
1729
1730         /* Add the encapsulation header to the fragment */
1731         tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1732         dev->trans_start = jiffies;
1733         if (ether1394_send_packet(ptask, tx_len))
1734                 goto fail;
1735
1736         netif_wake_queue(dev);
1737         return 0;
1738 fail:
1739         if (ptask)
1740                 kmem_cache_free(packet_task_cache, ptask);
1741
1742         if (skb != NULL)
1743                 dev_kfree_skb(skb);
1744
1745         spin_lock_irqsave (&priv->lock, flags);
1746         priv->stats.tx_dropped++;
1747         priv->stats.tx_errors++;
1748         spin_unlock_irqrestore (&priv->lock, flags);
1749
1750         if (netif_queue_stopped(dev))
1751                 netif_wake_queue(dev);
1752
1753         return 0;  /* returning non-zero causes serious problems */
1754 }
1755
1756 static void ether1394_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1757 {
1758         strcpy (info->driver, driver_name);
1759         /* FIXME XXX provide sane businfo */
1760         strcpy (info->bus_info, "ieee1394");
1761 }
1762
1763 static struct ethtool_ops ethtool_ops = {
1764         .get_drvinfo = ether1394_get_drvinfo
1765 };
1766
1767 static int __init ether1394_init_module (void)
1768 {
1769         packet_task_cache = kmem_cache_create("packet_task", sizeof(struct packet_task),
1770                                               0, 0, NULL, NULL);
1771
1772         /* Register ourselves as a highlevel driver */
1773         hpsb_register_highlevel(&eth1394_highlevel);
1774
1775         return hpsb_register_protocol(&eth1394_proto_driver);
1776 }
1777
1778 static void __exit ether1394_exit_module (void)
1779 {
1780         hpsb_unregister_protocol(&eth1394_proto_driver);
1781         hpsb_unregister_highlevel(&eth1394_highlevel);
1782         kmem_cache_destroy(packet_task_cache);
1783 }
1784
1785 module_init(ether1394_init_module);
1786 module_exit(ether1394_exit_module);