1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
3 Written/copyright 1999-2001 by Donald Becker.
4 Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6 Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL. License for under other terms may be
14 available. Contact the original author for details.
16 The original author may be reached as becker@scyld.com, or at
17 Scyld Computing Corporation
18 410 Severn Ave., Suite 210
21 Support information and updates available at
22 http://www.scyld.com/network/netsemi.html
23 [link no longer provides useful info -jgarzik]
27 * big endian support with CFG:BEM instead of cpu_to_le32
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/interrupt.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/init.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/mii.h>
48 #include <linux/crc32.h>
49 #include <linux/bitops.h>
50 #include <linux/prefetch.h>
51 #include <asm/processor.h> /* Processor type for cache alignment. */
54 #include <asm/uaccess.h>
56 #define DRV_NAME "natsemi"
57 #define DRV_VERSION "2.1"
58 #define DRV_RELDATE "Sept 11, 2006"
62 /* Updated to recommendations in pci-skeleton v2.03. */
64 /* The user-configurable values.
65 These may be modified when a driver module is loaded.*/
67 #define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \
72 static int debug = -1;
76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77 This chip uses a 512 element hash table based on the Ethernet CRC. */
78 static const int multicast_filter_limit = 100;
80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81 Setting to > 1518 effectively disables this feature. */
82 static int rx_copybreak;
84 /* Used to pass the media type, etc.
85 Both 'options[]' and 'full_duplex[]' should exist for driver
87 The media type is usually passed in 'options[]'.
89 #define MAX_UNITS 8 /* More are supported, limit only on options */
90 static int options[MAX_UNITS];
91 static int full_duplex[MAX_UNITS];
93 /* Operational parameters that are set at compile time. */
95 /* Keep the ring sizes a power of two for compile efficiency.
96 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
97 Making the Tx ring too large decreases the effectiveness of channel
98 bonding and packet priority.
99 There are no ill effects from too-large receive rings. */
100 #define TX_RING_SIZE 16
101 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */
102 #define RX_RING_SIZE 32
104 /* Operational parameters that usually are not changed. */
105 /* Time in jiffies before concluding the transmitter is hung. */
106 #define TX_TIMEOUT (2*HZ)
108 #define NATSEMI_HW_TIMEOUT 400
109 #define NATSEMI_TIMER_FREQ 3*HZ
110 #define NATSEMI_PG0_NREGS 64
111 #define NATSEMI_RFDR_NREGS 8
112 #define NATSEMI_PG1_NREGS 4
113 #define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
115 #define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */
116 #define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32))
119 * The nic writes 32-bit values, even if the upper bytes of
120 * a 32-bit value are beyond the end of the buffer.
122 #define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */
123 #define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */
124 #define NATSEMI_LONGPKT 1518 /* limit for normal packets */
125 #define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */
127 /* These identify the driver base version and may not be removed. */
128 static const char version[] __devinitdata =
129 KERN_INFO DRV_NAME " dp8381x driver, version "
130 DRV_VERSION ", " DRV_RELDATE "\n"
131 KERN_INFO " originally by Donald Becker <becker@scyld.com>\n"
132 KERN_INFO " http://www.scyld.com/network/natsemi.html\n"
133 KERN_INFO " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
135 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
136 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
137 MODULE_LICENSE("GPL");
139 module_param(mtu, int, 0);
140 module_param(debug, int, 0);
141 module_param(rx_copybreak, int, 0);
142 module_param_array(options, int, NULL, 0);
143 module_param_array(full_duplex, int, NULL, 0);
144 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
145 MODULE_PARM_DESC(debug, "DP8381x default debug level");
146 MODULE_PARM_DESC(rx_copybreak,
147 "DP8381x copy breakpoint for copy-only-tiny-frames");
148 MODULE_PARM_DESC(options,
149 "DP8381x: Bits 0-3: media type, bit 17: full duplex");
150 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
155 I. Board Compatibility
157 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
158 It also works with other chips in in the DP83810 series.
160 II. Board-specific settings
162 This driver requires the PCI interrupt line to be valid.
163 It honors the EEPROM-set values.
165 III. Driver operation
169 This driver uses two statically allocated fixed-size descriptor lists
170 formed into rings by a branch from the final descriptor to the beginning of
171 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
172 The NatSemi design uses a 'next descriptor' pointer that the driver forms
175 IIIb/c. Transmit/Receive Structure
177 This driver uses a zero-copy receive and transmit scheme.
178 The driver allocates full frame size skbuffs for the Rx ring buffers at
179 open() time and passes the skb->data field to the chip as receive data
180 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
181 a fresh skbuff is allocated and the frame is copied to the new skbuff.
182 When the incoming frame is larger, the skbuff is passed directly up the
183 protocol stack. Buffers consumed this way are replaced by newly allocated
184 skbuffs in a later phase of receives.
186 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
187 using a full-sized skbuff for small frames vs. the copying costs of larger
188 frames. New boards are typically used in generously configured machines
189 and the underfilled buffers have negligible impact compared to the benefit of
190 a single allocation size, so the default value of zero results in never
191 copying packets. When copying is done, the cost is usually mitigated by using
192 a combined copy/checksum routine. Copying also preloads the cache, which is
193 most useful with small frames.
195 A subtle aspect of the operation is that unaligned buffers are not permitted
196 by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't
197 longword aligned for further processing. On copies frames are put into the
198 skbuff at an offset of "+2", 16-byte aligning the IP header.
200 IIId. Synchronization
202 Most operations are synchronized on the np->lock irq spinlock, except the
203 performance critical codepaths:
205 The rx process only runs in the interrupt handler. Access from outside
206 the interrupt handler is only permitted after disable_irq().
208 The rx process usually runs under the netif_tx_lock. If np->intr_tx_reap
209 is set, then access is permitted under spin_lock_irq(&np->lock).
211 Thus configuration functions that want to access everything must call
212 disable_irq(dev->irq);
213 netif_tx_lock_bh(dev);
214 spin_lock_irq(&np->lock);
218 NatSemi PCI network controllers are very uncommon.
222 http://www.scyld.com/expert/100mbps.html
223 http://www.scyld.com/expert/NWay.html
224 Datasheet is available from:
225 http://www.national.com/pf/DP/DP83815.html
235 * Support for fibre connections on Am79C874:
236 * This phy needs a special setup when connected to a fibre cable.
237 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
239 #define PHYID_AM79C874 0x0022561b
242 MII_MCTRL = 0x15, /* mode control register */
243 MII_FX_SEL = 0x0001, /* 100BASE-FX (fiber) */
244 MII_EN_SCRM = 0x0004, /* enable scrambler (tp) */
248 NATSEMI_FLAG_IGNORE_PHY = 0x1,
251 /* array of board data directly indexed by pci_tbl[x].driver_data */
252 static const struct {
255 unsigned int eeprom_size;
256 } natsemi_pci_info[] __devinitdata = {
257 { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
258 { "NatSemi DP8381[56]", 0, 24 },
261 static const struct pci_device_id natsemi_pci_tbl[] __devinitdata = {
262 { PCI_VENDOR_ID_NS, 0x0020, 0x12d9, 0x000c, 0, 0, 0 },
263 { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
264 { } /* terminate list */
266 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
268 /* Offsets to the device registers.
269 Unlike software-only systems, device drivers interact with complex hardware.
270 It's not useful to define symbolic names for every register bit in the
273 enum register_offsets {
281 IntrHoldoff = 0x1C, /* DP83816 only */
308 /* These are from the spec, around page 78... on a separate table.
309 * The meaning of these registers depend on the value of PGSEL. */
316 /* the values for the 'magic' registers above (PGSEL=1) */
317 #define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */
318 #define TSTDAT_VAL 0x0
319 #define DSPCFG_VAL 0x5040
320 #define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */
321 #define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */
322 #define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */
323 #define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */
325 /* misc PCI space registers */
326 enum pci_register_offsets {
340 enum ChipConfig_bits {
344 CfgAnegEnable = 0x2000,
346 CfgAnegFull = 0x8000,
347 CfgAnegDone = 0x8000000,
348 CfgFullDuplex = 0x20000000,
349 CfgSpeed100 = 0x40000000,
350 CfgLink = 0x80000000,
356 EE_ChipSelect = 0x08,
363 enum PCIBusCfg_bits {
367 /* Bits in the interrupt status/mask registers. */
368 enum IntrStatus_bits {
372 IntrRxEarly = 0x0008,
374 IntrRxOverrun = 0x0020,
379 IntrTxUnderrun = 0x0400,
384 IntrHighBits = 0x8000,
385 RxStatusFIFOOver = 0x10000,
386 IntrPCIErr = 0xf00000,
387 RxResetDone = 0x1000000,
388 TxResetDone = 0x2000000,
389 IntrAbnormalSummary = 0xCD20,
393 * Default Interrupts:
394 * Rx OK, Rx Packet Error, Rx Overrun,
395 * Tx OK, Tx Packet Error, Tx Underrun,
396 * MIB Service, Phy Interrupt, High Bits,
397 * Rx Status FIFO overrun,
398 * Received Target Abort, Received Master Abort,
399 * Signalled System Error, Received Parity Error
401 #define DEFAULT_INTR 0x00f1cd65
406 TxMxdmaMask = 0x700000,
408 TxMxdma_4 = 0x100000,
409 TxMxdma_8 = 0x200000,
410 TxMxdma_16 = 0x300000,
411 TxMxdma_32 = 0x400000,
412 TxMxdma_64 = 0x500000,
413 TxMxdma_128 = 0x600000,
414 TxMxdma_256 = 0x700000,
415 TxCollRetry = 0x800000,
416 TxAutoPad = 0x10000000,
417 TxMacLoop = 0x20000000,
418 TxHeartIgn = 0x40000000,
419 TxCarrierIgn = 0x80000000
424 * - 256 byte DMA burst length
425 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
426 * - 64 bytes initial drain threshold (i.e. begin actual transmission
427 * when 64 byte are in the fifo)
428 * - on tx underruns, increase drain threshold by 64.
429 * - at most use a drain threshold of 1472 bytes: The sum of the fill
430 * threshold and the drain threshold must be less than 2016 bytes.
433 #define TX_FLTH_VAL ((512/32) << 8)
434 #define TX_DRTH_VAL_START (64/32)
435 #define TX_DRTH_VAL_INC 2
436 #define TX_DRTH_VAL_LIMIT (1472/32)
440 RxMxdmaMask = 0x700000,
442 RxMxdma_4 = 0x100000,
443 RxMxdma_8 = 0x200000,
444 RxMxdma_16 = 0x300000,
445 RxMxdma_32 = 0x400000,
446 RxMxdma_64 = 0x500000,
447 RxMxdma_128 = 0x600000,
448 RxMxdma_256 = 0x700000,
449 RxAcceptLong = 0x8000000,
450 RxAcceptTx = 0x10000000,
451 RxAcceptRunt = 0x40000000,
452 RxAcceptErr = 0x80000000
454 #define RX_DRTH_VAL (128/8)
472 WakeMagicSecure = 0x400,
473 SecureHack = 0x100000,
475 WokeUnicast = 0x800000,
476 WokeMulticast = 0x1000000,
477 WokeBroadcast = 0x2000000,
479 WokePMatch0 = 0x8000000,
480 WokePMatch1 = 0x10000000,
481 WokePMatch2 = 0x20000000,
482 WokePMatch3 = 0x40000000,
483 WokeMagic = 0x80000000,
484 WakeOptsSummary = 0x7ff
487 enum RxFilterAddr_bits {
488 RFCRAddressMask = 0x3ff,
489 AcceptMulticast = 0x00200000,
490 AcceptMyPhys = 0x08000000,
491 AcceptAllPhys = 0x10000000,
492 AcceptAllMulticast = 0x20000000,
493 AcceptBroadcast = 0x40000000,
494 RxFilterEnable = 0x80000000
497 enum StatsCtrl_bits {
504 enum MIntrCtrl_bits {
512 #define PHY_ADDR_NONE 32
513 #define PHY_ADDR_INTERNAL 1
515 /* values we might find in the silicon revision register */
516 #define SRR_DP83815_C 0x0302
517 #define SRR_DP83815_D 0x0403
518 #define SRR_DP83816_A4 0x0504
519 #define SRR_DP83816_A5 0x0505
521 /* The Rx and Tx buffer descriptors. */
522 /* Note that using only 32 bit fields simplifies conversion to big-endian
531 /* Bits in network_desc.status */
532 enum desc_status_bits {
533 DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
534 DescNoCRC=0x10000000, DescPktOK=0x08000000,
537 DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
538 DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
539 DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
540 DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
542 DescRxAbort=0x04000000, DescRxOver=0x02000000,
543 DescRxDest=0x01800000, DescRxLong=0x00400000,
544 DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
545 DescRxCRC=0x00080000, DescRxAlign=0x00040000,
546 DescRxLoop=0x00020000, DesRxColl=0x00010000,
549 struct netdev_private {
550 /* Descriptor rings first for alignment */
552 struct netdev_desc *rx_ring;
553 struct netdev_desc *tx_ring;
554 /* The addresses of receive-in-place skbuffs */
555 struct sk_buff *rx_skbuff[RX_RING_SIZE];
556 dma_addr_t rx_dma[RX_RING_SIZE];
557 /* address of a sent-in-place packet/buffer, for later free() */
558 struct sk_buff *tx_skbuff[TX_RING_SIZE];
559 dma_addr_t tx_dma[TX_RING_SIZE];
560 struct net_device_stats stats;
561 /* Media monitoring timer */
562 struct timer_list timer;
563 /* Frequently used values: keep some adjacent for cache effect */
564 struct pci_dev *pci_dev;
565 struct netdev_desc *rx_head_desc;
566 /* Producer/consumer ring indices */
567 unsigned int cur_rx, dirty_rx;
568 unsigned int cur_tx, dirty_tx;
569 /* Based on MTU+slack. */
570 unsigned int rx_buf_sz;
572 /* Interrupt status */
574 /* Do not touch the nic registers */
576 /* Don't pay attention to the reported link state. */
578 /* external phy that is used: only valid if dev->if_port != PORT_TP */
580 int phy_addr_external;
581 unsigned int full_duplex;
585 /* FIFO and PCI burst thresholds */
586 u32 tx_config, rx_config;
587 /* original contents of ClkRun register */
589 /* silicon revision */
591 /* expected DSPCFG value */
593 /* parms saved in ethtool format */
594 u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */
595 u8 duplex; /* Duplex, half or full */
596 u8 autoneg; /* Autonegotiation enabled */
597 /* MII transceiver section */
606 static void move_int_phy(struct net_device *dev, int addr);
607 static int eeprom_read(void __iomem *ioaddr, int location);
608 static int mdio_read(struct net_device *dev, int reg);
609 static void mdio_write(struct net_device *dev, int reg, u16 data);
610 static void init_phy_fixup(struct net_device *dev);
611 static int miiport_read(struct net_device *dev, int phy_id, int reg);
612 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
613 static int find_mii(struct net_device *dev);
614 static void natsemi_reset(struct net_device *dev);
615 static void natsemi_reload_eeprom(struct net_device *dev);
616 static void natsemi_stop_rxtx(struct net_device *dev);
617 static int netdev_open(struct net_device *dev);
618 static void do_cable_magic(struct net_device *dev);
619 static void undo_cable_magic(struct net_device *dev);
620 static void check_link(struct net_device *dev);
621 static void netdev_timer(unsigned long data);
622 static void dump_ring(struct net_device *dev);
623 static void tx_timeout(struct net_device *dev);
624 static int alloc_ring(struct net_device *dev);
625 static void refill_rx(struct net_device *dev);
626 static void init_ring(struct net_device *dev);
627 static void drain_tx(struct net_device *dev);
628 static void drain_ring(struct net_device *dev);
629 static void free_ring(struct net_device *dev);
630 static void reinit_ring(struct net_device *dev);
631 static void init_registers(struct net_device *dev);
632 static int start_tx(struct sk_buff *skb, struct net_device *dev);
633 static irqreturn_t intr_handler(int irq, void *dev_instance);
634 static void netdev_error(struct net_device *dev, int intr_status);
635 static int natsemi_poll(struct net_device *dev, int *budget);
636 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
637 static void netdev_tx_done(struct net_device *dev);
638 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
639 #ifdef CONFIG_NET_POLL_CONTROLLER
640 static void natsemi_poll_controller(struct net_device *dev);
642 static void __set_rx_mode(struct net_device *dev);
643 static void set_rx_mode(struct net_device *dev);
644 static void __get_stats(struct net_device *dev);
645 static struct net_device_stats *get_stats(struct net_device *dev);
646 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
647 static int netdev_set_wol(struct net_device *dev, u32 newval);
648 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
649 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
650 static int netdev_get_sopass(struct net_device *dev, u8 *data);
651 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
652 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
653 static void enable_wol_mode(struct net_device *dev, int enable_intr);
654 static int netdev_close(struct net_device *dev);
655 static int netdev_get_regs(struct net_device *dev, u8 *buf);
656 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
657 static const struct ethtool_ops ethtool_ops;
659 static inline void __iomem *ns_ioaddr(struct net_device *dev)
661 return (void __iomem *) dev->base_addr;
664 static inline void natsemi_irq_enable(struct net_device *dev)
666 writel(1, ns_ioaddr(dev) + IntrEnable);
667 readl(ns_ioaddr(dev) + IntrEnable);
670 static inline void natsemi_irq_disable(struct net_device *dev)
672 writel(0, ns_ioaddr(dev) + IntrEnable);
673 readl(ns_ioaddr(dev) + IntrEnable);
676 static void move_int_phy(struct net_device *dev, int addr)
678 struct netdev_private *np = netdev_priv(dev);
679 void __iomem *ioaddr = ns_ioaddr(dev);
683 * The internal phy is visible on the external mii bus. Therefore we must
684 * move it away before we can send commands to an external phy.
685 * There are two addresses we must avoid:
686 * - the address on the external phy that is used for transmission.
687 * - the address that we want to access. User space can access phys
688 * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independant from the
689 * phy that is used for transmission.
694 if (target == np->phy_addr_external)
696 writew(target, ioaddr + PhyCtrl);
697 readw(ioaddr + PhyCtrl);
701 static void __devinit natsemi_init_media (struct net_device *dev)
703 struct netdev_private *np = netdev_priv(dev);
707 netif_carrier_on(dev);
709 netif_carrier_off(dev);
711 /* get the initial settings from hardware */
712 tmp = mdio_read(dev, MII_BMCR);
713 np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10;
714 np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF;
715 np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
716 np->advertising= mdio_read(dev, MII_ADVERTISE);
718 if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL
719 && netif_msg_probe(np)) {
720 printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
722 pci_name(np->pci_dev),
723 (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
724 "enabled, advertise" : "disabled, force",
726 (ADVERTISE_100FULL|ADVERTISE_100HALF))?
729 (ADVERTISE_100FULL|ADVERTISE_10FULL))?
732 if (netif_msg_probe(np))
734 "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
735 pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
740 static int __devinit natsemi_probe1 (struct pci_dev *pdev,
741 const struct pci_device_id *ent)
743 struct net_device *dev;
744 struct netdev_private *np;
745 int i, option, irq, chip_idx = ent->driver_data;
746 static int find_cnt = -1;
747 unsigned long iostart, iosize;
748 void __iomem *ioaddr;
749 const int pcibar = 1; /* PCI base address register */
753 /* when built into the kernel, we only print version if device is found */
755 static int printed_version;
756 if (!printed_version++)
760 i = pci_enable_device(pdev);
763 /* natsemi has a non-standard PM control register
764 * in PCI config space. Some boards apparently need
765 * to be brought to D0 in this manner.
767 pci_read_config_dword(pdev, PCIPM, &tmp);
768 if (tmp & PCI_PM_CTRL_STATE_MASK) {
769 /* D0 state, disable PME assertion */
770 u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
771 pci_write_config_dword(pdev, PCIPM, newtmp);
775 iostart = pci_resource_start(pdev, pcibar);
776 iosize = pci_resource_len(pdev, pcibar);
779 pci_set_master(pdev);
781 dev = alloc_etherdev(sizeof (struct netdev_private));
784 SET_MODULE_OWNER(dev);
785 SET_NETDEV_DEV(dev, &pdev->dev);
787 i = pci_request_regions(pdev, DRV_NAME);
789 goto err_pci_request_regions;
791 ioaddr = ioremap(iostart, iosize);
797 /* Work around the dropped serial bit. */
798 prev_eedata = eeprom_read(ioaddr, 6);
799 for (i = 0; i < 3; i++) {
800 int eedata = eeprom_read(ioaddr, i + 7);
801 dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
802 dev->dev_addr[i*2+1] = eedata >> 7;
803 prev_eedata = eedata;
806 dev->base_addr = (unsigned long __force) ioaddr;
809 np = netdev_priv(dev);
812 pci_set_drvdata(pdev, dev);
814 spin_lock_init(&np->lock);
815 np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
818 np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
819 if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
825 * - If configured to ignore the PHY set up for external.
826 * - If the nic was configured to use an external phy and if find_mii
827 * finds a phy: use external port, first phy that replies.
828 * - Otherwise: internal port.
829 * Note that the phy address for the internal phy doesn't matter:
830 * The address would be used to access a phy over the mii bus, but
831 * the internal phy is accessed through mapped registers.
833 if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
834 dev->if_port = PORT_MII;
836 dev->if_port = PORT_TP;
837 /* Reset the chip to erase previous misconfiguration. */
838 natsemi_reload_eeprom(dev);
841 if (dev->if_port != PORT_TP) {
842 np->phy_addr_external = find_mii(dev);
843 /* If we're ignoring the PHY it doesn't matter if we can't
845 if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
846 dev->if_port = PORT_TP;
847 np->phy_addr_external = PHY_ADDR_INTERNAL;
850 np->phy_addr_external = PHY_ADDR_INTERNAL;
853 option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
855 option = dev->mem_start;
857 /* The lower four bits are the media type. */
863 "natsemi %s: ignoring user supplied media type %d",
864 pci_name(np->pci_dev), option & 15);
866 if (find_cnt < MAX_UNITS && full_duplex[find_cnt])
869 /* The chip-specific entries in the device structure. */
870 dev->open = &netdev_open;
871 dev->hard_start_xmit = &start_tx;
872 dev->stop = &netdev_close;
873 dev->get_stats = &get_stats;
874 dev->set_multicast_list = &set_rx_mode;
875 dev->change_mtu = &natsemi_change_mtu;
876 dev->do_ioctl = &netdev_ioctl;
877 dev->tx_timeout = &tx_timeout;
878 dev->watchdog_timeo = TX_TIMEOUT;
879 dev->poll = natsemi_poll;
882 #ifdef CONFIG_NET_POLL_CONTROLLER
883 dev->poll_controller = &natsemi_poll_controller;
885 SET_ETHTOOL_OPS(dev, ðtool_ops);
890 natsemi_init_media(dev);
892 /* save the silicon revision for later querying */
893 np->srr = readl(ioaddr + SiliconRev);
894 if (netif_msg_hw(np))
895 printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
896 pci_name(np->pci_dev), np->srr);
898 i = register_netdev(dev);
900 goto err_register_netdev;
902 if (netif_msg_drv(np)) {
903 printk(KERN_INFO "natsemi %s: %s at %#08lx (%s), ",
904 dev->name, natsemi_pci_info[chip_idx].name, iostart,
905 pci_name(np->pci_dev));
906 for (i = 0; i < ETH_ALEN-1; i++)
907 printk("%02x:", dev->dev_addr[i]);
908 printk("%02x, IRQ %d", dev->dev_addr[i], irq);
909 if (dev->if_port == PORT_TP)
910 printk(", port TP.\n");
911 else if (np->ignore_phy)
912 printk(", port MII, ignoring PHY\n");
914 printk(", port MII, phy ad %d.\n", np->phy_addr_external);
922 pci_release_regions(pdev);
923 pci_set_drvdata(pdev, NULL);
925 err_pci_request_regions:
931 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
932 The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
934 /* Delay between EEPROM clock transitions.
935 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
936 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that
937 made udelay() unreliable.
938 The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
941 #define eeprom_delay(ee_addr) readl(ee_addr)
943 #define EE_Write0 (EE_ChipSelect)
944 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
946 /* The EEPROM commands include the alway-set leading bit. */
948 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
951 static int eeprom_read(void __iomem *addr, int location)
955 void __iomem *ee_addr = addr + EECtrl;
956 int read_cmd = location | EE_ReadCmd;
958 writel(EE_Write0, ee_addr);
960 /* Shift the read command bits out. */
961 for (i = 10; i >= 0; i--) {
962 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
963 writel(dataval, ee_addr);
964 eeprom_delay(ee_addr);
965 writel(dataval | EE_ShiftClk, ee_addr);
966 eeprom_delay(ee_addr);
968 writel(EE_ChipSelect, ee_addr);
969 eeprom_delay(ee_addr);
971 for (i = 0; i < 16; i++) {
972 writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
973 eeprom_delay(ee_addr);
974 retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
975 writel(EE_ChipSelect, ee_addr);
976 eeprom_delay(ee_addr);
979 /* Terminate the EEPROM access. */
980 writel(EE_Write0, ee_addr);
985 /* MII transceiver control section.
986 * The 83815 series has an internal transceiver, and we present the
987 * internal management registers as if they were MII connected.
988 * External Phy registers are referenced through the MII interface.
991 /* clock transitions >= 20ns (25MHz)
992 * One readl should be good to PCI @ 100MHz
994 #define mii_delay(ioaddr) readl(ioaddr + EECtrl)
996 static int mii_getbit (struct net_device *dev)
999 void __iomem *ioaddr = ns_ioaddr(dev);
1001 writel(MII_ShiftClk, ioaddr + EECtrl);
1002 data = readl(ioaddr + EECtrl);
1003 writel(0, ioaddr + EECtrl);
1005 return (data & MII_Data)? 1 : 0;
1008 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1011 void __iomem *ioaddr = ns_ioaddr(dev);
1013 for (i = (1 << (len-1)); i; i >>= 1)
1015 u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1016 writel(mdio_val, ioaddr + EECtrl);
1018 writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1021 writel(0, ioaddr + EECtrl);
1025 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1032 mii_send_bits (dev, 0xffffffff, 32);
1033 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1034 /* ST,OP = 0110'b for read operation */
1035 cmd = (0x06 << 10) | (phy_id << 5) | reg;
1036 mii_send_bits (dev, cmd, 14);
1038 if (mii_getbit (dev))
1041 for (i = 0; i < 16; i++) {
1043 retval |= mii_getbit (dev);
1050 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1055 mii_send_bits (dev, 0xffffffff, 32);
1056 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1057 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1058 cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1059 mii_send_bits (dev, cmd, 32);
1064 static int mdio_read(struct net_device *dev, int reg)
1066 struct netdev_private *np = netdev_priv(dev);
1067 void __iomem *ioaddr = ns_ioaddr(dev);
1069 /* The 83815 series has two ports:
1070 * - an internal transceiver
1071 * - an external mii bus
1073 if (dev->if_port == PORT_TP)
1074 return readw(ioaddr+BasicControl+(reg<<2));
1076 return miiport_read(dev, np->phy_addr_external, reg);
1079 static void mdio_write(struct net_device *dev, int reg, u16 data)
1081 struct netdev_private *np = netdev_priv(dev);
1082 void __iomem *ioaddr = ns_ioaddr(dev);
1084 /* The 83815 series has an internal transceiver; handle separately */
1085 if (dev->if_port == PORT_TP)
1086 writew(data, ioaddr+BasicControl+(reg<<2));
1088 miiport_write(dev, np->phy_addr_external, reg, data);
1091 static void init_phy_fixup(struct net_device *dev)
1093 struct netdev_private *np = netdev_priv(dev);
1094 void __iomem *ioaddr = ns_ioaddr(dev);
1099 /* restore stuff lost when power was out */
1100 tmp = mdio_read(dev, MII_BMCR);
1101 if (np->autoneg == AUTONEG_ENABLE) {
1102 /* renegotiate if something changed */
1103 if ((tmp & BMCR_ANENABLE) == 0
1104 || np->advertising != mdio_read(dev, MII_ADVERTISE))
1106 /* turn on autonegotiation and force negotiation */
1107 tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1108 mdio_write(dev, MII_ADVERTISE, np->advertising);
1111 /* turn off auto negotiation, set speed and duplexity */
1112 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1113 if (np->speed == SPEED_100)
1114 tmp |= BMCR_SPEED100;
1115 if (np->duplex == DUPLEX_FULL)
1116 tmp |= BMCR_FULLDPLX;
1118 * Note: there is no good way to inform the link partner
1119 * that our capabilities changed. The user has to unplug
1120 * and replug the network cable after some changes, e.g.
1121 * after switching from 10HD, autoneg off to 100 HD,
1125 mdio_write(dev, MII_BMCR, tmp);
1126 readl(ioaddr + ChipConfig);
1129 /* find out what phy this is */
1130 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1131 + mdio_read(dev, MII_PHYSID2);
1133 /* handle external phys here */
1135 case PHYID_AM79C874:
1136 /* phy specific configuration for fibre/tp operation */
1137 tmp = mdio_read(dev, MII_MCTRL);
1138 tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1139 if (dev->if_port == PORT_FIBRE)
1143 mdio_write(dev, MII_MCTRL, tmp);
1148 cfg = readl(ioaddr + ChipConfig);
1149 if (cfg & CfgExtPhy)
1152 /* On page 78 of the spec, they recommend some settings for "optimum
1153 performance" to be done in sequence. These settings optimize some
1154 of the 100Mbit autodetection circuitry. They say we only want to
1155 do this for rev C of the chip, but engineers at NSC (Bradley
1156 Kennedy) recommends always setting them. If you don't, you get
1157 errors on some autonegotiations that make the device unusable.
1159 It seems that the DSP needs a few usec to reinitialize after
1160 the start of the phy. Just retry writing these values until they
1163 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1166 writew(1, ioaddr + PGSEL);
1167 writew(PMDCSR_VAL, ioaddr + PMDCSR);
1168 writew(TSTDAT_VAL, ioaddr + TSTDAT);
1169 np->dspcfg = (np->srr <= SRR_DP83815_C)?
1170 DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1171 writew(np->dspcfg, ioaddr + DSPCFG);
1172 writew(SDCFG_VAL, ioaddr + SDCFG);
1173 writew(0, ioaddr + PGSEL);
1174 readl(ioaddr + ChipConfig);
1177 writew(1, ioaddr + PGSEL);
1178 dspcfg = readw(ioaddr + DSPCFG);
1179 writew(0, ioaddr + PGSEL);
1180 if (np->dspcfg == dspcfg)
1184 if (netif_msg_link(np)) {
1185 if (i==NATSEMI_HW_TIMEOUT) {
1187 "%s: DSPCFG mismatch after retrying for %d usec.\n",
1191 "%s: DSPCFG accepted after %d usec.\n",
1196 * Enable PHY Specific event based interrupts. Link state change
1197 * and Auto-Negotiation Completion are among the affected.
1198 * Read the intr status to clear it (needed for wake events).
1200 readw(ioaddr + MIntrStatus);
1201 writew(MICRIntEn, ioaddr + MIntrCtrl);
1204 static int switch_port_external(struct net_device *dev)
1206 struct netdev_private *np = netdev_priv(dev);
1207 void __iomem *ioaddr = ns_ioaddr(dev);
1210 cfg = readl(ioaddr + ChipConfig);
1211 if (cfg & CfgExtPhy)
1214 if (netif_msg_link(np)) {
1215 printk(KERN_INFO "%s: switching to external transceiver.\n",
1219 /* 1) switch back to external phy */
1220 writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1221 readl(ioaddr + ChipConfig);
1224 /* 2) reset the external phy: */
1225 /* resetting the external PHY has been known to cause a hub supplying
1226 * power over Ethernet to kill the power. We don't want to kill
1227 * power to this computer, so we avoid resetting the phy.
1230 /* 3) reinit the phy fixup, it got lost during power down. */
1231 move_int_phy(dev, np->phy_addr_external);
1232 init_phy_fixup(dev);
1237 static int switch_port_internal(struct net_device *dev)
1239 struct netdev_private *np = netdev_priv(dev);
1240 void __iomem *ioaddr = ns_ioaddr(dev);
1245 cfg = readl(ioaddr + ChipConfig);
1246 if (!(cfg &CfgExtPhy))
1249 if (netif_msg_link(np)) {
1250 printk(KERN_INFO "%s: switching to internal transceiver.\n",
1253 /* 1) switch back to internal phy: */
1254 cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1255 writel(cfg, ioaddr + ChipConfig);
1256 readl(ioaddr + ChipConfig);
1259 /* 2) reset the internal phy: */
1260 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1261 writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1262 readl(ioaddr + ChipConfig);
1264 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1265 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1266 if (!(bmcr & BMCR_RESET))
1270 if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1272 "%s: phy reset did not complete in %d usec.\n",
1275 /* 3) reinit the phy fixup, it got lost during power down. */
1276 init_phy_fixup(dev);
1281 /* Scan for a PHY on the external mii bus.
1282 * There are two tricky points:
1283 * - Do not scan while the internal phy is enabled. The internal phy will
1284 * crash: e.g. reads from the DSPCFG register will return odd values and
1285 * the nasty random phy reset code will reset the nic every few seconds.
1286 * - The internal phy must be moved around, an external phy could
1287 * have the same address as the internal phy.
1289 static int find_mii(struct net_device *dev)
1291 struct netdev_private *np = netdev_priv(dev);
1296 /* Switch to external phy */
1297 did_switch = switch_port_external(dev);
1299 /* Scan the possible phy addresses:
1301 * PHY address 0 means that the phy is in isolate mode. Not yet
1302 * supported due to lack of test hardware. User space should
1303 * handle it through ethtool.
1305 for (i = 1; i <= 31; i++) {
1306 move_int_phy(dev, i);
1307 tmp = miiport_read(dev, i, MII_BMSR);
1308 if (tmp != 0xffff && tmp != 0x0000) {
1309 /* found something! */
1310 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1311 + mdio_read(dev, MII_PHYSID2);
1312 if (netif_msg_probe(np)) {
1313 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1314 pci_name(np->pci_dev), np->mii, i);
1319 /* And switch back to internal phy: */
1321 switch_port_internal(dev);
1325 /* CFG bits [13:16] [18:23] */
1326 #define CFG_RESET_SAVE 0xfde000
1327 /* WCSR bits [0:4] [9:10] */
1328 #define WCSR_RESET_SAVE 0x61f
1329 /* RFCR bits [20] [22] [27:31] */
1330 #define RFCR_RESET_SAVE 0xf8500000;
1332 static void natsemi_reset(struct net_device *dev)
1340 struct netdev_private *np = netdev_priv(dev);
1341 void __iomem *ioaddr = ns_ioaddr(dev);
1344 * Resetting the chip causes some registers to be lost.
1345 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1346 * we save the state that would have been loaded from EEPROM
1347 * on a normal power-up (see the spec EEPROM map). This assumes
1348 * whoever calls this will follow up with init_registers() eventually.
1352 cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1354 wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1356 rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1358 for (i = 0; i < 3; i++) {
1359 writel(i*2, ioaddr + RxFilterAddr);
1360 pmatch[i] = readw(ioaddr + RxFilterData);
1363 for (i = 0; i < 3; i++) {
1364 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1365 sopass[i] = readw(ioaddr + RxFilterData);
1368 /* now whack the chip */
1369 writel(ChipReset, ioaddr + ChipCmd);
1370 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1371 if (!(readl(ioaddr + ChipCmd) & ChipReset))
1375 if (i==NATSEMI_HW_TIMEOUT) {
1376 printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1378 } else if (netif_msg_hw(np)) {
1379 printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1384 cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1385 /* turn on external phy if it was selected */
1386 if (dev->if_port == PORT_TP)
1387 cfg &= ~(CfgExtPhy | CfgPhyDis);
1389 cfg |= (CfgExtPhy | CfgPhyDis);
1390 writel(cfg, ioaddr + ChipConfig);
1392 wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1393 writel(wcsr, ioaddr + WOLCmd);
1395 rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1396 /* restore PMATCH */
1397 for (i = 0; i < 3; i++) {
1398 writel(i*2, ioaddr + RxFilterAddr);
1399 writew(pmatch[i], ioaddr + RxFilterData);
1401 for (i = 0; i < 3; i++) {
1402 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1403 writew(sopass[i], ioaddr + RxFilterData);
1406 writel(rfcr, ioaddr + RxFilterAddr);
1409 static void reset_rx(struct net_device *dev)
1412 struct netdev_private *np = netdev_priv(dev);
1413 void __iomem *ioaddr = ns_ioaddr(dev);
1415 np->intr_status &= ~RxResetDone;
1417 writel(RxReset, ioaddr + ChipCmd);
1419 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1420 np->intr_status |= readl(ioaddr + IntrStatus);
1421 if (np->intr_status & RxResetDone)
1425 if (i==NATSEMI_HW_TIMEOUT) {
1426 printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1428 } else if (netif_msg_hw(np)) {
1429 printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1434 static void natsemi_reload_eeprom(struct net_device *dev)
1436 struct netdev_private *np = netdev_priv(dev);
1437 void __iomem *ioaddr = ns_ioaddr(dev);
1440 writel(EepromReload, ioaddr + PCIBusCfg);
1441 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1443 if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1446 if (i==NATSEMI_HW_TIMEOUT) {
1447 printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1448 pci_name(np->pci_dev), i*50);
1449 } else if (netif_msg_hw(np)) {
1450 printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1451 pci_name(np->pci_dev), i*50);
1455 static void natsemi_stop_rxtx(struct net_device *dev)
1457 void __iomem * ioaddr = ns_ioaddr(dev);
1458 struct netdev_private *np = netdev_priv(dev);
1461 writel(RxOff | TxOff, ioaddr + ChipCmd);
1462 for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1463 if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1467 if (i==NATSEMI_HW_TIMEOUT) {
1468 printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1470 } else if (netif_msg_hw(np)) {
1471 printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1476 static int netdev_open(struct net_device *dev)
1478 struct netdev_private *np = netdev_priv(dev);
1479 void __iomem * ioaddr = ns_ioaddr(dev);
1482 /* Reset the chip, just in case. */
1485 i = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
1488 if (netif_msg_ifup(np))
1489 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1490 dev->name, dev->irq);
1491 i = alloc_ring(dev);
1493 free_irq(dev->irq, dev);
1497 spin_lock_irq(&np->lock);
1498 init_registers(dev);
1499 /* now set the MAC address according to dev->dev_addr */
1500 for (i = 0; i < 3; i++) {
1501 u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1503 writel(i*2, ioaddr + RxFilterAddr);
1504 writew(mac, ioaddr + RxFilterData);
1506 writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1507 spin_unlock_irq(&np->lock);
1509 netif_start_queue(dev);
1511 if (netif_msg_ifup(np))
1512 printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1513 dev->name, (int)readl(ioaddr + ChipCmd));
1515 /* Set the timer to check for link beat. */
1516 init_timer(&np->timer);
1517 np->timer.expires = jiffies + NATSEMI_TIMER_FREQ;
1518 np->timer.data = (unsigned long)dev;
1519 np->timer.function = &netdev_timer; /* timer handler */
1520 add_timer(&np->timer);
1525 static void do_cable_magic(struct net_device *dev)
1527 struct netdev_private *np = netdev_priv(dev);
1528 void __iomem *ioaddr = ns_ioaddr(dev);
1530 if (dev->if_port != PORT_TP)
1533 if (np->srr >= SRR_DP83816_A5)
1537 * 100 MBit links with short cables can trip an issue with the chip.
1538 * The problem manifests as lots of CRC errors and/or flickering
1539 * activity LED while idle. This process is based on instructions
1540 * from engineers at National.
1542 if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1545 writew(1, ioaddr + PGSEL);
1547 * coefficient visibility should already be enabled via
1550 data = readw(ioaddr + TSTDAT) & 0xff;
1552 * the value must be negative, and within certain values
1553 * (these values all come from National)
1555 if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1556 struct netdev_private *np = netdev_priv(dev);
1558 /* the bug has been triggered - fix the coefficient */
1559 writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1560 /* lock the value */
1561 data = readw(ioaddr + DSPCFG);
1562 np->dspcfg = data | DSPCFG_LOCK;
1563 writew(np->dspcfg, ioaddr + DSPCFG);
1565 writew(0, ioaddr + PGSEL);
1569 static void undo_cable_magic(struct net_device *dev)
1572 struct netdev_private *np = netdev_priv(dev);
1573 void __iomem * ioaddr = ns_ioaddr(dev);
1575 if (dev->if_port != PORT_TP)
1578 if (np->srr >= SRR_DP83816_A5)
1581 writew(1, ioaddr + PGSEL);
1582 /* make sure the lock bit is clear */
1583 data = readw(ioaddr + DSPCFG);
1584 np->dspcfg = data & ~DSPCFG_LOCK;
1585 writew(np->dspcfg, ioaddr + DSPCFG);
1586 writew(0, ioaddr + PGSEL);
1589 static void check_link(struct net_device *dev)
1591 struct netdev_private *np = netdev_priv(dev);
1592 void __iomem * ioaddr = ns_ioaddr(dev);
1593 int duplex = np->duplex;
1596 /* If we are ignoring the PHY then don't try reading it. */
1598 goto propagate_state;
1600 /* The link status field is latched: it remains low after a temporary
1601 * link failure until it's read. We need the current link status,
1604 mdio_read(dev, MII_BMSR);
1605 bmsr = mdio_read(dev, MII_BMSR);
1607 if (!(bmsr & BMSR_LSTATUS)) {
1608 if (netif_carrier_ok(dev)) {
1609 if (netif_msg_link(np))
1610 printk(KERN_NOTICE "%s: link down.\n",
1612 netif_carrier_off(dev);
1613 undo_cable_magic(dev);
1617 if (!netif_carrier_ok(dev)) {
1618 if (netif_msg_link(np))
1619 printk(KERN_NOTICE "%s: link up.\n", dev->name);
1620 netif_carrier_on(dev);
1621 do_cable_magic(dev);
1624 duplex = np->full_duplex;
1626 if (bmsr & BMSR_ANEGCOMPLETE) {
1627 int tmp = mii_nway_result(
1628 np->advertising & mdio_read(dev, MII_LPA));
1629 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1631 } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1636 /* if duplex is set then bit 28 must be set, too */
1637 if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1638 if (netif_msg_link(np))
1640 "%s: Setting %s-duplex based on negotiated "
1641 "link capability.\n", dev->name,
1642 duplex ? "full" : "half");
1644 np->rx_config |= RxAcceptTx;
1645 np->tx_config |= TxCarrierIgn | TxHeartIgn;
1647 np->rx_config &= ~RxAcceptTx;
1648 np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1650 writel(np->tx_config, ioaddr + TxConfig);
1651 writel(np->rx_config, ioaddr + RxConfig);
1655 static void init_registers(struct net_device *dev)
1657 struct netdev_private *np = netdev_priv(dev);
1658 void __iomem * ioaddr = ns_ioaddr(dev);
1660 init_phy_fixup(dev);
1662 /* clear any interrupts that are pending, such as wake events */
1663 readl(ioaddr + IntrStatus);
1665 writel(np->ring_dma, ioaddr + RxRingPtr);
1666 writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1667 ioaddr + TxRingPtr);
1669 /* Initialize other registers.
1670 * Configure the PCI bus bursts and FIFO thresholds.
1671 * Configure for standard, in-spec Ethernet.
1672 * Start with half-duplex. check_link will update
1673 * to the correct settings.
1676 /* DRTH: 2: start tx if 64 bytes are in the fifo
1677 * FLTH: 0x10: refill with next packet if 512 bytes are free
1678 * MXDMA: 0: up to 256 byte bursts.
1679 * MXDMA must be <= FLTH
1683 np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1684 TX_FLTH_VAL | TX_DRTH_VAL_START;
1685 writel(np->tx_config, ioaddr + TxConfig);
1687 /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1688 * MXDMA 0: up to 256 byte bursts
1690 np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1691 /* if receive ring now has bigger buffers than normal, enable jumbo */
1692 if (np->rx_buf_sz > NATSEMI_LONGPKT)
1693 np->rx_config |= RxAcceptLong;
1695 writel(np->rx_config, ioaddr + RxConfig);
1698 * The PME bit is initialized from the EEPROM contents.
1699 * PCI cards probably have PME disabled, but motherboard
1700 * implementations may have PME set to enable WakeOnLan.
1701 * With PME set the chip will scan incoming packets but
1702 * nothing will be written to memory. */
1703 np->SavedClkRun = readl(ioaddr + ClkRun);
1704 writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1705 if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1706 printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1707 dev->name, readl(ioaddr + WOLCmd));
1713 /* Enable interrupts by setting the interrupt mask. */
1714 writel(DEFAULT_INTR, ioaddr + IntrMask);
1715 writel(1, ioaddr + IntrEnable);
1717 writel(RxOn | TxOn, ioaddr + ChipCmd);
1718 writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1724 * 1) check for link changes. Usually they are handled by the MII interrupt
1725 * but it doesn't hurt to check twice.
1726 * 2) check for sudden death of the NIC:
1727 * It seems that a reference set for this chip went out with incorrect info,
1728 * and there exist boards that aren't quite right. An unexpected voltage
1729 * drop can cause the PHY to get itself in a weird state (basically reset).
1730 * NOTE: this only seems to affect revC chips.
1731 * 3) check of death of the RX path due to OOM
1733 static void netdev_timer(unsigned long data)
1735 struct net_device *dev = (struct net_device *)data;
1736 struct netdev_private *np = netdev_priv(dev);
1737 void __iomem * ioaddr = ns_ioaddr(dev);
1738 int next_tick = 5*HZ;
1740 if (netif_msg_timer(np)) {
1741 /* DO NOT read the IntrStatus register,
1742 * a read clears any pending interrupts.
1744 printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1748 if (dev->if_port == PORT_TP) {
1751 spin_lock_irq(&np->lock);
1752 /* check for a nasty random phy-reset - use dspcfg as a flag */
1753 writew(1, ioaddr+PGSEL);
1754 dspcfg = readw(ioaddr+DSPCFG);
1755 writew(0, ioaddr+PGSEL);
1756 if (dspcfg != np->dspcfg) {
1757 if (!netif_queue_stopped(dev)) {
1758 spin_unlock_irq(&np->lock);
1759 if (netif_msg_hw(np))
1760 printk(KERN_NOTICE "%s: possible phy reset: "
1761 "re-initializing\n", dev->name);
1762 disable_irq(dev->irq);
1763 spin_lock_irq(&np->lock);
1764 natsemi_stop_rxtx(dev);
1767 init_registers(dev);
1768 spin_unlock_irq(&np->lock);
1769 enable_irq(dev->irq);
1773 spin_unlock_irq(&np->lock);
1776 /* init_registers() calls check_link() for the above case */
1778 spin_unlock_irq(&np->lock);
1781 spin_lock_irq(&np->lock);
1783 spin_unlock_irq(&np->lock);
1786 disable_irq(dev->irq);
1789 enable_irq(dev->irq);
1791 writel(RxOn, ioaddr + ChipCmd);
1796 mod_timer(&np->timer, jiffies + next_tick);
1799 static void dump_ring(struct net_device *dev)
1801 struct netdev_private *np = netdev_priv(dev);
1803 if (netif_msg_pktdata(np)) {
1805 printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring);
1806 for (i = 0; i < TX_RING_SIZE; i++) {
1807 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1808 i, np->tx_ring[i].next_desc,
1809 np->tx_ring[i].cmd_status,
1810 np->tx_ring[i].addr);
1812 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring);
1813 for (i = 0; i < RX_RING_SIZE; i++) {
1814 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1815 i, np->rx_ring[i].next_desc,
1816 np->rx_ring[i].cmd_status,
1817 np->rx_ring[i].addr);
1822 static void tx_timeout(struct net_device *dev)
1824 struct netdev_private *np = netdev_priv(dev);
1825 void __iomem * ioaddr = ns_ioaddr(dev);
1827 disable_irq(dev->irq);
1828 spin_lock_irq(&np->lock);
1829 if (!np->hands_off) {
1830 if (netif_msg_tx_err(np))
1832 "%s: Transmit timed out, status %#08x,"
1834 dev->name, readl(ioaddr + IntrStatus));
1839 init_registers(dev);
1842 "%s: tx_timeout while in hands_off state?\n",
1845 spin_unlock_irq(&np->lock);
1846 enable_irq(dev->irq);
1848 dev->trans_start = jiffies;
1849 np->stats.tx_errors++;
1850 netif_wake_queue(dev);
1853 static int alloc_ring(struct net_device *dev)
1855 struct netdev_private *np = netdev_priv(dev);
1856 np->rx_ring = pci_alloc_consistent(np->pci_dev,
1857 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1861 np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1865 static void refill_rx(struct net_device *dev)
1867 struct netdev_private *np = netdev_priv(dev);
1869 /* Refill the Rx ring buffers. */
1870 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1871 struct sk_buff *skb;
1872 int entry = np->dirty_rx % RX_RING_SIZE;
1873 if (np->rx_skbuff[entry] == NULL) {
1874 unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1875 skb = dev_alloc_skb(buflen);
1876 np->rx_skbuff[entry] = skb;
1878 break; /* Better luck next round. */
1879 skb->dev = dev; /* Mark as being used by this device. */
1880 np->rx_dma[entry] = pci_map_single(np->pci_dev,
1881 skb->data, buflen, PCI_DMA_FROMDEVICE);
1882 np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1884 np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1886 if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1887 if (netif_msg_rx_err(np))
1888 printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1893 static void set_bufsize(struct net_device *dev)
1895 struct netdev_private *np = netdev_priv(dev);
1896 if (dev->mtu <= ETH_DATA_LEN)
1897 np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1899 np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1902 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1903 static void init_ring(struct net_device *dev)
1905 struct netdev_private *np = netdev_priv(dev);
1909 np->dirty_tx = np->cur_tx = 0;
1910 for (i = 0; i < TX_RING_SIZE; i++) {
1911 np->tx_skbuff[i] = NULL;
1912 np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1913 +sizeof(struct netdev_desc)
1914 *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1915 np->tx_ring[i].cmd_status = 0;
1920 np->cur_rx = RX_RING_SIZE;
1924 np->rx_head_desc = &np->rx_ring[0];
1926 /* Please be carefull before changing this loop - at least gcc-2.95.1
1927 * miscompiles it otherwise.
1929 /* Initialize all Rx descriptors. */
1930 for (i = 0; i < RX_RING_SIZE; i++) {
1931 np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1932 +sizeof(struct netdev_desc)
1933 *((i+1)%RX_RING_SIZE));
1934 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1935 np->rx_skbuff[i] = NULL;
1941 static void drain_tx(struct net_device *dev)
1943 struct netdev_private *np = netdev_priv(dev);
1946 for (i = 0; i < TX_RING_SIZE; i++) {
1947 if (np->tx_skbuff[i]) {
1948 pci_unmap_single(np->pci_dev,
1949 np->tx_dma[i], np->tx_skbuff[i]->len,
1951 dev_kfree_skb(np->tx_skbuff[i]);
1952 np->stats.tx_dropped++;
1954 np->tx_skbuff[i] = NULL;
1958 static void drain_rx(struct net_device *dev)
1960 struct netdev_private *np = netdev_priv(dev);
1961 unsigned int buflen = np->rx_buf_sz;
1964 /* Free all the skbuffs in the Rx queue. */
1965 for (i = 0; i < RX_RING_SIZE; i++) {
1966 np->rx_ring[i].cmd_status = 0;
1967 np->rx_ring[i].addr = 0xBADF00D0; /* An invalid address. */
1968 if (np->rx_skbuff[i]) {
1969 pci_unmap_single(np->pci_dev,
1970 np->rx_dma[i], buflen,
1971 PCI_DMA_FROMDEVICE);
1972 dev_kfree_skb(np->rx_skbuff[i]);
1974 np->rx_skbuff[i] = NULL;
1978 static void drain_ring(struct net_device *dev)
1984 static void free_ring(struct net_device *dev)
1986 struct netdev_private *np = netdev_priv(dev);
1987 pci_free_consistent(np->pci_dev,
1988 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1989 np->rx_ring, np->ring_dma);
1992 static void reinit_rx(struct net_device *dev)
1994 struct netdev_private *np = netdev_priv(dev);
1999 np->cur_rx = RX_RING_SIZE;
2000 np->rx_head_desc = &np->rx_ring[0];
2001 /* Initialize all Rx descriptors. */
2002 for (i = 0; i < RX_RING_SIZE; i++)
2003 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2008 static void reinit_ring(struct net_device *dev)
2010 struct netdev_private *np = netdev_priv(dev);
2015 np->dirty_tx = np->cur_tx = 0;
2016 for (i=0;i<TX_RING_SIZE;i++)
2017 np->tx_ring[i].cmd_status = 0;
2022 static int start_tx(struct sk_buff *skb, struct net_device *dev)
2024 struct netdev_private *np = netdev_priv(dev);
2025 void __iomem * ioaddr = ns_ioaddr(dev);
2027 unsigned long flags;
2029 /* Note: Ordering is important here, set the field with the
2030 "ownership" bit last, and only then increment cur_tx. */
2032 /* Calculate the next Tx descriptor entry. */
2033 entry = np->cur_tx % TX_RING_SIZE;
2035 np->tx_skbuff[entry] = skb;
2036 np->tx_dma[entry] = pci_map_single(np->pci_dev,
2037 skb->data,skb->len, PCI_DMA_TODEVICE);
2039 np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2041 spin_lock_irqsave(&np->lock, flags);
2043 if (!np->hands_off) {
2044 np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2045 /* StrongARM: Explicitly cache flush np->tx_ring and
2046 * skb->data,skb->len. */
2049 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2050 netdev_tx_done(dev);
2051 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2052 netif_stop_queue(dev);
2054 /* Wake the potentially-idle transmit channel. */
2055 writel(TxOn, ioaddr + ChipCmd);
2057 dev_kfree_skb_irq(skb);
2058 np->stats.tx_dropped++;
2060 spin_unlock_irqrestore(&np->lock, flags);
2062 dev->trans_start = jiffies;
2064 if (netif_msg_tx_queued(np)) {
2065 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2066 dev->name, np->cur_tx, entry);
2071 static void netdev_tx_done(struct net_device *dev)
2073 struct netdev_private *np = netdev_priv(dev);
2075 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2076 int entry = np->dirty_tx % TX_RING_SIZE;
2077 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2079 if (netif_msg_tx_done(np))
2081 "%s: tx frame #%d finished, status %#08x.\n",
2082 dev->name, np->dirty_tx,
2083 le32_to_cpu(np->tx_ring[entry].cmd_status));
2084 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2085 np->stats.tx_packets++;
2086 np->stats.tx_bytes += np->tx_skbuff[entry]->len;
2087 } else { /* Various Tx errors */
2089 le32_to_cpu(np->tx_ring[entry].cmd_status);
2090 if (tx_status & (DescTxAbort|DescTxExcColl))
2091 np->stats.tx_aborted_errors++;
2092 if (tx_status & DescTxFIFO)
2093 np->stats.tx_fifo_errors++;
2094 if (tx_status & DescTxCarrier)
2095 np->stats.tx_carrier_errors++;
2096 if (tx_status & DescTxOOWCol)
2097 np->stats.tx_window_errors++;
2098 np->stats.tx_errors++;
2100 pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2101 np->tx_skbuff[entry]->len,
2103 /* Free the original skb. */
2104 dev_kfree_skb_irq(np->tx_skbuff[entry]);
2105 np->tx_skbuff[entry] = NULL;
2107 if (netif_queue_stopped(dev)
2108 && np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2109 /* The ring is no longer full, wake queue. */
2110 netif_wake_queue(dev);
2114 /* The interrupt handler doesn't actually handle interrupts itself, it
2115 * schedules a NAPI poll if there is anything to do. */
2116 static irqreturn_t intr_handler(int irq, void *dev_instance)
2118 struct net_device *dev = dev_instance;
2119 struct netdev_private *np = netdev_priv(dev);
2120 void __iomem * ioaddr = ns_ioaddr(dev);
2125 /* Reading automatically acknowledges. */
2126 np->intr_status = readl(ioaddr + IntrStatus);
2128 if (netif_msg_intr(np))
2130 "%s: Interrupt, status %#08x, mask %#08x.\n",
2131 dev->name, np->intr_status,
2132 readl(ioaddr + IntrMask));
2134 if (!np->intr_status)
2137 prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2139 if (netif_rx_schedule_prep(dev)) {
2140 /* Disable interrupts and register for poll */
2141 natsemi_irq_disable(dev);
2142 __netif_rx_schedule(dev);
2147 /* This is the NAPI poll routine. As well as the standard RX handling
2148 * it also handles all other interrupts that the chip might raise.
2150 static int natsemi_poll(struct net_device *dev, int *budget)
2152 struct netdev_private *np = netdev_priv(dev);
2153 void __iomem * ioaddr = ns_ioaddr(dev);
2155 int work_to_do = min(*budget, dev->quota);
2159 if (np->intr_status &
2160 (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2161 spin_lock(&np->lock);
2162 netdev_tx_done(dev);
2163 spin_unlock(&np->lock);
2166 /* Abnormal error summary/uncommon events handlers. */
2167 if (np->intr_status & IntrAbnormalSummary)
2168 netdev_error(dev, np->intr_status);
2170 if (np->intr_status &
2171 (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2172 IntrRxErr | IntrRxOverrun)) {
2173 netdev_rx(dev, &work_done, work_to_do);
2176 *budget -= work_done;
2177 dev->quota -= work_done;
2179 if (work_done >= work_to_do)
2182 np->intr_status = readl(ioaddr + IntrStatus);
2183 } while (np->intr_status);
2185 netif_rx_complete(dev);
2187 /* Reenable interrupts providing nothing is trying to shut
2189 spin_lock(&np->lock);
2190 if (!np->hands_off && netif_running(dev))
2191 natsemi_irq_enable(dev);
2192 spin_unlock(&np->lock);
2197 /* This routine is logically part of the interrupt handler, but separated
2198 for clarity and better register allocation. */
2199 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2201 struct netdev_private *np = netdev_priv(dev);
2202 int entry = np->cur_rx % RX_RING_SIZE;
2203 int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2204 s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2205 unsigned int buflen = np->rx_buf_sz;
2206 void __iomem * ioaddr = ns_ioaddr(dev);
2208 /* If the driver owns the next entry it's a new packet. Send it up. */
2209 while (desc_status < 0) { /* e.g. & DescOwn */
2211 if (netif_msg_rx_status(np))
2213 " netdev_rx() entry %d status was %#08x.\n",
2214 entry, desc_status);
2218 if (*work_done >= work_to_do)
2223 pkt_len = (desc_status & DescSizeMask) - 4;
2224 if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2225 if (desc_status & DescMore) {
2226 unsigned long flags;
2228 if (netif_msg_rx_err(np))
2230 "%s: Oversized(?) Ethernet "
2231 "frame spanned multiple "
2232 "buffers, entry %#08x "
2233 "status %#08x.\n", dev->name,
2234 np->cur_rx, desc_status);
2235 np->stats.rx_length_errors++;
2237 /* The RX state machine has probably
2238 * locked up beneath us. Follow the
2239 * reset procedure documented in
2242 spin_lock_irqsave(&np->lock, flags);
2245 writel(np->ring_dma, ioaddr + RxRingPtr);
2247 spin_unlock_irqrestore(&np->lock, flags);
2249 /* We'll enable RX on exit from this
2254 /* There was an error. */
2255 np->stats.rx_errors++;
2256 if (desc_status & (DescRxAbort|DescRxOver))
2257 np->stats.rx_over_errors++;
2258 if (desc_status & (DescRxLong|DescRxRunt))
2259 np->stats.rx_length_errors++;
2260 if (desc_status & (DescRxInvalid|DescRxAlign))
2261 np->stats.rx_frame_errors++;
2262 if (desc_status & DescRxCRC)
2263 np->stats.rx_crc_errors++;
2265 } else if (pkt_len > np->rx_buf_sz) {
2266 /* if this is the tail of a double buffer
2267 * packet, we've already counted the error
2268 * on the first part. Ignore the second half.
2271 struct sk_buff *skb;
2272 /* Omit CRC size. */
2273 /* Check if the packet is long enough to accept
2274 * without copying to a minimally-sized skbuff. */
2275 if (pkt_len < rx_copybreak
2276 && (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
2278 /* 16 byte align the IP header */
2279 skb_reserve(skb, RX_OFFSET);
2280 pci_dma_sync_single_for_cpu(np->pci_dev,
2283 PCI_DMA_FROMDEVICE);
2284 eth_copy_and_sum(skb,
2285 np->rx_skbuff[entry]->data, pkt_len, 0);
2286 skb_put(skb, pkt_len);
2287 pci_dma_sync_single_for_device(np->pci_dev,
2290 PCI_DMA_FROMDEVICE);
2292 pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2293 buflen, PCI_DMA_FROMDEVICE);
2294 skb_put(skb = np->rx_skbuff[entry], pkt_len);
2295 np->rx_skbuff[entry] = NULL;
2297 skb->protocol = eth_type_trans(skb, dev);
2298 netif_receive_skb(skb);
2299 dev->last_rx = jiffies;
2300 np->stats.rx_packets++;
2301 np->stats.rx_bytes += pkt_len;
2303 entry = (++np->cur_rx) % RX_RING_SIZE;
2304 np->rx_head_desc = &np->rx_ring[entry];
2305 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2309 /* Restart Rx engine if stopped. */
2311 mod_timer(&np->timer, jiffies + 1);
2313 writel(RxOn, ioaddr + ChipCmd);
2316 static void netdev_error(struct net_device *dev, int intr_status)
2318 struct netdev_private *np = netdev_priv(dev);
2319 void __iomem * ioaddr = ns_ioaddr(dev);
2321 spin_lock(&np->lock);
2322 if (intr_status & LinkChange) {
2323 u16 lpa = mdio_read(dev, MII_LPA);
2324 if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE
2325 && netif_msg_link(np)) {
2327 "%s: Autonegotiation advertising"
2328 " %#04x partner %#04x.\n", dev->name,
2329 np->advertising, lpa);
2332 /* read MII int status to clear the flag */
2333 readw(ioaddr + MIntrStatus);
2336 if (intr_status & StatsMax) {
2339 if (intr_status & IntrTxUnderrun) {
2340 if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2341 np->tx_config += TX_DRTH_VAL_INC;
2342 if (netif_msg_tx_err(np))
2344 "%s: increased tx threshold, txcfg %#08x.\n",
2345 dev->name, np->tx_config);
2347 if (netif_msg_tx_err(np))
2349 "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2350 dev->name, np->tx_config);
2352 writel(np->tx_config, ioaddr + TxConfig);
2354 if (intr_status & WOLPkt && netif_msg_wol(np)) {
2355 int wol_status = readl(ioaddr + WOLCmd);
2356 printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2357 dev->name, wol_status);
2359 if (intr_status & RxStatusFIFOOver) {
2360 if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2361 printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2364 np->stats.rx_fifo_errors++;
2366 /* Hmmmmm, it's not clear how to recover from PCI faults. */
2367 if (intr_status & IntrPCIErr) {
2368 printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2369 intr_status & IntrPCIErr);
2370 np->stats.tx_fifo_errors++;
2371 np->stats.rx_fifo_errors++;
2373 spin_unlock(&np->lock);
2376 static void __get_stats(struct net_device *dev)
2378 void __iomem * ioaddr = ns_ioaddr(dev);
2379 struct netdev_private *np = netdev_priv(dev);
2381 /* The chip only need report frame silently dropped. */
2382 np->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2383 np->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2386 static struct net_device_stats *get_stats(struct net_device *dev)
2388 struct netdev_private *np = netdev_priv(dev);
2390 /* The chip only need report frame silently dropped. */
2391 spin_lock_irq(&np->lock);
2392 if (netif_running(dev) && !np->hands_off)
2394 spin_unlock_irq(&np->lock);
2399 #ifdef CONFIG_NET_POLL_CONTROLLER
2400 static void natsemi_poll_controller(struct net_device *dev)
2402 struct netdev_private *np = netdev_priv(dev);
2404 disable_irq(dev->irq);
2407 * A real interrupt might have already reached us at this point
2408 * but NAPI might still haven't called us back. As the interrupt
2409 * status register is cleared by reading, we should prevent an
2410 * interrupt loss in this case...
2412 if (!np->intr_status)
2413 intr_handler(dev->irq, dev);
2415 enable_irq(dev->irq);
2419 #define HASH_TABLE 0x200
2420 static void __set_rx_mode(struct net_device *dev)
2422 void __iomem * ioaddr = ns_ioaddr(dev);
2423 struct netdev_private *np = netdev_priv(dev);
2424 u8 mc_filter[64]; /* Multicast hash filter */
2427 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2428 rx_mode = RxFilterEnable | AcceptBroadcast
2429 | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2430 } else if ((dev->mc_count > multicast_filter_limit)
2431 || (dev->flags & IFF_ALLMULTI)) {
2432 rx_mode = RxFilterEnable | AcceptBroadcast
2433 | AcceptAllMulticast | AcceptMyPhys;
2435 struct dev_mc_list *mclist;
2437 memset(mc_filter, 0, sizeof(mc_filter));
2438 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
2439 i++, mclist = mclist->next) {
2440 int i = (ether_crc(ETH_ALEN, mclist->dmi_addr) >> 23) & 0x1ff;
2441 mc_filter[i/8] |= (1 << (i & 0x07));
2443 rx_mode = RxFilterEnable | AcceptBroadcast
2444 | AcceptMulticast | AcceptMyPhys;
2445 for (i = 0; i < 64; i += 2) {
2446 writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2447 writel((mc_filter[i + 1] << 8) + mc_filter[i],
2448 ioaddr + RxFilterData);
2451 writel(rx_mode, ioaddr + RxFilterAddr);
2452 np->cur_rx_mode = rx_mode;
2455 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2457 if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2462 /* synchronized against open : rtnl_lock() held by caller */
2463 if (netif_running(dev)) {
2464 struct netdev_private *np = netdev_priv(dev);
2465 void __iomem * ioaddr = ns_ioaddr(dev);
2467 disable_irq(dev->irq);
2468 spin_lock(&np->lock);
2470 natsemi_stop_rxtx(dev);
2471 /* drain rx queue */
2473 /* change buffers */
2476 writel(np->ring_dma, ioaddr + RxRingPtr);
2477 /* restart engines */
2478 writel(RxOn | TxOn, ioaddr + ChipCmd);
2479 spin_unlock(&np->lock);
2480 enable_irq(dev->irq);
2485 static void set_rx_mode(struct net_device *dev)
2487 struct netdev_private *np = netdev_priv(dev);
2488 spin_lock_irq(&np->lock);
2491 spin_unlock_irq(&np->lock);
2494 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2496 struct netdev_private *np = netdev_priv(dev);
2497 strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
2498 strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
2499 strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN);
2502 static int get_regs_len(struct net_device *dev)
2504 return NATSEMI_REGS_SIZE;
2507 static int get_eeprom_len(struct net_device *dev)
2509 struct netdev_private *np = netdev_priv(dev);
2510 return np->eeprom_size;
2513 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2515 struct netdev_private *np = netdev_priv(dev);
2516 spin_lock_irq(&np->lock);
2517 netdev_get_ecmd(dev, ecmd);
2518 spin_unlock_irq(&np->lock);
2522 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2524 struct netdev_private *np = netdev_priv(dev);
2526 spin_lock_irq(&np->lock);
2527 res = netdev_set_ecmd(dev, ecmd);
2528 spin_unlock_irq(&np->lock);
2532 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2534 struct netdev_private *np = netdev_priv(dev);
2535 spin_lock_irq(&np->lock);
2536 netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2537 netdev_get_sopass(dev, wol->sopass);
2538 spin_unlock_irq(&np->lock);
2541 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2543 struct netdev_private *np = netdev_priv(dev);
2545 spin_lock_irq(&np->lock);
2546 netdev_set_wol(dev, wol->wolopts);
2547 res = netdev_set_sopass(dev, wol->sopass);
2548 spin_unlock_irq(&np->lock);
2552 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2554 struct netdev_private *np = netdev_priv(dev);
2555 regs->version = NATSEMI_REGS_VER;
2556 spin_lock_irq(&np->lock);
2557 netdev_get_regs(dev, buf);
2558 spin_unlock_irq(&np->lock);
2561 static u32 get_msglevel(struct net_device *dev)
2563 struct netdev_private *np = netdev_priv(dev);
2564 return np->msg_enable;
2567 static void set_msglevel(struct net_device *dev, u32 val)
2569 struct netdev_private *np = netdev_priv(dev);
2570 np->msg_enable = val;
2573 static int nway_reset(struct net_device *dev)
2577 /* if autoneg is off, it's an error */
2578 tmp = mdio_read(dev, MII_BMCR);
2579 if (tmp & BMCR_ANENABLE) {
2580 tmp |= (BMCR_ANRESTART);
2581 mdio_write(dev, MII_BMCR, tmp);
2587 static u32 get_link(struct net_device *dev)
2589 /* LSTATUS is latched low until a read - so read twice */
2590 mdio_read(dev, MII_BMSR);
2591 return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2594 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2596 struct netdev_private *np = netdev_priv(dev);
2600 eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2604 eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2605 spin_lock_irq(&np->lock);
2606 res = netdev_get_eeprom(dev, eebuf);
2607 spin_unlock_irq(&np->lock);
2609 memcpy(data, eebuf+eeprom->offset, eeprom->len);
2614 static const struct ethtool_ops ethtool_ops = {
2615 .get_drvinfo = get_drvinfo,
2616 .get_regs_len = get_regs_len,
2617 .get_eeprom_len = get_eeprom_len,
2618 .get_settings = get_settings,
2619 .set_settings = set_settings,
2622 .get_regs = get_regs,
2623 .get_msglevel = get_msglevel,
2624 .set_msglevel = set_msglevel,
2625 .nway_reset = nway_reset,
2626 .get_link = get_link,
2627 .get_eeprom = get_eeprom,
2630 static int netdev_set_wol(struct net_device *dev, u32 newval)
2632 struct netdev_private *np = netdev_priv(dev);
2633 void __iomem * ioaddr = ns_ioaddr(dev);
2634 u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2636 /* translate to bitmasks this chip understands */
2637 if (newval & WAKE_PHY)
2639 if (newval & WAKE_UCAST)
2640 data |= WakeUnicast;
2641 if (newval & WAKE_MCAST)
2642 data |= WakeMulticast;
2643 if (newval & WAKE_BCAST)
2644 data |= WakeBroadcast;
2645 if (newval & WAKE_ARP)
2647 if (newval & WAKE_MAGIC)
2649 if (np->srr >= SRR_DP83815_D) {
2650 if (newval & WAKE_MAGICSECURE) {
2651 data |= WakeMagicSecure;
2655 writel(data, ioaddr + WOLCmd);
2660 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2662 struct netdev_private *np = netdev_priv(dev);
2663 void __iomem * ioaddr = ns_ioaddr(dev);
2664 u32 regval = readl(ioaddr + WOLCmd);
2666 *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2667 | WAKE_ARP | WAKE_MAGIC);
2669 if (np->srr >= SRR_DP83815_D) {
2670 /* SOPASS works on revD and higher */
2671 *supported |= WAKE_MAGICSECURE;
2675 /* translate from chip bitmasks */
2676 if (regval & WakePhy)
2678 if (regval & WakeUnicast)
2680 if (regval & WakeMulticast)
2682 if (regval & WakeBroadcast)
2684 if (regval & WakeArp)
2686 if (regval & WakeMagic)
2688 if (regval & WakeMagicSecure) {
2689 /* this can be on in revC, but it's broken */
2690 *cur |= WAKE_MAGICSECURE;
2696 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2698 struct netdev_private *np = netdev_priv(dev);
2699 void __iomem * ioaddr = ns_ioaddr(dev);
2700 u16 *sval = (u16 *)newval;
2703 if (np->srr < SRR_DP83815_D) {
2707 /* enable writing to these registers by disabling the RX filter */
2708 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2709 addr &= ~RxFilterEnable;
2710 writel(addr, ioaddr + RxFilterAddr);
2712 /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2713 writel(addr | 0xa, ioaddr + RxFilterAddr);
2714 writew(sval[0], ioaddr + RxFilterData);
2716 writel(addr | 0xc, ioaddr + RxFilterAddr);
2717 writew(sval[1], ioaddr + RxFilterData);
2719 writel(addr | 0xe, ioaddr + RxFilterAddr);
2720 writew(sval[2], ioaddr + RxFilterData);
2722 /* re-enable the RX filter */
2723 writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2728 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2730 struct netdev_private *np = netdev_priv(dev);
2731 void __iomem * ioaddr = ns_ioaddr(dev);
2732 u16 *sval = (u16 *)data;
2735 if (np->srr < SRR_DP83815_D) {
2736 sval[0] = sval[1] = sval[2] = 0;
2740 /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2741 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2743 writel(addr | 0xa, ioaddr + RxFilterAddr);
2744 sval[0] = readw(ioaddr + RxFilterData);
2746 writel(addr | 0xc, ioaddr + RxFilterAddr);
2747 sval[1] = readw(ioaddr + RxFilterData);
2749 writel(addr | 0xe, ioaddr + RxFilterAddr);
2750 sval[2] = readw(ioaddr + RxFilterData);
2752 writel(addr, ioaddr + RxFilterAddr);
2757 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2759 struct netdev_private *np = netdev_priv(dev);
2762 ecmd->port = dev->if_port;
2763 ecmd->speed = np->speed;
2764 ecmd->duplex = np->duplex;
2765 ecmd->autoneg = np->autoneg;
2766 ecmd->advertising = 0;
2767 if (np->advertising & ADVERTISE_10HALF)
2768 ecmd->advertising |= ADVERTISED_10baseT_Half;
2769 if (np->advertising & ADVERTISE_10FULL)
2770 ecmd->advertising |= ADVERTISED_10baseT_Full;
2771 if (np->advertising & ADVERTISE_100HALF)
2772 ecmd->advertising |= ADVERTISED_100baseT_Half;
2773 if (np->advertising & ADVERTISE_100FULL)
2774 ecmd->advertising |= ADVERTISED_100baseT_Full;
2775 ecmd->supported = (SUPPORTED_Autoneg |
2776 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2777 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2778 SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2779 ecmd->phy_address = np->phy_addr_external;
2781 * We intentionally report the phy address of the external
2782 * phy, even if the internal phy is used. This is necessary
2783 * to work around a deficiency of the ethtool interface:
2784 * It's only possible to query the settings of the active
2786 * # ethtool -s ethX port mii
2787 * actually sends an ioctl to switch to port mii with the
2788 * settings that are used for the current active port.
2789 * If we would report a different phy address in this
2791 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2792 * would unintentionally change the phy address.
2794 * Fortunately the phy address doesn't matter with the
2798 /* set information based on active port type */
2799 switch (ecmd->port) {
2802 ecmd->advertising |= ADVERTISED_TP;
2803 ecmd->transceiver = XCVR_INTERNAL;
2806 ecmd->advertising |= ADVERTISED_MII;
2807 ecmd->transceiver = XCVR_EXTERNAL;
2810 ecmd->advertising |= ADVERTISED_FIBRE;
2811 ecmd->transceiver = XCVR_EXTERNAL;
2815 /* if autonegotiation is on, try to return the active speed/duplex */
2816 if (ecmd->autoneg == AUTONEG_ENABLE) {
2817 ecmd->advertising |= ADVERTISED_Autoneg;
2818 tmp = mii_nway_result(
2819 np->advertising & mdio_read(dev, MII_LPA));
2820 if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2821 ecmd->speed = SPEED_100;
2823 ecmd->speed = SPEED_10;
2824 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2825 ecmd->duplex = DUPLEX_FULL;
2827 ecmd->duplex = DUPLEX_HALF;
2830 /* ignore maxtxpkt, maxrxpkt for now */
2835 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2837 struct netdev_private *np = netdev_priv(dev);
2839 if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2841 if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2843 if (ecmd->autoneg == AUTONEG_ENABLE) {
2844 if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2845 ADVERTISED_10baseT_Full |
2846 ADVERTISED_100baseT_Half |
2847 ADVERTISED_100baseT_Full)) == 0) {
2850 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2851 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2853 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2860 * If we're ignoring the PHY then autoneg and the internal
2861 * transciever are really not going to work so don't let the
2864 if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2865 ecmd->port == PORT_TP))
2869 * maxtxpkt, maxrxpkt: ignored for now.
2872 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2873 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2874 * selects based on ecmd->port.
2876 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2877 * phys that are connected to the mii bus. It's used to apply fibre
2881 /* WHEW! now lets bang some bits */
2883 /* save the parms */
2884 dev->if_port = ecmd->port;
2885 np->autoneg = ecmd->autoneg;
2886 np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2887 if (np->autoneg == AUTONEG_ENABLE) {
2888 /* advertise only what has been requested */
2889 np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2890 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2891 np->advertising |= ADVERTISE_10HALF;
2892 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2893 np->advertising |= ADVERTISE_10FULL;
2894 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2895 np->advertising |= ADVERTISE_100HALF;
2896 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2897 np->advertising |= ADVERTISE_100FULL;
2899 np->speed = ecmd->speed;
2900 np->duplex = ecmd->duplex;
2901 /* user overriding the initial full duplex parm? */
2902 if (np->duplex == DUPLEX_HALF)
2903 np->full_duplex = 0;
2906 /* get the right phy enabled */
2907 if (ecmd->port == PORT_TP)
2908 switch_port_internal(dev);
2910 switch_port_external(dev);
2912 /* set parms and see how this affected our link status */
2913 init_phy_fixup(dev);
2918 static int netdev_get_regs(struct net_device *dev, u8 *buf)
2923 u32 *rbuf = (u32 *)buf;
2924 void __iomem * ioaddr = ns_ioaddr(dev);
2926 /* read non-mii page 0 of registers */
2927 for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2928 rbuf[i] = readl(ioaddr + i*4);
2931 /* read current mii registers */
2932 for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2933 rbuf[i] = mdio_read(dev, i & 0x1f);
2935 /* read only the 'magic' registers from page 1 */
2936 writew(1, ioaddr + PGSEL);
2937 rbuf[i++] = readw(ioaddr + PMDCSR);
2938 rbuf[i++] = readw(ioaddr + TSTDAT);
2939 rbuf[i++] = readw(ioaddr + DSPCFG);
2940 rbuf[i++] = readw(ioaddr + SDCFG);
2941 writew(0, ioaddr + PGSEL);
2943 /* read RFCR indexed registers */
2944 rfcr = readl(ioaddr + RxFilterAddr);
2945 for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
2946 writel(j*2, ioaddr + RxFilterAddr);
2947 rbuf[i++] = readw(ioaddr + RxFilterData);
2949 writel(rfcr, ioaddr + RxFilterAddr);
2951 /* the interrupt status is clear-on-read - see if we missed any */
2952 if (rbuf[4] & rbuf[5]) {
2954 "%s: shoot, we dropped an interrupt (%#08x)\n",
2955 dev->name, rbuf[4] & rbuf[5]);
2961 #define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
2962 | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \
2963 | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \
2964 | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \
2965 | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \
2966 | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \
2967 | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \
2968 | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
2970 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
2973 u16 *ebuf = (u16 *)buf;
2974 void __iomem * ioaddr = ns_ioaddr(dev);
2975 struct netdev_private *np = netdev_priv(dev);
2977 /* eeprom_read reads 16 bits, and indexes by 16 bits */
2978 for (i = 0; i < np->eeprom_size/2; i++) {
2979 ebuf[i] = eeprom_read(ioaddr, i);
2980 /* The EEPROM itself stores data bit-swapped, but eeprom_read
2981 * reads it back "sanely". So we swap it back here in order to
2982 * present it to userland as it is stored. */
2983 ebuf[i] = SWAP_BITS(ebuf[i]);
2988 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2990 struct mii_ioctl_data *data = if_mii(rq);
2991 struct netdev_private *np = netdev_priv(dev);
2994 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2995 case SIOCDEVPRIVATE: /* for binary compat, remove in 2.5 */
2996 data->phy_id = np->phy_addr_external;
2999 case SIOCGMIIREG: /* Read MII PHY register. */
3000 case SIOCDEVPRIVATE+1: /* for binary compat, remove in 2.5 */
3001 /* The phy_id is not enough to uniquely identify
3002 * the intended target. Therefore the command is sent to
3003 * the given mii on the current port.
3005 if (dev->if_port == PORT_TP) {
3006 if ((data->phy_id & 0x1f) == np->phy_addr_external)
3007 data->val_out = mdio_read(dev,
3008 data->reg_num & 0x1f);
3012 move_int_phy(dev, data->phy_id & 0x1f);
3013 data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3014 data->reg_num & 0x1f);
3018 case SIOCSMIIREG: /* Write MII PHY register. */
3019 case SIOCDEVPRIVATE+2: /* for binary compat, remove in 2.5 */
3020 if (!capable(CAP_NET_ADMIN))
3022 if (dev->if_port == PORT_TP) {
3023 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3024 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3025 np->advertising = data->val_in;
3026 mdio_write(dev, data->reg_num & 0x1f,
3030 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3031 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3032 np->advertising = data->val_in;
3034 move_int_phy(dev, data->phy_id & 0x1f);
3035 miiport_write(dev, data->phy_id & 0x1f,
3036 data->reg_num & 0x1f,
3045 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3047 void __iomem * ioaddr = ns_ioaddr(dev);
3048 struct netdev_private *np = netdev_priv(dev);
3050 if (netif_msg_wol(np))
3051 printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3054 /* For WOL we must restart the rx process in silent mode.
3055 * Write NULL to the RxRingPtr. Only possible if
3056 * rx process is stopped
3058 writel(0, ioaddr + RxRingPtr);
3060 /* read WoL status to clear */
3061 readl(ioaddr + WOLCmd);
3063 /* PME on, clear status */
3064 writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3066 /* and restart the rx process */
3067 writel(RxOn, ioaddr + ChipCmd);
3070 /* enable the WOL interrupt.
3071 * Could be used to send a netlink message.
3073 writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3074 writel(1, ioaddr + IntrEnable);
3078 static int netdev_close(struct net_device *dev)
3080 void __iomem * ioaddr = ns_ioaddr(dev);
3081 struct netdev_private *np = netdev_priv(dev);
3083 if (netif_msg_ifdown(np))
3085 "%s: Shutting down ethercard, status was %#04x.\n",
3086 dev->name, (int)readl(ioaddr + ChipCmd));
3087 if (netif_msg_pktdata(np))
3089 "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
3090 dev->name, np->cur_tx, np->dirty_tx,
3091 np->cur_rx, np->dirty_rx);
3094 * FIXME: what if someone tries to close a device
3095 * that is suspended?
3096 * Should we reenable the nic to switch to
3097 * the final WOL settings?
3100 del_timer_sync(&np->timer);
3101 disable_irq(dev->irq);
3102 spin_lock_irq(&np->lock);
3103 natsemi_irq_disable(dev);
3105 spin_unlock_irq(&np->lock);
3106 enable_irq(dev->irq);
3108 free_irq(dev->irq, dev);
3110 /* Interrupt disabled, interrupt handler released,
3111 * queue stopped, timer deleted, rtnl_lock held
3112 * All async codepaths that access the driver are disabled.
3114 spin_lock_irq(&np->lock);
3116 readl(ioaddr + IntrMask);
3117 readw(ioaddr + MIntrStatus);
3120 writel(StatsFreeze, ioaddr + StatsCtrl);
3122 /* Stop the chip's Tx and Rx processes. */
3123 natsemi_stop_rxtx(dev);
3126 spin_unlock_irq(&np->lock);
3128 /* clear the carrier last - an interrupt could reenable it otherwise */
3129 netif_carrier_off(dev);
3130 netif_stop_queue(dev);
3137 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3139 /* restart the NIC in WOL mode.
3140 * The nic must be stopped for this.
3142 enable_wol_mode(dev, 0);
3144 /* Restore PME enable bit unmolested */
3145 writel(np->SavedClkRun, ioaddr + ClkRun);
3152 static void __devexit natsemi_remove1 (struct pci_dev *pdev)
3154 struct net_device *dev = pci_get_drvdata(pdev);
3155 void __iomem * ioaddr = ns_ioaddr(dev);
3157 unregister_netdev (dev);
3158 pci_release_regions (pdev);
3161 pci_set_drvdata(pdev, NULL);
3167 * The ns83815 chip doesn't have explicit RxStop bits.
3168 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3169 * of the nic, thus this function must be very careful:
3171 * suspend/resume synchronization:
3173 * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3174 * start_tx, tx_timeout
3176 * No function accesses the hardware without checking np->hands_off.
3177 * the check occurs under spin_lock_irq(&np->lock);
3179 * * netdev_ioctl: noncritical access.
3180 * * netdev_open: cannot happen due to the device_detach
3181 * * netdev_close: doesn't hurt.
3182 * * netdev_timer: timer stopped by natsemi_suspend.
3183 * * intr_handler: doesn't acquire the spinlock. suspend calls
3184 * disable_irq() to enforce synchronization.
3185 * * natsemi_poll: checks before reenabling interrupts. suspend
3186 * sets hands_off, disables interrupts and then waits with
3187 * netif_poll_disable().
3189 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3192 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3194 struct net_device *dev = pci_get_drvdata (pdev);
3195 struct netdev_private *np = netdev_priv(dev);
3196 void __iomem * ioaddr = ns_ioaddr(dev);
3199 if (netif_running (dev)) {
3200 del_timer_sync(&np->timer);
3202 disable_irq(dev->irq);
3203 spin_lock_irq(&np->lock);
3205 writel(0, ioaddr + IntrEnable);
3207 natsemi_stop_rxtx(dev);
3208 netif_stop_queue(dev);
3210 spin_unlock_irq(&np->lock);
3211 enable_irq(dev->irq);
3213 netif_poll_disable(dev);
3215 /* Update the error counts. */
3218 /* pci_power_off(pdev, -1); */
3221 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3222 /* Restore PME enable bit */
3224 /* restart the NIC in WOL mode.
3225 * The nic must be stopped for this.
3226 * FIXME: use the WOL interrupt
3228 enable_wol_mode(dev, 0);
3230 /* Restore PME enable bit unmolested */
3231 writel(np->SavedClkRun, ioaddr + ClkRun);
3235 netif_device_detach(dev);
3241 static int natsemi_resume (struct pci_dev *pdev)
3243 struct net_device *dev = pci_get_drvdata (pdev);
3244 struct netdev_private *np = netdev_priv(dev);
3247 if (netif_device_present(dev))
3249 if (netif_running(dev)) {
3250 BUG_ON(!np->hands_off);
3251 pci_enable_device(pdev);
3252 /* pci_power_on(pdev); */
3256 disable_irq(dev->irq);
3257 spin_lock_irq(&np->lock);
3259 init_registers(dev);
3260 netif_device_attach(dev);
3261 spin_unlock_irq(&np->lock);
3262 enable_irq(dev->irq);
3264 mod_timer(&np->timer, jiffies + 1*HZ);
3266 netif_device_attach(dev);
3267 netif_poll_enable(dev);
3273 #endif /* CONFIG_PM */
3275 static struct pci_driver natsemi_driver = {
3277 .id_table = natsemi_pci_tbl,
3278 .probe = natsemi_probe1,
3279 .remove = __devexit_p(natsemi_remove1),
3281 .suspend = natsemi_suspend,
3282 .resume = natsemi_resume,
3286 static int __init natsemi_init_mod (void)
3288 /* when a module, this is printed whether or not devices are found in probe */
3293 return pci_register_driver(&natsemi_driver);
3296 static void __exit natsemi_exit_mod (void)
3298 pci_unregister_driver (&natsemi_driver);
3301 module_init(natsemi_init_mod);
3302 module_exit(natsemi_exit_mod);