1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
34 #include <linux/version.h>
43 #ifdef CONFIG_IPW2200_DEBUG
49 #ifdef CONFIG_IPW2200_MONITOR
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
61 #ifdef CONFIG_IPW2200_RADIOTAP
67 #ifdef CONFIG_IPW2200_QOS
73 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION IPW2200_VERSION
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
85 static int cmdlog = 0;
87 static int channel = 0;
90 static u32 ipw_debug_level;
91 static int associate = 1;
92 static int auto_create = 1;
94 static int disable = 0;
95 static int bt_coexist = 0;
96 static int hwcrypto = 0;
97 static int roaming = 1;
98 static const char ipw_modes[] = {
101 static int antenna = CFG_SYS_ANTENNA_BOTH;
103 #ifdef CONFIG_IPW2200_PROMISCUOUS
104 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
108 #ifdef CONFIG_IPW2200_QOS
109 static int qos_enable = 0;
110 static int qos_burst_enable = 0;
111 static int qos_no_ack_mask = 0;
112 static int burst_duration_CCK = 0;
113 static int burst_duration_OFDM = 0;
115 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
116 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
117 QOS_TX3_CW_MIN_OFDM},
118 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
119 QOS_TX3_CW_MAX_OFDM},
120 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
121 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
122 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
123 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
126 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
127 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
129 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
131 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
132 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
133 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
134 QOS_TX3_TXOP_LIMIT_CCK}
137 static struct ieee80211_qos_parameters def_parameters_OFDM = {
138 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
139 DEF_TX3_CW_MIN_OFDM},
140 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
141 DEF_TX3_CW_MAX_OFDM},
142 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
143 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
144 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
145 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
148 static struct ieee80211_qos_parameters def_parameters_CCK = {
149 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
151 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
153 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
154 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
155 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
156 DEF_TX3_TXOP_LIMIT_CCK}
159 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
161 static int from_priority_to_tx_queue[] = {
162 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
163 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
166 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
168 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
170 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
172 #endif /* CONFIG_IPW2200_QOS */
174 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
175 static void ipw_remove_current_network(struct ipw_priv *priv);
176 static void ipw_rx(struct ipw_priv *priv);
177 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
178 struct clx2_tx_queue *txq, int qindex);
179 static int ipw_queue_reset(struct ipw_priv *priv);
181 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
184 static void ipw_tx_queue_free(struct ipw_priv *);
186 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
187 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
188 static void ipw_rx_queue_replenish(void *);
189 static int ipw_up(struct ipw_priv *);
190 static void ipw_bg_up(struct work_struct *work);
191 static void ipw_down(struct ipw_priv *);
192 static void ipw_bg_down(struct work_struct *work);
193 static int ipw_config(struct ipw_priv *);
194 static int init_supported_rates(struct ipw_priv *priv,
195 struct ipw_supported_rates *prates);
196 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
197 static void ipw_send_wep_keys(struct ipw_priv *, int);
199 static int snprint_line(char *buf, size_t count,
200 const u8 * data, u32 len, u32 ofs)
205 out = snprintf(buf, count, "%08X", ofs);
207 for (l = 0, i = 0; i < 2; i++) {
208 out += snprintf(buf + out, count - out, " ");
209 for (j = 0; j < 8 && l < len; j++, l++)
210 out += snprintf(buf + out, count - out, "%02X ",
213 out += snprintf(buf + out, count - out, " ");
216 out += snprintf(buf + out, count - out, " ");
217 for (l = 0, i = 0; i < 2; i++) {
218 out += snprintf(buf + out, count - out, " ");
219 for (j = 0; j < 8 && l < len; j++, l++) {
220 c = data[(i * 8 + j)];
221 if (!isascii(c) || !isprint(c))
224 out += snprintf(buf + out, count - out, "%c", c);
228 out += snprintf(buf + out, count - out, " ");
234 static void printk_buf(int level, const u8 * data, u32 len)
238 if (!(ipw_debug_level & level))
242 snprint_line(line, sizeof(line), &data[ofs],
244 printk(KERN_DEBUG "%s\n", line);
246 len -= min(len, 16U);
250 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
256 while (size && len) {
257 out = snprint_line(output, size, &data[ofs],
258 min_t(size_t, len, 16U), ofs);
263 len -= min_t(size_t, len, 16U);
269 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
270 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
271 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
273 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
274 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
275 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
277 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
278 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
279 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
281 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
282 __LINE__, (u32) (b), (u32) (c));
283 _ipw_write_reg8(a, b, c);
286 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
287 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
288 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
290 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
291 __LINE__, (u32) (b), (u32) (c));
292 _ipw_write_reg16(a, b, c);
295 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
296 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
297 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
299 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
300 __LINE__, (u32) (b), (u32) (c));
301 _ipw_write_reg32(a, b, c);
304 /* 8-bit direct write (low 4K) */
305 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
307 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
308 #define ipw_write8(ipw, ofs, val) \
309 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
310 _ipw_write8(ipw, ofs, val)
312 /* 16-bit direct write (low 4K) */
313 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
315 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316 #define ipw_write16(ipw, ofs, val) \
317 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318 _ipw_write16(ipw, ofs, val)
320 /* 32-bit direct write (low 4K) */
321 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
323 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324 #define ipw_write32(ipw, ofs, val) \
325 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326 _ipw_write32(ipw, ofs, val)
328 /* 8-bit direct read (low 4K) */
329 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
331 /* 8-bit direct read (low 4K), with debug wrapper */
332 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
334 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335 return _ipw_read8(ipw, ofs);
338 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
341 /* 16-bit direct read (low 4K) */
342 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
344 /* 16-bit direct read (low 4K), with debug wrapper */
345 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
347 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348 return _ipw_read16(ipw, ofs);
351 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
354 /* 32-bit direct read (low 4K) */
355 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
357 /* 32-bit direct read (low 4K), with debug wrapper */
358 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
360 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361 return _ipw_read32(ipw, ofs);
364 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
367 /* multi-byte read (above 4K), with debug wrapper */
368 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369 static inline void __ipw_read_indirect(const char *f, int l,
370 struct ipw_priv *a, u32 b, u8 * c, int d)
372 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
374 _ipw_read_indirect(a, b, c, d);
377 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
380 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
383 #define ipw_write_indirect(a, b, c, d) \
384 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385 _ipw_write_indirect(a, b, c, d)
387 /* 32-bit indirect write (above 4K) */
388 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
390 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
395 /* 8-bit indirect write (above 4K) */
396 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
398 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
399 u32 dif_len = reg - aligned_addr;
401 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
406 /* 16-bit indirect write (above 4K) */
407 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
409 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
410 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
412 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
417 /* 8-bit indirect read (above 4K) */
418 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
421 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424 return (word >> ((reg & 0x3) * 8)) & 0xff;
427 /* 32-bit indirect read (above 4K) */
428 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
432 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
434 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
440 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
441 /* for area above 1st 4K of SRAM/reg space */
442 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
445 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
446 u32 dif_len = addr - aligned_addr;
449 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
455 /* Read the first dword (or portion) byte by byte */
456 if (unlikely(dif_len)) {
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458 /* Start reading at aligned_addr + dif_len */
459 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
464 /* Read all of the middle dwords as dwords, with auto-increment */
465 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
469 /* Read the last dword (or portion) byte by byte */
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 for (i = 0; num > 0; i++, num--)
473 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
477 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
478 /* for area above 1st 4K of SRAM/reg space */
479 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
482 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
483 u32 dif_len = addr - aligned_addr;
486 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
492 /* Write the first dword (or portion) byte by byte */
493 if (unlikely(dif_len)) {
494 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495 /* Start writing at aligned_addr + dif_len */
496 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
501 /* Write all of the middle dwords as dwords, with auto-increment */
502 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
506 /* Write the last dword (or portion) byte by byte */
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 for (i = 0; num > 0; i++, num--, buf++)
510 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
514 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
515 /* for 1st 4K of SRAM/regs space */
516 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
519 memcpy_toio((priv->hw_base + addr), buf, num);
522 /* Set bit(s) in low 4K of SRAM/regs */
523 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
525 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
528 /* Clear bit(s) in low 4K of SRAM/regs */
529 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
531 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
534 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
536 if (priv->status & STATUS_INT_ENABLED)
538 priv->status |= STATUS_INT_ENABLED;
539 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
542 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
544 if (!(priv->status & STATUS_INT_ENABLED))
546 priv->status &= ~STATUS_INT_ENABLED;
547 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
550 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
554 spin_lock_irqsave(&priv->irq_lock, flags);
555 __ipw_enable_interrupts(priv);
556 spin_unlock_irqrestore(&priv->irq_lock, flags);
559 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
563 spin_lock_irqsave(&priv->irq_lock, flags);
564 __ipw_disable_interrupts(priv);
565 spin_unlock_irqrestore(&priv->irq_lock, flags);
568 static char *ipw_error_desc(u32 val)
571 case IPW_FW_ERROR_OK:
573 case IPW_FW_ERROR_FAIL:
575 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576 return "MEMORY_UNDERFLOW";
577 case IPW_FW_ERROR_MEMORY_OVERFLOW:
578 return "MEMORY_OVERFLOW";
579 case IPW_FW_ERROR_BAD_PARAM:
581 case IPW_FW_ERROR_BAD_CHECKSUM:
582 return "BAD_CHECKSUM";
583 case IPW_FW_ERROR_NMI_INTERRUPT:
584 return "NMI_INTERRUPT";
585 case IPW_FW_ERROR_BAD_DATABASE:
586 return "BAD_DATABASE";
587 case IPW_FW_ERROR_ALLOC_FAIL:
589 case IPW_FW_ERROR_DMA_UNDERRUN:
590 return "DMA_UNDERRUN";
591 case IPW_FW_ERROR_DMA_STATUS:
593 case IPW_FW_ERROR_DINO_ERROR:
595 case IPW_FW_ERROR_EEPROM_ERROR:
596 return "EEPROM_ERROR";
597 case IPW_FW_ERROR_SYSASSERT:
599 case IPW_FW_ERROR_FATAL_ERROR:
600 return "FATAL_ERROR";
602 return "UNKNOWN_ERROR";
606 static void ipw_dump_error_log(struct ipw_priv *priv,
607 struct ipw_fw_error *error)
612 IPW_ERROR("Error allocating and capturing error log. "
613 "Nothing to dump.\n");
617 IPW_ERROR("Start IPW Error Log Dump:\n");
618 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619 error->status, error->config);
621 for (i = 0; i < error->elem_len; i++)
622 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
623 ipw_error_desc(error->elem[i].desc),
625 error->elem[i].blink1,
626 error->elem[i].blink2,
627 error->elem[i].link1,
628 error->elem[i].link2, error->elem[i].data);
629 for (i = 0; i < error->log_len; i++)
630 IPW_ERROR("%i\t0x%08x\t%i\n",
632 error->log[i].data, error->log[i].event);
635 static inline int ipw_is_init(struct ipw_priv *priv)
637 return (priv->status & STATUS_INIT) ? 1 : 0;
640 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
642 u32 addr, field_info, field_len, field_count, total_len;
644 IPW_DEBUG_ORD("ordinal = %i\n", ord);
646 if (!priv || !val || !len) {
647 IPW_DEBUG_ORD("Invalid argument\n");
651 /* verify device ordinal tables have been initialized */
652 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653 IPW_DEBUG_ORD("Access ordinals before initialization\n");
657 switch (IPW_ORD_TABLE_ID_MASK & ord) {
658 case IPW_ORD_TABLE_0_MASK:
660 * TABLE 0: Direct access to a table of 32 bit values
662 * This is a very simple table with the data directly
663 * read from the table
666 /* remove the table id from the ordinal */
667 ord &= IPW_ORD_TABLE_VALUE_MASK;
670 if (ord > priv->table0_len) {
671 IPW_DEBUG_ORD("ordinal value (%i) longer then "
672 "max (%i)\n", ord, priv->table0_len);
676 /* verify we have enough room to store the value */
677 if (*len < sizeof(u32)) {
678 IPW_DEBUG_ORD("ordinal buffer length too small, "
679 "need %zd\n", sizeof(u32));
683 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684 ord, priv->table0_addr + (ord << 2));
688 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
691 case IPW_ORD_TABLE_1_MASK:
693 * TABLE 1: Indirect access to a table of 32 bit values
695 * This is a fairly large table of u32 values each
696 * representing starting addr for the data (which is
700 /* remove the table id from the ordinal */
701 ord &= IPW_ORD_TABLE_VALUE_MASK;
704 if (ord > priv->table1_len) {
705 IPW_DEBUG_ORD("ordinal value too long\n");
709 /* verify we have enough room to store the value */
710 if (*len < sizeof(u32)) {
711 IPW_DEBUG_ORD("ordinal buffer length too small, "
712 "need %zd\n", sizeof(u32));
717 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
721 case IPW_ORD_TABLE_2_MASK:
723 * TABLE 2: Indirect access to a table of variable sized values
725 * This table consist of six values, each containing
726 * - dword containing the starting offset of the data
727 * - dword containing the lengh in the first 16bits
728 * and the count in the second 16bits
731 /* remove the table id from the ordinal */
732 ord &= IPW_ORD_TABLE_VALUE_MASK;
735 if (ord > priv->table2_len) {
736 IPW_DEBUG_ORD("ordinal value too long\n");
740 /* get the address of statistic */
741 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
743 /* get the second DW of statistics ;
744 * two 16-bit words - first is length, second is count */
747 priv->table2_addr + (ord << 3) +
750 /* get each entry length */
751 field_len = *((u16 *) & field_info);
753 /* get number of entries */
754 field_count = *(((u16 *) & field_info) + 1);
756 /* abort if not enought memory */
757 total_len = field_len * field_count;
758 if (total_len > *len) {
767 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768 "field_info = 0x%08x\n",
769 addr, total_len, field_info);
770 ipw_read_indirect(priv, addr, val, total_len);
774 IPW_DEBUG_ORD("Invalid ordinal!\n");
782 static void ipw_init_ordinals(struct ipw_priv *priv)
784 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785 priv->table0_len = ipw_read32(priv, priv->table0_addr);
787 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788 priv->table0_addr, priv->table0_len);
790 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
793 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794 priv->table1_addr, priv->table1_len);
796 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798 priv->table2_len &= 0x0000ffff; /* use first two bytes */
800 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801 priv->table2_addr, priv->table2_len);
805 static u32 ipw_register_toggle(u32 reg)
807 reg &= ~IPW_START_STANDBY;
808 if (reg & IPW_GATE_ODMA)
809 reg &= ~IPW_GATE_ODMA;
810 if (reg & IPW_GATE_IDMA)
811 reg &= ~IPW_GATE_IDMA;
812 if (reg & IPW_GATE_ADMA)
813 reg &= ~IPW_GATE_ADMA;
819 * - On radio ON, turn on any LEDs that require to be on during start
820 * - On initialization, start unassociated blink
821 * - On association, disable unassociated blink
822 * - On disassociation, start unassociated blink
823 * - On radio OFF, turn off any LEDs started during radio on
826 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
827 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
830 static void ipw_led_link_on(struct ipw_priv *priv)
835 /* If configured to not use LEDs, or nic_type is 1,
836 * then we don't toggle a LINK led */
837 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
840 spin_lock_irqsave(&priv->lock, flags);
842 if (!(priv->status & STATUS_RF_KILL_MASK) &&
843 !(priv->status & STATUS_LED_LINK_ON)) {
844 IPW_DEBUG_LED("Link LED On\n");
845 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846 led |= priv->led_association_on;
848 led = ipw_register_toggle(led);
850 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851 ipw_write_reg32(priv, IPW_EVENT_REG, led);
853 priv->status |= STATUS_LED_LINK_ON;
855 /* If we aren't associated, schedule turning the LED off */
856 if (!(priv->status & STATUS_ASSOCIATED))
857 queue_delayed_work(priv->workqueue,
862 spin_unlock_irqrestore(&priv->lock, flags);
865 static void ipw_bg_led_link_on(struct work_struct *work)
867 struct ipw_priv *priv =
868 container_of(work, struct ipw_priv, led_link_on.work);
869 mutex_lock(&priv->mutex);
870 ipw_led_link_on(priv);
871 mutex_unlock(&priv->mutex);
874 static void ipw_led_link_off(struct ipw_priv *priv)
879 /* If configured not to use LEDs, or nic type is 1,
880 * then we don't goggle the LINK led. */
881 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
884 spin_lock_irqsave(&priv->lock, flags);
886 if (priv->status & STATUS_LED_LINK_ON) {
887 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888 led &= priv->led_association_off;
889 led = ipw_register_toggle(led);
891 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892 ipw_write_reg32(priv, IPW_EVENT_REG, led);
894 IPW_DEBUG_LED("Link LED Off\n");
896 priv->status &= ~STATUS_LED_LINK_ON;
898 /* If we aren't associated and the radio is on, schedule
899 * turning the LED on (blink while unassociated) */
900 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901 !(priv->status & STATUS_ASSOCIATED))
902 queue_delayed_work(priv->workqueue, &priv->led_link_on,
907 spin_unlock_irqrestore(&priv->lock, flags);
910 static void ipw_bg_led_link_off(struct work_struct *work)
912 struct ipw_priv *priv =
913 container_of(work, struct ipw_priv, led_link_off.work);
914 mutex_lock(&priv->mutex);
915 ipw_led_link_off(priv);
916 mutex_unlock(&priv->mutex);
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
923 if (priv->config & CFG_NO_LED)
926 if (priv->status & STATUS_RF_KILL_MASK)
929 if (!(priv->status & STATUS_LED_ACT_ON)) {
930 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931 led |= priv->led_activity_on;
933 led = ipw_register_toggle(led);
935 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936 ipw_write_reg32(priv, IPW_EVENT_REG, led);
938 IPW_DEBUG_LED("Activity LED On\n");
940 priv->status |= STATUS_LED_ACT_ON;
942 cancel_delayed_work(&priv->led_act_off);
943 queue_delayed_work(priv->workqueue, &priv->led_act_off,
946 /* Reschedule LED off for full time period */
947 cancel_delayed_work(&priv->led_act_off);
948 queue_delayed_work(priv->workqueue, &priv->led_act_off,
954 void ipw_led_activity_on(struct ipw_priv *priv)
957 spin_lock_irqsave(&priv->lock, flags);
958 __ipw_led_activity_on(priv);
959 spin_unlock_irqrestore(&priv->lock, flags);
963 static void ipw_led_activity_off(struct ipw_priv *priv)
968 if (priv->config & CFG_NO_LED)
971 spin_lock_irqsave(&priv->lock, flags);
973 if (priv->status & STATUS_LED_ACT_ON) {
974 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975 led &= priv->led_activity_off;
977 led = ipw_register_toggle(led);
979 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980 ipw_write_reg32(priv, IPW_EVENT_REG, led);
982 IPW_DEBUG_LED("Activity LED Off\n");
984 priv->status &= ~STATUS_LED_ACT_ON;
987 spin_unlock_irqrestore(&priv->lock, flags);
990 static void ipw_bg_led_activity_off(struct work_struct *work)
992 struct ipw_priv *priv =
993 container_of(work, struct ipw_priv, led_act_off.work);
994 mutex_lock(&priv->mutex);
995 ipw_led_activity_off(priv);
996 mutex_unlock(&priv->mutex);
999 static void ipw_led_band_on(struct ipw_priv *priv)
1001 unsigned long flags;
1004 /* Only nic type 1 supports mode LEDs */
1005 if (priv->config & CFG_NO_LED ||
1006 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1009 spin_lock_irqsave(&priv->lock, flags);
1011 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012 if (priv->assoc_network->mode == IEEE_A) {
1013 led |= priv->led_ofdm_on;
1014 led &= priv->led_association_off;
1015 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016 } else if (priv->assoc_network->mode == IEEE_G) {
1017 led |= priv->led_ofdm_on;
1018 led |= priv->led_association_on;
1019 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1021 led &= priv->led_ofdm_off;
1022 led |= priv->led_association_on;
1023 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1026 led = ipw_register_toggle(led);
1028 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1031 spin_unlock_irqrestore(&priv->lock, flags);
1034 static void ipw_led_band_off(struct ipw_priv *priv)
1036 unsigned long flags;
1039 /* Only nic type 1 supports mode LEDs */
1040 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1043 spin_lock_irqsave(&priv->lock, flags);
1045 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046 led &= priv->led_ofdm_off;
1047 led &= priv->led_association_off;
1049 led = ipw_register_toggle(led);
1051 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1054 spin_unlock_irqrestore(&priv->lock, flags);
1057 static void ipw_led_radio_on(struct ipw_priv *priv)
1059 ipw_led_link_on(priv);
1062 static void ipw_led_radio_off(struct ipw_priv *priv)
1064 ipw_led_activity_off(priv);
1065 ipw_led_link_off(priv);
1068 static void ipw_led_link_up(struct ipw_priv *priv)
1070 /* Set the Link Led on for all nic types */
1071 ipw_led_link_on(priv);
1074 static void ipw_led_link_down(struct ipw_priv *priv)
1076 ipw_led_activity_off(priv);
1077 ipw_led_link_off(priv);
1079 if (priv->status & STATUS_RF_KILL_MASK)
1080 ipw_led_radio_off(priv);
1083 static void ipw_led_init(struct ipw_priv *priv)
1085 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1087 /* Set the default PINs for the link and activity leds */
1088 priv->led_activity_on = IPW_ACTIVITY_LED;
1089 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1091 priv->led_association_on = IPW_ASSOCIATED_LED;
1092 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1094 /* Set the default PINs for the OFDM leds */
1095 priv->led_ofdm_on = IPW_OFDM_LED;
1096 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1098 switch (priv->nic_type) {
1099 case EEPROM_NIC_TYPE_1:
1100 /* In this NIC type, the LEDs are reversed.... */
1101 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103 priv->led_association_on = IPW_ACTIVITY_LED;
1104 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1106 if (!(priv->config & CFG_NO_LED))
1107 ipw_led_band_on(priv);
1109 /* And we don't blink link LEDs for this nic, so
1110 * just return here */
1113 case EEPROM_NIC_TYPE_3:
1114 case EEPROM_NIC_TYPE_2:
1115 case EEPROM_NIC_TYPE_4:
1116 case EEPROM_NIC_TYPE_0:
1120 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1122 priv->nic_type = EEPROM_NIC_TYPE_0;
1126 if (!(priv->config & CFG_NO_LED)) {
1127 if (priv->status & STATUS_ASSOCIATED)
1128 ipw_led_link_on(priv);
1130 ipw_led_link_off(priv);
1134 static void ipw_led_shutdown(struct ipw_priv *priv)
1136 ipw_led_activity_off(priv);
1137 ipw_led_link_off(priv);
1138 ipw_led_band_off(priv);
1139 cancel_delayed_work(&priv->led_link_on);
1140 cancel_delayed_work(&priv->led_link_off);
1141 cancel_delayed_work(&priv->led_act_off);
1145 * The following adds a new attribute to the sysfs representation
1146 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147 * used for controling the debug level.
1149 * See the level definitions in ipw for details.
1151 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1153 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1156 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1159 char *p = (char *)buf;
1162 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1164 if (p[0] == 'x' || p[0] == 'X')
1166 val = simple_strtoul(p, &p, 16);
1168 val = simple_strtoul(p, &p, 10);
1170 printk(KERN_INFO DRV_NAME
1171 ": %s is not in hex or decimal form.\n", buf);
1173 ipw_debug_level = val;
1175 return strnlen(buf, count);
1178 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179 show_debug_level, store_debug_level);
1181 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1183 /* length = 1st dword in log */
1184 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1187 static void ipw_capture_event_log(struct ipw_priv *priv,
1188 u32 log_len, struct ipw_event *log)
1193 base = ipw_read32(priv, IPW_EVENT_LOG);
1194 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195 (u8 *) log, sizeof(*log) * log_len);
1199 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1201 struct ipw_fw_error *error;
1202 u32 log_len = ipw_get_event_log_len(priv);
1203 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204 u32 elem_len = ipw_read_reg32(priv, base);
1206 error = kmalloc(sizeof(*error) +
1207 sizeof(*error->elem) * elem_len +
1208 sizeof(*error->log) * log_len, GFP_ATOMIC);
1210 IPW_ERROR("Memory allocation for firmware error log "
1214 error->jiffies = jiffies;
1215 error->status = priv->status;
1216 error->config = priv->config;
1217 error->elem_len = elem_len;
1218 error->log_len = log_len;
1219 error->elem = (struct ipw_error_elem *)error->payload;
1220 error->log = (struct ipw_event *)(error->elem + elem_len);
1222 ipw_capture_event_log(priv, log_len, error->log);
1225 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226 sizeof(*error->elem) * elem_len);
1231 static ssize_t show_event_log(struct device *d,
1232 struct device_attribute *attr, char *buf)
1234 struct ipw_priv *priv = dev_get_drvdata(d);
1235 u32 log_len = ipw_get_event_log_len(priv);
1237 struct ipw_event *log;
1240 /* not using min() because of its strict type checking */
1241 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1242 sizeof(*log) * log_len : PAGE_SIZE;
1243 log = kzalloc(log_size, GFP_KERNEL);
1245 IPW_ERROR("Unable to allocate memory for log\n");
1248 log_len = log_size / sizeof(*log);
1249 ipw_capture_event_log(priv, log_len, log);
1251 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1252 for (i = 0; i < log_len; i++)
1253 len += snprintf(buf + len, PAGE_SIZE - len,
1255 log[i].time, log[i].event, log[i].data);
1256 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1261 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1263 static ssize_t show_error(struct device *d,
1264 struct device_attribute *attr, char *buf)
1266 struct ipw_priv *priv = dev_get_drvdata(d);
1270 len += snprintf(buf + len, PAGE_SIZE - len,
1271 "%08lX%08X%08X%08X",
1272 priv->error->jiffies,
1273 priv->error->status,
1274 priv->error->config, priv->error->elem_len);
1275 for (i = 0; i < priv->error->elem_len; i++)
1276 len += snprintf(buf + len, PAGE_SIZE - len,
1277 "\n%08X%08X%08X%08X%08X%08X%08X",
1278 priv->error->elem[i].time,
1279 priv->error->elem[i].desc,
1280 priv->error->elem[i].blink1,
1281 priv->error->elem[i].blink2,
1282 priv->error->elem[i].link1,
1283 priv->error->elem[i].link2,
1284 priv->error->elem[i].data);
1286 len += snprintf(buf + len, PAGE_SIZE - len,
1287 "\n%08X", priv->error->log_len);
1288 for (i = 0; i < priv->error->log_len; i++)
1289 len += snprintf(buf + len, PAGE_SIZE - len,
1291 priv->error->log[i].time,
1292 priv->error->log[i].event,
1293 priv->error->log[i].data);
1294 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1298 static ssize_t clear_error(struct device *d,
1299 struct device_attribute *attr,
1300 const char *buf, size_t count)
1302 struct ipw_priv *priv = dev_get_drvdata(d);
1309 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1311 static ssize_t show_cmd_log(struct device *d,
1312 struct device_attribute *attr, char *buf)
1314 struct ipw_priv *priv = dev_get_drvdata(d);
1318 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1319 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1320 i = (i + 1) % priv->cmdlog_len) {
1322 snprintf(buf + len, PAGE_SIZE - len,
1323 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1324 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1325 priv->cmdlog[i].cmd.len);
1327 snprintk_buf(buf + len, PAGE_SIZE - len,
1328 (u8 *) priv->cmdlog[i].cmd.param,
1329 priv->cmdlog[i].cmd.len);
1330 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1332 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1336 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1338 #ifdef CONFIG_IPW2200_PROMISCUOUS
1339 static void ipw_prom_free(struct ipw_priv *priv);
1340 static int ipw_prom_alloc(struct ipw_priv *priv);
1341 static ssize_t store_rtap_iface(struct device *d,
1342 struct device_attribute *attr,
1343 const char *buf, size_t count)
1345 struct ipw_priv *priv = dev_get_drvdata(d);
1356 if (netif_running(priv->prom_net_dev)) {
1357 IPW_WARNING("Interface is up. Cannot unregister.\n");
1361 ipw_prom_free(priv);
1369 rc = ipw_prom_alloc(priv);
1379 IPW_ERROR("Failed to register promiscuous network "
1380 "device (error %d).\n", rc);
1386 static ssize_t show_rtap_iface(struct device *d,
1387 struct device_attribute *attr,
1390 struct ipw_priv *priv = dev_get_drvdata(d);
1392 return sprintf(buf, "%s", priv->prom_net_dev->name);
1401 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1404 static ssize_t store_rtap_filter(struct device *d,
1405 struct device_attribute *attr,
1406 const char *buf, size_t count)
1408 struct ipw_priv *priv = dev_get_drvdata(d);
1410 if (!priv->prom_priv) {
1411 IPW_ERROR("Attempting to set filter without "
1412 "rtap_iface enabled.\n");
1416 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1418 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1419 BIT_ARG16(priv->prom_priv->filter));
1424 static ssize_t show_rtap_filter(struct device *d,
1425 struct device_attribute *attr,
1428 struct ipw_priv *priv = dev_get_drvdata(d);
1429 return sprintf(buf, "0x%04X",
1430 priv->prom_priv ? priv->prom_priv->filter : 0);
1433 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1437 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1440 struct ipw_priv *priv = dev_get_drvdata(d);
1441 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1444 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1445 const char *buf, size_t count)
1447 struct ipw_priv *priv = dev_get_drvdata(d);
1448 struct net_device *dev = priv->net_dev;
1449 char buffer[] = "00000000";
1451 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1455 IPW_DEBUG_INFO("enter\n");
1457 strncpy(buffer, buf, len);
1460 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1462 if (p[0] == 'x' || p[0] == 'X')
1464 val = simple_strtoul(p, &p, 16);
1466 val = simple_strtoul(p, &p, 10);
1468 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1470 priv->ieee->scan_age = val;
1471 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1474 IPW_DEBUG_INFO("exit\n");
1478 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1480 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1483 struct ipw_priv *priv = dev_get_drvdata(d);
1484 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1487 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1488 const char *buf, size_t count)
1490 struct ipw_priv *priv = dev_get_drvdata(d);
1492 IPW_DEBUG_INFO("enter\n");
1498 IPW_DEBUG_LED("Disabling LED control.\n");
1499 priv->config |= CFG_NO_LED;
1500 ipw_led_shutdown(priv);
1502 IPW_DEBUG_LED("Enabling LED control.\n");
1503 priv->config &= ~CFG_NO_LED;
1507 IPW_DEBUG_INFO("exit\n");
1511 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1513 static ssize_t show_status(struct device *d,
1514 struct device_attribute *attr, char *buf)
1516 struct ipw_priv *p = d->driver_data;
1517 return sprintf(buf, "0x%08x\n", (int)p->status);
1520 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1522 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1525 struct ipw_priv *p = d->driver_data;
1526 return sprintf(buf, "0x%08x\n", (int)p->config);
1529 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1531 static ssize_t show_nic_type(struct device *d,
1532 struct device_attribute *attr, char *buf)
1534 struct ipw_priv *priv = d->driver_data;
1535 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1538 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1540 static ssize_t show_ucode_version(struct device *d,
1541 struct device_attribute *attr, char *buf)
1543 u32 len = sizeof(u32), tmp = 0;
1544 struct ipw_priv *p = d->driver_data;
1546 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1549 return sprintf(buf, "0x%08x\n", tmp);
1552 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1554 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1557 u32 len = sizeof(u32), tmp = 0;
1558 struct ipw_priv *p = d->driver_data;
1560 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1563 return sprintf(buf, "0x%08x\n", tmp);
1566 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1569 * Add a device attribute to view/control the delay between eeprom
1572 static ssize_t show_eeprom_delay(struct device *d,
1573 struct device_attribute *attr, char *buf)
1575 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1576 return sprintf(buf, "%i\n", n);
1578 static ssize_t store_eeprom_delay(struct device *d,
1579 struct device_attribute *attr,
1580 const char *buf, size_t count)
1582 struct ipw_priv *p = d->driver_data;
1583 sscanf(buf, "%i", &p->eeprom_delay);
1584 return strnlen(buf, count);
1587 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1588 show_eeprom_delay, store_eeprom_delay);
1590 static ssize_t show_command_event_reg(struct device *d,
1591 struct device_attribute *attr, char *buf)
1594 struct ipw_priv *p = d->driver_data;
1596 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1597 return sprintf(buf, "0x%08x\n", reg);
1599 static ssize_t store_command_event_reg(struct device *d,
1600 struct device_attribute *attr,
1601 const char *buf, size_t count)
1604 struct ipw_priv *p = d->driver_data;
1606 sscanf(buf, "%x", ®);
1607 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1608 return strnlen(buf, count);
1611 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1612 show_command_event_reg, store_command_event_reg);
1614 static ssize_t show_mem_gpio_reg(struct device *d,
1615 struct device_attribute *attr, char *buf)
1618 struct ipw_priv *p = d->driver_data;
1620 reg = ipw_read_reg32(p, 0x301100);
1621 return sprintf(buf, "0x%08x\n", reg);
1623 static ssize_t store_mem_gpio_reg(struct device *d,
1624 struct device_attribute *attr,
1625 const char *buf, size_t count)
1628 struct ipw_priv *p = d->driver_data;
1630 sscanf(buf, "%x", ®);
1631 ipw_write_reg32(p, 0x301100, reg);
1632 return strnlen(buf, count);
1635 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1636 show_mem_gpio_reg, store_mem_gpio_reg);
1638 static ssize_t show_indirect_dword(struct device *d,
1639 struct device_attribute *attr, char *buf)
1642 struct ipw_priv *priv = d->driver_data;
1644 if (priv->status & STATUS_INDIRECT_DWORD)
1645 reg = ipw_read_reg32(priv, priv->indirect_dword);
1649 return sprintf(buf, "0x%08x\n", reg);
1651 static ssize_t store_indirect_dword(struct device *d,
1652 struct device_attribute *attr,
1653 const char *buf, size_t count)
1655 struct ipw_priv *priv = d->driver_data;
1657 sscanf(buf, "%x", &priv->indirect_dword);
1658 priv->status |= STATUS_INDIRECT_DWORD;
1659 return strnlen(buf, count);
1662 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1663 show_indirect_dword, store_indirect_dword);
1665 static ssize_t show_indirect_byte(struct device *d,
1666 struct device_attribute *attr, char *buf)
1669 struct ipw_priv *priv = d->driver_data;
1671 if (priv->status & STATUS_INDIRECT_BYTE)
1672 reg = ipw_read_reg8(priv, priv->indirect_byte);
1676 return sprintf(buf, "0x%02x\n", reg);
1678 static ssize_t store_indirect_byte(struct device *d,
1679 struct device_attribute *attr,
1680 const char *buf, size_t count)
1682 struct ipw_priv *priv = d->driver_data;
1684 sscanf(buf, "%x", &priv->indirect_byte);
1685 priv->status |= STATUS_INDIRECT_BYTE;
1686 return strnlen(buf, count);
1689 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1690 show_indirect_byte, store_indirect_byte);
1692 static ssize_t show_direct_dword(struct device *d,
1693 struct device_attribute *attr, char *buf)
1696 struct ipw_priv *priv = d->driver_data;
1698 if (priv->status & STATUS_DIRECT_DWORD)
1699 reg = ipw_read32(priv, priv->direct_dword);
1703 return sprintf(buf, "0x%08x\n", reg);
1705 static ssize_t store_direct_dword(struct device *d,
1706 struct device_attribute *attr,
1707 const char *buf, size_t count)
1709 struct ipw_priv *priv = d->driver_data;
1711 sscanf(buf, "%x", &priv->direct_dword);
1712 priv->status |= STATUS_DIRECT_DWORD;
1713 return strnlen(buf, count);
1716 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1717 show_direct_dword, store_direct_dword);
1719 static int rf_kill_active(struct ipw_priv *priv)
1721 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1722 priv->status |= STATUS_RF_KILL_HW;
1724 priv->status &= ~STATUS_RF_KILL_HW;
1726 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1729 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1732 /* 0 - RF kill not enabled
1733 1 - SW based RF kill active (sysfs)
1734 2 - HW based RF kill active
1735 3 - Both HW and SW baed RF kill active */
1736 struct ipw_priv *priv = d->driver_data;
1737 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1738 (rf_kill_active(priv) ? 0x2 : 0x0);
1739 return sprintf(buf, "%i\n", val);
1742 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1744 if ((disable_radio ? 1 : 0) ==
1745 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1748 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1749 disable_radio ? "OFF" : "ON");
1751 if (disable_radio) {
1752 priv->status |= STATUS_RF_KILL_SW;
1754 if (priv->workqueue) {
1755 cancel_delayed_work(&priv->request_scan);
1756 cancel_delayed_work(&priv->scan_event);
1758 queue_work(priv->workqueue, &priv->down);
1760 priv->status &= ~STATUS_RF_KILL_SW;
1761 if (rf_kill_active(priv)) {
1762 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1763 "disabled by HW switch\n");
1764 /* Make sure the RF_KILL check timer is running */
1765 cancel_delayed_work(&priv->rf_kill);
1766 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1767 round_jiffies_relative(2 * HZ));
1769 queue_work(priv->workqueue, &priv->up);
1775 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1776 const char *buf, size_t count)
1778 struct ipw_priv *priv = d->driver_data;
1780 ipw_radio_kill_sw(priv, buf[0] == '1');
1785 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1787 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1790 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1791 int pos = 0, len = 0;
1792 if (priv->config & CFG_SPEED_SCAN) {
1793 while (priv->speed_scan[pos] != 0)
1794 len += sprintf(&buf[len], "%d ",
1795 priv->speed_scan[pos++]);
1796 return len + sprintf(&buf[len], "\n");
1799 return sprintf(buf, "0\n");
1802 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1803 const char *buf, size_t count)
1805 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1806 int channel, pos = 0;
1807 const char *p = buf;
1809 /* list of space separated channels to scan, optionally ending with 0 */
1810 while ((channel = simple_strtol(p, NULL, 0))) {
1811 if (pos == MAX_SPEED_SCAN - 1) {
1812 priv->speed_scan[pos] = 0;
1816 if (ieee80211_is_valid_channel(priv->ieee, channel))
1817 priv->speed_scan[pos++] = channel;
1819 IPW_WARNING("Skipping invalid channel request: %d\n",
1824 while (*p == ' ' || *p == '\t')
1829 priv->config &= ~CFG_SPEED_SCAN;
1831 priv->speed_scan_pos = 0;
1832 priv->config |= CFG_SPEED_SCAN;
1838 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1841 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1844 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1845 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1848 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1849 const char *buf, size_t count)
1851 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1853 priv->config |= CFG_NET_STATS;
1855 priv->config &= ~CFG_NET_STATS;
1860 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1861 show_net_stats, store_net_stats);
1863 static ssize_t show_channels(struct device *d,
1864 struct device_attribute *attr,
1867 struct ipw_priv *priv = dev_get_drvdata(d);
1868 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1871 len = sprintf(&buf[len],
1872 "Displaying %d channels in 2.4Ghz band "
1873 "(802.11bg):\n", geo->bg_channels);
1875 for (i = 0; i < geo->bg_channels; i++) {
1876 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1878 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1879 " (radar spectrum)" : "",
1880 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1881 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1883 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1884 "passive only" : "active/passive",
1885 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1889 len += sprintf(&buf[len],
1890 "Displaying %d channels in 5.2Ghz band "
1891 "(802.11a):\n", geo->a_channels);
1892 for (i = 0; i < geo->a_channels; i++) {
1893 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1895 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1896 " (radar spectrum)" : "",
1897 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1898 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1900 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1901 "passive only" : "active/passive");
1907 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1909 static void notify_wx_assoc_event(struct ipw_priv *priv)
1911 union iwreq_data wrqu;
1912 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1913 if (priv->status & STATUS_ASSOCIATED)
1914 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1916 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1917 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1920 static void ipw_irq_tasklet(struct ipw_priv *priv)
1922 u32 inta, inta_mask, handled = 0;
1923 unsigned long flags;
1926 spin_lock_irqsave(&priv->irq_lock, flags);
1928 inta = ipw_read32(priv, IPW_INTA_RW);
1929 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1930 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1932 /* Add any cached INTA values that need to be handled */
1933 inta |= priv->isr_inta;
1935 spin_unlock_irqrestore(&priv->irq_lock, flags);
1937 spin_lock_irqsave(&priv->lock, flags);
1939 /* handle all the justifications for the interrupt */
1940 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1942 handled |= IPW_INTA_BIT_RX_TRANSFER;
1945 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1946 IPW_DEBUG_HC("Command completed.\n");
1947 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1948 priv->status &= ~STATUS_HCMD_ACTIVE;
1949 wake_up_interruptible(&priv->wait_command_queue);
1950 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1953 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1954 IPW_DEBUG_TX("TX_QUEUE_1\n");
1955 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1956 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1959 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1960 IPW_DEBUG_TX("TX_QUEUE_2\n");
1961 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1962 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1965 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1966 IPW_DEBUG_TX("TX_QUEUE_3\n");
1967 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1968 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1971 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1972 IPW_DEBUG_TX("TX_QUEUE_4\n");
1973 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1974 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1977 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1978 IPW_WARNING("STATUS_CHANGE\n");
1979 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1982 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1983 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1984 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1987 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1988 IPW_WARNING("HOST_CMD_DONE\n");
1989 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1992 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1993 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1994 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1997 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1998 IPW_WARNING("PHY_OFF_DONE\n");
1999 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2002 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2003 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2004 priv->status |= STATUS_RF_KILL_HW;
2005 wake_up_interruptible(&priv->wait_command_queue);
2006 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2007 cancel_delayed_work(&priv->request_scan);
2008 cancel_delayed_work(&priv->scan_event);
2009 schedule_work(&priv->link_down);
2010 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2011 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2014 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2015 IPW_WARNING("Firmware error detected. Restarting.\n");
2017 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2018 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2019 struct ipw_fw_error *error =
2020 ipw_alloc_error_log(priv);
2021 ipw_dump_error_log(priv, error);
2025 priv->error = ipw_alloc_error_log(priv);
2027 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2029 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2031 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2032 ipw_dump_error_log(priv, priv->error);
2035 /* XXX: If hardware encryption is for WPA/WPA2,
2036 * we have to notify the supplicant. */
2037 if (priv->ieee->sec.encrypt) {
2038 priv->status &= ~STATUS_ASSOCIATED;
2039 notify_wx_assoc_event(priv);
2042 /* Keep the restart process from trying to send host
2043 * commands by clearing the INIT status bit */
2044 priv->status &= ~STATUS_INIT;
2046 /* Cancel currently queued command. */
2047 priv->status &= ~STATUS_HCMD_ACTIVE;
2048 wake_up_interruptible(&priv->wait_command_queue);
2050 queue_work(priv->workqueue, &priv->adapter_restart);
2051 handled |= IPW_INTA_BIT_FATAL_ERROR;
2054 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2055 IPW_ERROR("Parity error\n");
2056 handled |= IPW_INTA_BIT_PARITY_ERROR;
2059 if (handled != inta) {
2060 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2063 spin_unlock_irqrestore(&priv->lock, flags);
2065 /* enable all interrupts */
2066 ipw_enable_interrupts(priv);
2069 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2070 static char *get_cmd_string(u8 cmd)
2073 IPW_CMD(HOST_COMPLETE);
2074 IPW_CMD(POWER_DOWN);
2075 IPW_CMD(SYSTEM_CONFIG);
2076 IPW_CMD(MULTICAST_ADDRESS);
2078 IPW_CMD(ADAPTER_ADDRESS);
2080 IPW_CMD(RTS_THRESHOLD);
2081 IPW_CMD(FRAG_THRESHOLD);
2082 IPW_CMD(POWER_MODE);
2084 IPW_CMD(TGI_TX_KEY);
2085 IPW_CMD(SCAN_REQUEST);
2086 IPW_CMD(SCAN_REQUEST_EXT);
2088 IPW_CMD(SUPPORTED_RATES);
2089 IPW_CMD(SCAN_ABORT);
2091 IPW_CMD(QOS_PARAMETERS);
2092 IPW_CMD(DINO_CONFIG);
2093 IPW_CMD(RSN_CAPABILITIES);
2095 IPW_CMD(CARD_DISABLE);
2096 IPW_CMD(SEED_NUMBER);
2098 IPW_CMD(COUNTRY_INFO);
2099 IPW_CMD(AIRONET_INFO);
2100 IPW_CMD(AP_TX_POWER);
2102 IPW_CMD(CCX_VER_INFO);
2103 IPW_CMD(SET_CALIBRATION);
2104 IPW_CMD(SENSITIVITY_CALIB);
2105 IPW_CMD(RETRY_LIMIT);
2106 IPW_CMD(IPW_PRE_POWER_DOWN);
2107 IPW_CMD(VAP_BEACON_TEMPLATE);
2108 IPW_CMD(VAP_DTIM_PERIOD);
2109 IPW_CMD(EXT_SUPPORTED_RATES);
2110 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2111 IPW_CMD(VAP_QUIET_INTERVALS);
2112 IPW_CMD(VAP_CHANNEL_SWITCH);
2113 IPW_CMD(VAP_MANDATORY_CHANNELS);
2114 IPW_CMD(VAP_CELL_PWR_LIMIT);
2115 IPW_CMD(VAP_CF_PARAM_SET);
2116 IPW_CMD(VAP_SET_BEACONING_STATE);
2117 IPW_CMD(MEASUREMENT);
2118 IPW_CMD(POWER_CAPABILITY);
2119 IPW_CMD(SUPPORTED_CHANNELS);
2120 IPW_CMD(TPC_REPORT);
2122 IPW_CMD(PRODUCTION_COMMAND);
2128 #define HOST_COMPLETE_TIMEOUT HZ
2130 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2133 unsigned long flags;
2135 spin_lock_irqsave(&priv->lock, flags);
2136 if (priv->status & STATUS_HCMD_ACTIVE) {
2137 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2138 get_cmd_string(cmd->cmd));
2139 spin_unlock_irqrestore(&priv->lock, flags);
2143 priv->status |= STATUS_HCMD_ACTIVE;
2146 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2147 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2148 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2149 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2151 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2154 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2155 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2158 #ifndef DEBUG_CMD_WEP_KEY
2159 if (cmd->cmd == IPW_CMD_WEP_KEY)
2160 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2163 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2165 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2167 priv->status &= ~STATUS_HCMD_ACTIVE;
2168 IPW_ERROR("Failed to send %s: Reason %d\n",
2169 get_cmd_string(cmd->cmd), rc);
2170 spin_unlock_irqrestore(&priv->lock, flags);
2173 spin_unlock_irqrestore(&priv->lock, flags);
2175 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2177 status & STATUS_HCMD_ACTIVE),
2178 HOST_COMPLETE_TIMEOUT);
2180 spin_lock_irqsave(&priv->lock, flags);
2181 if (priv->status & STATUS_HCMD_ACTIVE) {
2182 IPW_ERROR("Failed to send %s: Command timed out.\n",
2183 get_cmd_string(cmd->cmd));
2184 priv->status &= ~STATUS_HCMD_ACTIVE;
2185 spin_unlock_irqrestore(&priv->lock, flags);
2189 spin_unlock_irqrestore(&priv->lock, flags);
2193 if (priv->status & STATUS_RF_KILL_HW) {
2194 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2195 get_cmd_string(cmd->cmd));
2202 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2203 priv->cmdlog_pos %= priv->cmdlog_len;
2208 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2210 struct host_cmd cmd = {
2214 return __ipw_send_cmd(priv, &cmd);
2217 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2220 struct host_cmd cmd = {
2226 return __ipw_send_cmd(priv, &cmd);
2229 static int ipw_send_host_complete(struct ipw_priv *priv)
2232 IPW_ERROR("Invalid args\n");
2236 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2239 static int ipw_send_system_config(struct ipw_priv *priv)
2241 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2242 sizeof(priv->sys_config),
2246 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2248 if (!priv || !ssid) {
2249 IPW_ERROR("Invalid args\n");
2253 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2257 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2259 if (!priv || !mac) {
2260 IPW_ERROR("Invalid args\n");
2264 IPW_DEBUG_INFO("%s: Setting MAC to %s\n",
2265 priv->net_dev->name, print_mac(mac, mac));
2267 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2271 * NOTE: This must be executed from our workqueue as it results in udelay
2272 * being called which may corrupt the keyboard if executed on default
2275 static void ipw_adapter_restart(void *adapter)
2277 struct ipw_priv *priv = adapter;
2279 if (priv->status & STATUS_RF_KILL_MASK)
2284 if (priv->assoc_network &&
2285 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2286 ipw_remove_current_network(priv);
2289 IPW_ERROR("Failed to up device\n");
2294 static void ipw_bg_adapter_restart(struct work_struct *work)
2296 struct ipw_priv *priv =
2297 container_of(work, struct ipw_priv, adapter_restart);
2298 mutex_lock(&priv->mutex);
2299 ipw_adapter_restart(priv);
2300 mutex_unlock(&priv->mutex);
2303 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2305 static void ipw_scan_check(void *data)
2307 struct ipw_priv *priv = data;
2308 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2309 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2310 "adapter after (%dms).\n",
2311 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2312 queue_work(priv->workqueue, &priv->adapter_restart);
2316 static void ipw_bg_scan_check(struct work_struct *work)
2318 struct ipw_priv *priv =
2319 container_of(work, struct ipw_priv, scan_check.work);
2320 mutex_lock(&priv->mutex);
2321 ipw_scan_check(priv);
2322 mutex_unlock(&priv->mutex);
2325 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2326 struct ipw_scan_request_ext *request)
2328 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2329 sizeof(*request), request);
2332 static int ipw_send_scan_abort(struct ipw_priv *priv)
2335 IPW_ERROR("Invalid args\n");
2339 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2342 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2344 struct ipw_sensitivity_calib calib = {
2345 .beacon_rssi_raw = cpu_to_le16(sens),
2348 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2352 static int ipw_send_associate(struct ipw_priv *priv,
2353 struct ipw_associate *associate)
2355 struct ipw_associate tmp_associate;
2357 if (!priv || !associate) {
2358 IPW_ERROR("Invalid args\n");
2362 memcpy(&tmp_associate, associate, sizeof(*associate));
2363 tmp_associate.policy_support =
2364 cpu_to_le16(tmp_associate.policy_support);
2365 tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2366 tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2367 tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2368 tmp_associate.listen_interval =
2369 cpu_to_le16(tmp_associate.listen_interval);
2370 tmp_associate.beacon_interval =
2371 cpu_to_le16(tmp_associate.beacon_interval);
2372 tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2374 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2378 static int ipw_send_supported_rates(struct ipw_priv *priv,
2379 struct ipw_supported_rates *rates)
2381 if (!priv || !rates) {
2382 IPW_ERROR("Invalid args\n");
2386 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2390 static int ipw_set_random_seed(struct ipw_priv *priv)
2395 IPW_ERROR("Invalid args\n");
2399 get_random_bytes(&val, sizeof(val));
2401 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2404 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2407 IPW_ERROR("Invalid args\n");
2411 phy_off = cpu_to_le32(phy_off);
2412 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2416 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2418 if (!priv || !power) {
2419 IPW_ERROR("Invalid args\n");
2423 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2426 static int ipw_set_tx_power(struct ipw_priv *priv)
2428 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2429 struct ipw_tx_power tx_power;
2433 memset(&tx_power, 0, sizeof(tx_power));
2435 /* configure device for 'G' band */
2436 tx_power.ieee_mode = IPW_G_MODE;
2437 tx_power.num_channels = geo->bg_channels;
2438 for (i = 0; i < geo->bg_channels; i++) {
2439 max_power = geo->bg[i].max_power;
2440 tx_power.channels_tx_power[i].channel_number =
2442 tx_power.channels_tx_power[i].tx_power = max_power ?
2443 min(max_power, priv->tx_power) : priv->tx_power;
2445 if (ipw_send_tx_power(priv, &tx_power))
2448 /* configure device to also handle 'B' band */
2449 tx_power.ieee_mode = IPW_B_MODE;
2450 if (ipw_send_tx_power(priv, &tx_power))
2453 /* configure device to also handle 'A' band */
2454 if (priv->ieee->abg_true) {
2455 tx_power.ieee_mode = IPW_A_MODE;
2456 tx_power.num_channels = geo->a_channels;
2457 for (i = 0; i < tx_power.num_channels; i++) {
2458 max_power = geo->a[i].max_power;
2459 tx_power.channels_tx_power[i].channel_number =
2461 tx_power.channels_tx_power[i].tx_power = max_power ?
2462 min(max_power, priv->tx_power) : priv->tx_power;
2464 if (ipw_send_tx_power(priv, &tx_power))
2470 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2472 struct ipw_rts_threshold rts_threshold = {
2473 .rts_threshold = cpu_to_le16(rts),
2477 IPW_ERROR("Invalid args\n");
2481 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2482 sizeof(rts_threshold), &rts_threshold);
2485 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2487 struct ipw_frag_threshold frag_threshold = {
2488 .frag_threshold = cpu_to_le16(frag),
2492 IPW_ERROR("Invalid args\n");
2496 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2497 sizeof(frag_threshold), &frag_threshold);
2500 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2505 IPW_ERROR("Invalid args\n");
2509 /* If on battery, set to 3, if AC set to CAM, else user
2512 case IPW_POWER_BATTERY:
2513 param = IPW_POWER_INDEX_3;
2516 param = IPW_POWER_MODE_CAM;
2523 param = cpu_to_le32(param);
2524 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2528 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2530 struct ipw_retry_limit retry_limit = {
2531 .short_retry_limit = slimit,
2532 .long_retry_limit = llimit
2536 IPW_ERROR("Invalid args\n");
2540 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2545 * The IPW device contains a Microwire compatible EEPROM that stores
2546 * various data like the MAC address. Usually the firmware has exclusive
2547 * access to the eeprom, but during device initialization (before the
2548 * device driver has sent the HostComplete command to the firmware) the
2549 * device driver has read access to the EEPROM by way of indirect addressing
2550 * through a couple of memory mapped registers.
2552 * The following is a simplified implementation for pulling data out of the
2553 * the eeprom, along with some helper functions to find information in
2554 * the per device private data's copy of the eeprom.
2556 * NOTE: To better understand how these functions work (i.e what is a chip
2557 * select and why do have to keep driving the eeprom clock?), read
2558 * just about any data sheet for a Microwire compatible EEPROM.
2561 /* write a 32 bit value into the indirect accessor register */
2562 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2564 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2566 /* the eeprom requires some time to complete the operation */
2567 udelay(p->eeprom_delay);
2572 /* perform a chip select operation */
2573 static void eeprom_cs(struct ipw_priv *priv)
2575 eeprom_write_reg(priv, 0);
2576 eeprom_write_reg(priv, EEPROM_BIT_CS);
2577 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2578 eeprom_write_reg(priv, EEPROM_BIT_CS);
2581 /* perform a chip select operation */
2582 static void eeprom_disable_cs(struct ipw_priv *priv)
2584 eeprom_write_reg(priv, EEPROM_BIT_CS);
2585 eeprom_write_reg(priv, 0);
2586 eeprom_write_reg(priv, EEPROM_BIT_SK);
2589 /* push a single bit down to the eeprom */
2590 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2592 int d = (bit ? EEPROM_BIT_DI : 0);
2593 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2594 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2597 /* push an opcode followed by an address down to the eeprom */
2598 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2603 eeprom_write_bit(priv, 1);
2604 eeprom_write_bit(priv, op & 2);
2605 eeprom_write_bit(priv, op & 1);
2606 for (i = 7; i >= 0; i--) {
2607 eeprom_write_bit(priv, addr & (1 << i));
2611 /* pull 16 bits off the eeprom, one bit at a time */
2612 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2617 /* Send READ Opcode */
2618 eeprom_op(priv, EEPROM_CMD_READ, addr);
2620 /* Send dummy bit */
2621 eeprom_write_reg(priv, EEPROM_BIT_CS);
2623 /* Read the byte off the eeprom one bit at a time */
2624 for (i = 0; i < 16; i++) {
2626 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2627 eeprom_write_reg(priv, EEPROM_BIT_CS);
2628 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2629 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2632 /* Send another dummy bit */
2633 eeprom_write_reg(priv, 0);
2634 eeprom_disable_cs(priv);
2639 /* helper function for pulling the mac address out of the private */
2640 /* data's copy of the eeprom data */
2641 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2643 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2647 * Either the device driver (i.e. the host) or the firmware can
2648 * load eeprom data into the designated region in SRAM. If neither
2649 * happens then the FW will shutdown with a fatal error.
2651 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2652 * bit needs region of shared SRAM needs to be non-zero.
2654 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2657 u16 *eeprom = (u16 *) priv->eeprom;
2659 IPW_DEBUG_TRACE(">>\n");
2661 /* read entire contents of eeprom into private buffer */
2662 for (i = 0; i < 128; i++)
2663 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2666 If the data looks correct, then copy it to our private
2667 copy. Otherwise let the firmware know to perform the operation
2670 if (priv->eeprom[EEPROM_VERSION] != 0) {
2671 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2673 /* write the eeprom data to sram */
2674 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2675 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2677 /* Do not load eeprom data on fatal error or suspend */
2678 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2680 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2682 /* Load eeprom data on fatal error or suspend */
2683 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2686 IPW_DEBUG_TRACE("<<\n");
2689 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2694 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2696 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2699 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2701 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2702 CB_NUMBER_OF_ELEMENTS_SMALL *
2703 sizeof(struct command_block));
2706 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2707 { /* start dma engine but no transfers yet */
2709 IPW_DEBUG_FW(">> : \n");
2712 ipw_fw_dma_reset_command_blocks(priv);
2714 /* Write CB base address */
2715 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2717 IPW_DEBUG_FW("<< : \n");
2721 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2725 IPW_DEBUG_FW(">> :\n");
2727 /* set the Stop and Abort bit */
2728 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2729 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2730 priv->sram_desc.last_cb_index = 0;
2732 IPW_DEBUG_FW("<< \n");
2735 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2736 struct command_block *cb)
2739 IPW_SHARED_SRAM_DMA_CONTROL +
2740 (sizeof(struct command_block) * index);
2741 IPW_DEBUG_FW(">> :\n");
2743 ipw_write_indirect(priv, address, (u8 *) cb,
2744 (int)sizeof(struct command_block));
2746 IPW_DEBUG_FW("<< :\n");
2751 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2756 IPW_DEBUG_FW(">> :\n");
2758 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2759 ipw_fw_dma_write_command_block(priv, index,
2760 &priv->sram_desc.cb_list[index]);
2762 /* Enable the DMA in the CSR register */
2763 ipw_clear_bit(priv, IPW_RESET_REG,
2764 IPW_RESET_REG_MASTER_DISABLED |
2765 IPW_RESET_REG_STOP_MASTER);
2767 /* Set the Start bit. */
2768 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2769 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2771 IPW_DEBUG_FW("<< :\n");
2775 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2778 u32 register_value = 0;
2779 u32 cb_fields_address = 0;
2781 IPW_DEBUG_FW(">> :\n");
2782 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2783 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2785 /* Read the DMA Controlor register */
2786 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2787 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2789 /* Print the CB values */
2790 cb_fields_address = address;
2791 register_value = ipw_read_reg32(priv, cb_fields_address);
2792 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2794 cb_fields_address += sizeof(u32);
2795 register_value = ipw_read_reg32(priv, cb_fields_address);
2796 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2798 cb_fields_address += sizeof(u32);
2799 register_value = ipw_read_reg32(priv, cb_fields_address);
2800 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2803 cb_fields_address += sizeof(u32);
2804 register_value = ipw_read_reg32(priv, cb_fields_address);
2805 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2807 IPW_DEBUG_FW(">> :\n");
2810 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2812 u32 current_cb_address = 0;
2813 u32 current_cb_index = 0;
2815 IPW_DEBUG_FW("<< :\n");
2816 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2818 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2819 sizeof(struct command_block);
2821 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2822 current_cb_index, current_cb_address);
2824 IPW_DEBUG_FW(">> :\n");
2825 return current_cb_index;
2829 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2833 int interrupt_enabled, int is_last)
2836 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2837 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2839 struct command_block *cb;
2840 u32 last_cb_element = 0;
2842 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2843 src_address, dest_address, length);
2845 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2848 last_cb_element = priv->sram_desc.last_cb_index;
2849 cb = &priv->sram_desc.cb_list[last_cb_element];
2850 priv->sram_desc.last_cb_index++;
2852 /* Calculate the new CB control word */
2853 if (interrupt_enabled)
2854 control |= CB_INT_ENABLED;
2857 control |= CB_LAST_VALID;
2861 /* Calculate the CB Element's checksum value */
2862 cb->status = control ^ src_address ^ dest_address;
2864 /* Copy the Source and Destination addresses */
2865 cb->dest_addr = dest_address;
2866 cb->source_addr = src_address;
2868 /* Copy the Control Word last */
2869 cb->control = control;
2874 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2875 u32 src_phys, u32 dest_address, u32 length)
2877 u32 bytes_left = length;
2879 u32 dest_offset = 0;
2881 IPW_DEBUG_FW(">> \n");
2882 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2883 src_phys, dest_address, length);
2884 while (bytes_left > CB_MAX_LENGTH) {
2885 status = ipw_fw_dma_add_command_block(priv,
2886 src_phys + src_offset,
2889 CB_MAX_LENGTH, 0, 0);
2891 IPW_DEBUG_FW_INFO(": Failed\n");
2894 IPW_DEBUG_FW_INFO(": Added new cb\n");
2896 src_offset += CB_MAX_LENGTH;
2897 dest_offset += CB_MAX_LENGTH;
2898 bytes_left -= CB_MAX_LENGTH;
2901 /* add the buffer tail */
2902 if (bytes_left > 0) {
2904 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2905 dest_address + dest_offset,
2908 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2912 (": Adding new cb - the buffer tail\n");
2915 IPW_DEBUG_FW("<< \n");
2919 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2921 u32 current_index = 0, previous_index;
2924 IPW_DEBUG_FW(">> : \n");
2926 current_index = ipw_fw_dma_command_block_index(priv);
2927 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2928 (int)priv->sram_desc.last_cb_index);
2930 while (current_index < priv->sram_desc.last_cb_index) {
2932 previous_index = current_index;
2933 current_index = ipw_fw_dma_command_block_index(priv);
2935 if (previous_index < current_index) {
2939 if (++watchdog > 400) {
2940 IPW_DEBUG_FW_INFO("Timeout\n");
2941 ipw_fw_dma_dump_command_block(priv);
2942 ipw_fw_dma_abort(priv);
2947 ipw_fw_dma_abort(priv);
2949 /*Disable the DMA in the CSR register */
2950 ipw_set_bit(priv, IPW_RESET_REG,
2951 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2953 IPW_DEBUG_FW("<< dmaWaitSync \n");
2957 static void ipw_remove_current_network(struct ipw_priv *priv)
2959 struct list_head *element, *safe;
2960 struct ieee80211_network *network = NULL;
2961 unsigned long flags;
2963 spin_lock_irqsave(&priv->ieee->lock, flags);
2964 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2965 network = list_entry(element, struct ieee80211_network, list);
2966 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2968 list_add_tail(&network->list,
2969 &priv->ieee->network_free_list);
2972 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2976 * Check that card is still alive.
2977 * Reads debug register from domain0.
2978 * If card is present, pre-defined value should
2982 * @return 1 if card is present, 0 otherwise
2984 static inline int ipw_alive(struct ipw_priv *priv)
2986 return ipw_read32(priv, 0x90) == 0xd55555d5;
2989 /* timeout in msec, attempted in 10-msec quanta */
2990 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2996 if ((ipw_read32(priv, addr) & mask) == mask)
3000 } while (i < timeout);
3005 /* These functions load the firmware and micro code for the operation of
3006 * the ipw hardware. It assumes the buffer has all the bits for the
3007 * image and the caller is handling the memory allocation and clean up.
3010 static int ipw_stop_master(struct ipw_priv *priv)
3014 IPW_DEBUG_TRACE(">> \n");
3015 /* stop master. typical delay - 0 */
3016 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3018 /* timeout is in msec, polled in 10-msec quanta */
3019 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3020 IPW_RESET_REG_MASTER_DISABLED, 100);
3022 IPW_ERROR("wait for stop master failed after 100ms\n");
3026 IPW_DEBUG_INFO("stop master %dms\n", rc);
3031 static void ipw_arc_release(struct ipw_priv *priv)
3033 IPW_DEBUG_TRACE(">> \n");
3036 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3038 /* no one knows timing, for safety add some delay */
3047 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3049 int rc = 0, i, addr;
3053 image = (u16 *) data;
3055 IPW_DEBUG_TRACE(">> \n");
3057 rc = ipw_stop_master(priv);
3062 for (addr = IPW_SHARED_LOWER_BOUND;
3063 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3064 ipw_write32(priv, addr, 0);
3067 /* no ucode (yet) */
3068 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3069 /* destroy DMA queues */
3070 /* reset sequence */
3072 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3073 ipw_arc_release(priv);
3074 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3078 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3081 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3084 /* enable ucode store */
3085 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3086 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3092 * Do NOT set indirect address register once and then
3093 * store data to indirect data register in the loop.
3094 * It seems very reasonable, but in this case DINO do not
3095 * accept ucode. It is essential to set address each time.
3097 /* load new ipw uCode */
3098 for (i = 0; i < len / 2; i++)
3099 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3100 cpu_to_le16(image[i]));
3103 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3104 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3106 /* this is where the igx / win driver deveates from the VAP driver. */
3108 /* wait for alive response */
3109 for (i = 0; i < 100; i++) {
3110 /* poll for incoming data */
3111 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3112 if (cr & DINO_RXFIFO_DATA)
3117 if (cr & DINO_RXFIFO_DATA) {
3118 /* alive_command_responce size is NOT multiple of 4 */
3119 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3121 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3122 response_buffer[i] =
3123 le32_to_cpu(ipw_read_reg32(priv,
3124 IPW_BASEBAND_RX_FIFO_READ));
3125 memcpy(&priv->dino_alive, response_buffer,
3126 sizeof(priv->dino_alive));
3127 if (priv->dino_alive.alive_command == 1
3128 && priv->dino_alive.ucode_valid == 1) {
3131 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3132 "of %02d/%02d/%02d %02d:%02d\n",
3133 priv->dino_alive.software_revision,
3134 priv->dino_alive.software_revision,
3135 priv->dino_alive.device_identifier,
3136 priv->dino_alive.device_identifier,
3137 priv->dino_alive.time_stamp[0],
3138 priv->dino_alive.time_stamp[1],
3139 priv->dino_alive.time_stamp[2],
3140 priv->dino_alive.time_stamp[3],
3141 priv->dino_alive.time_stamp[4]);
3143 IPW_DEBUG_INFO("Microcode is not alive\n");
3147 IPW_DEBUG_INFO("No alive response from DINO\n");
3151 /* disable DINO, otherwise for some reason
3152 firmware have problem getting alive resp. */
3153 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3158 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3162 struct fw_chunk *chunk;
3163 dma_addr_t shared_phys;
3166 IPW_DEBUG_TRACE("<< : \n");
3167 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3172 memmove(shared_virt, data, len);
3175 rc = ipw_fw_dma_enable(priv);
3177 if (priv->sram_desc.last_cb_index > 0) {
3178 /* the DMA is already ready this would be a bug. */
3184 chunk = (struct fw_chunk *)(data + offset);
3185 offset += sizeof(struct fw_chunk);
3186 /* build DMA packet and queue up for sending */
3187 /* dma to chunk->address, the chunk->length bytes from data +
3190 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3191 le32_to_cpu(chunk->address),
3192 le32_to_cpu(chunk->length));
3194 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3198 offset += le32_to_cpu(chunk->length);
3199 } while (offset < len);
3201 /* Run the DMA and wait for the answer */
3202 rc = ipw_fw_dma_kick(priv);
3204 IPW_ERROR("dmaKick Failed\n");
3208 rc = ipw_fw_dma_wait(priv);
3210 IPW_ERROR("dmaWaitSync Failed\n");
3214 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3219 static int ipw_stop_nic(struct ipw_priv *priv)
3224 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3226 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3227 IPW_RESET_REG_MASTER_DISABLED, 500);
3229 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3233 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3238 static void ipw_start_nic(struct ipw_priv *priv)
3240 IPW_DEBUG_TRACE(">>\n");
3242 /* prvHwStartNic release ARC */
3243 ipw_clear_bit(priv, IPW_RESET_REG,
3244 IPW_RESET_REG_MASTER_DISABLED |
3245 IPW_RESET_REG_STOP_MASTER |
3246 CBD_RESET_REG_PRINCETON_RESET);
3248 /* enable power management */
3249 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3250 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3252 IPW_DEBUG_TRACE("<<\n");
3255 static int ipw_init_nic(struct ipw_priv *priv)
3259 IPW_DEBUG_TRACE(">>\n");
3262 /* set "initialization complete" bit to move adapter to D0 state */
3263 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3265 /* low-level PLL activation */
3266 ipw_write32(priv, IPW_READ_INT_REGISTER,
3267 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3269 /* wait for clock stabilization */
3270 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3271 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3273 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3275 /* assert SW reset */
3276 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3280 /* set "initialization complete" bit to move adapter to D0 state */
3281 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3283 IPW_DEBUG_TRACE(">>\n");
3287 /* Call this function from process context, it will sleep in request_firmware.
3288 * Probe is an ok place to call this from.
3290 static int ipw_reset_nic(struct ipw_priv *priv)
3293 unsigned long flags;
3295 IPW_DEBUG_TRACE(">>\n");
3297 rc = ipw_init_nic(priv);
3299 spin_lock_irqsave(&priv->lock, flags);
3300 /* Clear the 'host command active' bit... */
3301 priv->status &= ~STATUS_HCMD_ACTIVE;
3302 wake_up_interruptible(&priv->wait_command_queue);
3303 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3304 wake_up_interruptible(&priv->wait_state);
3305 spin_unlock_irqrestore(&priv->lock, flags);
3307 IPW_DEBUG_TRACE("<<\n");
3320 static int ipw_get_fw(struct ipw_priv *priv,
3321 const struct firmware **raw, const char *name)
3326 /* ask firmware_class module to get the boot firmware off disk */
3327 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3329 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3333 if ((*raw)->size < sizeof(*fw)) {
3334 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3338 fw = (void *)(*raw)->data;
3340 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3341 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3342 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3343 name, (*raw)->size);
3347 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3349 le32_to_cpu(fw->ver) >> 16,
3350 le32_to_cpu(fw->ver) & 0xff,
3351 (*raw)->size - sizeof(*fw));
3355 #define IPW_RX_BUF_SIZE (3000)
3357 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3358 struct ipw_rx_queue *rxq)
3360 unsigned long flags;
3363 spin_lock_irqsave(&rxq->lock, flags);
3365 INIT_LIST_HEAD(&rxq->rx_free);
3366 INIT_LIST_HEAD(&rxq->rx_used);
3368 /* Fill the rx_used queue with _all_ of the Rx buffers */
3369 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3370 /* In the reset function, these buffers may have been allocated
3371 * to an SKB, so we need to unmap and free potential storage */
3372 if (rxq->pool[i].skb != NULL) {
3373 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3374 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3375 dev_kfree_skb(rxq->pool[i].skb);
3376 rxq->pool[i].skb = NULL;
3378 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3381 /* Set us so that we have processed and used all buffers, but have
3382 * not restocked the Rx queue with fresh buffers */
3383 rxq->read = rxq->write = 0;
3384 rxq->processed = RX_QUEUE_SIZE - 1;
3385 rxq->free_count = 0;
3386 spin_unlock_irqrestore(&rxq->lock, flags);
3390 static int fw_loaded = 0;
3391 static const struct firmware *raw = NULL;
3393 static void free_firmware(void)
3396 release_firmware(raw);
3402 #define free_firmware() do {} while (0)
3405 static int ipw_load(struct ipw_priv *priv)
3408 const struct firmware *raw = NULL;
3411 u8 *boot_img, *ucode_img, *fw_img;
3413 int rc = 0, retries = 3;
3415 switch (priv->ieee->iw_mode) {
3417 name = "ipw2200-ibss.fw";
3419 #ifdef CONFIG_IPW2200_MONITOR
3420 case IW_MODE_MONITOR:
3421 name = "ipw2200-sniffer.fw";
3425 name = "ipw2200-bss.fw";
3437 rc = ipw_get_fw(priv, &raw, name);
3444 fw = (void *)raw->data;
3445 boot_img = &fw->data[0];
3446 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3447 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3448 le32_to_cpu(fw->ucode_size)];
3454 priv->rxq = ipw_rx_queue_alloc(priv);
3456 ipw_rx_queue_reset(priv, priv->rxq);
3458 IPW_ERROR("Unable to initialize Rx queue\n");
3463 /* Ensure interrupts are disabled */
3464 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3465 priv->status &= ~STATUS_INT_ENABLED;
3467 /* ack pending interrupts */
3468 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3472 rc = ipw_reset_nic(priv);
3474 IPW_ERROR("Unable to reset NIC\n");
3478 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3479 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3481 /* DMA the initial boot firmware into the device */
3482 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3484 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3488 /* kick start the device */
3489 ipw_start_nic(priv);
3491 /* wait for the device to finish its initial startup sequence */
3492 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3493 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3495 IPW_ERROR("device failed to boot initial fw image\n");
3498 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3500 /* ack fw init done interrupt */
3501 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3503 /* DMA the ucode into the device */
3504 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3506 IPW_ERROR("Unable to load ucode: %d\n", rc);
3513 /* DMA bss firmware into the device */
3514 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3516 IPW_ERROR("Unable to load firmware: %d\n", rc);
3523 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3525 rc = ipw_queue_reset(priv);
3527 IPW_ERROR("Unable to initialize queues\n");
3531 /* Ensure interrupts are disabled */
3532 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3533 /* ack pending interrupts */
3534 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3536 /* kick start the device */
3537 ipw_start_nic(priv);
3539 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3541 IPW_WARNING("Parity error. Retrying init.\n");
3546 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3551 /* wait for the device */
3552 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3553 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3555 IPW_ERROR("device failed to start within 500ms\n");
3558 IPW_DEBUG_INFO("device response after %dms\n", rc);
3560 /* ack fw init done interrupt */
3561 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3563 /* read eeprom data and initialize the eeprom region of sram */
3564 priv->eeprom_delay = 1;
3565 ipw_eeprom_init_sram(priv);
3567 /* enable interrupts */
3568 ipw_enable_interrupts(priv);
3570 /* Ensure our queue has valid packets */
3571 ipw_rx_queue_replenish(priv);
3573 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3575 /* ack pending interrupts */
3576 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3579 release_firmware(raw);
3585 ipw_rx_queue_free(priv, priv->rxq);
3588 ipw_tx_queue_free(priv);
3590 release_firmware(raw);
3602 * Theory of operation
3604 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3605 * 2 empty entries always kept in the buffer to protect from overflow.
3607 * For Tx queue, there are low mark and high mark limits. If, after queuing
3608 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3609 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3612 * The IPW operates with six queues, one receive queue in the device's
3613 * sram, one transmit queue for sending commands to the device firmware,
3614 * and four transmit queues for data.
3616 * The four transmit queues allow for performing quality of service (qos)
3617 * transmissions as per the 802.11 protocol. Currently Linux does not
3618 * provide a mechanism to the user for utilizing prioritized queues, so
3619 * we only utilize the first data transmit queue (queue1).
3623 * Driver allocates buffers of this size for Rx
3626 static inline int ipw_queue_space(const struct clx2_queue *q)
3628 int s = q->last_used - q->first_empty;
3631 s -= 2; /* keep some reserve to not confuse empty and full situations */
3637 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3639 return (++index == n_bd) ? 0 : index;
3643 * Initialize common DMA queue structure
3645 * @param q queue to init
3646 * @param count Number of BD's to allocate. Should be power of 2
3647 * @param read_register Address for 'read' register
3648 * (not offset within BAR, full address)
3649 * @param write_register Address for 'write' register
3650 * (not offset within BAR, full address)
3651 * @param base_register Address for 'base' register
3652 * (not offset within BAR, full address)
3653 * @param size Address for 'size' register
3654 * (not offset within BAR, full address)
3656 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3657 int count, u32 read, u32 write, u32 base, u32 size)
3661 q->low_mark = q->n_bd / 4;
3662 if (q->low_mark < 4)
3665 q->high_mark = q->n_bd / 8;
3666 if (q->high_mark < 2)
3669 q->first_empty = q->last_used = 0;
3673 ipw_write32(priv, base, q->dma_addr);
3674 ipw_write32(priv, size, count);
3675 ipw_write32(priv, read, 0);
3676 ipw_write32(priv, write, 0);
3678 _ipw_read32(priv, 0x90);
3681 static int ipw_queue_tx_init(struct ipw_priv *priv,
3682 struct clx2_tx_queue *q,
3683 int count, u32 read, u32 write, u32 base, u32 size)
3685 struct pci_dev *dev = priv->pci_dev;
3687 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3689 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3694 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3696 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3697 sizeof(q->bd[0]) * count);
3703 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3708 * Free one TFD, those at index [txq->q.last_used].
3709 * Do NOT advance any indexes
3714 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3715 struct clx2_tx_queue *txq)
3717 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3718 struct pci_dev *dev = priv->pci_dev;
3722 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3723 /* nothing to cleanup after for host commands */
3727 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3728 IPW_ERROR("Too many chunks: %i\n",
3729 le32_to_cpu(bd->u.data.num_chunks));
3730 /** @todo issue fatal error, it is quite serious situation */
3734 /* unmap chunks if any */
3735 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3736 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3737 le16_to_cpu(bd->u.data.chunk_len[i]),
3739 if (txq->txb[txq->q.last_used]) {
3740 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3741 txq->txb[txq->q.last_used] = NULL;
3747 * Deallocate DMA queue.
3749 * Empty queue by removing and destroying all BD's.
3755 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3757 struct clx2_queue *q = &txq->q;
3758 struct pci_dev *dev = priv->pci_dev;
3763 /* first, empty all BD's */
3764 for (; q->first_empty != q->last_used;
3765 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3766 ipw_queue_tx_free_tfd(priv, txq);
3769 /* free buffers belonging to queue itself */
3770 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3774 /* 0 fill whole structure */
3775 memset(txq, 0, sizeof(*txq));
3779 * Destroy all DMA queues and structures
3783 static void ipw_tx_queue_free(struct ipw_priv *priv)
3786 ipw_queue_tx_free(priv, &priv->txq_cmd);
3789 ipw_queue_tx_free(priv, &priv->txq[0]);
3790 ipw_queue_tx_free(priv, &priv->txq[1]);
3791 ipw_queue_tx_free(priv, &priv->txq[2]);
3792 ipw_queue_tx_free(priv, &priv->txq[3]);
3795 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3797 /* First 3 bytes are manufacturer */
3798 bssid[0] = priv->mac_addr[0];
3799 bssid[1] = priv->mac_addr[1];
3800 bssid[2] = priv->mac_addr[2];
3802 /* Last bytes are random */
3803 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3805 bssid[0] &= 0xfe; /* clear multicast bit */
3806 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3809 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3811 struct ipw_station_entry entry;
3813 DECLARE_MAC_BUF(mac);
3815 for (i = 0; i < priv->num_stations; i++) {
3816 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3817 /* Another node is active in network */
3818 priv->missed_adhoc_beacons = 0;
3819 if (!(priv->config & CFG_STATIC_CHANNEL))
3820 /* when other nodes drop out, we drop out */
3821 priv->config &= ~CFG_ADHOC_PERSIST;
3827 if (i == MAX_STATIONS)
3828 return IPW_INVALID_STATION;
3830 IPW_DEBUG_SCAN("Adding AdHoc station: %s\n", print_mac(mac, bssid));
3833 entry.support_mode = 0;
3834 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3835 memcpy(priv->stations[i], bssid, ETH_ALEN);
3836 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3837 &entry, sizeof(entry));
3838 priv->num_stations++;
3843 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3847 for (i = 0; i < priv->num_stations; i++)
3848 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3851 return IPW_INVALID_STATION;
3854 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3857 DECLARE_MAC_BUF(mac);
3859 if (priv->status & STATUS_ASSOCIATING) {
3860 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3861 queue_work(priv->workqueue, &priv->disassociate);
3865 if (!(priv->status & STATUS_ASSOCIATED)) {
3866 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3870 IPW_DEBUG_ASSOC("Disassocation attempt from %s "
3872 print_mac(mac, priv->assoc_request.bssid),
3873 priv->assoc_request.channel);
3875 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3876 priv->status |= STATUS_DISASSOCIATING;
3879 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3881 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3883 err = ipw_send_associate(priv, &priv->assoc_request);
3885 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3892 static int ipw_disassociate(void *data)
3894 struct ipw_priv *priv = data;
3895 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3897 ipw_send_disassociate(data, 0);
3901 static void ipw_bg_disassociate(struct work_struct *work)
3903 struct ipw_priv *priv =
3904 container_of(work, struct ipw_priv, disassociate);
3905 mutex_lock(&priv->mutex);
3906 ipw_disassociate(priv);
3907 mutex_unlock(&priv->mutex);
3910 static void ipw_system_config(struct work_struct *work)
3912 struct ipw_priv *priv =
3913 container_of(work, struct ipw_priv, system_config);
3915 #ifdef CONFIG_IPW2200_PROMISCUOUS
3916 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3917 priv->sys_config.accept_all_data_frames = 1;
3918 priv->sys_config.accept_non_directed_frames = 1;
3919 priv->sys_config.accept_all_mgmt_bcpr = 1;
3920 priv->sys_config.accept_all_mgmt_frames = 1;
3924 ipw_send_system_config(priv);
3927 struct ipw_status_code {
3932 static const struct ipw_status_code ipw_status_codes[] = {
3933 {0x00, "Successful"},
3934 {0x01, "Unspecified failure"},
3935 {0x0A, "Cannot support all requested capabilities in the "
3936 "Capability information field"},
3937 {0x0B, "Reassociation denied due to inability to confirm that "
3938 "association exists"},
3939 {0x0C, "Association denied due to reason outside the scope of this "
3942 "Responding station does not support the specified authentication "
3945 "Received an Authentication frame with authentication sequence "
3946 "transaction sequence number out of expected sequence"},
3947 {0x0F, "Authentication rejected because of challenge failure"},
3948 {0x10, "Authentication rejected due to timeout waiting for next "
3949 "frame in sequence"},
3950 {0x11, "Association denied because AP is unable to handle additional "
3951 "associated stations"},
3953 "Association denied due to requesting station not supporting all "
3954 "of the datarates in the BSSBasicServiceSet Parameter"},
3956 "Association denied due to requesting station not supporting "
3957 "short preamble operation"},
3959 "Association denied due to requesting station not supporting "
3962 "Association denied due to requesting station not supporting "
3965 "Association denied due to requesting station not supporting "
3966 "short slot operation"},
3968 "Association denied due to requesting station not supporting "
3969 "DSSS-OFDM operation"},
3970 {0x28, "Invalid Information Element"},
3971 {0x29, "Group Cipher is not valid"},
3972 {0x2A, "Pairwise Cipher is not valid"},
3973 {0x2B, "AKMP is not valid"},
3974 {0x2C, "Unsupported RSN IE version"},
3975 {0x2D, "Invalid RSN IE Capabilities"},
3976 {0x2E, "Cipher suite is rejected per security policy"},
3979 static const char *ipw_get_status_code(u16 status)
3982 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3983 if (ipw_status_codes[i].status == (status & 0xff))
3984 return ipw_status_codes[i].reason;
3985 return "Unknown status value.";
3988 static void inline average_init(struct average *avg)
3990 memset(avg, 0, sizeof(*avg));
3993 #define DEPTH_RSSI 8
3994 #define DEPTH_NOISE 16
3995 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3997 return ((depth-1)*prev_avg + val)/depth;
4000 static void average_add(struct average *avg, s16 val)
4002 avg->sum -= avg->entries[avg->pos];
4004 avg->entries[avg->pos++] = val;
4005 if (unlikely(avg->pos == AVG_ENTRIES)) {
4011 static s16 average_value(struct average *avg)
4013 if (!unlikely(avg->init)) {
4015 return avg->sum / avg->pos;
4019 return avg->sum / AVG_ENTRIES;
4022 static void ipw_reset_stats(struct ipw_priv *priv)
4024 u32 len = sizeof(u32);
4028 average_init(&priv->average_missed_beacons);
4029 priv->exp_avg_rssi = -60;
4030 priv->exp_avg_noise = -85 + 0x100;
4032 priv->last_rate = 0;
4033 priv->last_missed_beacons = 0;
4034 priv->last_rx_packets = 0;
4035 priv->last_tx_packets = 0;
4036 priv->last_tx_failures = 0;
4038 /* Firmware managed, reset only when NIC is restarted, so we have to
4039 * normalize on the current value */
4040 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4041 &priv->last_rx_err, &len);
4042 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4043 &priv->last_tx_failures, &len);
4045 /* Driver managed, reset with each association */
4046 priv->missed_adhoc_beacons = 0;
4047 priv->missed_beacons = 0;
4048 priv->tx_packets = 0;
4049 priv->rx_packets = 0;
4053 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4056 u32 mask = priv->rates_mask;
4057 /* If currently associated in B mode, restrict the maximum
4058 * rate match to B rates */
4059 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4060 mask &= IEEE80211_CCK_RATES_MASK;
4062 /* TODO: Verify that the rate is supported by the current rates
4065 while (i && !(mask & i))
4068 case IEEE80211_CCK_RATE_1MB_MASK:
4070 case IEEE80211_CCK_RATE_2MB_MASK:
4072 case IEEE80211_CCK_RATE_5MB_MASK:
4074 case IEEE80211_OFDM_RATE_6MB_MASK:
4076 case IEEE80211_OFDM_RATE_9MB_MASK:
4078 case IEEE80211_CCK_RATE_11MB_MASK:
4080 case IEEE80211_OFDM_RATE_12MB_MASK:
4082 case IEEE80211_OFDM_RATE_18MB_MASK:
4084 case IEEE80211_OFDM_RATE_24MB_MASK:
4086 case IEEE80211_OFDM_RATE_36MB_MASK:
4088 case IEEE80211_OFDM_RATE_48MB_MASK:
4090 case IEEE80211_OFDM_RATE_54MB_MASK:
4094 if (priv->ieee->mode == IEEE_B)
4100 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4102 u32 rate, len = sizeof(rate);
4105 if (!(priv->status & STATUS_ASSOCIATED))
4108 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4109 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4112 IPW_DEBUG_INFO("failed querying ordinals.\n");
4116 return ipw_get_max_rate(priv);
4119 case IPW_TX_RATE_1MB:
4121 case IPW_TX_RATE_2MB:
4123 case IPW_TX_RATE_5MB:
4125 case IPW_TX_RATE_6MB:
4127 case IPW_TX_RATE_9MB:
4129 case IPW_TX_RATE_11MB:
4131 case IPW_TX_RATE_12MB:
4133 case IPW_TX_RATE_18MB:
4135 case IPW_TX_RATE_24MB:
4137 case IPW_TX_RATE_36MB:
4139 case IPW_TX_RATE_48MB:
4141 case IPW_TX_RATE_54MB:
4148 #define IPW_STATS_INTERVAL (2 * HZ)
4149 static void ipw_gather_stats(struct ipw_priv *priv)
4151 u32 rx_err, rx_err_delta, rx_packets_delta;
4152 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4153 u32 missed_beacons_percent, missed_beacons_delta;
4155 u32 len = sizeof(u32);
4157 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4161 if (!(priv->status & STATUS_ASSOCIATED)) {
4166 /* Update the statistics */
4167 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4168 &priv->missed_beacons, &len);
4169 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4170 priv->last_missed_beacons = priv->missed_beacons;
4171 if (priv->assoc_request.beacon_interval) {
4172 missed_beacons_percent = missed_beacons_delta *
4173 (HZ * priv->assoc_request.beacon_interval) /
4174 (IPW_STATS_INTERVAL * 10);
4176 missed_beacons_percent = 0;
4178 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4180 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4181 rx_err_delta = rx_err - priv->last_rx_err;
4182 priv->last_rx_err = rx_err;
4184 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4185 tx_failures_delta = tx_failures - priv->last_tx_failures;
4186 priv->last_tx_failures = tx_failures;
4188 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4189 priv->last_rx_packets = priv->rx_packets;
4191 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4192 priv->last_tx_packets = priv->tx_packets;
4194 /* Calculate quality based on the following:
4196 * Missed beacon: 100% = 0, 0% = 70% missed
4197 * Rate: 60% = 1Mbs, 100% = Max
4198 * Rx and Tx errors represent a straight % of total Rx/Tx
4199 * RSSI: 100% = > -50, 0% = < -80
4200 * Rx errors: 100% = 0, 0% = 50% missed
4202 * The lowest computed quality is used.
4205 #define BEACON_THRESHOLD 5
4206 beacon_quality = 100 - missed_beacons_percent;
4207 if (beacon_quality < BEACON_THRESHOLD)
4210 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4211 (100 - BEACON_THRESHOLD);
4212 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4213 beacon_quality, missed_beacons_percent);
4215 priv->last_rate = ipw_get_current_rate(priv);
4216 max_rate = ipw_get_max_rate(priv);
4217 rate_quality = priv->last_rate * 40 / max_rate + 60;
4218 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4219 rate_quality, priv->last_rate / 1000000);
4221 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4222 rx_quality = 100 - (rx_err_delta * 100) /
4223 (rx_packets_delta + rx_err_delta);
4226 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4227 rx_quality, rx_err_delta, rx_packets_delta);
4229 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4230 tx_quality = 100 - (tx_failures_delta * 100) /
4231 (tx_packets_delta + tx_failures_delta);
4234 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4235 tx_quality, tx_failures_delta, tx_packets_delta);
4237 rssi = priv->exp_avg_rssi;
4240 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4241 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4242 (priv->ieee->perfect_rssi - rssi) *
4243 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4244 62 * (priv->ieee->perfect_rssi - rssi))) /
4245 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4246 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4247 if (signal_quality > 100)
4248 signal_quality = 100;
4249 else if (signal_quality < 1)
4252 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4253 signal_quality, rssi);
4255 quality = min(beacon_quality,
4257 min(tx_quality, min(rx_quality, signal_quality))));
4258 if (quality == beacon_quality)
4259 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4261 if (quality == rate_quality)
4262 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4264 if (quality == tx_quality)
4265 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4267 if (quality == rx_quality)
4268 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4270 if (quality == signal_quality)
4271 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4274 priv->quality = quality;
4276 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4277 IPW_STATS_INTERVAL);
4280 static void ipw_bg_gather_stats(struct work_struct *work)
4282 struct ipw_priv *priv =
4283 container_of(work, struct ipw_priv, gather_stats.work);
4284 mutex_lock(&priv->mutex);
4285 ipw_gather_stats(priv);
4286 mutex_unlock(&priv->mutex);
4289 /* Missed beacon behavior:
4290 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4291 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4292 * Above disassociate threshold, give up and stop scanning.
4293 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4294 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4297 priv->notif_missed_beacons = missed_count;
4299 if (missed_count > priv->disassociate_threshold &&
4300 priv->status & STATUS_ASSOCIATED) {
4301 /* If associated and we've hit the missed
4302 * beacon threshold, disassociate, turn
4303 * off roaming, and abort any active scans */
4304 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4305 IPW_DL_STATE | IPW_DL_ASSOC,
4306 "Missed beacon: %d - disassociate\n", missed_count);
4307 priv->status &= ~STATUS_ROAMING;
4308 if (priv->status & STATUS_SCANNING) {
4309 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4311 "Aborting scan with missed beacon.\n");
4312 queue_work(priv->workqueue, &priv->abort_scan);
4315 queue_work(priv->workqueue, &priv->disassociate);
4319 if (priv->status & STATUS_ROAMING) {
4320 /* If we are currently roaming, then just
4321 * print a debug statement... */
4322 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4323 "Missed beacon: %d - roam in progress\n",
4329 (missed_count > priv->roaming_threshold &&
4330 missed_count <= priv->disassociate_threshold)) {
4331 /* If we are not already roaming, set the ROAM
4332 * bit in the status and kick off a scan.
4333 * This can happen several times before we reach
4334 * disassociate_threshold. */
4335 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4336 "Missed beacon: %d - initiate "
4337 "roaming\n", missed_count);
4338 if (!(priv->status & STATUS_ROAMING)) {
4339 priv->status |= STATUS_ROAMING;
4340 if (!(priv->status & STATUS_SCANNING))
4341 queue_delayed_work(priv->workqueue,
4342 &priv->request_scan, 0);
4347 if (priv->status & STATUS_SCANNING) {
4348 /* Stop scan to keep fw from getting
4349 * stuck (only if we aren't roaming --
4350 * otherwise we'll never scan more than 2 or 3
4352 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4353 "Aborting scan with missed beacon.\n");
4354 queue_work(priv->workqueue, &priv->abort_scan);
4357 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4360 static void ipw_scan_event(struct work_struct *work)
4362 union iwreq_data wrqu;
4364 struct ipw_priv *priv =
4365 container_of(work, struct ipw_priv, scan_event.work);
4367 wrqu.data.length = 0;
4368 wrqu.data.flags = 0;
4369 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4372 static void handle_scan_event(struct ipw_priv *priv)
4374 /* Only userspace-requested scan completion events go out immediately */
4375 if (!priv->user_requested_scan) {
4376 if (!delayed_work_pending(&priv->scan_event))
4377 queue_delayed_work(priv->workqueue, &priv->scan_event,
4378 round_jiffies_relative(msecs_to_jiffies(4000)));
4380 union iwreq_data wrqu;
4382 priv->user_requested_scan = 0;
4383 cancel_delayed_work(&priv->scan_event);
4385 wrqu.data.length = 0;
4386 wrqu.data.flags = 0;
4387 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4392 * Handle host notification packet.
4393 * Called from interrupt routine
4395 static void ipw_rx_notification(struct ipw_priv *priv,
4396 struct ipw_rx_notification *notif)
4398 DECLARE_MAC_BUF(mac);
4399 notif->size = le16_to_cpu(notif->size);
4401 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4403 switch (notif->subtype) {
4404 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4405 struct notif_association *assoc = ¬if->u.assoc;
4407 switch (assoc->state) {
4408 case CMAS_ASSOCIATED:{
4409 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4411 "associated: '%s' %s"
4413 escape_essid(priv->essid,
4415 print_mac(mac, priv->bssid));
4417 switch (priv->ieee->iw_mode) {
4419 memcpy(priv->ieee->bssid,
4420 priv->bssid, ETH_ALEN);
4424 memcpy(priv->ieee->bssid,
4425 priv->bssid, ETH_ALEN);
4427 /* clear out the station table */
4428 priv->num_stations = 0;
4431 ("queueing adhoc check\n");
4432 queue_delayed_work(priv->
4442 priv->status &= ~STATUS_ASSOCIATING;
4443 priv->status |= STATUS_ASSOCIATED;
4444 queue_work(priv->workqueue,
4445 &priv->system_config);
4447 #ifdef CONFIG_IPW2200_QOS
4448 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4449 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4450 if ((priv->status & STATUS_AUTH) &&
4451 (IPW_GET_PACKET_STYPE(¬if->u.raw)
4452 == IEEE80211_STYPE_ASSOC_RESP)) {
4455 ieee80211_assoc_response)
4457 && (notif->size <= 2314)) {
4470 ieee80211_rx_mgt(priv->
4475 ¬if->u.raw, &stats);
4480 schedule_work(&priv->link_up);
4485 case CMAS_AUTHENTICATED:{
4487 status & (STATUS_ASSOCIATED |
4489 struct notif_authenticate *auth
4491 IPW_DEBUG(IPW_DL_NOTIF |
4494 "deauthenticated: '%s' "
4496 ": (0x%04X) - %s \n",
4501 print_mac(mac, priv->bssid),
4502 ntohs(auth->status),
4508 ~(STATUS_ASSOCIATING |
4512 schedule_work(&priv->link_down);
4516 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4518 "authenticated: '%s' %s"
4520 escape_essid(priv->essid,
4522 print_mac(mac, priv->bssid));
4527 if (priv->status & STATUS_AUTH) {
4529 ieee80211_assoc_response
4533 ieee80211_assoc_response
4535 IPW_DEBUG(IPW_DL_NOTIF |
4538 "association failed (0x%04X): %s\n",
4539 ntohs(resp->status),
4545 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4547 "disassociated: '%s' %s"
4549 escape_essid(priv->essid,
4551 print_mac(mac, priv->bssid));
4554 ~(STATUS_DISASSOCIATING |
4555 STATUS_ASSOCIATING |
4556 STATUS_ASSOCIATED | STATUS_AUTH);
4557 if (priv->assoc_network
4558 && (priv->assoc_network->
4560 WLAN_CAPABILITY_IBSS))
4561 ipw_remove_current_network
4564 schedule_work(&priv->link_down);
4569 case CMAS_RX_ASSOC_RESP:
4573 IPW_ERROR("assoc: unknown (%d)\n",
4581 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4582 struct notif_authenticate *auth = ¬if->u.auth;
4583 switch (auth->state) {
4584 case CMAS_AUTHENTICATED:
4585 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4586 "authenticated: '%s' %s \n",
4587 escape_essid(priv->essid,
4589 print_mac(mac, priv->bssid));
4590 priv->status |= STATUS_AUTH;
4594 if (priv->status & STATUS_AUTH) {
4595 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4597 "authentication failed (0x%04X): %s\n",
4598 ntohs(auth->status),
4599 ipw_get_status_code(ntohs
4603 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4605 "deauthenticated: '%s' %s\n",
4606 escape_essid(priv->essid,
4608 print_mac(mac, priv->bssid));
4610 priv->status &= ~(STATUS_ASSOCIATING |
4614 schedule_work(&priv->link_down);
4617 case CMAS_TX_AUTH_SEQ_1:
4618 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4619 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4621 case CMAS_RX_AUTH_SEQ_2:
4622 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4623 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4625 case CMAS_AUTH_SEQ_1_PASS:
4626 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4627 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4629 case CMAS_AUTH_SEQ_1_FAIL:
4630 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4631 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4633 case CMAS_TX_AUTH_SEQ_3:
4634 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4635 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4637 case CMAS_RX_AUTH_SEQ_4:
4638 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4639 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4641 case CMAS_AUTH_SEQ_2_PASS:
4642 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4643 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4645 case CMAS_AUTH_SEQ_2_FAIL:
4646 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4647 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4650 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4651 IPW_DL_ASSOC, "TX_ASSOC\n");
4653 case CMAS_RX_ASSOC_RESP:
4654 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4658 case CMAS_ASSOCIATED:
4659 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4660 IPW_DL_ASSOC, "ASSOCIATED\n");
4663 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4670 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4671 struct notif_channel_result *x =
4672 ¬if->u.channel_result;
4674 if (notif->size == sizeof(*x)) {
4675 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4678 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4679 "(should be %zd)\n",
4680 notif->size, sizeof(*x));
4685 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4686 struct notif_scan_complete *x = ¬if->u.scan_complete;
4687 if (notif->size == sizeof(*x)) {
4689 ("Scan completed: type %d, %d channels, "
4690 "%d status\n", x->scan_type,
4691 x->num_channels, x->status);
4693 IPW_ERROR("Scan completed of wrong size %d "
4694 "(should be %zd)\n",
4695 notif->size, sizeof(*x));
4699 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4701 wake_up_interruptible(&priv->wait_state);
4702 cancel_delayed_work(&priv->scan_check);
4704 if (priv->status & STATUS_EXIT_PENDING)
4707 priv->ieee->scans++;
4709 #ifdef CONFIG_IPW2200_MONITOR
4710 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4711 priv->status |= STATUS_SCAN_FORCED;
4712 queue_delayed_work(priv->workqueue,
4713 &priv->request_scan, 0);
4716 priv->status &= ~STATUS_SCAN_FORCED;
4717 #endif /* CONFIG_IPW2200_MONITOR */
4719 if (!(priv->status & (STATUS_ASSOCIATED |
4720 STATUS_ASSOCIATING |
4722 STATUS_DISASSOCIATING)))
4723 queue_work(priv->workqueue, &priv->associate);
4724 else if (priv->status & STATUS_ROAMING) {
4725 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4726 /* If a scan completed and we are in roam mode, then
4727 * the scan that completed was the one requested as a
4728 * result of entering roam... so, schedule the
4730 queue_work(priv->workqueue,
4733 /* Don't schedule if we aborted the scan */
4734 priv->status &= ~STATUS_ROAMING;
4735 } else if (priv->status & STATUS_SCAN_PENDING)
4736 queue_delayed_work(priv->workqueue,
4737 &priv->request_scan, 0);
4738 else if (priv->config & CFG_BACKGROUND_SCAN
4739 && priv->status & STATUS_ASSOCIATED)
4740 queue_delayed_work(priv->workqueue,
4741 &priv->request_scan,
4742 round_jiffies_relative(HZ));
4744 /* Send an empty event to user space.
4745 * We don't send the received data on the event because
4746 * it would require us to do complex transcoding, and
4747 * we want to minimise the work done in the irq handler
4748 * Use a request to extract the data.
4749 * Also, we generate this even for any scan, regardless
4750 * on how the scan was initiated. User space can just
4751 * sync on periodic scan to get fresh data...
4753 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4754 handle_scan_event(priv);
4758 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4759 struct notif_frag_length *x = ¬if->u.frag_len;
4761 if (notif->size == sizeof(*x))
4762 IPW_ERROR("Frag length: %d\n",
4763 le16_to_cpu(x->frag_length));
4765 IPW_ERROR("Frag length of wrong size %d "
4766 "(should be %zd)\n",
4767 notif->size, sizeof(*x));
4771 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4772 struct notif_link_deterioration *x =
4773 ¬if->u.link_deterioration;
4775 if (notif->size == sizeof(*x)) {
4776 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4777 "link deterioration: type %d, cnt %d\n",
4778 x->silence_notification_type,
4780 memcpy(&priv->last_link_deterioration, x,
4783 IPW_ERROR("Link Deterioration of wrong size %d "
4784 "(should be %zd)\n",
4785 notif->size, sizeof(*x));
4790 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4791 IPW_ERROR("Dino config\n");
4793 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4794 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4799 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4800 struct notif_beacon_state *x = ¬if->u.beacon_state;
4801 if (notif->size != sizeof(*x)) {
4803 ("Beacon state of wrong size %d (should "
4804 "be %zd)\n", notif->size, sizeof(*x));
4808 if (le32_to_cpu(x->state) ==
4809 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4810 ipw_handle_missed_beacon(priv,
4817 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4818 struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key;
4819 if (notif->size == sizeof(*x)) {
4820 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4821 "0x%02x station %d\n",
4822 x->key_state, x->security_type,
4828 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4829 notif->size, sizeof(*x));
4833 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4834 struct notif_calibration *x = ¬if->u.calibration;
4836 if (notif->size == sizeof(*x)) {
4837 memcpy(&priv->calib, x, sizeof(*x));
4838 IPW_DEBUG_INFO("TODO: Calibration\n");
4843 ("Calibration of wrong size %d (should be %zd)\n",
4844 notif->size, sizeof(*x));
4848 case HOST_NOTIFICATION_NOISE_STATS:{
4849 if (notif->size == sizeof(u32)) {
4850 priv->exp_avg_noise =
4851 exponential_average(priv->exp_avg_noise,
4852 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4858 ("Noise stat is wrong size %d (should be %zd)\n",
4859 notif->size, sizeof(u32));
4864 IPW_DEBUG_NOTIF("Unknown notification: "
4865 "subtype=%d,flags=0x%2x,size=%d\n",
4866 notif->subtype, notif->flags, notif->size);
4871 * Destroys all DMA structures and initialise them again
4874 * @return error code
4876 static int ipw_queue_reset(struct ipw_priv *priv)
4879 /** @todo customize queue sizes */
4880 int nTx = 64, nTxCmd = 8;
4881 ipw_tx_queue_free(priv);
4883 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4884 IPW_TX_CMD_QUEUE_READ_INDEX,
4885 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4886 IPW_TX_CMD_QUEUE_BD_BASE,
4887 IPW_TX_CMD_QUEUE_BD_SIZE);
4889 IPW_ERROR("Tx Cmd queue init failed\n");
4893 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4894 IPW_TX_QUEUE_0_READ_INDEX,
4895 IPW_TX_QUEUE_0_WRITE_INDEX,
4896 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4898 IPW_ERROR("Tx 0 queue init failed\n");
4901 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4902 IPW_TX_QUEUE_1_READ_INDEX,
4903 IPW_TX_QUEUE_1_WRITE_INDEX,
4904 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4906 IPW_ERROR("Tx 1 queue init failed\n");
4909 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4910 IPW_TX_QUEUE_2_READ_INDEX,
4911 IPW_TX_QUEUE_2_WRITE_INDEX,
4912 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4914 IPW_ERROR("Tx 2 queue init failed\n");
4917 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4918 IPW_TX_QUEUE_3_READ_INDEX,
4919 IPW_TX_QUEUE_3_WRITE_INDEX,
4920 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4922 IPW_ERROR("Tx 3 queue init failed\n");
4926 priv->rx_bufs_min = 0;
4927 priv->rx_pend_max = 0;
4931 ipw_tx_queue_free(priv);
4936 * Reclaim Tx queue entries no more used by NIC.
4938 * When FW advances 'R' index, all entries between old and
4939 * new 'R' index need to be reclaimed. As result, some free space
4940 * forms. If there is enough free space (> low mark), wake Tx queue.
4942 * @note Need to protect against garbage in 'R' index
4946 * @return Number of used entries remains in the queue
4948 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4949 struct clx2_tx_queue *txq, int qindex)
4953 struct clx2_queue *q = &txq->q;
4955 hw_tail = ipw_read32(priv, q->reg_r);
4956 if (hw_tail >= q->n_bd) {
4958 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4962 for (; q->last_used != hw_tail;
4963 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4964 ipw_queue_tx_free_tfd(priv, txq);
4968 if ((ipw_queue_space(q) > q->low_mark) &&
4970 (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4971 netif_wake_queue(priv->net_dev);
4972 used = q->first_empty - q->last_used;
4979 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4982 struct clx2_tx_queue *txq = &priv->txq_cmd;
4983 struct clx2_queue *q = &txq->q;
4984 struct tfd_frame *tfd;
4986 if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4987 IPW_ERROR("No space for Tx\n");
4991 tfd = &txq->bd[q->first_empty];
4992 txq->txb[q->first_empty] = NULL;
4994 memset(tfd, 0, sizeof(*tfd));
4995 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4996 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4998 tfd->u.cmd.index = hcmd;
4999 tfd->u.cmd.length = len;
5000 memcpy(tfd->u.cmd.payload, buf, len);
5001 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5002 ipw_write32(priv, q->reg_w, q->first_empty);
5003 _ipw_read32(priv, 0x90);
5009 * Rx theory of operation
5011 * The host allocates 32 DMA target addresses and passes the host address
5012 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5016 * The host/firmware share two index registers for managing the Rx buffers.
5018 * The READ index maps to the first position that the firmware may be writing
5019 * to -- the driver can read up to (but not including) this position and get
5021 * The READ index is managed by the firmware once the card is enabled.
5023 * The WRITE index maps to the last position the driver has read from -- the
5024 * position preceding WRITE is the last slot the firmware can place a packet.
5026 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5029 * During initialization the host sets up the READ queue position to the first
5030 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5032 * When the firmware places a packet in a buffer it will advance the READ index
5033 * and fire the RX interrupt. The driver can then query the READ index and
5034 * process as many packets as possible, moving the WRITE index forward as it
5035 * resets the Rx queue buffers with new memory.
5037 * The management in the driver is as follows:
5038 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5039 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5040 * to replensish the ipw->rxq->rx_free.
5041 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5042 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5043 * 'processed' and 'read' driver indexes as well)
5044 * + A received packet is processed and handed to the kernel network stack,
5045 * detached from the ipw->rxq. The driver 'processed' index is updated.
5046 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5047 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5048 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5049 * were enough free buffers and RX_STALLED is set it is cleared.
5054 * ipw_rx_queue_alloc() Allocates rx_free
5055 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5056 * ipw_rx_queue_restock
5057 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5058 * queue, updates firmware pointers, and updates
5059 * the WRITE index. If insufficient rx_free buffers
5060 * are available, schedules ipw_rx_queue_replenish
5062 * -- enable interrupts --
5063 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5064 * READ INDEX, detaching the SKB from the pool.
5065 * Moves the packet buffer from queue to rx_used.
5066 * Calls ipw_rx_queue_restock to refill any empty
5073 * If there are slots in the RX queue that need to be restocked,
5074 * and we have free pre-allocated buffers, fill the ranks as much
5075 * as we can pulling from rx_free.
5077 * This moves the 'write' index forward to catch up with 'processed', and
5078 * also updates the memory address in the firmware to reference the new
5081 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5083 struct ipw_rx_queue *rxq = priv->rxq;
5084 struct list_head *element;
5085 struct ipw_rx_mem_buffer *rxb;
5086 unsigned long flags;
5089 spin_lock_irqsave(&rxq->lock, flags);
5091 while ((rxq->write != rxq->processed) && (rxq->free_count)) {
5092 element = rxq->rx_free.next;
5093 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5096 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5098 rxq->queue[rxq->write] = rxb;
5099 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5102 spin_unlock_irqrestore(&rxq->lock, flags);
5104 /* If the pre-allocated buffer pool is dropping low, schedule to
5106 if (rxq->free_count <= RX_LOW_WATERMARK)
5107 queue_work(priv->workqueue, &priv->rx_replenish);
5109 /* If we've added more space for the firmware to place data, tell it */
5110 if (write != rxq->write)
5111 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5115 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5116 * Also restock the Rx queue via ipw_rx_queue_restock.
5118 * This is called as a scheduled work item (except for during intialization)
5120 static void ipw_rx_queue_replenish(void *data)
5122 struct ipw_priv *priv = data;
5123 struct ipw_rx_queue *rxq = priv->rxq;
5124 struct list_head *element;
5125 struct ipw_rx_mem_buffer *rxb;
5126 unsigned long flags;
5128 spin_lock_irqsave(&rxq->lock, flags);
5129 while (!list_empty(&rxq->rx_used)) {
5130 element = rxq->rx_used.next;
5131 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5132 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5134 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5135 priv->net_dev->name);
5136 /* We don't reschedule replenish work here -- we will
5137 * call the restock method and if it still needs
5138 * more buffers it will schedule replenish */
5144 pci_map_single(priv->pci_dev, rxb->skb->data,
5145 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5147 list_add_tail(&rxb->list, &rxq->rx_free);
5150 spin_unlock_irqrestore(&rxq->lock, flags);
5152 ipw_rx_queue_restock(priv);
5155 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5157 struct ipw_priv *priv =
5158 container_of(work, struct ipw_priv, rx_replenish);
5159 mutex_lock(&priv->mutex);
5160 ipw_rx_queue_replenish(priv);
5161 mutex_unlock(&priv->mutex);
5164 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5165 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5166 * This free routine walks the list of POOL entries and if SKB is set to
5167 * non NULL it is unmapped and freed
5169 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5176 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5177 if (rxq->pool[i].skb != NULL) {
5178 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5179 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5180 dev_kfree_skb(rxq->pool[i].skb);
5187 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5189 struct ipw_rx_queue *rxq;
5192 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5193 if (unlikely(!rxq)) {
5194 IPW_ERROR("memory allocation failed\n");
5197 spin_lock_init(&rxq->lock);
5198 INIT_LIST_HEAD(&rxq->rx_free);
5199 INIT_LIST_HEAD(&rxq->rx_used);
5201 /* Fill the rx_used queue with _all_ of the Rx buffers */
5202 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5203 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5205 /* Set us so that we have processed and used all buffers, but have
5206 * not restocked the Rx queue with fresh buffers */
5207 rxq->read = rxq->write = 0;
5208 rxq->processed = RX_QUEUE_SIZE - 1;
5209 rxq->free_count = 0;
5214 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5216 rate &= ~IEEE80211_BASIC_RATE_MASK;
5217 if (ieee_mode == IEEE_A) {
5219 case IEEE80211_OFDM_RATE_6MB:
5220 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5222 case IEEE80211_OFDM_RATE_9MB:
5223 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5225 case IEEE80211_OFDM_RATE_12MB:
5227 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5228 case IEEE80211_OFDM_RATE_18MB:
5230 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5231 case IEEE80211_OFDM_RATE_24MB:
5233 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5234 case IEEE80211_OFDM_RATE_36MB:
5236 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5237 case IEEE80211_OFDM_RATE_48MB:
5239 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5240 case IEEE80211_OFDM_RATE_54MB:
5242 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5250 case IEEE80211_CCK_RATE_1MB:
5251 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5252 case IEEE80211_CCK_RATE_2MB:
5253 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5254 case IEEE80211_CCK_RATE_5MB:
5255 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5256 case IEEE80211_CCK_RATE_11MB:
5257 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5260 /* If we are limited to B modulations, bail at this point */
5261 if (ieee_mode == IEEE_B)
5266 case IEEE80211_OFDM_RATE_6MB:
5267 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5268 case IEEE80211_OFDM_RATE_9MB:
5269 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5270 case IEEE80211_OFDM_RATE_12MB:
5271 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5272 case IEEE80211_OFDM_RATE_18MB:
5273 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5274 case IEEE80211_OFDM_RATE_24MB:
5275 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5276 case IEEE80211_OFDM_RATE_36MB:
5277 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5278 case IEEE80211_OFDM_RATE_48MB:
5279 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5280 case IEEE80211_OFDM_RATE_54MB:
5281 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5287 static int ipw_compatible_rates(struct ipw_priv *priv,
5288 const struct ieee80211_network *network,
5289 struct ipw_supported_rates *rates)
5293 memset(rates, 0, sizeof(*rates));
5294 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5295 rates->num_rates = 0;
5296 for (i = 0; i < num_rates; i++) {
5297 if (!ipw_is_rate_in_mask(priv, network->mode,
5298 network->rates[i])) {
5300 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5301 IPW_DEBUG_SCAN("Adding masked mandatory "
5304 rates->supported_rates[rates->num_rates++] =
5309 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5310 network->rates[i], priv->rates_mask);
5314 rates->supported_rates[rates->num_rates++] = network->rates[i];
5317 num_rates = min(network->rates_ex_len,
5318 (u8) (IPW_MAX_RATES - num_rates));
5319 for (i = 0; i < num_rates; i++) {
5320 if (!ipw_is_rate_in_mask(priv, network->mode,
5321 network->rates_ex[i])) {
5322 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5323 IPW_DEBUG_SCAN("Adding masked mandatory "
5325 network->rates_ex[i]);
5326 rates->supported_rates[rates->num_rates++] =
5331 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5332 network->rates_ex[i], priv->rates_mask);
5336 rates->supported_rates[rates->num_rates++] =
5337 network->rates_ex[i];
5343 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5344 const struct ipw_supported_rates *src)
5347 for (i = 0; i < src->num_rates; i++)
5348 dest->supported_rates[i] = src->supported_rates[i];
5349 dest->num_rates = src->num_rates;
5352 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5353 * mask should ever be used -- right now all callers to add the scan rates are
5354 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5355 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5356 u8 modulation, u32 rate_mask)
5358 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5359 IEEE80211_BASIC_RATE_MASK : 0;
5361 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5362 rates->supported_rates[rates->num_rates++] =
5363 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5365 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5366 rates->supported_rates[rates->num_rates++] =
5367 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5369 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5370 rates->supported_rates[rates->num_rates++] = basic_mask |
5371 IEEE80211_CCK_RATE_5MB;
5373 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5374 rates->supported_rates[rates->num_rates++] = basic_mask |
5375 IEEE80211_CCK_RATE_11MB;
5378 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5379 u8 modulation, u32 rate_mask)
5381 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5382 IEEE80211_BASIC_RATE_MASK : 0;
5384 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5385 rates->supported_rates[rates->num_rates++] = basic_mask |
5386 IEEE80211_OFDM_RATE_6MB;
5388 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5389 rates->supported_rates[rates->num_rates++] =
5390 IEEE80211_OFDM_RATE_9MB;
5392 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5393 rates->supported_rates[rates->num_rates++] = basic_mask |
5394 IEEE80211_OFDM_RATE_12MB;
5396 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5397 rates->supported_rates[rates->num_rates++] =
5398 IEEE80211_OFDM_RATE_18MB;
5400 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5401 rates->supported_rates[rates->num_rates++] = basic_mask |
5402 IEEE80211_OFDM_RATE_24MB;
5404 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5405 rates->supported_rates[rates->num_rates++] =
5406 IEEE80211_OFDM_RATE_36MB;
5408 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5409 rates->supported_rates[rates->num_rates++] =
5410 IEEE80211_OFDM_RATE_48MB;
5412 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5413 rates->supported_rates[rates->num_rates++] =
5414 IEEE80211_OFDM_RATE_54MB;
5417 struct ipw_network_match {
5418 struct ieee80211_network *network;
5419 struct ipw_supported_rates rates;
5422 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5423 struct ipw_network_match *match,
5424 struct ieee80211_network *network,
5427 struct ipw_supported_rates rates;
5428 DECLARE_MAC_BUF(mac);
5429 DECLARE_MAC_BUF(mac2);
5431 /* Verify that this network's capability is compatible with the
5432 * current mode (AdHoc or Infrastructure) */
5433 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5434 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5435 IPW_DEBUG_MERGE("Network '%s (%s)' excluded due to "
5436 "capability mismatch.\n",
5437 escape_essid(network->ssid, network->ssid_len),
5438 print_mac(mac, network->bssid));
5442 /* If we do not have an ESSID for this AP, we can not associate with
5444 if (network->flags & NETWORK_EMPTY_ESSID) {
5445 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5446 "because of hidden ESSID.\n",
5447 escape_essid(network->ssid, network->ssid_len),
5448 print_mac(mac, network->bssid));
5452 if (unlikely(roaming)) {
5453 /* If we are roaming, then ensure check if this is a valid
5454 * network to try and roam to */
5455 if ((network->ssid_len != match->network->ssid_len) ||
5456 memcmp(network->ssid, match->network->ssid,
5457 network->ssid_len)) {
5458 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5459 "because of non-network ESSID.\n",
5460 escape_essid(network->ssid,
5462 print_mac(mac, network->bssid));
5466 /* If an ESSID has been configured then compare the broadcast
5468 if ((priv->config & CFG_STATIC_ESSID) &&
5469 ((network->ssid_len != priv->essid_len) ||
5470 memcmp(network->ssid, priv->essid,
5471 min(network->ssid_len, priv->essid_len)))) {
5472 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5475 escape_essid(network->ssid, network->ssid_len),
5477 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5478 "because of ESSID mismatch: '%s'.\n",
5479 escaped, print_mac(mac, network->bssid),
5480 escape_essid(priv->essid,
5486 /* If the old network rate is better than this one, don't bother
5487 * testing everything else. */
5489 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5490 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5491 "current network.\n",
5492 escape_essid(match->network->ssid,
5493 match->network->ssid_len));
5495 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5496 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5497 "current network.\n",
5498 escape_essid(match->network->ssid,
5499 match->network->ssid_len));
5503 /* Now go through and see if the requested network is valid... */
5504 if (priv->ieee->scan_age != 0 &&
5505 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5506 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5507 "because of age: %ums.\n",
5508 escape_essid(network->ssid, network->ssid_len),
5509 print_mac(mac, network->bssid),
5510 jiffies_to_msecs(jiffies -
5511 network->last_scanned));
5515 if ((priv->config & CFG_STATIC_CHANNEL) &&
5516 (network->channel != priv->channel)) {
5517 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5518 "because of channel mismatch: %d != %d.\n",
5519 escape_essid(network->ssid, network->ssid_len),
5520 print_mac(mac, network->bssid),
5521 network->channel, priv->channel);
5525 /* Verify privacy compatability */
5526 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5527 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5528 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5529 "because of privacy mismatch: %s != %s.\n",
5530 escape_essid(network->ssid, network->ssid_len),
5531 print_mac(mac, network->bssid),
5533 capability & CAP_PRIVACY_ON ? "on" : "off",
5535 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5540 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5541 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5542 "because of the same BSSID match: %s"
5543 ".\n", escape_essid(network->ssid,
5545 print_mac(mac, network->bssid),
5546 print_mac(mac2, priv->bssid));
5550 /* Filter out any incompatible freq / mode combinations */
5551 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5552 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5553 "because of invalid frequency/mode "
5555 escape_essid(network->ssid, network->ssid_len),
5556 print_mac(mac, network->bssid));
5560 /* Ensure that the rates supported by the driver are compatible with
5561 * this AP, including verification of basic rates (mandatory) */
5562 if (!ipw_compatible_rates(priv, network, &rates)) {
5563 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5564 "because configured rate mask excludes "
5565 "AP mandatory rate.\n",
5566 escape_essid(network->ssid, network->ssid_len),
5567 print_mac(mac, network->bssid));
5571 if (rates.num_rates == 0) {
5572 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5573 "because of no compatible rates.\n",
5574 escape_essid(network->ssid, network->ssid_len),
5575 print_mac(mac, network->bssid));
5579 /* TODO: Perform any further minimal comparititive tests. We do not
5580 * want to put too much policy logic here; intelligent scan selection
5581 * should occur within a generic IEEE 802.11 user space tool. */
5583 /* Set up 'new' AP to this network */
5584 ipw_copy_rates(&match->rates, &rates);
5585 match->network = network;
5586 IPW_DEBUG_MERGE("Network '%s (%s)' is a viable match.\n",
5587 escape_essid(network->ssid, network->ssid_len),
5588 print_mac(mac, network->bssid));
5593 static void ipw_merge_adhoc_network(struct work_struct *work)
5595 struct ipw_priv *priv =
5596 container_of(work, struct ipw_priv, merge_networks);
5597 struct ieee80211_network *network = NULL;
5598 struct ipw_network_match match = {
5599 .network = priv->assoc_network
5602 if ((priv->status & STATUS_ASSOCIATED) &&
5603 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5604 /* First pass through ROAM process -- look for a better
5606 unsigned long flags;
5608 spin_lock_irqsave(&priv->ieee->lock, flags);
5609 list_for_each_entry(network, &priv->ieee->network_list, list) {
5610 if (network != priv->assoc_network)
5611 ipw_find_adhoc_network(priv, &match, network,
5614 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5616 if (match.network == priv->assoc_network) {
5617 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5622 mutex_lock(&priv->mutex);
5623 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5624 IPW_DEBUG_MERGE("remove network %s\n",
5625 escape_essid(priv->essid,
5627 ipw_remove_current_network(priv);
5630 ipw_disassociate(priv);
5631 priv->assoc_network = match.network;
5632 mutex_unlock(&priv->mutex);
5637 static int ipw_best_network(struct ipw_priv *priv,
5638 struct ipw_network_match *match,
5639 struct ieee80211_network *network, int roaming)
5641 struct ipw_supported_rates rates;
5642 DECLARE_MAC_BUF(mac);
5644 /* Verify that this network's capability is compatible with the
5645 * current mode (AdHoc or Infrastructure) */
5646 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5647 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5648 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5649 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5650 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded due to "
5651 "capability mismatch.\n",
5652 escape_essid(network->ssid, network->ssid_len),
5653 print_mac(mac, network->bssid));
5657 /* If we do not have an ESSID for this AP, we can not associate with
5659 if (network->flags & NETWORK_EMPTY_ESSID) {
5660 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5661 "because of hidden ESSID.\n",
5662 escape_essid(network->ssid, network->ssid_len),
5663 print_mac(mac, network->bssid));
5667 if (unlikely(roaming)) {
5668 /* If we are roaming, then ensure check if this is a valid
5669 * network to try and roam to */
5670 if ((network->ssid_len != match->network->ssid_len) ||
5671 memcmp(network->ssid, match->network->ssid,
5672 network->ssid_len)) {
5673 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5674 "because of non-network ESSID.\n",
5675 escape_essid(network->ssid,
5677 print_mac(mac, network->bssid));
5681 /* If an ESSID has been configured then compare the broadcast
5683 if ((priv->config & CFG_STATIC_ESSID) &&
5684 ((network->ssid_len != priv->essid_len) ||
5685 memcmp(network->ssid, priv->essid,
5686 min(network->ssid_len, priv->essid_len)))) {
5687 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5689 escape_essid(network->ssid, network->ssid_len),
5691 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5692 "because of ESSID mismatch: '%s'.\n",
5693 escaped, print_mac(mac, network->bssid),
5694 escape_essid(priv->essid,
5700 /* If the old network rate is better than this one, don't bother
5701 * testing everything else. */
5702 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5703 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5705 escape_essid(network->ssid, network->ssid_len),
5707 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded because "
5708 "'%s (%s)' has a stronger signal.\n",
5709 escaped, print_mac(mac, network->bssid),
5710 escape_essid(match->network->ssid,
5711 match->network->ssid_len),
5712 print_mac(mac, match->network->bssid));
5716 /* If this network has already had an association attempt within the
5717 * last 3 seconds, do not try and associate again... */
5718 if (network->last_associate &&
5719 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5720 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5721 "because of storming (%ums since last "
5722 "assoc attempt).\n",
5723 escape_essid(network->ssid, network->ssid_len),
5724 print_mac(mac, network->bssid),
5725 jiffies_to_msecs(jiffies -
5726 network->last_associate));
5730 /* Now go through and see if the requested network is valid... */
5731 if (priv->ieee->scan_age != 0 &&
5732 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5733 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5734 "because of age: %ums.\n",
5735 escape_essid(network->ssid, network->ssid_len),
5736 print_mac(mac, network->bssid),
5737 jiffies_to_msecs(jiffies -
5738 network->last_scanned));
5742 if ((priv->config & CFG_STATIC_CHANNEL) &&
5743 (network->channel != priv->channel)) {
5744 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5745 "because of channel mismatch: %d != %d.\n",
5746 escape_essid(network->ssid, network->ssid_len),
5747 print_mac(mac, network->bssid),
5748 network->channel, priv->channel);
5752 /* Verify privacy compatability */
5753 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5754 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5755 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5756 "because of privacy mismatch: %s != %s.\n",
5757 escape_essid(network->ssid, network->ssid_len),
5758 print_mac(mac, network->bssid),
5759 priv->capability & CAP_PRIVACY_ON ? "on" :
5761 network->capability &
5762 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5766 if ((priv->config & CFG_STATIC_BSSID) &&
5767 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5768 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5769 "because of BSSID mismatch: %s.\n",
5770 escape_essid(network->ssid, network->ssid_len),
5771 print_mac(mac, network->bssid), print_mac(mac, priv->bssid));
5775 /* Filter out any incompatible freq / mode combinations */
5776 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5777 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5778 "because of invalid frequency/mode "
5780 escape_essid(network->ssid, network->ssid_len),
5781 print_mac(mac, network->bssid));
5785 /* Filter out invalid channel in current GEO */
5786 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5787 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5788 "because of invalid channel in current GEO\n",
5789 escape_essid(network->ssid, network->ssid_len),
5790 print_mac(mac, network->bssid));
5794 /* Ensure that the rates supported by the driver are compatible with
5795 * this AP, including verification of basic rates (mandatory) */
5796 if (!ipw_compatible_rates(priv, network, &rates)) {
5797 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5798 "because configured rate mask excludes "
5799 "AP mandatory rate.\n",
5800 escape_essid(network->ssid, network->ssid_len),
5801 print_mac(mac, network->bssid));
5805 if (rates.num_rates == 0) {
5806 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5807 "because of no compatible rates.\n",
5808 escape_essid(network->ssid, network->ssid_len),
5809 print_mac(mac, network->bssid));
5813 /* TODO: Perform any further minimal comparititive tests. We do not
5814 * want to put too much policy logic here; intelligent scan selection
5815 * should occur within a generic IEEE 802.11 user space tool. */
5817 /* Set up 'new' AP to this network */
5818 ipw_copy_rates(&match->rates, &rates);
5819 match->network = network;
5821 IPW_DEBUG_ASSOC("Network '%s (%s)' is a viable match.\n",
5822 escape_essid(network->ssid, network->ssid_len),
5823 print_mac(mac, network->bssid));
5828 static void ipw_adhoc_create(struct ipw_priv *priv,
5829 struct ieee80211_network *network)
5831 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5835 * For the purposes of scanning, we can set our wireless mode
5836 * to trigger scans across combinations of bands, but when it
5837 * comes to creating a new ad-hoc network, we have tell the FW
5838 * exactly which band to use.
5840 * We also have the possibility of an invalid channel for the
5841 * chossen band. Attempting to create a new ad-hoc network
5842 * with an invalid channel for wireless mode will trigger a
5846 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5847 case IEEE80211_52GHZ_BAND:
5848 network->mode = IEEE_A;
5849 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5851 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5852 IPW_WARNING("Overriding invalid channel\n");
5853 priv->channel = geo->a[0].channel;
5857 case IEEE80211_24GHZ_BAND:
5858 if (priv->ieee->mode & IEEE_G)
5859 network->mode = IEEE_G;
5861 network->mode = IEEE_B;
5862 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5864 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5865 IPW_WARNING("Overriding invalid channel\n");
5866 priv->channel = geo->bg[0].channel;
5871 IPW_WARNING("Overriding invalid channel\n");
5872 if (priv->ieee->mode & IEEE_A) {
5873 network->mode = IEEE_A;
5874 priv->channel = geo->a[0].channel;
5875 } else if (priv->ieee->mode & IEEE_G) {
5876 network->mode = IEEE_G;
5877 priv->channel = geo->bg[0].channel;
5879 network->mode = IEEE_B;
5880 priv->channel = geo->bg[0].channel;
5885 network->channel = priv->channel;
5886 priv->config |= CFG_ADHOC_PERSIST;
5887 ipw_create_bssid(priv, network->bssid);
5888 network->ssid_len = priv->essid_len;
5889 memcpy(network->ssid, priv->essid, priv->essid_len);
5890 memset(&network->stats, 0, sizeof(network->stats));
5891 network->capability = WLAN_CAPABILITY_IBSS;
5892 if (!(priv->config & CFG_PREAMBLE_LONG))
5893 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5894 if (priv->capability & CAP_PRIVACY_ON)
5895 network->capability |= WLAN_CAPABILITY_PRIVACY;
5896 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5897 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5898 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5899 memcpy(network->rates_ex,
5900 &priv->rates.supported_rates[network->rates_len],
5901 network->rates_ex_len);
5902 network->last_scanned = 0;
5904 network->last_associate = 0;
5905 network->time_stamp[0] = 0;
5906 network->time_stamp[1] = 0;
5907 network->beacon_interval = 100; /* Default */
5908 network->listen_interval = 10; /* Default */
5909 network->atim_window = 0; /* Default */
5910 network->wpa_ie_len = 0;
5911 network->rsn_ie_len = 0;
5914 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5916 struct ipw_tgi_tx_key key;
5918 if (!(priv->ieee->sec.flags & (1 << index)))
5922 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5923 key.security_type = type;
5924 key.station_index = 0; /* always 0 for BSS */
5926 /* 0 for new key; previous value of counter (after fatal error) */
5927 key.tx_counter[0] = cpu_to_le32(0);
5928 key.tx_counter[1] = cpu_to_le32(0);
5930 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5933 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5935 struct ipw_wep_key key;
5938 key.cmd_id = DINO_CMD_WEP_KEY;
5941 /* Note: AES keys cannot be set for multiple times.
5942 * Only set it at the first time. */
5943 for (i = 0; i < 4; i++) {
5944 key.key_index = i | type;
5945 if (!(priv->ieee->sec.flags & (1 << i))) {
5950 key.key_size = priv->ieee->sec.key_sizes[i];
5951 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5953 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5957 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5959 if (priv->ieee->host_encrypt)
5964 priv->sys_config.disable_unicast_decryption = 0;
5965 priv->ieee->host_decrypt = 0;
5968 priv->sys_config.disable_unicast_decryption = 1;
5969 priv->ieee->host_decrypt = 1;
5972 priv->sys_config.disable_unicast_decryption = 0;
5973 priv->ieee->host_decrypt = 0;
5976 priv->sys_config.disable_unicast_decryption = 1;
5983 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5985 if (priv->ieee->host_encrypt)
5990 priv->sys_config.disable_multicast_decryption = 0;
5993 priv->sys_config.disable_multicast_decryption = 1;
5996 priv->sys_config.disable_multicast_decryption = 0;
5999 priv->sys_config.disable_multicast_decryption = 1;
6006 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6008 switch (priv->ieee->sec.level) {
6010 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6011 ipw_send_tgi_tx_key(priv,
6012 DCT_FLAG_EXT_SECURITY_CCM,
6013 priv->ieee->sec.active_key);
6015 if (!priv->ieee->host_mc_decrypt)
6016 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6019 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6020 ipw_send_tgi_tx_key(priv,
6021 DCT_FLAG_EXT_SECURITY_TKIP,
6022 priv->ieee->sec.active_key);
6025 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6026 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6027 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6035 static void ipw_adhoc_check(void *data)
6037 struct ipw_priv *priv = data;
6039 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6040 !(priv->config & CFG_ADHOC_PERSIST)) {
6041 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6042 IPW_DL_STATE | IPW_DL_ASSOC,
6043 "Missed beacon: %d - disassociate\n",
6044 priv->missed_adhoc_beacons);
6045 ipw_remove_current_network(priv);
6046 ipw_disassociate(priv);
6050 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6051 priv->assoc_request.beacon_interval);
6054 static void ipw_bg_adhoc_check(struct work_struct *work)
6056 struct ipw_priv *priv =
6057 container_of(work, struct ipw_priv, adhoc_check.work);
6058 mutex_lock(&priv->mutex);
6059 ipw_adhoc_check(priv);
6060 mutex_unlock(&priv->mutex);
6063 static void ipw_debug_config(struct ipw_priv *priv)
6065 DECLARE_MAC_BUF(mac);
6066 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6067 "[CFG 0x%08X]\n", priv->config);
6068 if (priv->config & CFG_STATIC_CHANNEL)
6069 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6071 IPW_DEBUG_INFO("Channel unlocked.\n");
6072 if (priv->config & CFG_STATIC_ESSID)
6073 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6074 escape_essid(priv->essid, priv->essid_len));
6076 IPW_DEBUG_INFO("ESSID unlocked.\n");
6077 if (priv->config & CFG_STATIC_BSSID)
6078 IPW_DEBUG_INFO("BSSID locked to %s\n",
6079 print_mac(mac, priv->bssid));
6081 IPW_DEBUG_INFO("BSSID unlocked.\n");
6082 if (priv->capability & CAP_PRIVACY_ON)
6083 IPW_DEBUG_INFO("PRIVACY on\n");
6085 IPW_DEBUG_INFO("PRIVACY off\n");
6086 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6089 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6091 /* TODO: Verify that this works... */
6092 struct ipw_fixed_rate fr = {
6093 .tx_rates = priv->rates_mask
6098 /* Identify 'current FW band' and match it with the fixed
6101 switch (priv->ieee->freq_band) {
6102 case IEEE80211_52GHZ_BAND: /* A only */
6104 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6105 /* Invalid fixed rate mask */
6107 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6112 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6115 default: /* 2.4Ghz or Mixed */
6117 if (mode == IEEE_B) {
6118 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6119 /* Invalid fixed rate mask */
6121 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6128 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6129 IEEE80211_OFDM_RATES_MASK)) {
6130 /* Invalid fixed rate mask */
6132 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6137 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6138 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6139 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6142 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6143 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6144 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6147 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6148 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6149 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6152 fr.tx_rates |= mask;
6156 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6157 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6160 static void ipw_abort_scan(struct ipw_priv *priv)
6164 if (priv->status & STATUS_SCAN_ABORTING) {
6165 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6168 priv->status |= STATUS_SCAN_ABORTING;
6170 err = ipw_send_scan_abort(priv);
6172 IPW_DEBUG_HC("Request to abort scan failed.\n");
6175 static void ipw_add_scan_channels(struct ipw_priv *priv,
6176 struct ipw_scan_request_ext *scan,
6179 int channel_index = 0;
6180 const struct ieee80211_geo *geo;
6183 geo = ieee80211_get_geo(priv->ieee);
6185 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6186 int start = channel_index;
6187 for (i = 0; i < geo->a_channels; i++) {
6188 if ((priv->status & STATUS_ASSOCIATED) &&
6189 geo->a[i].channel == priv->channel)
6192 scan->channels_list[channel_index] = geo->a[i].channel;
6193 ipw_set_scan_type(scan, channel_index,
6195 flags & IEEE80211_CH_PASSIVE_ONLY ?
6196 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6200 if (start != channel_index) {
6201 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6202 (channel_index - start);
6207 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6208 int start = channel_index;
6209 if (priv->config & CFG_SPEED_SCAN) {
6211 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6212 /* nop out the list */
6217 while (channel_index < IPW_SCAN_CHANNELS) {
6219 priv->speed_scan[priv->speed_scan_pos];
6221 priv->speed_scan_pos = 0;
6222 channel = priv->speed_scan[0];
6224 if ((priv->status & STATUS_ASSOCIATED) &&
6225 channel == priv->channel) {
6226 priv->speed_scan_pos++;
6230 /* If this channel has already been
6231 * added in scan, break from loop
6232 * and this will be the first channel
6235 if (channels[channel - 1] != 0)
6238 channels[channel - 1] = 1;
6239 priv->speed_scan_pos++;
6241 scan->channels_list[channel_index] = channel;
6243 ieee80211_channel_to_index(priv->ieee, channel);
6244 ipw_set_scan_type(scan, channel_index,
6247 IEEE80211_CH_PASSIVE_ONLY ?
6248 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6252 for (i = 0; i < geo->bg_channels; i++) {
6253 if ((priv->status & STATUS_ASSOCIATED) &&
6254 geo->bg[i].channel == priv->channel)
6257 scan->channels_list[channel_index] =
6259 ipw_set_scan_type(scan, channel_index,
6262 IEEE80211_CH_PASSIVE_ONLY ?
6263 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6268 if (start != channel_index) {
6269 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6270 (channel_index - start);
6275 static int ipw_request_scan_helper(struct ipw_priv *priv, int type)
6277 struct ipw_scan_request_ext scan;
6278 int err = 0, scan_type;
6280 if (!(priv->status & STATUS_INIT) ||
6281 (priv->status & STATUS_EXIT_PENDING))
6284 mutex_lock(&priv->mutex);
6286 if (priv->status & STATUS_SCANNING) {
6287 IPW_DEBUG_HC("Concurrent scan requested. Ignoring.\n");
6288 priv->status |= STATUS_SCAN_PENDING;
6292 if (!(priv->status & STATUS_SCAN_FORCED) &&
6293 priv->status & STATUS_SCAN_ABORTING) {
6294 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6295 priv->status |= STATUS_SCAN_PENDING;
6299 if (priv->status & STATUS_RF_KILL_MASK) {
6300 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6301 priv->status |= STATUS_SCAN_PENDING;
6305 memset(&scan, 0, sizeof(scan));
6306 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6308 if (type == IW_SCAN_TYPE_PASSIVE) {
6309 IPW_DEBUG_WX("use passive scanning\n");
6310 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6311 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6313 ipw_add_scan_channels(priv, &scan, scan_type);
6317 /* Use active scan by default. */
6318 if (priv->config & CFG_SPEED_SCAN)
6319 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6322 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6325 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6328 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6330 #ifdef CONFIG_IPW2200_MONITOR
6331 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6335 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6336 case IEEE80211_52GHZ_BAND:
6337 band = (u8) (IPW_A_MODE << 6) | 1;
6338 channel = priv->channel;
6341 case IEEE80211_24GHZ_BAND:
6342 band = (u8) (IPW_B_MODE << 6) | 1;
6343 channel = priv->channel;
6347 band = (u8) (IPW_B_MODE << 6) | 1;
6352 scan.channels_list[0] = band;
6353 scan.channels_list[1] = channel;
6354 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6356 /* NOTE: The card will sit on this channel for this time
6357 * period. Scan aborts are timing sensitive and frequently
6358 * result in firmware restarts. As such, it is best to
6359 * set a small dwell_time here and just keep re-issuing
6360 * scans. Otherwise fast channel hopping will not actually
6363 * TODO: Move SPEED SCAN support to all modes and bands */
6364 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6367 #endif /* CONFIG_IPW2200_MONITOR */
6368 /* If we are roaming, then make this a directed scan for the
6369 * current network. Otherwise, ensure that every other scan
6370 * is a fast channel hop scan */
6371 if ((priv->status & STATUS_ROAMING)
6372 || (!(priv->status & STATUS_ASSOCIATED)
6373 && (priv->config & CFG_STATIC_ESSID)
6374 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6375 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6377 IPW_DEBUG_HC("Attempt to send SSID command "
6382 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6384 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6386 ipw_add_scan_channels(priv, &scan, scan_type);
6387 #ifdef CONFIG_IPW2200_MONITOR
6392 err = ipw_send_scan_request_ext(priv, &scan);
6394 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6398 priv->status |= STATUS_SCANNING;
6399 priv->status &= ~STATUS_SCAN_PENDING;
6400 queue_delayed_work(priv->workqueue, &priv->scan_check,
6401 IPW_SCAN_CHECK_WATCHDOG);
6403 mutex_unlock(&priv->mutex);
6407 static void ipw_request_passive_scan(struct work_struct *work)
6409 struct ipw_priv *priv =
6410 container_of(work, struct ipw_priv, request_passive_scan);
6411 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE);
6414 static void ipw_request_scan(struct work_struct *work)
6416 struct ipw_priv *priv =
6417 container_of(work, struct ipw_priv, request_scan.work);
6418 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE);
6421 static void ipw_bg_abort_scan(struct work_struct *work)
6423 struct ipw_priv *priv =
6424 container_of(work, struct ipw_priv, abort_scan);
6425 mutex_lock(&priv->mutex);
6426 ipw_abort_scan(priv);
6427 mutex_unlock(&priv->mutex);
6430 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6432 /* This is called when wpa_supplicant loads and closes the driver
6434 priv->ieee->wpa_enabled = value;
6438 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6440 struct ieee80211_device *ieee = priv->ieee;
6441 struct ieee80211_security sec = {
6442 .flags = SEC_AUTH_MODE,
6446 if (value & IW_AUTH_ALG_SHARED_KEY) {
6447 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6449 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6450 sec.auth_mode = WLAN_AUTH_OPEN;
6452 } else if (value & IW_AUTH_ALG_LEAP) {
6453 sec.auth_mode = WLAN_AUTH_LEAP;
6458 if (ieee->set_security)
6459 ieee->set_security(ieee->dev, &sec);
6466 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6469 /* make sure WPA is enabled */
6470 ipw_wpa_enable(priv, 1);
6473 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6474 char *capabilities, int length)
6476 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6478 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6487 static int ipw_wx_set_genie(struct net_device *dev,
6488 struct iw_request_info *info,
6489 union iwreq_data *wrqu, char *extra)
6491 struct ipw_priv *priv = ieee80211_priv(dev);
6492 struct ieee80211_device *ieee = priv->ieee;
6496 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6497 (wrqu->data.length && extra == NULL))
6500 if (wrqu->data.length) {
6501 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6507 memcpy(buf, extra, wrqu->data.length);
6508 kfree(ieee->wpa_ie);
6510 ieee->wpa_ie_len = wrqu->data.length;
6512 kfree(ieee->wpa_ie);
6513 ieee->wpa_ie = NULL;
6514 ieee->wpa_ie_len = 0;
6517 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6523 static int ipw_wx_get_genie(struct net_device *dev,
6524 struct iw_request_info *info,
6525 union iwreq_data *wrqu, char *extra)
6527 struct ipw_priv *priv = ieee80211_priv(dev);
6528 struct ieee80211_device *ieee = priv->ieee;
6531 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6532 wrqu->data.length = 0;
6536 if (wrqu->data.length < ieee->wpa_ie_len) {
6541 wrqu->data.length = ieee->wpa_ie_len;
6542 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6548 static int wext_cipher2level(int cipher)
6551 case IW_AUTH_CIPHER_NONE:
6553 case IW_AUTH_CIPHER_WEP40:
6554 case IW_AUTH_CIPHER_WEP104:
6556 case IW_AUTH_CIPHER_TKIP:
6558 case IW_AUTH_CIPHER_CCMP:
6566 static int ipw_wx_set_auth(struct net_device *dev,
6567 struct iw_request_info *info,
6568 union iwreq_data *wrqu, char *extra)
6570 struct ipw_priv *priv = ieee80211_priv(dev);
6571 struct ieee80211_device *ieee = priv->ieee;
6572 struct iw_param *param = &wrqu->param;
6573 struct ieee80211_crypt_data *crypt;
6574 unsigned long flags;
6577 switch (param->flags & IW_AUTH_INDEX) {
6578 case IW_AUTH_WPA_VERSION:
6580 case IW_AUTH_CIPHER_PAIRWISE:
6581 ipw_set_hw_decrypt_unicast(priv,
6582 wext_cipher2level(param->value));
6584 case IW_AUTH_CIPHER_GROUP:
6585 ipw_set_hw_decrypt_multicast(priv,
6586 wext_cipher2level(param->value));
6588 case IW_AUTH_KEY_MGMT:
6590 * ipw2200 does not use these parameters
6594 case IW_AUTH_TKIP_COUNTERMEASURES:
6595 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6596 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6599 flags = crypt->ops->get_flags(crypt->priv);
6602 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6604 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6606 crypt->ops->set_flags(flags, crypt->priv);
6610 case IW_AUTH_DROP_UNENCRYPTED:{
6613 * wpa_supplicant calls set_wpa_enabled when the driver
6614 * is loaded and unloaded, regardless of if WPA is being
6615 * used. No other calls are made which can be used to
6616 * determine if encryption will be used or not prior to
6617 * association being expected. If encryption is not being
6618 * used, drop_unencrypted is set to false, else true -- we
6619 * can use this to determine if the CAP_PRIVACY_ON bit should
6622 struct ieee80211_security sec = {
6623 .flags = SEC_ENABLED,
6624 .enabled = param->value,
6626 priv->ieee->drop_unencrypted = param->value;
6627 /* We only change SEC_LEVEL for open mode. Others
6628 * are set by ipw_wpa_set_encryption.
6630 if (!param->value) {
6631 sec.flags |= SEC_LEVEL;
6632 sec.level = SEC_LEVEL_0;
6634 sec.flags |= SEC_LEVEL;
6635 sec.level = SEC_LEVEL_1;
6637 if (priv->ieee->set_security)
6638 priv->ieee->set_security(priv->ieee->dev, &sec);
6642 case IW_AUTH_80211_AUTH_ALG:
6643 ret = ipw_wpa_set_auth_algs(priv, param->value);
6646 case IW_AUTH_WPA_ENABLED:
6647 ret = ipw_wpa_enable(priv, param->value);
6648 ipw_disassociate(priv);
6651 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6652 ieee->ieee802_1x = param->value;
6655 case IW_AUTH_PRIVACY_INVOKED:
6656 ieee->privacy_invoked = param->value;
6666 static int ipw_wx_get_auth(struct net_device *dev,
6667 struct iw_request_info *info,
6668 union iwreq_data *wrqu, char *extra)
6670 struct ipw_priv *priv = ieee80211_priv(dev);
6671 struct ieee80211_device *ieee = priv->ieee;
6672 struct ieee80211_crypt_data *crypt;
6673 struct iw_param *param = &wrqu->param;
6676 switch (param->flags & IW_AUTH_INDEX) {
6677 case IW_AUTH_WPA_VERSION:
6678 case IW_AUTH_CIPHER_PAIRWISE:
6679 case IW_AUTH_CIPHER_GROUP:
6680 case IW_AUTH_KEY_MGMT:
6682 * wpa_supplicant will control these internally
6687 case IW_AUTH_TKIP_COUNTERMEASURES:
6688 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6689 if (!crypt || !crypt->ops->get_flags)
6692 param->value = (crypt->ops->get_flags(crypt->priv) &
6693 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6697 case IW_AUTH_DROP_UNENCRYPTED:
6698 param->value = ieee->drop_unencrypted;
6701 case IW_AUTH_80211_AUTH_ALG:
6702 param->value = ieee->sec.auth_mode;
6705 case IW_AUTH_WPA_ENABLED:
6706 param->value = ieee->wpa_enabled;
6709 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6710 param->value = ieee->ieee802_1x;
6713 case IW_AUTH_ROAMING_CONTROL:
6714 case IW_AUTH_PRIVACY_INVOKED:
6715 param->value = ieee->privacy_invoked;
6724 /* SIOCSIWENCODEEXT */
6725 static int ipw_wx_set_encodeext(struct net_device *dev,
6726 struct iw_request_info *info,
6727 union iwreq_data *wrqu, char *extra)
6729 struct ipw_priv *priv = ieee80211_priv(dev);
6730 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6733 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6734 /* IPW HW can't build TKIP MIC,
6735 host decryption still needed */
6736 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6737 priv->ieee->host_mc_decrypt = 1;
6739 priv->ieee->host_encrypt = 0;
6740 priv->ieee->host_encrypt_msdu = 1;
6741 priv->ieee->host_decrypt = 1;
6744 priv->ieee->host_encrypt = 0;
6745 priv->ieee->host_encrypt_msdu = 0;
6746 priv->ieee->host_decrypt = 0;
6747 priv->ieee->host_mc_decrypt = 0;
6751 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6754 /* SIOCGIWENCODEEXT */
6755 static int ipw_wx_get_encodeext(struct net_device *dev,
6756 struct iw_request_info *info,
6757 union iwreq_data *wrqu, char *extra)
6759 struct ipw_priv *priv = ieee80211_priv(dev);
6760 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6764 static int ipw_wx_set_mlme(struct net_device *dev,
6765 struct iw_request_info *info,
6766 union iwreq_data *wrqu, char *extra)
6768 struct ipw_priv *priv = ieee80211_priv(dev);
6769 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6772 reason = cpu_to_le16(mlme->reason_code);
6774 switch (mlme->cmd) {
6775 case IW_MLME_DEAUTH:
6776 /* silently ignore */
6779 case IW_MLME_DISASSOC:
6780 ipw_disassociate(priv);
6789 #ifdef CONFIG_IPW2200_QOS
6793 * get the modulation type of the current network or
6794 * the card current mode
6796 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6800 if (priv->status & STATUS_ASSOCIATED) {
6801 unsigned long flags;
6803 spin_lock_irqsave(&priv->ieee->lock, flags);
6804 mode = priv->assoc_network->mode;
6805 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6807 mode = priv->ieee->mode;
6809 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6814 * Handle management frame beacon and probe response
6816 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6818 struct ieee80211_network *network)
6820 u32 size = sizeof(struct ieee80211_qos_parameters);
6822 if (network->capability & WLAN_CAPABILITY_IBSS)
6823 network->qos_data.active = network->qos_data.supported;
6825 if (network->flags & NETWORK_HAS_QOS_MASK) {
6826 if (active_network &&
6827 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6828 network->qos_data.active = network->qos_data.supported;
6830 if ((network->qos_data.active == 1) && (active_network == 1) &&
6831 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6832 (network->qos_data.old_param_count !=
6833 network->qos_data.param_count)) {
6834 network->qos_data.old_param_count =
6835 network->qos_data.param_count;
6836 schedule_work(&priv->qos_activate);
6837 IPW_DEBUG_QOS("QoS parameters change call "
6841 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6842 memcpy(&network->qos_data.parameters,
6843 &def_parameters_CCK, size);
6845 memcpy(&network->qos_data.parameters,
6846 &def_parameters_OFDM, size);
6848 if ((network->qos_data.active == 1) && (active_network == 1)) {
6849 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6850 schedule_work(&priv->qos_activate);
6853 network->qos_data.active = 0;
6854 network->qos_data.supported = 0;
6856 if ((priv->status & STATUS_ASSOCIATED) &&
6857 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6858 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6859 if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6860 !(network->flags & NETWORK_EMPTY_ESSID))
6861 if ((network->ssid_len ==
6862 priv->assoc_network->ssid_len) &&
6863 !memcmp(network->ssid,
6864 priv->assoc_network->ssid,
6865 network->ssid_len)) {
6866 queue_work(priv->workqueue,
6867 &priv->merge_networks);
6875 * This function set up the firmware to support QoS. It sends
6876 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6878 static int ipw_qos_activate(struct ipw_priv *priv,
6879 struct ieee80211_qos_data *qos_network_data)
6882 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6883 struct ieee80211_qos_parameters *active_one = NULL;
6884 u32 size = sizeof(struct ieee80211_qos_parameters);
6889 type = ipw_qos_current_mode(priv);
6891 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6892 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6893 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6894 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6896 if (qos_network_data == NULL) {
6897 if (type == IEEE_B) {
6898 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6899 active_one = &def_parameters_CCK;
6901 active_one = &def_parameters_OFDM;
6903 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6904 burst_duration = ipw_qos_get_burst_duration(priv);
6905 for (i = 0; i < QOS_QUEUE_NUM; i++)
6906 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6907 cpu_to_le16(burst_duration);
6908 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6909 if (type == IEEE_B) {
6910 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6912 if (priv->qos_data.qos_enable == 0)
6913 active_one = &def_parameters_CCK;
6915 active_one = priv->qos_data.def_qos_parm_CCK;
6917 if (priv->qos_data.qos_enable == 0)
6918 active_one = &def_parameters_OFDM;
6920 active_one = priv->qos_data.def_qos_parm_OFDM;
6922 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6924 unsigned long flags;
6927 spin_lock_irqsave(&priv->ieee->lock, flags);
6928 active_one = &(qos_network_data->parameters);
6929 qos_network_data->old_param_count =
6930 qos_network_data->param_count;
6931 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6932 active = qos_network_data->supported;
6933 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6936 burst_duration = ipw_qos_get_burst_duration(priv);
6937 for (i = 0; i < QOS_QUEUE_NUM; i++)
6938 qos_parameters[QOS_PARAM_SET_ACTIVE].
6939 tx_op_limit[i] = cpu_to_le16(burst_duration);
6943 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6944 err = ipw_send_qos_params_command(priv,
6945 (struct ieee80211_qos_parameters *)
6946 &(qos_parameters[0]));
6948 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6954 * send IPW_CMD_WME_INFO to the firmware
6956 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6959 struct ieee80211_qos_information_element qos_info;
6964 qos_info.elementID = QOS_ELEMENT_ID;
6965 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6967 qos_info.version = QOS_VERSION_1;
6968 qos_info.ac_info = 0;
6970 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6971 qos_info.qui_type = QOS_OUI_TYPE;
6972 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6974 ret = ipw_send_qos_info_command(priv, &qos_info);
6976 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6982 * Set the QoS parameter with the association request structure
6984 static int ipw_qos_association(struct ipw_priv *priv,
6985 struct ieee80211_network *network)
6988 struct ieee80211_qos_data *qos_data = NULL;
6989 struct ieee80211_qos_data ibss_data = {
6994 switch (priv->ieee->iw_mode) {
6996 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6998 qos_data = &ibss_data;
7002 qos_data = &network->qos_data;
7010 err = ipw_qos_activate(priv, qos_data);
7012 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7016 if (priv->qos_data.qos_enable && qos_data->supported) {
7017 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7018 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7019 return ipw_qos_set_info_element(priv);
7026 * handling the beaconing responses. if we get different QoS setting
7027 * off the network from the associated setting, adjust the QoS
7030 static int ipw_qos_association_resp(struct ipw_priv *priv,
7031 struct ieee80211_network *network)
7034 unsigned long flags;
7035 u32 size = sizeof(struct ieee80211_qos_parameters);
7036 int set_qos_param = 0;
7038 if ((priv == NULL) || (network == NULL) ||
7039 (priv->assoc_network == NULL))
7042 if (!(priv->status & STATUS_ASSOCIATED))
7045 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7048 spin_lock_irqsave(&priv->ieee->lock, flags);
7049 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7050 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7051 sizeof(struct ieee80211_qos_data));
7052 priv->assoc_network->qos_data.active = 1;
7053 if ((network->qos_data.old_param_count !=
7054 network->qos_data.param_count)) {
7056 network->qos_data.old_param_count =
7057 network->qos_data.param_count;
7061 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7062 memcpy(&priv->assoc_network->qos_data.parameters,
7063 &def_parameters_CCK, size);
7065 memcpy(&priv->assoc_network->qos_data.parameters,
7066 &def_parameters_OFDM, size);
7067 priv->assoc_network->qos_data.active = 0;
7068 priv->assoc_network->qos_data.supported = 0;
7072 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7074 if (set_qos_param == 1)
7075 schedule_work(&priv->qos_activate);
7080 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7087 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7088 ret = priv->qos_data.burst_duration_CCK;
7090 ret = priv->qos_data.burst_duration_OFDM;
7096 * Initialize the setting of QoS global
7098 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7099 int burst_enable, u32 burst_duration_CCK,
7100 u32 burst_duration_OFDM)
7102 priv->qos_data.qos_enable = enable;
7104 if (priv->qos_data.qos_enable) {
7105 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7106 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7107 IPW_DEBUG_QOS("QoS is enabled\n");
7109 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7110 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7111 IPW_DEBUG_QOS("QoS is not enabled\n");
7114 priv->qos_data.burst_enable = burst_enable;
7117 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7118 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7120 priv->qos_data.burst_duration_CCK = 0;
7121 priv->qos_data.burst_duration_OFDM = 0;
7126 * map the packet priority to the right TX Queue
7128 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7130 if (priority > 7 || !priv->qos_data.qos_enable)
7133 return from_priority_to_tx_queue[priority] - 1;
7136 static int ipw_is_qos_active(struct net_device *dev,
7137 struct sk_buff *skb)
7139 struct ipw_priv *priv = ieee80211_priv(dev);
7140 struct ieee80211_qos_data *qos_data = NULL;
7141 int active, supported;
7142 u8 *daddr = skb->data + ETH_ALEN;
7143 int unicast = !is_multicast_ether_addr(daddr);
7145 if (!(priv->status & STATUS_ASSOCIATED))
7148 qos_data = &priv->assoc_network->qos_data;
7150 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7152 qos_data->active = 0;
7154 qos_data->active = qos_data->supported;
7156 active = qos_data->active;
7157 supported = qos_data->supported;
7158 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7160 priv->qos_data.qos_enable, active, supported, unicast);
7161 if (active && priv->qos_data.qos_enable)
7168 * add QoS parameter to the TX command
7170 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7172 struct tfd_data *tfd)
7174 int tx_queue_id = 0;
7177 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7178 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7180 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7181 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7182 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7188 * background support to run QoS activate functionality
7190 static void ipw_bg_qos_activate(struct work_struct *work)
7192 struct ipw_priv *priv =
7193 container_of(work, struct ipw_priv, qos_activate);
7198 mutex_lock(&priv->mutex);
7200 if (priv->status & STATUS_ASSOCIATED)
7201 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7203 mutex_unlock(&priv->mutex);
7206 static int ipw_handle_probe_response(struct net_device *dev,
7207 struct ieee80211_probe_response *resp,
7208 struct ieee80211_network *network)
7210 struct ipw_priv *priv = ieee80211_priv(dev);
7211 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7212 (network == priv->assoc_network));
7214 ipw_qos_handle_probe_response(priv, active_network, network);
7219 static int ipw_handle_beacon(struct net_device *dev,
7220 struct ieee80211_beacon *resp,
7221 struct ieee80211_network *network)
7223 struct ipw_priv *priv = ieee80211_priv(dev);
7224 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7225 (network == priv->assoc_network));
7227 ipw_qos_handle_probe_response(priv, active_network, network);
7232 static int ipw_handle_assoc_response(struct net_device *dev,
7233 struct ieee80211_assoc_response *resp,
7234 struct ieee80211_network *network)
7236 struct ipw_priv *priv = ieee80211_priv(dev);
7237 ipw_qos_association_resp(priv, network);
7241 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7244 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7245 sizeof(*qos_param) * 3, qos_param);
7248 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7251 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7255 #endif /* CONFIG_IPW2200_QOS */
7257 static int ipw_associate_network(struct ipw_priv *priv,
7258 struct ieee80211_network *network,
7259 struct ipw_supported_rates *rates, int roaming)
7262 DECLARE_MAC_BUF(mac);
7264 if (priv->config & CFG_FIXED_RATE)
7265 ipw_set_fixed_rate(priv, network->mode);
7267 if (!(priv->config & CFG_STATIC_ESSID)) {
7268 priv->essid_len = min(network->ssid_len,
7269 (u8) IW_ESSID_MAX_SIZE);
7270 memcpy(priv->essid, network->ssid, priv->essid_len);
7273 network->last_associate = jiffies;
7275 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7276 priv->assoc_request.channel = network->channel;
7277 priv->assoc_request.auth_key = 0;
7279 if ((priv->capability & CAP_PRIVACY_ON) &&
7280 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7281 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7282 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7284 if (priv->ieee->sec.level == SEC_LEVEL_1)
7285 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7287 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7288 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7289 priv->assoc_request.auth_type = AUTH_LEAP;
7291 priv->assoc_request.auth_type = AUTH_OPEN;
7293 if (priv->ieee->wpa_ie_len) {
7294 priv->assoc_request.policy_support = 0x02; /* RSN active */
7295 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7296 priv->ieee->wpa_ie_len);
7300 * It is valid for our ieee device to support multiple modes, but
7301 * when it comes to associating to a given network we have to choose
7304 if (network->mode & priv->ieee->mode & IEEE_A)
7305 priv->assoc_request.ieee_mode = IPW_A_MODE;
7306 else if (network->mode & priv->ieee->mode & IEEE_G)
7307 priv->assoc_request.ieee_mode = IPW_G_MODE;
7308 else if (network->mode & priv->ieee->mode & IEEE_B)
7309 priv->assoc_request.ieee_mode = IPW_B_MODE;
7311 priv->assoc_request.capability = network->capability;
7312 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7313 && !(priv->config & CFG_PREAMBLE_LONG)) {
7314 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7316 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7318 /* Clear the short preamble if we won't be supporting it */
7319 priv->assoc_request.capability &=
7320 ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7323 /* Clear capability bits that aren't used in Ad Hoc */
7324 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7325 priv->assoc_request.capability &=
7326 ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7328 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7329 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7330 roaming ? "Rea" : "A",
7331 escape_essid(priv->essid, priv->essid_len),
7333 ipw_modes[priv->assoc_request.ieee_mode],
7335 (priv->assoc_request.preamble_length ==
7336 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7337 network->capability &
7338 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7339 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7340 priv->capability & CAP_PRIVACY_ON ?
7341 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7343 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7344 priv->capability & CAP_PRIVACY_ON ?
7345 '1' + priv->ieee->sec.active_key : '.',
7346 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7348 priv->assoc_request.beacon_interval = network->beacon_interval;
7349 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7350 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7351 priv->assoc_request.assoc_type = HC_IBSS_START;
7352 priv->assoc_request.assoc_tsf_msw = 0;
7353 priv->assoc_request.assoc_tsf_lsw = 0;
7355 if (unlikely(roaming))
7356 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7358 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7359 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7360 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7363 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7365 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7366 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7367 priv->assoc_request.atim_window = network->atim_window;
7369 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7370 priv->assoc_request.atim_window = 0;
7373 priv->assoc_request.listen_interval = network->listen_interval;
7375 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7377 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7381 rates->ieee_mode = priv->assoc_request.ieee_mode;
7382 rates->purpose = IPW_RATE_CONNECT;
7383 ipw_send_supported_rates(priv, rates);
7385 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7386 priv->sys_config.dot11g_auto_detection = 1;
7388 priv->sys_config.dot11g_auto_detection = 0;
7390 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7391 priv->sys_config.answer_broadcast_ssid_probe = 1;
7393 priv->sys_config.answer_broadcast_ssid_probe = 0;
7395 err = ipw_send_system_config(priv);
7397 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7401 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7402 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7404 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7409 * If preemption is enabled, it is possible for the association
7410 * to complete before we return from ipw_send_associate. Therefore
7411 * we have to be sure and update our priviate data first.
7413 priv->channel = network->channel;
7414 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7415 priv->status |= STATUS_ASSOCIATING;
7416 priv->status &= ~STATUS_SECURITY_UPDATED;
7418 priv->assoc_network = network;
7420 #ifdef CONFIG_IPW2200_QOS
7421 ipw_qos_association(priv, network);
7424 err = ipw_send_associate(priv, &priv->assoc_request);
7426 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7430 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %s \n",
7431 escape_essid(priv->essid, priv->essid_len),
7432 print_mac(mac, priv->bssid));
7437 static void ipw_roam(void *data)
7439 struct ipw_priv *priv = data;
7440 struct ieee80211_network *network = NULL;
7441 struct ipw_network_match match = {
7442 .network = priv->assoc_network
7445 /* The roaming process is as follows:
7447 * 1. Missed beacon threshold triggers the roaming process by
7448 * setting the status ROAM bit and requesting a scan.
7449 * 2. When the scan completes, it schedules the ROAM work
7450 * 3. The ROAM work looks at all of the known networks for one that
7451 * is a better network than the currently associated. If none
7452 * found, the ROAM process is over (ROAM bit cleared)
7453 * 4. If a better network is found, a disassociation request is
7455 * 5. When the disassociation completes, the roam work is again
7456 * scheduled. The second time through, the driver is no longer
7457 * associated, and the newly selected network is sent an
7458 * association request.
7459 * 6. At this point ,the roaming process is complete and the ROAM
7460 * status bit is cleared.
7463 /* If we are no longer associated, and the roaming bit is no longer
7464 * set, then we are not actively roaming, so just return */
7465 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7468 if (priv->status & STATUS_ASSOCIATED) {
7469 /* First pass through ROAM process -- look for a better
7471 unsigned long flags;
7472 u8 rssi = priv->assoc_network->stats.rssi;
7473 priv->assoc_network->stats.rssi = -128;
7474 spin_lock_irqsave(&priv->ieee->lock, flags);
7475 list_for_each_entry(network, &priv->ieee->network_list, list) {
7476 if (network != priv->assoc_network)
7477 ipw_best_network(priv, &match, network, 1);
7479 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7480 priv->assoc_network->stats.rssi = rssi;
7482 if (match.network == priv->assoc_network) {
7483 IPW_DEBUG_ASSOC("No better APs in this network to "
7485 priv->status &= ~STATUS_ROAMING;
7486 ipw_debug_config(priv);
7490 ipw_send_disassociate(priv, 1);
7491 priv->assoc_network = match.network;
7496 /* Second pass through ROAM process -- request association */
7497 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7498 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7499 priv->status &= ~STATUS_ROAMING;
7502 static void ipw_bg_roam(struct work_struct *work)
7504 struct ipw_priv *priv =
7505 container_of(work, struct ipw_priv, roam);
7506 mutex_lock(&priv->mutex);
7508 mutex_unlock(&priv->mutex);
7511 static int ipw_associate(void *data)
7513 struct ipw_priv *priv = data;
7515 struct ieee80211_network *network = NULL;
7516 struct ipw_network_match match = {
7519 struct ipw_supported_rates *rates;
7520 struct list_head *element;
7521 unsigned long flags;
7523 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7524 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7528 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7529 IPW_DEBUG_ASSOC("Not attempting association (already in "
7534 if (priv->status & STATUS_DISASSOCIATING) {
7535 IPW_DEBUG_ASSOC("Not attempting association (in "
7536 "disassociating)\n ");
7537 queue_work(priv->workqueue, &priv->associate);
7541 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7542 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7547 if (!(priv->config & CFG_ASSOCIATE) &&
7548 !(priv->config & (CFG_STATIC_ESSID |
7549 CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7550 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7554 /* Protect our use of the network_list */
7555 spin_lock_irqsave(&priv->ieee->lock, flags);
7556 list_for_each_entry(network, &priv->ieee->network_list, list)
7557 ipw_best_network(priv, &match, network, 0);
7559 network = match.network;
7560 rates = &match.rates;
7562 if (network == NULL &&
7563 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7564 priv->config & CFG_ADHOC_CREATE &&
7565 priv->config & CFG_STATIC_ESSID &&
7566 priv->config & CFG_STATIC_CHANNEL &&
7567 !list_empty(&priv->ieee->network_free_list)) {
7568 element = priv->ieee->network_free_list.next;
7569 network = list_entry(element, struct ieee80211_network, list);
7570 ipw_adhoc_create(priv, network);
7571 rates = &priv->rates;
7573 list_add_tail(&network->list, &priv->ieee->network_list);
7575 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7577 /* If we reached the end of the list, then we don't have any valid
7580 ipw_debug_config(priv);
7582 if (!(priv->status & STATUS_SCANNING)) {
7583 if (!(priv->config & CFG_SPEED_SCAN))
7584 queue_delayed_work(priv->workqueue,
7585 &priv->request_scan,
7588 queue_delayed_work(priv->workqueue,
7589 &priv->request_scan, 0);
7595 ipw_associate_network(priv, network, rates, 0);
7600 static void ipw_bg_associate(struct work_struct *work)
7602 struct ipw_priv *priv =
7603 container_of(work, struct ipw_priv, associate);
7604 mutex_lock(&priv->mutex);
7605 ipw_associate(priv);
7606 mutex_unlock(&priv->mutex);
7609 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7610 struct sk_buff *skb)
7612 struct ieee80211_hdr *hdr;
7615 hdr = (struct ieee80211_hdr *)skb->data;
7616 fc = le16_to_cpu(hdr->frame_ctl);
7617 if (!(fc & IEEE80211_FCTL_PROTECTED))
7620 fc &= ~IEEE80211_FCTL_PROTECTED;
7621 hdr->frame_ctl = cpu_to_le16(fc);
7622 switch (priv->ieee->sec.level) {
7624 /* Remove CCMP HDR */
7625 memmove(skb->data + IEEE80211_3ADDR_LEN,
7626 skb->data + IEEE80211_3ADDR_LEN + 8,
7627 skb->len - IEEE80211_3ADDR_LEN - 8);
7628 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7634 memmove(skb->data + IEEE80211_3ADDR_LEN,
7635 skb->data + IEEE80211_3ADDR_LEN + 4,
7636 skb->len - IEEE80211_3ADDR_LEN - 4);
7637 skb_trim(skb, skb->len - 8); /* IV + ICV */
7642 printk(KERN_ERR "Unknow security level %d\n",
7643 priv->ieee->sec.level);
7648 static void ipw_handle_data_packet(struct ipw_priv *priv,
7649 struct ipw_rx_mem_buffer *rxb,
7650 struct ieee80211_rx_stats *stats)
7652 struct ieee80211_hdr_4addr *hdr;
7653 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7655 /* We received data from the HW, so stop the watchdog */
7656 priv->net_dev->trans_start = jiffies;
7658 /* We only process data packets if the
7659 * interface is open */
7660 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7661 skb_tailroom(rxb->skb))) {
7662 priv->ieee->stats.rx_errors++;
7663 priv->wstats.discard.misc++;
7664 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7666 } else if (unlikely(!netif_running(priv->net_dev))) {
7667 priv->ieee->stats.rx_dropped++;
7668 priv->wstats.discard.misc++;
7669 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7673 /* Advance skb->data to the start of the actual payload */
7674 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7676 /* Set the size of the skb to the size of the frame */
7677 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7679 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7681 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7682 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7683 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7684 (is_multicast_ether_addr(hdr->addr1) ?
7685 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7686 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7688 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7689 priv->ieee->stats.rx_errors++;
7690 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7692 __ipw_led_activity_on(priv);
7696 #ifdef CONFIG_IPW2200_RADIOTAP
7697 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7698 struct ipw_rx_mem_buffer *rxb,
7699 struct ieee80211_rx_stats *stats)
7701 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7702 struct ipw_rx_frame *frame = &pkt->u.frame;
7704 /* initial pull of some data */
7705 u16 received_channel = frame->received_channel;
7706 u8 antennaAndPhy = frame->antennaAndPhy;
7707 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7708 u16 pktrate = frame->rate;
7710 /* Magic struct that slots into the radiotap header -- no reason
7711 * to build this manually element by element, we can write it much
7712 * more efficiently than we can parse it. ORDER MATTERS HERE */
7713 struct ipw_rt_hdr *ipw_rt;
7715 short len = le16_to_cpu(pkt->u.frame.length);
7717 /* We received data from the HW, so stop the watchdog */
7718 priv->net_dev->trans_start = jiffies;
7720 /* We only process data packets if the
7721 * interface is open */
7722 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7723 skb_tailroom(rxb->skb))) {
7724 priv->ieee->stats.rx_errors++;
7725 priv->wstats.discard.misc++;
7726 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7728 } else if (unlikely(!netif_running(priv->net_dev))) {
7729 priv->ieee->stats.rx_dropped++;
7730 priv->wstats.discard.misc++;
7731 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7735 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7737 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7738 /* FIXME: Should alloc bigger skb instead */
7739 priv->ieee->stats.rx_dropped++;
7740 priv->wstats.discard.misc++;
7741 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7745 /* copy the frame itself */
7746 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7747 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7749 /* Zero the radiotap static buffer ... We only need to zero the bytes NOT
7750 * part of our real header, saves a little time.
7752 * No longer necessary since we fill in all our data. Purge before merging
7754 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7755 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7758 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7760 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7761 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7762 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7764 /* Big bitfield of all the fields we provide in radiotap */
7765 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7766 (1 << IEEE80211_RADIOTAP_TSFT) |
7767 (1 << IEEE80211_RADIOTAP_FLAGS) |
7768 (1 << IEEE80211_RADIOTAP_RATE) |
7769 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7770 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7771 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7772 (1 << IEEE80211_RADIOTAP_ANTENNA));
7774 /* Zero the flags, we'll add to them as we go */
7775 ipw_rt->rt_flags = 0;
7776 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7777 frame->parent_tsf[2] << 16 |
7778 frame->parent_tsf[1] << 8 |
7779 frame->parent_tsf[0]);
7781 /* Convert signal to DBM */
7782 ipw_rt->rt_dbmsignal = antsignal;
7783 ipw_rt->rt_dbmnoise = frame->noise;
7785 /* Convert the channel data and set the flags */
7786 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7787 if (received_channel > 14) { /* 802.11a */
7788 ipw_rt->rt_chbitmask =
7789 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7790 } else if (antennaAndPhy & 32) { /* 802.11b */
7791 ipw_rt->rt_chbitmask =
7792 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7793 } else { /* 802.11g */
7794 ipw_rt->rt_chbitmask =
7795 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7798 /* set the rate in multiples of 500k/s */
7800 case IPW_TX_RATE_1MB:
7801 ipw_rt->rt_rate = 2;
7803 case IPW_TX_RATE_2MB:
7804 ipw_rt->rt_rate = 4;
7806 case IPW_TX_RATE_5MB:
7807 ipw_rt->rt_rate = 10;
7809 case IPW_TX_RATE_6MB:
7810 ipw_rt->rt_rate = 12;
7812 case IPW_TX_RATE_9MB:
7813 ipw_rt->rt_rate = 18;
7815 case IPW_TX_RATE_11MB:
7816 ipw_rt->rt_rate = 22;
7818 case IPW_TX_RATE_12MB:
7819 ipw_rt->rt_rate = 24;
7821 case IPW_TX_RATE_18MB:
7822 ipw_rt->rt_rate = 36;
7824 case IPW_TX_RATE_24MB:
7825 ipw_rt->rt_rate = 48;
7827 case IPW_TX_RATE_36MB:
7828 ipw_rt->rt_rate = 72;
7830 case IPW_TX_RATE_48MB:
7831 ipw_rt->rt_rate = 96;
7833 case IPW_TX_RATE_54MB:
7834 ipw_rt->rt_rate = 108;
7837 ipw_rt->rt_rate = 0;
7841 /* antenna number */
7842 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7844 /* set the preamble flag if we have it */
7845 if ((antennaAndPhy & 64))
7846 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7848 /* Set the size of the skb to the size of the frame */
7849 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7851 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7853 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7854 priv->ieee->stats.rx_errors++;
7855 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7857 /* no LED during capture */
7862 #ifdef CONFIG_IPW2200_PROMISCUOUS
7863 #define ieee80211_is_probe_response(fc) \
7864 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7865 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7867 #define ieee80211_is_management(fc) \
7868 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7870 #define ieee80211_is_control(fc) \
7871 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7873 #define ieee80211_is_data(fc) \
7874 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7876 #define ieee80211_is_assoc_request(fc) \
7877 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7879 #define ieee80211_is_reassoc_request(fc) \
7880 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7882 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7883 struct ipw_rx_mem_buffer *rxb,
7884 struct ieee80211_rx_stats *stats)
7886 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7887 struct ipw_rx_frame *frame = &pkt->u.frame;
7888 struct ipw_rt_hdr *ipw_rt;
7890 /* First cache any information we need before we overwrite
7891 * the information provided in the skb from the hardware */
7892 struct ieee80211_hdr *hdr;
7893 u16 channel = frame->received_channel;
7894 u8 phy_flags = frame->antennaAndPhy;
7895 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7896 s8 noise = frame->noise;
7897 u8 rate = frame->rate;
7898 short len = le16_to_cpu(pkt->u.frame.length);
7899 struct sk_buff *skb;
7901 u16 filter = priv->prom_priv->filter;
7903 /* If the filter is set to not include Rx frames then return */
7904 if (filter & IPW_PROM_NO_RX)
7907 /* We received data from the HW, so stop the watchdog */
7908 priv->prom_net_dev->trans_start = jiffies;
7910 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7911 priv->prom_priv->ieee->stats.rx_errors++;
7912 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7916 /* We only process data packets if the interface is open */
7917 if (unlikely(!netif_running(priv->prom_net_dev))) {
7918 priv->prom_priv->ieee->stats.rx_dropped++;
7919 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7923 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7925 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7926 /* FIXME: Should alloc bigger skb instead */
7927 priv->prom_priv->ieee->stats.rx_dropped++;
7928 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7932 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7933 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7934 if (filter & IPW_PROM_NO_MGMT)
7936 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7938 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7939 if (filter & IPW_PROM_NO_CTL)
7941 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7943 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
7944 if (filter & IPW_PROM_NO_DATA)
7946 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7950 /* Copy the SKB since this is for the promiscuous side */
7951 skb = skb_copy(rxb->skb, GFP_ATOMIC);
7953 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7957 /* copy the frame data to write after where the radiotap header goes */
7958 ipw_rt = (void *)skb->data;
7961 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
7963 memcpy(ipw_rt->payload, hdr, len);
7965 /* Zero the radiotap static buffer ... We only need to zero the bytes
7966 * NOT part of our real header, saves a little time.
7968 * No longer necessary since we fill in all our data. Purge before
7969 * merging patch officially.
7970 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7971 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7974 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7975 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7976 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
7978 /* Set the size of the skb to the size of the frame */
7979 skb_put(skb, sizeof(*ipw_rt) + len);
7981 /* Big bitfield of all the fields we provide in radiotap */
7982 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7983 (1 << IEEE80211_RADIOTAP_TSFT) |
7984 (1 << IEEE80211_RADIOTAP_FLAGS) |
7985 (1 << IEEE80211_RADIOTAP_RATE) |
7986 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7987 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7988 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7989 (1 << IEEE80211_RADIOTAP_ANTENNA));
7991 /* Zero the flags, we'll add to them as we go */
7992 ipw_rt->rt_flags = 0;
7993 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7994 frame->parent_tsf[2] << 16 |
7995 frame->parent_tsf[1] << 8 |
7996 frame->parent_tsf[0]);
7998 /* Convert to DBM */
7999 ipw_rt->rt_dbmsignal = signal;
8000 ipw_rt->rt_dbmnoise = noise;
8002 /* Convert the channel data and set the flags */
8003 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8004 if (channel > 14) { /* 802.11a */
8005 ipw_rt->rt_chbitmask =
8006 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8007 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8008 ipw_rt->rt_chbitmask =
8009 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8010 } else { /* 802.11g */
8011 ipw_rt->rt_chbitmask =
8012 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8015 /* set the rate in multiples of 500k/s */
8017 case IPW_TX_RATE_1MB:
8018 ipw_rt->rt_rate = 2;
8020 case IPW_TX_RATE_2MB:
8021 ipw_rt->rt_rate = 4;
8023 case IPW_TX_RATE_5MB:
8024 ipw_rt->rt_rate = 10;
8026 case IPW_TX_RATE_6MB:
8027 ipw_rt->rt_rate = 12;
8029 case IPW_TX_RATE_9MB:
8030 ipw_rt->rt_rate = 18;
8032 case IPW_TX_RATE_11MB:
8033 ipw_rt->rt_rate = 22;
8035 case IPW_TX_RATE_12MB:
8036 ipw_rt->rt_rate = 24;
8038 case IPW_TX_RATE_18MB:
8039 ipw_rt->rt_rate = 36;
8041 case IPW_TX_RATE_24MB:
8042 ipw_rt->rt_rate = 48;
8044 case IPW_TX_RATE_36MB:
8045 ipw_rt->rt_rate = 72;
8047 case IPW_TX_RATE_48MB:
8048 ipw_rt->rt_rate = 96;
8050 case IPW_TX_RATE_54MB:
8051 ipw_rt->rt_rate = 108;
8054 ipw_rt->rt_rate = 0;
8058 /* antenna number */
8059 ipw_rt->rt_antenna = (phy_flags & 3);
8061 /* set the preamble flag if we have it */
8062 if (phy_flags & (1 << 6))
8063 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8065 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8067 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8068 priv->prom_priv->ieee->stats.rx_errors++;
8069 dev_kfree_skb_any(skb);
8074 static int is_network_packet(struct ipw_priv *priv,
8075 struct ieee80211_hdr_4addr *header)
8077 /* Filter incoming packets to determine if they are targetted toward
8078 * this network, discarding packets coming from ourselves */
8079 switch (priv->ieee->iw_mode) {
8080 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8081 /* packets from our adapter are dropped (echo) */
8082 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8085 /* {broad,multi}cast packets to our BSSID go through */
8086 if (is_multicast_ether_addr(header->addr1))
8087 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8089 /* packets to our adapter go through */
8090 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8093 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8094 /* packets from our adapter are dropped (echo) */
8095 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8098 /* {broad,multi}cast packets to our BSS go through */
8099 if (is_multicast_ether_addr(header->addr1))
8100 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8102 /* packets to our adapter go through */
8103 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8110 #define IPW_PACKET_RETRY_TIME HZ
8112 static int is_duplicate_packet(struct ipw_priv *priv,
8113 struct ieee80211_hdr_4addr *header)
8115 u16 sc = le16_to_cpu(header->seq_ctl);
8116 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8117 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8118 u16 *last_seq, *last_frag;
8119 unsigned long *last_time;
8121 switch (priv->ieee->iw_mode) {
8124 struct list_head *p;
8125 struct ipw_ibss_seq *entry = NULL;
8126 u8 *mac = header->addr2;
8127 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8129 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8131 list_entry(p, struct ipw_ibss_seq, list);
8132 if (!memcmp(entry->mac, mac, ETH_ALEN))
8135 if (p == &priv->ibss_mac_hash[index]) {
8136 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8139 ("Cannot malloc new mac entry\n");
8142 memcpy(entry->mac, mac, ETH_ALEN);
8143 entry->seq_num = seq;
8144 entry->frag_num = frag;
8145 entry->packet_time = jiffies;
8146 list_add(&entry->list,
8147 &priv->ibss_mac_hash[index]);
8150 last_seq = &entry->seq_num;
8151 last_frag = &entry->frag_num;
8152 last_time = &entry->packet_time;
8156 last_seq = &priv->last_seq_num;
8157 last_frag = &priv->last_frag_num;
8158 last_time = &priv->last_packet_time;
8163 if ((*last_seq == seq) &&
8164 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8165 if (*last_frag == frag)
8167 if (*last_frag + 1 != frag)
8168 /* out-of-order fragment */
8174 *last_time = jiffies;
8178 /* Comment this line now since we observed the card receives
8179 * duplicate packets but the FCTL_RETRY bit is not set in the
8180 * IBSS mode with fragmentation enabled.
8181 BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8185 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8186 struct ipw_rx_mem_buffer *rxb,
8187 struct ieee80211_rx_stats *stats)
8189 struct sk_buff *skb = rxb->skb;
8190 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8191 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8192 (skb->data + IPW_RX_FRAME_SIZE);
8194 ieee80211_rx_mgt(priv->ieee, header, stats);
8196 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8197 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8198 IEEE80211_STYPE_PROBE_RESP) ||
8199 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8200 IEEE80211_STYPE_BEACON))) {
8201 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8202 ipw_add_station(priv, header->addr2);
8205 if (priv->config & CFG_NET_STATS) {
8206 IPW_DEBUG_HC("sending stat packet\n");
8208 /* Set the size of the skb to the size of the full
8209 * ipw header and 802.11 frame */
8210 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8213 /* Advance past the ipw packet header to the 802.11 frame */
8214 skb_pull(skb, IPW_RX_FRAME_SIZE);
8216 /* Push the ieee80211_rx_stats before the 802.11 frame */
8217 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8219 skb->dev = priv->ieee->dev;
8221 /* Point raw at the ieee80211_stats */
8222 skb_reset_mac_header(skb);
8224 skb->pkt_type = PACKET_OTHERHOST;
8225 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8226 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8233 * Main entry function for recieving a packet with 80211 headers. This
8234 * should be called when ever the FW has notified us that there is a new
8235 * skb in the recieve queue.
8237 static void ipw_rx(struct ipw_priv *priv)
8239 struct ipw_rx_mem_buffer *rxb;
8240 struct ipw_rx_packet *pkt;
8241 struct ieee80211_hdr_4addr *header;
8244 DECLARE_MAC_BUF(mac);
8245 DECLARE_MAC_BUF(mac2);
8246 DECLARE_MAC_BUF(mac3);
8248 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8249 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8250 i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8253 rxb = priv->rxq->queue[i];
8254 if (unlikely(rxb == NULL)) {
8255 printk(KERN_CRIT "Queue not allocated!\n");
8258 priv->rxq->queue[i] = NULL;
8260 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8262 PCI_DMA_FROMDEVICE);
8264 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8265 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8266 pkt->header.message_type,
8267 pkt->header.rx_seq_num, pkt->header.control_bits);
8269 switch (pkt->header.message_type) {
8270 case RX_FRAME_TYPE: /* 802.11 frame */ {
8271 struct ieee80211_rx_stats stats = {
8272 .rssi = pkt->u.frame.rssi_dbm -
8275 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8276 IPW_RSSI_TO_DBM + 0x100,
8278 le16_to_cpu(pkt->u.frame.noise),
8279 .rate = pkt->u.frame.rate,
8280 .mac_time = jiffies,
8282 pkt->u.frame.received_channel,
8285 control & (1 << 0)) ?
8286 IEEE80211_24GHZ_BAND :
8287 IEEE80211_52GHZ_BAND,
8288 .len = le16_to_cpu(pkt->u.frame.length),
8291 if (stats.rssi != 0)
8292 stats.mask |= IEEE80211_STATMASK_RSSI;
8293 if (stats.signal != 0)
8294 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8295 if (stats.noise != 0)
8296 stats.mask |= IEEE80211_STATMASK_NOISE;
8297 if (stats.rate != 0)
8298 stats.mask |= IEEE80211_STATMASK_RATE;
8302 #ifdef CONFIG_IPW2200_PROMISCUOUS
8303 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8304 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8307 #ifdef CONFIG_IPW2200_MONITOR
8308 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8309 #ifdef CONFIG_IPW2200_RADIOTAP
8311 ipw_handle_data_packet_monitor(priv,
8315 ipw_handle_data_packet(priv, rxb,
8323 (struct ieee80211_hdr_4addr *)(rxb->skb->
8326 /* TODO: Check Ad-Hoc dest/source and make sure
8327 * that we are actually parsing these packets
8328 * correctly -- we should probably use the
8329 * frame control of the packet and disregard
8330 * the current iw_mode */
8333 is_network_packet(priv, header);
8334 if (network_packet && priv->assoc_network) {
8335 priv->assoc_network->stats.rssi =
8337 priv->exp_avg_rssi =
8338 exponential_average(priv->exp_avg_rssi,
8339 stats.rssi, DEPTH_RSSI);
8342 IPW_DEBUG_RX("Frame: len=%u\n",
8343 le16_to_cpu(pkt->u.frame.length));
8345 if (le16_to_cpu(pkt->u.frame.length) <
8346 ieee80211_get_hdrlen(le16_to_cpu(
8347 header->frame_ctl))) {
8349 ("Received packet is too small. "
8351 priv->ieee->stats.rx_errors++;
8352 priv->wstats.discard.misc++;
8356 switch (WLAN_FC_GET_TYPE
8357 (le16_to_cpu(header->frame_ctl))) {
8359 case IEEE80211_FTYPE_MGMT:
8360 ipw_handle_mgmt_packet(priv, rxb,
8364 case IEEE80211_FTYPE_CTL:
8367 case IEEE80211_FTYPE_DATA:
8368 if (unlikely(!network_packet ||
8369 is_duplicate_packet(priv,
8372 IPW_DEBUG_DROP("Dropping: "
8388 ipw_handle_data_packet(priv, rxb,
8396 case RX_HOST_NOTIFICATION_TYPE:{
8398 ("Notification: subtype=%02X flags=%02X size=%d\n",
8399 pkt->u.notification.subtype,
8400 pkt->u.notification.flags,
8401 le16_to_cpu(pkt->u.notification.size));
8402 ipw_rx_notification(priv, &pkt->u.notification);
8407 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8408 pkt->header.message_type);
8412 /* For now we just don't re-use anything. We can tweak this
8413 * later to try and re-use notification packets and SKBs that
8414 * fail to Rx correctly */
8415 if (rxb->skb != NULL) {
8416 dev_kfree_skb_any(rxb->skb);
8420 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8421 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8422 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8424 i = (i + 1) % RX_QUEUE_SIZE;
8427 /* Backtrack one entry */
8428 priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8430 ipw_rx_queue_restock(priv);
8433 #define DEFAULT_RTS_THRESHOLD 2304U
8434 #define MIN_RTS_THRESHOLD 1U
8435 #define MAX_RTS_THRESHOLD 2304U
8436 #define DEFAULT_BEACON_INTERVAL 100U
8437 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8438 #define DEFAULT_LONG_RETRY_LIMIT 4U
8442 * @option: options to control different reset behaviour
8443 * 0 = reset everything except the 'disable' module_param
8444 * 1 = reset everything and print out driver info (for probe only)
8445 * 2 = reset everything
8447 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8449 int band, modulation;
8450 int old_mode = priv->ieee->iw_mode;
8452 /* Initialize module parameter values here */
8455 /* We default to disabling the LED code as right now it causes
8456 * too many systems to lock up... */
8458 priv->config |= CFG_NO_LED;
8461 priv->config |= CFG_ASSOCIATE;
8463 IPW_DEBUG_INFO("Auto associate disabled.\n");
8466 priv->config |= CFG_ADHOC_CREATE;
8468 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8470 priv->config &= ~CFG_STATIC_ESSID;
8471 priv->essid_len = 0;
8472 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8474 if (disable && option) {
8475 priv->status |= STATUS_RF_KILL_SW;
8476 IPW_DEBUG_INFO("Radio disabled.\n");
8480 priv->config |= CFG_STATIC_CHANNEL;
8481 priv->channel = channel;
8482 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8483 /* TODO: Validate that provided channel is in range */
8485 #ifdef CONFIG_IPW2200_QOS
8486 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8487 burst_duration_CCK, burst_duration_OFDM);
8488 #endif /* CONFIG_IPW2200_QOS */
8492 priv->ieee->iw_mode = IW_MODE_ADHOC;
8493 priv->net_dev->type = ARPHRD_ETHER;
8496 #ifdef CONFIG_IPW2200_MONITOR
8498 priv->ieee->iw_mode = IW_MODE_MONITOR;
8499 #ifdef CONFIG_IPW2200_RADIOTAP
8500 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8502 priv->net_dev->type = ARPHRD_IEEE80211;
8508 priv->net_dev->type = ARPHRD_ETHER;
8509 priv->ieee->iw_mode = IW_MODE_INFRA;
8514 priv->ieee->host_encrypt = 0;
8515 priv->ieee->host_encrypt_msdu = 0;
8516 priv->ieee->host_decrypt = 0;
8517 priv->ieee->host_mc_decrypt = 0;
8519 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8521 /* IPW2200/2915 is abled to do hardware fragmentation. */
8522 priv->ieee->host_open_frag = 0;
8524 if ((priv->pci_dev->device == 0x4223) ||
8525 (priv->pci_dev->device == 0x4224)) {
8527 printk(KERN_INFO DRV_NAME
8528 ": Detected Intel PRO/Wireless 2915ABG Network "
8530 priv->ieee->abg_true = 1;
8531 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8532 modulation = IEEE80211_OFDM_MODULATION |
8533 IEEE80211_CCK_MODULATION;
8534 priv->adapter = IPW_2915ABG;
8535 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8538 printk(KERN_INFO DRV_NAME
8539 ": Detected Intel PRO/Wireless 2200BG Network "
8542 priv->ieee->abg_true = 0;
8543 band = IEEE80211_24GHZ_BAND;
8544 modulation = IEEE80211_OFDM_MODULATION |
8545 IEEE80211_CCK_MODULATION;
8546 priv->adapter = IPW_2200BG;
8547 priv->ieee->mode = IEEE_G | IEEE_B;
8550 priv->ieee->freq_band = band;
8551 priv->ieee->modulation = modulation;
8553 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8555 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8556 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8558 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8559 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8560 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8562 /* If power management is turned on, default to AC mode */
8563 priv->power_mode = IPW_POWER_AC;
8564 priv->tx_power = IPW_TX_POWER_DEFAULT;
8566 return old_mode == priv->ieee->iw_mode;
8570 * This file defines the Wireless Extension handlers. It does not
8571 * define any methods of hardware manipulation and relies on the
8572 * functions defined in ipw_main to provide the HW interaction.
8574 * The exception to this is the use of the ipw_get_ordinal()
8575 * function used to poll the hardware vs. making unecessary calls.
8579 static int ipw_wx_get_name(struct net_device *dev,
8580 struct iw_request_info *info,
8581 union iwreq_data *wrqu, char *extra)
8583 struct ipw_priv *priv = ieee80211_priv(dev);
8584 mutex_lock(&priv->mutex);
8585 if (priv->status & STATUS_RF_KILL_MASK)
8586 strcpy(wrqu->name, "radio off");
8587 else if (!(priv->status & STATUS_ASSOCIATED))
8588 strcpy(wrqu->name, "unassociated");
8590 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8591 ipw_modes[priv->assoc_request.ieee_mode]);
8592 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8593 mutex_unlock(&priv->mutex);
8597 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8600 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8601 priv->config &= ~CFG_STATIC_CHANNEL;
8602 IPW_DEBUG_ASSOC("Attempting to associate with new "
8604 ipw_associate(priv);
8608 priv->config |= CFG_STATIC_CHANNEL;
8610 if (priv->channel == channel) {
8611 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8616 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8617 priv->channel = channel;
8619 #ifdef CONFIG_IPW2200_MONITOR
8620 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8622 if (priv->status & STATUS_SCANNING) {
8623 IPW_DEBUG_SCAN("Scan abort triggered due to "
8624 "channel change.\n");
8625 ipw_abort_scan(priv);
8628 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8631 if (priv->status & STATUS_SCANNING)
8632 IPW_DEBUG_SCAN("Still scanning...\n");
8634 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8639 #endif /* CONFIG_IPW2200_MONITOR */
8641 /* Network configuration changed -- force [re]association */
8642 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8643 if (!ipw_disassociate(priv))
8644 ipw_associate(priv);
8649 static int ipw_wx_set_freq(struct net_device *dev,
8650 struct iw_request_info *info,
8651 union iwreq_data *wrqu, char *extra)
8653 struct ipw_priv *priv = ieee80211_priv(dev);
8654 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8655 struct iw_freq *fwrq = &wrqu->freq;
8661 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8662 mutex_lock(&priv->mutex);
8663 ret = ipw_set_channel(priv, 0);
8664 mutex_unlock(&priv->mutex);
8667 /* if setting by freq convert to channel */
8669 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8675 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8678 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8679 i = ieee80211_channel_to_index(priv->ieee, channel);
8683 flags = (band == IEEE80211_24GHZ_BAND) ?
8684 geo->bg[i].flags : geo->a[i].flags;
8685 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8686 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8691 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8692 mutex_lock(&priv->mutex);
8693 ret = ipw_set_channel(priv, channel);
8694 mutex_unlock(&priv->mutex);
8698 static int ipw_wx_get_freq(struct net_device *dev,
8699 struct iw_request_info *info,
8700 union iwreq_data *wrqu, char *extra)
8702 struct ipw_priv *priv = ieee80211_priv(dev);
8706 /* If we are associated, trying to associate, or have a statically
8707 * configured CHANNEL then return that; otherwise return ANY */
8708 mutex_lock(&priv->mutex);
8709 if (priv->config & CFG_STATIC_CHANNEL ||
8710 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8713 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8717 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8718 case IEEE80211_52GHZ_BAND:
8719 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8722 case IEEE80211_24GHZ_BAND:
8723 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8732 mutex_unlock(&priv->mutex);
8733 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8737 static int ipw_wx_set_mode(struct net_device *dev,
8738 struct iw_request_info *info,
8739 union iwreq_data *wrqu, char *extra)
8741 struct ipw_priv *priv = ieee80211_priv(dev);
8744 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8746 switch (wrqu->mode) {
8747 #ifdef CONFIG_IPW2200_MONITOR
8748 case IW_MODE_MONITOR:
8754 wrqu->mode = IW_MODE_INFRA;
8759 if (wrqu->mode == priv->ieee->iw_mode)
8762 mutex_lock(&priv->mutex);
8764 ipw_sw_reset(priv, 0);
8766 #ifdef CONFIG_IPW2200_MONITOR
8767 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8768 priv->net_dev->type = ARPHRD_ETHER;
8770 if (wrqu->mode == IW_MODE_MONITOR)
8771 #ifdef CONFIG_IPW2200_RADIOTAP
8772 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8774 priv->net_dev->type = ARPHRD_IEEE80211;
8776 #endif /* CONFIG_IPW2200_MONITOR */
8778 /* Free the existing firmware and reset the fw_loaded
8779 * flag so ipw_load() will bring in the new firmawre */
8782 priv->ieee->iw_mode = wrqu->mode;
8784 queue_work(priv->workqueue, &priv->adapter_restart);
8785 mutex_unlock(&priv->mutex);
8789 static int ipw_wx_get_mode(struct net_device *dev,
8790 struct iw_request_info *info,
8791 union iwreq_data *wrqu, char *extra)
8793 struct ipw_priv *priv = ieee80211_priv(dev);
8794 mutex_lock(&priv->mutex);
8795 wrqu->mode = priv->ieee->iw_mode;
8796 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8797 mutex_unlock(&priv->mutex);
8801 /* Values are in microsecond */
8802 static const s32 timeout_duration[] = {
8810 static const s32 period_duration[] = {
8818 static int ipw_wx_get_range(struct net_device *dev,
8819 struct iw_request_info *info,
8820 union iwreq_data *wrqu, char *extra)
8822 struct ipw_priv *priv = ieee80211_priv(dev);
8823 struct iw_range *range = (struct iw_range *)extra;
8824 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8827 wrqu->data.length = sizeof(*range);
8828 memset(range, 0, sizeof(*range));
8830 /* 54Mbs == ~27 Mb/s real (802.11g) */
8831 range->throughput = 27 * 1000 * 1000;
8833 range->max_qual.qual = 100;
8834 /* TODO: Find real max RSSI and stick here */
8835 range->max_qual.level = 0;
8836 range->max_qual.noise = 0;
8837 range->max_qual.updated = 7; /* Updated all three */
8839 range->avg_qual.qual = 70;
8840 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8841 range->avg_qual.level = 0; /* FIXME to real average level */
8842 range->avg_qual.noise = 0;
8843 range->avg_qual.updated = 7; /* Updated all three */
8844 mutex_lock(&priv->mutex);
8845 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8847 for (i = 0; i < range->num_bitrates; i++)
8848 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8851 range->max_rts = DEFAULT_RTS_THRESHOLD;
8852 range->min_frag = MIN_FRAG_THRESHOLD;
8853 range->max_frag = MAX_FRAG_THRESHOLD;
8855 range->encoding_size[0] = 5;
8856 range->encoding_size[1] = 13;
8857 range->num_encoding_sizes = 2;
8858 range->max_encoding_tokens = WEP_KEYS;
8860 /* Set the Wireless Extension versions */
8861 range->we_version_compiled = WIRELESS_EXT;
8862 range->we_version_source = 18;
8865 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8866 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8867 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8868 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8871 range->freq[i].i = geo->bg[j].channel;
8872 range->freq[i].m = geo->bg[j].freq * 100000;
8873 range->freq[i].e = 1;
8878 if (priv->ieee->mode & IEEE_A) {
8879 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8880 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8881 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8884 range->freq[i].i = geo->a[j].channel;
8885 range->freq[i].m = geo->a[j].freq * 100000;
8886 range->freq[i].e = 1;
8891 range->num_channels = i;
8892 range->num_frequency = i;
8894 mutex_unlock(&priv->mutex);
8896 /* Event capability (kernel + driver) */
8897 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8898 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8899 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8900 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8901 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8903 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8904 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8906 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8908 IPW_DEBUG_WX("GET Range\n");
8912 static int ipw_wx_set_wap(struct net_device *dev,
8913 struct iw_request_info *info,
8914 union iwreq_data *wrqu, char *extra)
8916 struct ipw_priv *priv = ieee80211_priv(dev);
8917 DECLARE_MAC_BUF(mac);
8919 static const unsigned char any[] = {
8920 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8922 static const unsigned char off[] = {
8923 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8926 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8928 mutex_lock(&priv->mutex);
8929 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8930 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8931 /* we disable mandatory BSSID association */
8932 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8933 priv->config &= ~CFG_STATIC_BSSID;
8934 IPW_DEBUG_ASSOC("Attempting to associate with new "
8936 ipw_associate(priv);
8937 mutex_unlock(&priv->mutex);
8941 priv->config |= CFG_STATIC_BSSID;
8942 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8943 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8944 mutex_unlock(&priv->mutex);
8948 IPW_DEBUG_WX("Setting mandatory BSSID to %s\n",
8949 print_mac(mac, wrqu->ap_addr.sa_data));
8951 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8953 /* Network configuration changed -- force [re]association */
8954 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8955 if (!ipw_disassociate(priv))
8956 ipw_associate(priv);
8958 mutex_unlock(&priv->mutex);
8962 static int ipw_wx_get_wap(struct net_device *dev,
8963 struct iw_request_info *info,
8964 union iwreq_data *wrqu, char *extra)
8966 struct ipw_priv *priv = ieee80211_priv(dev);
8967 DECLARE_MAC_BUF(mac);
8969 /* If we are associated, trying to associate, or have a statically
8970 * configured BSSID then return that; otherwise return ANY */
8971 mutex_lock(&priv->mutex);
8972 if (priv->config & CFG_STATIC_BSSID ||
8973 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8974 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8975 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8977 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8979 IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
8980 print_mac(mac, wrqu->ap_addr.sa_data));
8981 mutex_unlock(&priv->mutex);
8985 static int ipw_wx_set_essid(struct net_device *dev,
8986 struct iw_request_info *info,
8987 union iwreq_data *wrqu, char *extra)
8989 struct ipw_priv *priv = ieee80211_priv(dev);
8992 mutex_lock(&priv->mutex);
8994 if (!wrqu->essid.flags)
8996 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8997 ipw_disassociate(priv);
8998 priv->config &= ~CFG_STATIC_ESSID;
8999 ipw_associate(priv);
9000 mutex_unlock(&priv->mutex);
9004 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9006 priv->config |= CFG_STATIC_ESSID;
9008 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9009 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9010 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9011 mutex_unlock(&priv->mutex);
9015 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
9018 priv->essid_len = length;
9019 memcpy(priv->essid, extra, priv->essid_len);
9021 /* Network configuration changed -- force [re]association */
9022 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9023 if (!ipw_disassociate(priv))
9024 ipw_associate(priv);
9026 mutex_unlock(&priv->mutex);
9030 static int ipw_wx_get_essid(struct net_device *dev,
9031 struct iw_request_info *info,
9032 union iwreq_data *wrqu, char *extra)
9034 struct ipw_priv *priv = ieee80211_priv(dev);
9036 /* If we are associated, trying to associate, or have a statically
9037 * configured ESSID then return that; otherwise return ANY */
9038 mutex_lock(&priv->mutex);
9039 if (priv->config & CFG_STATIC_ESSID ||
9040 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9041 IPW_DEBUG_WX("Getting essid: '%s'\n",
9042 escape_essid(priv->essid, priv->essid_len));
9043 memcpy(extra, priv->essid, priv->essid_len);
9044 wrqu->essid.length = priv->essid_len;
9045 wrqu->essid.flags = 1; /* active */
9047 IPW_DEBUG_WX("Getting essid: ANY\n");
9048 wrqu->essid.length = 0;
9049 wrqu->essid.flags = 0; /* active */
9051 mutex_unlock(&priv->mutex);
9055 static int ipw_wx_set_nick(struct net_device *dev,
9056 struct iw_request_info *info,
9057 union iwreq_data *wrqu, char *extra)
9059 struct ipw_priv *priv = ieee80211_priv(dev);
9061 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9062 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9064 mutex_lock(&priv->mutex);
9065 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9066 memset(priv->nick, 0, sizeof(priv->nick));
9067 memcpy(priv->nick, extra, wrqu->data.length);
9068 IPW_DEBUG_TRACE("<<\n");
9069 mutex_unlock(&priv->mutex);
9074 static int ipw_wx_get_nick(struct net_device *dev,
9075 struct iw_request_info *info,
9076 union iwreq_data *wrqu, char *extra)
9078 struct ipw_priv *priv = ieee80211_priv(dev);
9079 IPW_DEBUG_WX("Getting nick\n");
9080 mutex_lock(&priv->mutex);
9081 wrqu->data.length = strlen(priv->nick);
9082 memcpy(extra, priv->nick, wrqu->data.length);
9083 wrqu->data.flags = 1; /* active */
9084 mutex_unlock(&priv->mutex);
9088 static int ipw_wx_set_sens(struct net_device *dev,
9089 struct iw_request_info *info,
9090 union iwreq_data *wrqu, char *extra)
9092 struct ipw_priv *priv = ieee80211_priv(dev);
9095 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9096 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9097 mutex_lock(&priv->mutex);
9099 if (wrqu->sens.fixed == 0)
9101 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9102 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9105 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9106 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9111 priv->roaming_threshold = wrqu->sens.value;
9112 priv->disassociate_threshold = 3*wrqu->sens.value;
9114 mutex_unlock(&priv->mutex);
9118 static int ipw_wx_get_sens(struct net_device *dev,
9119 struct iw_request_info *info,
9120 union iwreq_data *wrqu, char *extra)
9122 struct ipw_priv *priv = ieee80211_priv(dev);
9123 mutex_lock(&priv->mutex);
9124 wrqu->sens.fixed = 1;
9125 wrqu->sens.value = priv->roaming_threshold;
9126 mutex_unlock(&priv->mutex);
9128 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9129 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9134 static int ipw_wx_set_rate(struct net_device *dev,
9135 struct iw_request_info *info,
9136 union iwreq_data *wrqu, char *extra)
9138 /* TODO: We should use semaphores or locks for access to priv */
9139 struct ipw_priv *priv = ieee80211_priv(dev);
9140 u32 target_rate = wrqu->bitrate.value;
9143 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9144 /* value = X, fixed = 1 means only rate X */
9145 /* value = X, fixed = 0 means all rates lower equal X */
9147 if (target_rate == -1) {
9149 mask = IEEE80211_DEFAULT_RATES_MASK;
9150 /* Now we should reassociate */
9155 fixed = wrqu->bitrate.fixed;
9157 if (target_rate == 1000000 || !fixed)
9158 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9159 if (target_rate == 1000000)
9162 if (target_rate == 2000000 || !fixed)
9163 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9164 if (target_rate == 2000000)
9167 if (target_rate == 5500000 || !fixed)
9168 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9169 if (target_rate == 5500000)
9172 if (target_rate == 6000000 || !fixed)
9173 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9174 if (target_rate == 6000000)
9177 if (target_rate == 9000000 || !fixed)
9178 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9179 if (target_rate == 9000000)
9182 if (target_rate == 11000000 || !fixed)
9183 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9184 if (target_rate == 11000000)
9187 if (target_rate == 12000000 || !fixed)
9188 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9189 if (target_rate == 12000000)
9192 if (target_rate == 18000000 || !fixed)
9193 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9194 if (target_rate == 18000000)
9197 if (target_rate == 24000000 || !fixed)
9198 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9199 if (target_rate == 24000000)
9202 if (target_rate == 36000000 || !fixed)
9203 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9204 if (target_rate == 36000000)
9207 if (target_rate == 48000000 || !fixed)
9208 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9209 if (target_rate == 48000000)
9212 if (target_rate == 54000000 || !fixed)
9213 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9214 if (target_rate == 54000000)
9217 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9221 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9222 mask, fixed ? "fixed" : "sub-rates");
9223 mutex_lock(&priv->mutex);
9224 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9225 priv->config &= ~CFG_FIXED_RATE;
9226 ipw_set_fixed_rate(priv, priv->ieee->mode);
9228 priv->config |= CFG_FIXED_RATE;
9230 if (priv->rates_mask == mask) {
9231 IPW_DEBUG_WX("Mask set to current mask.\n");
9232 mutex_unlock(&priv->mutex);
9236 priv->rates_mask = mask;
9238 /* Network configuration changed -- force [re]association */
9239 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9240 if (!ipw_disassociate(priv))
9241 ipw_associate(priv);
9243 mutex_unlock(&priv->mutex);
9247 static int ipw_wx_get_rate(struct net_device *dev,
9248 struct iw_request_info *info,
9249 union iwreq_data *wrqu, char *extra)
9251 struct ipw_priv *priv = ieee80211_priv(dev);
9252 mutex_lock(&priv->mutex);
9253 wrqu->bitrate.value = priv->last_rate;
9254 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9255 mutex_unlock(&priv->mutex);
9256 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9260 static int ipw_wx_set_rts(struct net_device *dev,
9261 struct iw_request_info *info,
9262 union iwreq_data *wrqu, char *extra)
9264 struct ipw_priv *priv = ieee80211_priv(dev);
9265 mutex_lock(&priv->mutex);
9266 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9267 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9269 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9270 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9271 mutex_unlock(&priv->mutex);
9274 priv->rts_threshold = wrqu->rts.value;
9277 ipw_send_rts_threshold(priv, priv->rts_threshold);
9278 mutex_unlock(&priv->mutex);
9279 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9283 static int ipw_wx_get_rts(struct net_device *dev,
9284 struct iw_request_info *info,
9285 union iwreq_data *wrqu, char *extra)
9287 struct ipw_priv *priv = ieee80211_priv(dev);
9288 mutex_lock(&priv->mutex);
9289 wrqu->rts.value = priv->rts_threshold;
9290 wrqu->rts.fixed = 0; /* no auto select */
9291 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9292 mutex_unlock(&priv->mutex);
9293 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9297 static int ipw_wx_set_txpow(struct net_device *dev,
9298 struct iw_request_info *info,
9299 union iwreq_data *wrqu, char *extra)
9301 struct ipw_priv *priv = ieee80211_priv(dev);
9304 mutex_lock(&priv->mutex);
9305 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9310 if (!wrqu->power.fixed)
9311 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9313 if (wrqu->power.flags != IW_TXPOW_DBM) {
9318 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9319 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9324 priv->tx_power = wrqu->power.value;
9325 err = ipw_set_tx_power(priv);
9327 mutex_unlock(&priv->mutex);
9331 static int ipw_wx_get_txpow(struct net_device *dev,
9332 struct iw_request_info *info,
9333 union iwreq_data *wrqu, char *extra)
9335 struct ipw_priv *priv = ieee80211_priv(dev);
9336 mutex_lock(&priv->mutex);
9337 wrqu->power.value = priv->tx_power;
9338 wrqu->power.fixed = 1;
9339 wrqu->power.flags = IW_TXPOW_DBM;
9340 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9341 mutex_unlock(&priv->mutex);
9343 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9344 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9349 static int ipw_wx_set_frag(struct net_device *dev,
9350 struct iw_request_info *info,
9351 union iwreq_data *wrqu, char *extra)
9353 struct ipw_priv *priv = ieee80211_priv(dev);
9354 mutex_lock(&priv->mutex);
9355 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9356 priv->ieee->fts = DEFAULT_FTS;
9358 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9359 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9360 mutex_unlock(&priv->mutex);
9364 priv->ieee->fts = wrqu->frag.value & ~0x1;
9367 ipw_send_frag_threshold(priv, wrqu->frag.value);
9368 mutex_unlock(&priv->mutex);
9369 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9373 static int ipw_wx_get_frag(struct net_device *dev,
9374 struct iw_request_info *info,
9375 union iwreq_data *wrqu, char *extra)
9377 struct ipw_priv *priv = ieee80211_priv(dev);
9378 mutex_lock(&priv->mutex);
9379 wrqu->frag.value = priv->ieee->fts;
9380 wrqu->frag.fixed = 0; /* no auto select */
9381 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9382 mutex_unlock(&priv->mutex);
9383 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9388 static int ipw_wx_set_retry(struct net_device *dev,
9389 struct iw_request_info *info,
9390 union iwreq_data *wrqu, char *extra)
9392 struct ipw_priv *priv = ieee80211_priv(dev);
9394 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9397 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9400 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9403 mutex_lock(&priv->mutex);
9404 if (wrqu->retry.flags & IW_RETRY_SHORT)
9405 priv->short_retry_limit = (u8) wrqu->retry.value;
9406 else if (wrqu->retry.flags & IW_RETRY_LONG)
9407 priv->long_retry_limit = (u8) wrqu->retry.value;
9409 priv->short_retry_limit = (u8) wrqu->retry.value;
9410 priv->long_retry_limit = (u8) wrqu->retry.value;
9413 ipw_send_retry_limit(priv, priv->short_retry_limit,
9414 priv->long_retry_limit);
9415 mutex_unlock(&priv->mutex);
9416 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9417 priv->short_retry_limit, priv->long_retry_limit);
9421 static int ipw_wx_get_retry(struct net_device *dev,
9422 struct iw_request_info *info,
9423 union iwreq_data *wrqu, char *extra)
9425 struct ipw_priv *priv = ieee80211_priv(dev);
9427 mutex_lock(&priv->mutex);
9428 wrqu->retry.disabled = 0;
9430 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9431 mutex_unlock(&priv->mutex);
9435 if (wrqu->retry.flags & IW_RETRY_LONG) {
9436 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9437 wrqu->retry.value = priv->long_retry_limit;
9438 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9439 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9440 wrqu->retry.value = priv->short_retry_limit;
9442 wrqu->retry.flags = IW_RETRY_LIMIT;
9443 wrqu->retry.value = priv->short_retry_limit;
9445 mutex_unlock(&priv->mutex);
9447 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9452 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9455 struct ipw_scan_request_ext scan;
9456 int err = 0, scan_type;
9458 if (!(priv->status & STATUS_INIT) ||
9459 (priv->status & STATUS_EXIT_PENDING))
9462 mutex_lock(&priv->mutex);
9464 if (priv->status & STATUS_RF_KILL_MASK) {
9465 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9466 priv->status |= STATUS_SCAN_PENDING;
9470 IPW_DEBUG_HC("starting request direct scan!\n");
9472 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9473 /* We should not sleep here; otherwise we will block most
9474 * of the system (for instance, we hold rtnl_lock when we
9480 memset(&scan, 0, sizeof(scan));
9482 if (priv->config & CFG_SPEED_SCAN)
9483 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9486 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9489 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9491 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9492 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9494 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9496 err = ipw_send_ssid(priv, essid, essid_len);
9498 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9501 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9503 ipw_add_scan_channels(priv, &scan, scan_type);
9505 err = ipw_send_scan_request_ext(priv, &scan);
9507 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9511 priv->status |= STATUS_SCANNING;
9514 mutex_unlock(&priv->mutex);
9518 static int ipw_wx_set_scan(struct net_device *dev,
9519 struct iw_request_info *info,
9520 union iwreq_data *wrqu, char *extra)
9522 struct ipw_priv *priv = ieee80211_priv(dev);
9523 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9525 mutex_lock(&priv->mutex);
9526 priv->user_requested_scan = 1;
9527 mutex_unlock(&priv->mutex);
9529 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9530 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9531 ipw_request_direct_scan(priv, req->essid,
9535 if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9536 queue_work(priv->workqueue,
9537 &priv->request_passive_scan);
9542 IPW_DEBUG_WX("Start scan\n");
9544 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
9549 static int ipw_wx_get_scan(struct net_device *dev,
9550 struct iw_request_info *info,
9551 union iwreq_data *wrqu, char *extra)
9553 struct ipw_priv *priv = ieee80211_priv(dev);
9554 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9557 static int ipw_wx_set_encode(struct net_device *dev,
9558 struct iw_request_info *info,
9559 union iwreq_data *wrqu, char *key)
9561 struct ipw_priv *priv = ieee80211_priv(dev);
9563 u32 cap = priv->capability;
9565 mutex_lock(&priv->mutex);
9566 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9568 /* In IBSS mode, we need to notify the firmware to update
9569 * the beacon info after we changed the capability. */
9570 if (cap != priv->capability &&
9571 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9572 priv->status & STATUS_ASSOCIATED)
9573 ipw_disassociate(priv);
9575 mutex_unlock(&priv->mutex);
9579 static int ipw_wx_get_encode(struct net_device *dev,
9580 struct iw_request_info *info,
9581 union iwreq_data *wrqu, char *key)
9583 struct ipw_priv *priv = ieee80211_priv(dev);
9584 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9587 static int ipw_wx_set_power(struct net_device *dev,
9588 struct iw_request_info *info,
9589 union iwreq_data *wrqu, char *extra)
9591 struct ipw_priv *priv = ieee80211_priv(dev);
9593 mutex_lock(&priv->mutex);
9594 if (wrqu->power.disabled) {
9595 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9596 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9598 IPW_DEBUG_WX("failed setting power mode.\n");
9599 mutex_unlock(&priv->mutex);
9602 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9603 mutex_unlock(&priv->mutex);
9607 switch (wrqu->power.flags & IW_POWER_MODE) {
9608 case IW_POWER_ON: /* If not specified */
9609 case IW_POWER_MODE: /* If set all mask */
9610 case IW_POWER_ALL_R: /* If explicitly state all */
9612 default: /* Otherwise we don't support it */
9613 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9615 mutex_unlock(&priv->mutex);
9619 /* If the user hasn't specified a power management mode yet, default
9621 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9622 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9624 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9626 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9628 IPW_DEBUG_WX("failed setting power mode.\n");
9629 mutex_unlock(&priv->mutex);
9633 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9634 mutex_unlock(&priv->mutex);
9638 static int ipw_wx_get_power(struct net_device *dev,
9639 struct iw_request_info *info,
9640 union iwreq_data *wrqu, char *extra)
9642 struct ipw_priv *priv = ieee80211_priv(dev);
9643 mutex_lock(&priv->mutex);
9644 if (!(priv->power_mode & IPW_POWER_ENABLED))
9645 wrqu->power.disabled = 1;
9647 wrqu->power.disabled = 0;
9649 mutex_unlock(&priv->mutex);
9650 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9655 static int ipw_wx_set_powermode(struct net_device *dev,
9656 struct iw_request_info *info,
9657 union iwreq_data *wrqu, char *extra)
9659 struct ipw_priv *priv = ieee80211_priv(dev);
9660 int mode = *(int *)extra;
9663 mutex_lock(&priv->mutex);
9664 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9665 mode = IPW_POWER_AC;
9667 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9668 err = ipw_send_power_mode(priv, mode);
9670 IPW_DEBUG_WX("failed setting power mode.\n");
9671 mutex_unlock(&priv->mutex);
9674 priv->power_mode = IPW_POWER_ENABLED | mode;
9676 mutex_unlock(&priv->mutex);
9680 #define MAX_WX_STRING 80
9681 static int ipw_wx_get_powermode(struct net_device *dev,
9682 struct iw_request_info *info,
9683 union iwreq_data *wrqu, char *extra)
9685 struct ipw_priv *priv = ieee80211_priv(dev);
9686 int level = IPW_POWER_LEVEL(priv->power_mode);
9689 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9693 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9695 case IPW_POWER_BATTERY:
9696 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9699 p += snprintf(p, MAX_WX_STRING - (p - extra),
9700 "(Timeout %dms, Period %dms)",
9701 timeout_duration[level - 1] / 1000,
9702 period_duration[level - 1] / 1000);
9705 if (!(priv->power_mode & IPW_POWER_ENABLED))
9706 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9708 wrqu->data.length = p - extra + 1;
9713 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9714 struct iw_request_info *info,
9715 union iwreq_data *wrqu, char *extra)
9717 struct ipw_priv *priv = ieee80211_priv(dev);
9718 int mode = *(int *)extra;
9719 u8 band = 0, modulation = 0;
9721 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9722 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9725 mutex_lock(&priv->mutex);
9726 if (priv->adapter == IPW_2915ABG) {
9727 priv->ieee->abg_true = 1;
9728 if (mode & IEEE_A) {
9729 band |= IEEE80211_52GHZ_BAND;
9730 modulation |= IEEE80211_OFDM_MODULATION;
9732 priv->ieee->abg_true = 0;
9734 if (mode & IEEE_A) {
9735 IPW_WARNING("Attempt to set 2200BG into "
9737 mutex_unlock(&priv->mutex);
9741 priv->ieee->abg_true = 0;
9744 if (mode & IEEE_B) {
9745 band |= IEEE80211_24GHZ_BAND;
9746 modulation |= IEEE80211_CCK_MODULATION;
9748 priv->ieee->abg_true = 0;
9750 if (mode & IEEE_G) {
9751 band |= IEEE80211_24GHZ_BAND;
9752 modulation |= IEEE80211_OFDM_MODULATION;
9754 priv->ieee->abg_true = 0;
9756 priv->ieee->mode = mode;
9757 priv->ieee->freq_band = band;
9758 priv->ieee->modulation = modulation;
9759 init_supported_rates(priv, &priv->rates);
9761 /* Network configuration changed -- force [re]association */
9762 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9763 if (!ipw_disassociate(priv)) {
9764 ipw_send_supported_rates(priv, &priv->rates);
9765 ipw_associate(priv);
9768 /* Update the band LEDs */
9769 ipw_led_band_on(priv);
9771 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9772 mode & IEEE_A ? 'a' : '.',
9773 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9774 mutex_unlock(&priv->mutex);
9778 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9779 struct iw_request_info *info,
9780 union iwreq_data *wrqu, char *extra)
9782 struct ipw_priv *priv = ieee80211_priv(dev);
9783 mutex_lock(&priv->mutex);
9784 switch (priv->ieee->mode) {
9786 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9789 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9791 case IEEE_A | IEEE_B:
9792 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9795 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9797 case IEEE_A | IEEE_G:
9798 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9800 case IEEE_B | IEEE_G:
9801 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9803 case IEEE_A | IEEE_B | IEEE_G:
9804 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9807 strncpy(extra, "unknown", MAX_WX_STRING);
9811 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9813 wrqu->data.length = strlen(extra) + 1;
9814 mutex_unlock(&priv->mutex);
9819 static int ipw_wx_set_preamble(struct net_device *dev,
9820 struct iw_request_info *info,
9821 union iwreq_data *wrqu, char *extra)
9823 struct ipw_priv *priv = ieee80211_priv(dev);
9824 int mode = *(int *)extra;
9825 mutex_lock(&priv->mutex);
9826 /* Switching from SHORT -> LONG requires a disassociation */
9828 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9829 priv->config |= CFG_PREAMBLE_LONG;
9831 /* Network configuration changed -- force [re]association */
9833 ("[re]association triggered due to preamble change.\n");
9834 if (!ipw_disassociate(priv))
9835 ipw_associate(priv);
9841 priv->config &= ~CFG_PREAMBLE_LONG;
9844 mutex_unlock(&priv->mutex);
9848 mutex_unlock(&priv->mutex);
9852 static int ipw_wx_get_preamble(struct net_device *dev,
9853 struct iw_request_info *info,
9854 union iwreq_data *wrqu, char *extra)
9856 struct ipw_priv *priv = ieee80211_priv(dev);
9857 mutex_lock(&priv->mutex);
9858 if (priv->config & CFG_PREAMBLE_LONG)
9859 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9861 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9862 mutex_unlock(&priv->mutex);
9866 #ifdef CONFIG_IPW2200_MONITOR
9867 static int ipw_wx_set_monitor(struct net_device *dev,
9868 struct iw_request_info *info,
9869 union iwreq_data *wrqu, char *extra)
9871 struct ipw_priv *priv = ieee80211_priv(dev);
9872 int *parms = (int *)extra;
9873 int enable = (parms[0] > 0);
9874 mutex_lock(&priv->mutex);
9875 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9877 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9878 #ifdef CONFIG_IPW2200_RADIOTAP
9879 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9881 priv->net_dev->type = ARPHRD_IEEE80211;
9883 queue_work(priv->workqueue, &priv->adapter_restart);
9886 ipw_set_channel(priv, parms[1]);
9888 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9889 mutex_unlock(&priv->mutex);
9892 priv->net_dev->type = ARPHRD_ETHER;
9893 queue_work(priv->workqueue, &priv->adapter_restart);
9895 mutex_unlock(&priv->mutex);
9899 #endif /* CONFIG_IPW2200_MONITOR */
9901 static int ipw_wx_reset(struct net_device *dev,
9902 struct iw_request_info *info,
9903 union iwreq_data *wrqu, char *extra)
9905 struct ipw_priv *priv = ieee80211_priv(dev);
9906 IPW_DEBUG_WX("RESET\n");
9907 queue_work(priv->workqueue, &priv->adapter_restart);
9911 static int ipw_wx_sw_reset(struct net_device *dev,
9912 struct iw_request_info *info,
9913 union iwreq_data *wrqu, char *extra)
9915 struct ipw_priv *priv = ieee80211_priv(dev);
9916 union iwreq_data wrqu_sec = {
9918 .flags = IW_ENCODE_DISABLED,
9923 IPW_DEBUG_WX("SW_RESET\n");
9925 mutex_lock(&priv->mutex);
9927 ret = ipw_sw_reset(priv, 2);
9930 ipw_adapter_restart(priv);
9933 /* The SW reset bit might have been toggled on by the 'disable'
9934 * module parameter, so take appropriate action */
9935 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9937 mutex_unlock(&priv->mutex);
9938 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9939 mutex_lock(&priv->mutex);
9941 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9942 /* Configuration likely changed -- force [re]association */
9943 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9945 if (!ipw_disassociate(priv))
9946 ipw_associate(priv);
9949 mutex_unlock(&priv->mutex);
9954 /* Rebase the WE IOCTLs to zero for the handler array */
9955 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9956 static iw_handler ipw_wx_handlers[] = {
9957 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9958 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9959 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9960 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9961 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9962 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9963 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9964 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9965 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9966 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9967 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9968 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9969 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9970 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9971 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9972 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9973 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9974 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9975 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9976 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9977 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9978 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9979 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9980 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9981 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9982 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9983 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9984 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9985 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9986 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9987 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9988 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9989 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9990 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9991 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9992 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9993 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9994 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9995 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9996 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9997 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10001 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10002 IPW_PRIV_GET_POWER,
10005 IPW_PRIV_SET_PREAMBLE,
10006 IPW_PRIV_GET_PREAMBLE,
10009 #ifdef CONFIG_IPW2200_MONITOR
10010 IPW_PRIV_SET_MONITOR,
10014 static struct iw_priv_args ipw_priv_args[] = {
10016 .cmd = IPW_PRIV_SET_POWER,
10017 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10018 .name = "set_power"},
10020 .cmd = IPW_PRIV_GET_POWER,
10021 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10022 .name = "get_power"},
10024 .cmd = IPW_PRIV_SET_MODE,
10025 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10026 .name = "set_mode"},
10028 .cmd = IPW_PRIV_GET_MODE,
10029 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10030 .name = "get_mode"},
10032 .cmd = IPW_PRIV_SET_PREAMBLE,
10033 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10034 .name = "set_preamble"},
10036 .cmd = IPW_PRIV_GET_PREAMBLE,
10037 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10038 .name = "get_preamble"},
10041 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10044 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10045 #ifdef CONFIG_IPW2200_MONITOR
10047 IPW_PRIV_SET_MONITOR,
10048 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10049 #endif /* CONFIG_IPW2200_MONITOR */
10052 static iw_handler ipw_priv_handler[] = {
10053 ipw_wx_set_powermode,
10054 ipw_wx_get_powermode,
10055 ipw_wx_set_wireless_mode,
10056 ipw_wx_get_wireless_mode,
10057 ipw_wx_set_preamble,
10058 ipw_wx_get_preamble,
10061 #ifdef CONFIG_IPW2200_MONITOR
10062 ipw_wx_set_monitor,
10066 static struct iw_handler_def ipw_wx_handler_def = {
10067 .standard = ipw_wx_handlers,
10068 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10069 .num_private = ARRAY_SIZE(ipw_priv_handler),
10070 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10071 .private = ipw_priv_handler,
10072 .private_args = ipw_priv_args,
10073 .get_wireless_stats = ipw_get_wireless_stats,
10077 * Get wireless statistics.
10078 * Called by /proc/net/wireless
10079 * Also called by SIOCGIWSTATS
10081 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10083 struct ipw_priv *priv = ieee80211_priv(dev);
10084 struct iw_statistics *wstats;
10086 wstats = &priv->wstats;
10088 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10089 * netdev->get_wireless_stats seems to be called before fw is
10090 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10091 * and associated; if not associcated, the values are all meaningless
10092 * anyway, so set them all to NULL and INVALID */
10093 if (!(priv->status & STATUS_ASSOCIATED)) {
10094 wstats->miss.beacon = 0;
10095 wstats->discard.retries = 0;
10096 wstats->qual.qual = 0;
10097 wstats->qual.level = 0;
10098 wstats->qual.noise = 0;
10099 wstats->qual.updated = 7;
10100 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10101 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10105 wstats->qual.qual = priv->quality;
10106 wstats->qual.level = priv->exp_avg_rssi;
10107 wstats->qual.noise = priv->exp_avg_noise;
10108 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10109 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10111 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10112 wstats->discard.retries = priv->last_tx_failures;
10113 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10115 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10116 goto fail_get_ordinal;
10117 wstats->discard.retries += tx_retry; */
10122 /* net device stuff */
10124 static void init_sys_config(struct ipw_sys_config *sys_config)
10126 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10127 sys_config->bt_coexistence = 0;
10128 sys_config->answer_broadcast_ssid_probe = 0;
10129 sys_config->accept_all_data_frames = 0;
10130 sys_config->accept_non_directed_frames = 1;
10131 sys_config->exclude_unicast_unencrypted = 0;
10132 sys_config->disable_unicast_decryption = 1;
10133 sys_config->exclude_multicast_unencrypted = 0;
10134 sys_config->disable_multicast_decryption = 1;
10135 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10136 antenna = CFG_SYS_ANTENNA_BOTH;
10137 sys_config->antenna_diversity = antenna;
10138 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10139 sys_config->dot11g_auto_detection = 0;
10140 sys_config->enable_cts_to_self = 0;
10141 sys_config->bt_coexist_collision_thr = 0;
10142 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10143 sys_config->silence_threshold = 0x1e;
10146 static int ipw_net_open(struct net_device *dev)
10148 struct ipw_priv *priv = ieee80211_priv(dev);
10149 IPW_DEBUG_INFO("dev->open\n");
10150 /* we should be verifying the device is ready to be opened */
10151 mutex_lock(&priv->mutex);
10152 if (!(priv->status & STATUS_RF_KILL_MASK) &&
10153 (priv->status & STATUS_ASSOCIATED))
10154 netif_start_queue(dev);
10155 mutex_unlock(&priv->mutex);
10159 static int ipw_net_stop(struct net_device *dev)
10161 IPW_DEBUG_INFO("dev->close\n");
10162 netif_stop_queue(dev);
10169 modify to send one tfd per fragment instead of using chunking. otherwise
10170 we need to heavily modify the ieee80211_skb_to_txb.
10173 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10176 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10177 txb->fragments[0]->data;
10179 struct tfd_frame *tfd;
10180 #ifdef CONFIG_IPW2200_QOS
10181 int tx_id = ipw_get_tx_queue_number(priv, pri);
10182 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10184 struct clx2_tx_queue *txq = &priv->txq[0];
10186 struct clx2_queue *q = &txq->q;
10187 u8 id, hdr_len, unicast;
10188 u16 remaining_bytes;
10190 DECLARE_MAC_BUF(mac);
10192 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10193 switch (priv->ieee->iw_mode) {
10194 case IW_MODE_ADHOC:
10195 unicast = !is_multicast_ether_addr(hdr->addr1);
10196 id = ipw_find_station(priv, hdr->addr1);
10197 if (id == IPW_INVALID_STATION) {
10198 id = ipw_add_station(priv, hdr->addr1);
10199 if (id == IPW_INVALID_STATION) {
10200 IPW_WARNING("Attempt to send data to "
10201 "invalid cell: %s\n",
10202 print_mac(mac, hdr->addr1));
10208 case IW_MODE_INFRA:
10210 unicast = !is_multicast_ether_addr(hdr->addr3);
10215 tfd = &txq->bd[q->first_empty];
10216 txq->txb[q->first_empty] = txb;
10217 memset(tfd, 0, sizeof(*tfd));
10218 tfd->u.data.station_number = id;
10220 tfd->control_flags.message_type = TX_FRAME_TYPE;
10221 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10223 tfd->u.data.cmd_id = DINO_CMD_TX;
10224 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10225 remaining_bytes = txb->payload_size;
10227 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10228 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10230 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10232 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10233 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10235 fc = le16_to_cpu(hdr->frame_ctl);
10236 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10238 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10240 if (likely(unicast))
10241 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10243 if (txb->encrypted && !priv->ieee->host_encrypt) {
10244 switch (priv->ieee->sec.level) {
10246 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10247 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10248 /* XXX: ACK flag must be set for CCMP even if it
10249 * is a multicast/broadcast packet, because CCMP
10250 * group communication encrypted by GTK is
10251 * actually done by the AP. */
10253 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10255 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10256 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10257 tfd->u.data.key_index = 0;
10258 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10261 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10262 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10263 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10264 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10265 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10268 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10269 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10270 tfd->u.data.key_index = priv->ieee->tx_keyidx;
10271 if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10273 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10275 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10280 printk(KERN_ERR "Unknow security level %d\n",
10281 priv->ieee->sec.level);
10285 /* No hardware encryption */
10286 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10288 #ifdef CONFIG_IPW2200_QOS
10289 if (fc & IEEE80211_STYPE_QOS_DATA)
10290 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10291 #endif /* CONFIG_IPW2200_QOS */
10294 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10296 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10297 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10298 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10299 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10300 i, le32_to_cpu(tfd->u.data.num_chunks),
10301 txb->fragments[i]->len - hdr_len);
10302 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10303 i, tfd->u.data.num_chunks,
10304 txb->fragments[i]->len - hdr_len);
10305 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10306 txb->fragments[i]->len - hdr_len);
10308 tfd->u.data.chunk_ptr[i] =
10309 cpu_to_le32(pci_map_single
10311 txb->fragments[i]->data + hdr_len,
10312 txb->fragments[i]->len - hdr_len,
10313 PCI_DMA_TODEVICE));
10314 tfd->u.data.chunk_len[i] =
10315 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10318 if (i != txb->nr_frags) {
10319 struct sk_buff *skb;
10320 u16 remaining_bytes = 0;
10323 for (j = i; j < txb->nr_frags; j++)
10324 remaining_bytes += txb->fragments[j]->len - hdr_len;
10326 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10328 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10330 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10331 for (j = i; j < txb->nr_frags; j++) {
10332 int size = txb->fragments[j]->len - hdr_len;
10334 printk(KERN_INFO "Adding frag %d %d...\n",
10336 memcpy(skb_put(skb, size),
10337 txb->fragments[j]->data + hdr_len, size);
10339 dev_kfree_skb_any(txb->fragments[i]);
10340 txb->fragments[i] = skb;
10341 tfd->u.data.chunk_ptr[i] =
10342 cpu_to_le32(pci_map_single
10343 (priv->pci_dev, skb->data,
10345 PCI_DMA_TODEVICE));
10347 tfd->u.data.num_chunks =
10348 cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10354 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10355 ipw_write32(priv, q->reg_w, q->first_empty);
10357 if (ipw_queue_space(q) < q->high_mark)
10358 netif_stop_queue(priv->net_dev);
10360 return NETDEV_TX_OK;
10363 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10364 ieee80211_txb_free(txb);
10365 return NETDEV_TX_OK;
10368 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10370 struct ipw_priv *priv = ieee80211_priv(dev);
10371 #ifdef CONFIG_IPW2200_QOS
10372 int tx_id = ipw_get_tx_queue_number(priv, pri);
10373 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10375 struct clx2_tx_queue *txq = &priv->txq[0];
10376 #endif /* CONFIG_IPW2200_QOS */
10378 if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10384 #ifdef CONFIG_IPW2200_PROMISCUOUS
10385 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10386 struct ieee80211_txb *txb)
10388 struct ieee80211_rx_stats dummystats;
10389 struct ieee80211_hdr *hdr;
10391 u16 filter = priv->prom_priv->filter;
10394 if (filter & IPW_PROM_NO_TX)
10397 memset(&dummystats, 0, sizeof(dummystats));
10399 /* Filtering of fragment chains is done agains the first fragment */
10400 hdr = (void *)txb->fragments[0]->data;
10401 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10402 if (filter & IPW_PROM_NO_MGMT)
10404 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10406 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10407 if (filter & IPW_PROM_NO_CTL)
10409 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10411 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10412 if (filter & IPW_PROM_NO_DATA)
10414 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10418 for(n=0; n<txb->nr_frags; ++n) {
10419 struct sk_buff *src = txb->fragments[n];
10420 struct sk_buff *dst;
10421 struct ieee80211_radiotap_header *rt_hdr;
10425 hdr = (void *)src->data;
10426 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10431 len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10432 if (!dst) continue;
10434 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10436 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10437 rt_hdr->it_pad = 0;
10438 rt_hdr->it_present = 0; /* after all, it's just an idea */
10439 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10441 *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10442 ieee80211chan2mhz(priv->channel));
10443 if (priv->channel > 14) /* 802.11a */
10444 *(u16*)skb_put(dst, sizeof(u16)) =
10445 cpu_to_le16(IEEE80211_CHAN_OFDM |
10446 IEEE80211_CHAN_5GHZ);
10447 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10448 *(u16*)skb_put(dst, sizeof(u16)) =
10449 cpu_to_le16(IEEE80211_CHAN_CCK |
10450 IEEE80211_CHAN_2GHZ);
10452 *(u16*)skb_put(dst, sizeof(u16)) =
10453 cpu_to_le16(IEEE80211_CHAN_OFDM |
10454 IEEE80211_CHAN_2GHZ);
10456 rt_hdr->it_len = cpu_to_le16(dst->len);
10458 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10460 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10461 dev_kfree_skb_any(dst);
10466 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10467 struct net_device *dev, int pri)
10469 struct ipw_priv *priv = ieee80211_priv(dev);
10470 unsigned long flags;
10473 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10474 spin_lock_irqsave(&priv->lock, flags);
10476 if (!(priv->status & STATUS_ASSOCIATED)) {
10477 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10478 priv->ieee->stats.tx_carrier_errors++;
10479 netif_stop_queue(dev);
10483 #ifdef CONFIG_IPW2200_PROMISCUOUS
10484 if (rtap_iface && netif_running(priv->prom_net_dev))
10485 ipw_handle_promiscuous_tx(priv, txb);
10488 ret = ipw_tx_skb(priv, txb, pri);
10489 if (ret == NETDEV_TX_OK)
10490 __ipw_led_activity_on(priv);
10491 spin_unlock_irqrestore(&priv->lock, flags);
10496 spin_unlock_irqrestore(&priv->lock, flags);
10500 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10502 struct ipw_priv *priv = ieee80211_priv(dev);
10504 priv->ieee->stats.tx_packets = priv->tx_packets;
10505 priv->ieee->stats.rx_packets = priv->rx_packets;
10506 return &priv->ieee->stats;
10509 static void ipw_net_set_multicast_list(struct net_device *dev)
10514 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10516 struct ipw_priv *priv = ieee80211_priv(dev);
10517 struct sockaddr *addr = p;
10518 DECLARE_MAC_BUF(mac);
10520 if (!is_valid_ether_addr(addr->sa_data))
10521 return -EADDRNOTAVAIL;
10522 mutex_lock(&priv->mutex);
10523 priv->config |= CFG_CUSTOM_MAC;
10524 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10525 printk(KERN_INFO "%s: Setting MAC to %s\n",
10526 priv->net_dev->name, print_mac(mac, priv->mac_addr));
10527 queue_work(priv->workqueue, &priv->adapter_restart);
10528 mutex_unlock(&priv->mutex);
10532 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10533 struct ethtool_drvinfo *info)
10535 struct ipw_priv *p = ieee80211_priv(dev);
10540 strcpy(info->driver, DRV_NAME);
10541 strcpy(info->version, DRV_VERSION);
10543 len = sizeof(vers);
10544 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10545 len = sizeof(date);
10546 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10548 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10550 strcpy(info->bus_info, pci_name(p->pci_dev));
10551 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10554 static u32 ipw_ethtool_get_link(struct net_device *dev)
10556 struct ipw_priv *priv = ieee80211_priv(dev);
10557 return (priv->status & STATUS_ASSOCIATED) != 0;
10560 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10562 return IPW_EEPROM_IMAGE_SIZE;
10565 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10566 struct ethtool_eeprom *eeprom, u8 * bytes)
10568 struct ipw_priv *p = ieee80211_priv(dev);
10570 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10572 mutex_lock(&p->mutex);
10573 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10574 mutex_unlock(&p->mutex);
10578 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10579 struct ethtool_eeprom *eeprom, u8 * bytes)
10581 struct ipw_priv *p = ieee80211_priv(dev);
10584 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10586 mutex_lock(&p->mutex);
10587 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10588 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10589 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10590 mutex_unlock(&p->mutex);
10594 static const struct ethtool_ops ipw_ethtool_ops = {
10595 .get_link = ipw_ethtool_get_link,
10596 .get_drvinfo = ipw_ethtool_get_drvinfo,
10597 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10598 .get_eeprom = ipw_ethtool_get_eeprom,
10599 .set_eeprom = ipw_ethtool_set_eeprom,
10602 static irqreturn_t ipw_isr(int irq, void *data)
10604 struct ipw_priv *priv = data;
10605 u32 inta, inta_mask;
10610 spin_lock(&priv->irq_lock);
10612 if (!(priv->status & STATUS_INT_ENABLED)) {
10613 /* IRQ is disabled */
10617 inta = ipw_read32(priv, IPW_INTA_RW);
10618 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10620 if (inta == 0xFFFFFFFF) {
10621 /* Hardware disappeared */
10622 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10626 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10627 /* Shared interrupt */
10631 /* tell the device to stop sending interrupts */
10632 __ipw_disable_interrupts(priv);
10634 /* ack current interrupts */
10635 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10636 ipw_write32(priv, IPW_INTA_RW, inta);
10638 /* Cache INTA value for our tasklet */
10639 priv->isr_inta = inta;
10641 tasklet_schedule(&priv->irq_tasklet);
10643 spin_unlock(&priv->irq_lock);
10645 return IRQ_HANDLED;
10647 spin_unlock(&priv->irq_lock);
10651 static void ipw_rf_kill(void *adapter)
10653 struct ipw_priv *priv = adapter;
10654 unsigned long flags;
10656 spin_lock_irqsave(&priv->lock, flags);
10658 if (rf_kill_active(priv)) {
10659 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10660 if (priv->workqueue)
10661 queue_delayed_work(priv->workqueue,
10662 &priv->rf_kill, 2 * HZ);
10666 /* RF Kill is now disabled, so bring the device back up */
10668 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10669 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10672 /* we can not do an adapter restart while inside an irq lock */
10673 queue_work(priv->workqueue, &priv->adapter_restart);
10675 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10679 spin_unlock_irqrestore(&priv->lock, flags);
10682 static void ipw_bg_rf_kill(struct work_struct *work)
10684 struct ipw_priv *priv =
10685 container_of(work, struct ipw_priv, rf_kill.work);
10686 mutex_lock(&priv->mutex);
10688 mutex_unlock(&priv->mutex);
10691 static void ipw_link_up(struct ipw_priv *priv)
10693 priv->last_seq_num = -1;
10694 priv->last_frag_num = -1;
10695 priv->last_packet_time = 0;
10697 netif_carrier_on(priv->net_dev);
10698 if (netif_queue_stopped(priv->net_dev)) {
10699 IPW_DEBUG_NOTIF("waking queue\n");
10700 netif_wake_queue(priv->net_dev);
10702 IPW_DEBUG_NOTIF("starting queue\n");
10703 netif_start_queue(priv->net_dev);
10706 cancel_delayed_work(&priv->request_scan);
10707 cancel_delayed_work(&priv->scan_event);
10708 ipw_reset_stats(priv);
10709 /* Ensure the rate is updated immediately */
10710 priv->last_rate = ipw_get_current_rate(priv);
10711 ipw_gather_stats(priv);
10712 ipw_led_link_up(priv);
10713 notify_wx_assoc_event(priv);
10715 if (priv->config & CFG_BACKGROUND_SCAN)
10716 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10719 static void ipw_bg_link_up(struct work_struct *work)
10721 struct ipw_priv *priv =
10722 container_of(work, struct ipw_priv, link_up);
10723 mutex_lock(&priv->mutex);
10725 mutex_unlock(&priv->mutex);
10728 static void ipw_link_down(struct ipw_priv *priv)
10730 ipw_led_link_down(priv);
10731 netif_carrier_off(priv->net_dev);
10732 netif_stop_queue(priv->net_dev);
10733 notify_wx_assoc_event(priv);
10735 /* Cancel any queued work ... */
10736 cancel_delayed_work(&priv->request_scan);
10737 cancel_delayed_work(&priv->adhoc_check);
10738 cancel_delayed_work(&priv->gather_stats);
10740 ipw_reset_stats(priv);
10742 if (!(priv->status & STATUS_EXIT_PENDING)) {
10743 /* Queue up another scan... */
10744 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10746 cancel_delayed_work(&priv->scan_event);
10749 static void ipw_bg_link_down(struct work_struct *work)
10751 struct ipw_priv *priv =
10752 container_of(work, struct ipw_priv, link_down);
10753 mutex_lock(&priv->mutex);
10754 ipw_link_down(priv);
10755 mutex_unlock(&priv->mutex);
10758 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10762 priv->workqueue = create_workqueue(DRV_NAME);
10763 init_waitqueue_head(&priv->wait_command_queue);
10764 init_waitqueue_head(&priv->wait_state);
10766 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10767 INIT_WORK(&priv->associate, ipw_bg_associate);
10768 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10769 INIT_WORK(&priv->system_config, ipw_system_config);
10770 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10771 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10772 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10773 INIT_WORK(&priv->up, ipw_bg_up);
10774 INIT_WORK(&priv->down, ipw_bg_down);
10775 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10776 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10777 INIT_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10778 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10779 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10780 INIT_WORK(&priv->roam, ipw_bg_roam);
10781 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10782 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10783 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10784 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10785 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10786 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10787 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10789 #ifdef CONFIG_IPW2200_QOS
10790 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10791 #endif /* CONFIG_IPW2200_QOS */
10793 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10794 ipw_irq_tasklet, (unsigned long)priv);
10799 static void shim__set_security(struct net_device *dev,
10800 struct ieee80211_security *sec)
10802 struct ipw_priv *priv = ieee80211_priv(dev);
10804 for (i = 0; i < 4; i++) {
10805 if (sec->flags & (1 << i)) {
10806 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10807 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10808 if (sec->key_sizes[i] == 0)
10809 priv->ieee->sec.flags &= ~(1 << i);
10811 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10812 sec->key_sizes[i]);
10813 priv->ieee->sec.flags |= (1 << i);
10815 priv->status |= STATUS_SECURITY_UPDATED;
10816 } else if (sec->level != SEC_LEVEL_1)
10817 priv->ieee->sec.flags &= ~(1 << i);
10820 if (sec->flags & SEC_ACTIVE_KEY) {
10821 if (sec->active_key <= 3) {
10822 priv->ieee->sec.active_key = sec->active_key;
10823 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10825 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10826 priv->status |= STATUS_SECURITY_UPDATED;
10828 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10830 if ((sec->flags & SEC_AUTH_MODE) &&
10831 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10832 priv->ieee->sec.auth_mode = sec->auth_mode;
10833 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10834 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10835 priv->capability |= CAP_SHARED_KEY;
10837 priv->capability &= ~CAP_SHARED_KEY;
10838 priv->status |= STATUS_SECURITY_UPDATED;
10841 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10842 priv->ieee->sec.flags |= SEC_ENABLED;
10843 priv->ieee->sec.enabled = sec->enabled;
10844 priv->status |= STATUS_SECURITY_UPDATED;
10846 priv->capability |= CAP_PRIVACY_ON;
10848 priv->capability &= ~CAP_PRIVACY_ON;
10851 if (sec->flags & SEC_ENCRYPT)
10852 priv->ieee->sec.encrypt = sec->encrypt;
10854 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10855 priv->ieee->sec.level = sec->level;
10856 priv->ieee->sec.flags |= SEC_LEVEL;
10857 priv->status |= STATUS_SECURITY_UPDATED;
10860 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10861 ipw_set_hwcrypto_keys(priv);
10863 /* To match current functionality of ipw2100 (which works well w/
10864 * various supplicants, we don't force a disassociate if the
10865 * privacy capability changes ... */
10867 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10868 (((priv->assoc_request.capability &
10869 WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10870 (!(priv->assoc_request.capability &
10871 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10872 IPW_DEBUG_ASSOC("Disassociating due to capability "
10874 ipw_disassociate(priv);
10879 static int init_supported_rates(struct ipw_priv *priv,
10880 struct ipw_supported_rates *rates)
10882 /* TODO: Mask out rates based on priv->rates_mask */
10884 memset(rates, 0, sizeof(*rates));
10885 /* configure supported rates */
10886 switch (priv->ieee->freq_band) {
10887 case IEEE80211_52GHZ_BAND:
10888 rates->ieee_mode = IPW_A_MODE;
10889 rates->purpose = IPW_RATE_CAPABILITIES;
10890 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10891 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10894 default: /* Mixed or 2.4Ghz */
10895 rates->ieee_mode = IPW_G_MODE;
10896 rates->purpose = IPW_RATE_CAPABILITIES;
10897 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10898 IEEE80211_CCK_DEFAULT_RATES_MASK);
10899 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10900 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10901 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10909 static int ipw_config(struct ipw_priv *priv)
10911 /* This is only called from ipw_up, which resets/reloads the firmware
10912 so, we don't need to first disable the card before we configure
10914 if (ipw_set_tx_power(priv))
10917 /* initialize adapter address */
10918 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10921 /* set basic system config settings */
10922 init_sys_config(&priv->sys_config);
10924 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10925 * Does not support BT priority yet (don't abort or defer our Tx) */
10927 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10929 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10930 priv->sys_config.bt_coexistence
10931 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10932 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10933 priv->sys_config.bt_coexistence
10934 |= CFG_BT_COEXISTENCE_OOB;
10937 #ifdef CONFIG_IPW2200_PROMISCUOUS
10938 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10939 priv->sys_config.accept_all_data_frames = 1;
10940 priv->sys_config.accept_non_directed_frames = 1;
10941 priv->sys_config.accept_all_mgmt_bcpr = 1;
10942 priv->sys_config.accept_all_mgmt_frames = 1;
10946 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10947 priv->sys_config.answer_broadcast_ssid_probe = 1;
10949 priv->sys_config.answer_broadcast_ssid_probe = 0;
10951 if (ipw_send_system_config(priv))
10954 init_supported_rates(priv, &priv->rates);
10955 if (ipw_send_supported_rates(priv, &priv->rates))
10958 /* Set request-to-send threshold */
10959 if (priv->rts_threshold) {
10960 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10963 #ifdef CONFIG_IPW2200_QOS
10964 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10965 ipw_qos_activate(priv, NULL);
10966 #endif /* CONFIG_IPW2200_QOS */
10968 if (ipw_set_random_seed(priv))
10971 /* final state transition to the RUN state */
10972 if (ipw_send_host_complete(priv))
10975 priv->status |= STATUS_INIT;
10977 ipw_led_init(priv);
10978 ipw_led_radio_on(priv);
10979 priv->notif_missed_beacons = 0;
10981 /* Set hardware WEP key if it is configured. */
10982 if ((priv->capability & CAP_PRIVACY_ON) &&
10983 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10984 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10985 ipw_set_hwcrypto_keys(priv);
10996 * These tables have been tested in conjunction with the
10997 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10999 * Altering this values, using it on other hardware, or in geographies
11000 * not intended for resale of the above mentioned Intel adapters has
11003 * Remember to update the table in README.ipw2200 when changing this
11007 static const struct ieee80211_geo ipw_geos[] = {
11011 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11012 {2427, 4}, {2432, 5}, {2437, 6},
11013 {2442, 7}, {2447, 8}, {2452, 9},
11014 {2457, 10}, {2462, 11}},
11017 { /* Custom US/Canada */
11020 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11021 {2427, 4}, {2432, 5}, {2437, 6},
11022 {2442, 7}, {2447, 8}, {2452, 9},
11023 {2457, 10}, {2462, 11}},
11029 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11030 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11031 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11032 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11035 { /* Rest of World */
11038 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11039 {2427, 4}, {2432, 5}, {2437, 6},
11040 {2442, 7}, {2447, 8}, {2452, 9},
11041 {2457, 10}, {2462, 11}, {2467, 12},
11045 { /* Custom USA & Europe & High */
11048 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11049 {2427, 4}, {2432, 5}, {2437, 6},
11050 {2442, 7}, {2447, 8}, {2452, 9},
11051 {2457, 10}, {2462, 11}},
11057 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11058 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11059 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11060 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11068 { /* Custom NA & Europe */
11071 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11072 {2427, 4}, {2432, 5}, {2437, 6},
11073 {2442, 7}, {2447, 8}, {2452, 9},
11074 {2457, 10}, {2462, 11}},
11080 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11081 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11082 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11083 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11084 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11085 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11086 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11087 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11088 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11091 { /* Custom Japan */
11094 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11095 {2427, 4}, {2432, 5}, {2437, 6},
11096 {2442, 7}, {2447, 8}, {2452, 9},
11097 {2457, 10}, {2462, 11}},
11099 .a = {{5170, 34}, {5190, 38},
11100 {5210, 42}, {5230, 46}},
11106 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11107 {2427, 4}, {2432, 5}, {2437, 6},
11108 {2442, 7}, {2447, 8}, {2452, 9},
11109 {2457, 10}, {2462, 11}},
11115 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11116 {2427, 4}, {2432, 5}, {2437, 6},
11117 {2442, 7}, {2447, 8}, {2452, 9},
11118 {2457, 10}, {2462, 11}, {2467, 12},
11125 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11126 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11127 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11128 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11129 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11130 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11131 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11132 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11133 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11134 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11135 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11136 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11137 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11138 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11139 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11142 { /* Custom Japan */
11145 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11146 {2427, 4}, {2432, 5}, {2437, 6},
11147 {2442, 7}, {2447, 8}, {2452, 9},
11148 {2457, 10}, {2462, 11}, {2467, 12},
11149 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11151 .a = {{5170, 34}, {5190, 38},
11152 {5210, 42}, {5230, 46}},
11155 { /* Rest of World */
11158 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11159 {2427, 4}, {2432, 5}, {2437, 6},
11160 {2442, 7}, {2447, 8}, {2452, 9},
11161 {2457, 10}, {2462, 11}, {2467, 12},
11162 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11163 IEEE80211_CH_PASSIVE_ONLY}},
11169 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11170 {2427, 4}, {2432, 5}, {2437, 6},
11171 {2442, 7}, {2447, 8}, {2452, 9},
11172 {2457, 10}, {2462, 11},
11173 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11174 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11176 .a = {{5745, 149}, {5765, 153},
11177 {5785, 157}, {5805, 161}},
11180 { /* Custom Europe */
11183 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11184 {2427, 4}, {2432, 5}, {2437, 6},
11185 {2442, 7}, {2447, 8}, {2452, 9},
11186 {2457, 10}, {2462, 11},
11187 {2467, 12}, {2472, 13}},
11189 .a = {{5180, 36}, {5200, 40},
11190 {5220, 44}, {5240, 48}},
11196 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11197 {2427, 4}, {2432, 5}, {2437, 6},
11198 {2442, 7}, {2447, 8}, {2452, 9},
11199 {2457, 10}, {2462, 11},
11200 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11201 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11203 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11204 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11205 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11206 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11207 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11208 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11209 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11210 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11211 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11212 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11213 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11214 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11215 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11216 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11217 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11218 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11219 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11220 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11221 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11222 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11223 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11224 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11225 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11226 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11232 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11233 {2427, 4}, {2432, 5}, {2437, 6},
11234 {2442, 7}, {2447, 8}, {2452, 9},
11235 {2457, 10}, {2462, 11}},
11237 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11238 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11239 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11240 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11241 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11242 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11243 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11244 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11245 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11246 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11247 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11248 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11249 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11253 #define MAX_HW_RESTARTS 5
11254 static int ipw_up(struct ipw_priv *priv)
11258 if (priv->status & STATUS_EXIT_PENDING)
11261 if (cmdlog && !priv->cmdlog) {
11262 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11264 if (priv->cmdlog == NULL) {
11265 IPW_ERROR("Error allocating %d command log entries.\n",
11269 priv->cmdlog_len = cmdlog;
11273 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11274 /* Load the microcode, firmware, and eeprom.
11275 * Also start the clocks. */
11276 rc = ipw_load(priv);
11278 IPW_ERROR("Unable to load firmware: %d\n", rc);
11282 ipw_init_ordinals(priv);
11283 if (!(priv->config & CFG_CUSTOM_MAC))
11284 eeprom_parse_mac(priv, priv->mac_addr);
11285 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11287 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11288 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11289 ipw_geos[j].name, 3))
11292 if (j == ARRAY_SIZE(ipw_geos)) {
11293 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11294 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11295 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11296 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11299 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11300 IPW_WARNING("Could not set geography.");
11304 if (priv->status & STATUS_RF_KILL_SW) {
11305 IPW_WARNING("Radio disabled by module parameter.\n");
11307 } else if (rf_kill_active(priv)) {
11308 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11309 "Kill switch must be turned off for "
11310 "wireless networking to work.\n");
11311 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11316 rc = ipw_config(priv);
11318 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11320 /* If configure to try and auto-associate, kick
11322 queue_delayed_work(priv->workqueue,
11323 &priv->request_scan, 0);
11328 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11329 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11330 i, MAX_HW_RESTARTS);
11332 /* We had an error bringing up the hardware, so take it
11333 * all the way back down so we can try again */
11337 /* tried to restart and config the device for as long as our
11338 * patience could withstand */
11339 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11344 static void ipw_bg_up(struct work_struct *work)
11346 struct ipw_priv *priv =
11347 container_of(work, struct ipw_priv, up);
11348 mutex_lock(&priv->mutex);
11350 mutex_unlock(&priv->mutex);
11353 static void ipw_deinit(struct ipw_priv *priv)
11357 if (priv->status & STATUS_SCANNING) {
11358 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11359 ipw_abort_scan(priv);
11362 if (priv->status & STATUS_ASSOCIATED) {
11363 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11364 ipw_disassociate(priv);
11367 ipw_led_shutdown(priv);
11369 /* Wait up to 1s for status to change to not scanning and not
11370 * associated (disassociation can take a while for a ful 802.11
11372 for (i = 1000; i && (priv->status &
11373 (STATUS_DISASSOCIATING |
11374 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11377 if (priv->status & (STATUS_DISASSOCIATING |
11378 STATUS_ASSOCIATED | STATUS_SCANNING))
11379 IPW_DEBUG_INFO("Still associated or scanning...\n");
11381 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11383 /* Attempt to disable the card */
11384 ipw_send_card_disable(priv, 0);
11386 priv->status &= ~STATUS_INIT;
11389 static void ipw_down(struct ipw_priv *priv)
11391 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11393 priv->status |= STATUS_EXIT_PENDING;
11395 if (ipw_is_init(priv))
11398 /* Wipe out the EXIT_PENDING status bit if we are not actually
11399 * exiting the module */
11401 priv->status &= ~STATUS_EXIT_PENDING;
11403 /* tell the device to stop sending interrupts */
11404 ipw_disable_interrupts(priv);
11406 /* Clear all bits but the RF Kill */
11407 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11408 netif_carrier_off(priv->net_dev);
11409 netif_stop_queue(priv->net_dev);
11411 ipw_stop_nic(priv);
11413 ipw_led_radio_off(priv);
11416 static void ipw_bg_down(struct work_struct *work)
11418 struct ipw_priv *priv =
11419 container_of(work, struct ipw_priv, down);
11420 mutex_lock(&priv->mutex);
11422 mutex_unlock(&priv->mutex);
11425 /* Called by register_netdev() */
11426 static int ipw_net_init(struct net_device *dev)
11428 struct ipw_priv *priv = ieee80211_priv(dev);
11429 mutex_lock(&priv->mutex);
11431 if (ipw_up(priv)) {
11432 mutex_unlock(&priv->mutex);
11436 mutex_unlock(&priv->mutex);
11440 /* PCI driver stuff */
11441 static struct pci_device_id card_ids[] = {
11442 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11443 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11444 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11445 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11446 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11447 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11448 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11449 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11450 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11451 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11452 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11453 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11454 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11455 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11456 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11457 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11458 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11459 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11460 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11461 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11462 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11463 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11465 /* required last entry */
11469 MODULE_DEVICE_TABLE(pci, card_ids);
11471 static struct attribute *ipw_sysfs_entries[] = {
11472 &dev_attr_rf_kill.attr,
11473 &dev_attr_direct_dword.attr,
11474 &dev_attr_indirect_byte.attr,
11475 &dev_attr_indirect_dword.attr,
11476 &dev_attr_mem_gpio_reg.attr,
11477 &dev_attr_command_event_reg.attr,
11478 &dev_attr_nic_type.attr,
11479 &dev_attr_status.attr,
11480 &dev_attr_cfg.attr,
11481 &dev_attr_error.attr,
11482 &dev_attr_event_log.attr,
11483 &dev_attr_cmd_log.attr,
11484 &dev_attr_eeprom_delay.attr,
11485 &dev_attr_ucode_version.attr,
11486 &dev_attr_rtc.attr,
11487 &dev_attr_scan_age.attr,
11488 &dev_attr_led.attr,
11489 &dev_attr_speed_scan.attr,
11490 &dev_attr_net_stats.attr,
11491 &dev_attr_channels.attr,
11492 #ifdef CONFIG_IPW2200_PROMISCUOUS
11493 &dev_attr_rtap_iface.attr,
11494 &dev_attr_rtap_filter.attr,
11499 static struct attribute_group ipw_attribute_group = {
11500 .name = NULL, /* put in device directory */
11501 .attrs = ipw_sysfs_entries,
11504 #ifdef CONFIG_IPW2200_PROMISCUOUS
11505 static int ipw_prom_open(struct net_device *dev)
11507 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11508 struct ipw_priv *priv = prom_priv->priv;
11510 IPW_DEBUG_INFO("prom dev->open\n");
11511 netif_carrier_off(dev);
11512 netif_stop_queue(dev);
11514 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11515 priv->sys_config.accept_all_data_frames = 1;
11516 priv->sys_config.accept_non_directed_frames = 1;
11517 priv->sys_config.accept_all_mgmt_bcpr = 1;
11518 priv->sys_config.accept_all_mgmt_frames = 1;
11520 ipw_send_system_config(priv);
11526 static int ipw_prom_stop(struct net_device *dev)
11528 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11529 struct ipw_priv *priv = prom_priv->priv;
11531 IPW_DEBUG_INFO("prom dev->stop\n");
11533 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11534 priv->sys_config.accept_all_data_frames = 0;
11535 priv->sys_config.accept_non_directed_frames = 0;
11536 priv->sys_config.accept_all_mgmt_bcpr = 0;
11537 priv->sys_config.accept_all_mgmt_frames = 0;
11539 ipw_send_system_config(priv);
11545 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11547 IPW_DEBUG_INFO("prom dev->xmit\n");
11548 netif_stop_queue(dev);
11549 return -EOPNOTSUPP;
11552 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11554 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11555 return &prom_priv->ieee->stats;
11558 static int ipw_prom_alloc(struct ipw_priv *priv)
11562 if (priv->prom_net_dev)
11565 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11566 if (priv->prom_net_dev == NULL)
11569 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11570 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11571 priv->prom_priv->priv = priv;
11573 strcpy(priv->prom_net_dev->name, "rtap%d");
11575 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11576 priv->prom_net_dev->open = ipw_prom_open;
11577 priv->prom_net_dev->stop = ipw_prom_stop;
11578 priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11579 priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11581 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11583 rc = register_netdev(priv->prom_net_dev);
11585 free_ieee80211(priv->prom_net_dev);
11586 priv->prom_net_dev = NULL;
11593 static void ipw_prom_free(struct ipw_priv *priv)
11595 if (!priv->prom_net_dev)
11598 unregister_netdev(priv->prom_net_dev);
11599 free_ieee80211(priv->prom_net_dev);
11601 priv->prom_net_dev = NULL;
11607 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11608 const struct pci_device_id *ent)
11611 struct net_device *net_dev;
11612 void __iomem *base;
11614 struct ipw_priv *priv;
11617 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11618 if (net_dev == NULL) {
11623 priv = ieee80211_priv(net_dev);
11624 priv->ieee = netdev_priv(net_dev);
11626 priv->net_dev = net_dev;
11627 priv->pci_dev = pdev;
11628 ipw_debug_level = debug;
11629 spin_lock_init(&priv->irq_lock);
11630 spin_lock_init(&priv->lock);
11631 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11632 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11634 mutex_init(&priv->mutex);
11635 if (pci_enable_device(pdev)) {
11637 goto out_free_ieee80211;
11640 pci_set_master(pdev);
11642 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11644 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11646 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11647 goto out_pci_disable_device;
11650 pci_set_drvdata(pdev, priv);
11652 err = pci_request_regions(pdev, DRV_NAME);
11654 goto out_pci_disable_device;
11656 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11657 * PCI Tx retries from interfering with C3 CPU state */
11658 pci_read_config_dword(pdev, 0x40, &val);
11659 if ((val & 0x0000ff00) != 0)
11660 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11662 length = pci_resource_len(pdev, 0);
11663 priv->hw_len = length;
11665 base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11668 goto out_pci_release_regions;
11671 priv->hw_base = base;
11672 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11673 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11675 err = ipw_setup_deferred_work(priv);
11677 IPW_ERROR("Unable to setup deferred work\n");
11681 ipw_sw_reset(priv, 1);
11683 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11685 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11686 goto out_destroy_workqueue;
11689 SET_NETDEV_DEV(net_dev, &pdev->dev);
11691 mutex_lock(&priv->mutex);
11693 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11694 priv->ieee->set_security = shim__set_security;
11695 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11697 #ifdef CONFIG_IPW2200_QOS
11698 priv->ieee->is_qos_active = ipw_is_qos_active;
11699 priv->ieee->handle_probe_response = ipw_handle_beacon;
11700 priv->ieee->handle_beacon = ipw_handle_probe_response;
11701 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11702 #endif /* CONFIG_IPW2200_QOS */
11704 priv->ieee->perfect_rssi = -20;
11705 priv->ieee->worst_rssi = -85;
11707 net_dev->open = ipw_net_open;
11708 net_dev->stop = ipw_net_stop;
11709 net_dev->init = ipw_net_init;
11710 net_dev->get_stats = ipw_net_get_stats;
11711 net_dev->set_multicast_list = ipw_net_set_multicast_list;
11712 net_dev->set_mac_address = ipw_net_set_mac_address;
11713 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11714 net_dev->wireless_data = &priv->wireless_data;
11715 net_dev->wireless_handlers = &ipw_wx_handler_def;
11716 net_dev->ethtool_ops = &ipw_ethtool_ops;
11717 net_dev->irq = pdev->irq;
11718 net_dev->base_addr = (unsigned long)priv->hw_base;
11719 net_dev->mem_start = pci_resource_start(pdev, 0);
11720 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11722 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11724 IPW_ERROR("failed to create sysfs device attributes\n");
11725 mutex_unlock(&priv->mutex);
11726 goto out_release_irq;
11729 mutex_unlock(&priv->mutex);
11730 err = register_netdev(net_dev);
11732 IPW_ERROR("failed to register network device\n");
11733 goto out_remove_sysfs;
11736 #ifdef CONFIG_IPW2200_PROMISCUOUS
11738 err = ipw_prom_alloc(priv);
11740 IPW_ERROR("Failed to register promiscuous network "
11741 "device (error %d).\n", err);
11742 unregister_netdev(priv->net_dev);
11743 goto out_remove_sysfs;
11748 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11749 "channels, %d 802.11a channels)\n",
11750 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11751 priv->ieee->geo.a_channels);
11756 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11758 free_irq(pdev->irq, priv);
11759 out_destroy_workqueue:
11760 destroy_workqueue(priv->workqueue);
11761 priv->workqueue = NULL;
11763 iounmap(priv->hw_base);
11764 out_pci_release_regions:
11765 pci_release_regions(pdev);
11766 out_pci_disable_device:
11767 pci_disable_device(pdev);
11768 pci_set_drvdata(pdev, NULL);
11769 out_free_ieee80211:
11770 free_ieee80211(priv->net_dev);
11775 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11777 struct ipw_priv *priv = pci_get_drvdata(pdev);
11778 struct list_head *p, *q;
11784 mutex_lock(&priv->mutex);
11786 priv->status |= STATUS_EXIT_PENDING;
11788 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11790 mutex_unlock(&priv->mutex);
11792 unregister_netdev(priv->net_dev);
11795 ipw_rx_queue_free(priv, priv->rxq);
11798 ipw_tx_queue_free(priv);
11800 if (priv->cmdlog) {
11801 kfree(priv->cmdlog);
11802 priv->cmdlog = NULL;
11804 /* ipw_down will ensure that there is no more pending work
11805 * in the workqueue's, so we can safely remove them now. */
11806 cancel_delayed_work(&priv->adhoc_check);
11807 cancel_delayed_work(&priv->gather_stats);
11808 cancel_delayed_work(&priv->request_scan);
11809 cancel_delayed_work(&priv->scan_event);
11810 cancel_delayed_work(&priv->rf_kill);
11811 cancel_delayed_work(&priv->scan_check);
11812 destroy_workqueue(priv->workqueue);
11813 priv->workqueue = NULL;
11815 /* Free MAC hash list for ADHOC */
11816 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11817 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11819 kfree(list_entry(p, struct ipw_ibss_seq, list));
11823 kfree(priv->error);
11824 priv->error = NULL;
11826 #ifdef CONFIG_IPW2200_PROMISCUOUS
11827 ipw_prom_free(priv);
11830 free_irq(pdev->irq, priv);
11831 iounmap(priv->hw_base);
11832 pci_release_regions(pdev);
11833 pci_disable_device(pdev);
11834 pci_set_drvdata(pdev, NULL);
11835 free_ieee80211(priv->net_dev);
11840 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11842 struct ipw_priv *priv = pci_get_drvdata(pdev);
11843 struct net_device *dev = priv->net_dev;
11845 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11847 /* Take down the device; powers it off, etc. */
11850 /* Remove the PRESENT state of the device */
11851 netif_device_detach(dev);
11853 pci_save_state(pdev);
11854 pci_disable_device(pdev);
11855 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11860 static int ipw_pci_resume(struct pci_dev *pdev)
11862 struct ipw_priv *priv = pci_get_drvdata(pdev);
11863 struct net_device *dev = priv->net_dev;
11867 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11869 pci_set_power_state(pdev, PCI_D0);
11870 err = pci_enable_device(pdev);
11872 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11876 pci_restore_state(pdev);
11879 * Suspend/Resume resets the PCI configuration space, so we have to
11880 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11881 * from interfering with C3 CPU state. pci_restore_state won't help
11882 * here since it only restores the first 64 bytes pci config header.
11884 pci_read_config_dword(pdev, 0x40, &val);
11885 if ((val & 0x0000ff00) != 0)
11886 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11888 /* Set the device back into the PRESENT state; this will also wake
11889 * the queue of needed */
11890 netif_device_attach(dev);
11892 /* Bring the device back up */
11893 queue_work(priv->workqueue, &priv->up);
11899 static void ipw_pci_shutdown(struct pci_dev *pdev)
11901 struct ipw_priv *priv = pci_get_drvdata(pdev);
11903 /* Take down the device; powers it off, etc. */
11906 pci_disable_device(pdev);
11909 /* driver initialization stuff */
11910 static struct pci_driver ipw_driver = {
11912 .id_table = card_ids,
11913 .probe = ipw_pci_probe,
11914 .remove = __devexit_p(ipw_pci_remove),
11916 .suspend = ipw_pci_suspend,
11917 .resume = ipw_pci_resume,
11919 .shutdown = ipw_pci_shutdown,
11922 static int __init ipw_init(void)
11926 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11927 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11929 ret = pci_register_driver(&ipw_driver);
11931 IPW_ERROR("Unable to initialize PCI module\n");
11935 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11937 IPW_ERROR("Unable to create driver sysfs file\n");
11938 pci_unregister_driver(&ipw_driver);
11945 static void __exit ipw_exit(void)
11947 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11948 pci_unregister_driver(&ipw_driver);
11951 module_param(disable, int, 0444);
11952 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11954 module_param(associate, int, 0444);
11955 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11957 module_param(auto_create, int, 0444);
11958 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11960 module_param(led, int, 0444);
11961 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11963 module_param(debug, int, 0444);
11964 MODULE_PARM_DESC(debug, "debug output mask");
11966 module_param(channel, int, 0444);
11967 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11969 #ifdef CONFIG_IPW2200_PROMISCUOUS
11970 module_param(rtap_iface, int, 0444);
11971 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11974 #ifdef CONFIG_IPW2200_QOS
11975 module_param(qos_enable, int, 0444);
11976 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11978 module_param(qos_burst_enable, int, 0444);
11979 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11981 module_param(qos_no_ack_mask, int, 0444);
11982 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11984 module_param(burst_duration_CCK, int, 0444);
11985 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11987 module_param(burst_duration_OFDM, int, 0444);
11988 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11989 #endif /* CONFIG_IPW2200_QOS */
11991 #ifdef CONFIG_IPW2200_MONITOR
11992 module_param(mode, int, 0444);
11993 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11995 module_param(mode, int, 0444);
11996 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11999 module_param(bt_coexist, int, 0444);
12000 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12002 module_param(hwcrypto, int, 0444);
12003 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12005 module_param(cmdlog, int, 0444);
12006 MODULE_PARM_DESC(cmdlog,
12007 "allocate a ring buffer for logging firmware commands");
12009 module_param(roaming, int, 0444);
12010 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12012 module_param(antenna, int, 0444);
12013 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12015 module_exit(ipw_exit);
12016 module_init(ipw_init);