1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/swap.h>
34 #include <linux/spinlock.h>
36 #include <linux/seq_file.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mm_inline.h>
39 #include <linux/page_cgroup.h>
42 #include <asm/uaccess.h>
44 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
45 #define MEM_CGROUP_RECLAIM_RETRIES 5
47 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
48 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
49 int do_swap_account __read_mostly;
50 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
52 #define do_swap_account (0)
55 static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
58 * Statistics for memory cgroup.
60 enum mem_cgroup_stat_index {
62 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
64 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
65 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
66 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
67 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
69 MEM_CGROUP_STAT_NSTATS,
72 struct mem_cgroup_stat_cpu {
73 s64 count[MEM_CGROUP_STAT_NSTATS];
74 } ____cacheline_aligned_in_smp;
76 struct mem_cgroup_stat {
77 struct mem_cgroup_stat_cpu cpustat[0];
81 * For accounting under irq disable, no need for increment preempt count.
83 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
84 enum mem_cgroup_stat_index idx, int val)
86 stat->count[idx] += val;
89 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
90 enum mem_cgroup_stat_index idx)
94 for_each_possible_cpu(cpu)
95 ret += stat->cpustat[cpu].count[idx];
99 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
103 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
104 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
109 * per-zone information in memory controller.
111 struct mem_cgroup_per_zone {
113 * spin_lock to protect the per cgroup LRU
115 struct list_head lists[NR_LRU_LISTS];
116 unsigned long count[NR_LRU_LISTS];
118 struct zone_reclaim_stat reclaim_stat;
120 /* Macro for accessing counter */
121 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
123 struct mem_cgroup_per_node {
124 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
127 struct mem_cgroup_lru_info {
128 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
132 * The memory controller data structure. The memory controller controls both
133 * page cache and RSS per cgroup. We would eventually like to provide
134 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
135 * to help the administrator determine what knobs to tune.
137 * TODO: Add a water mark for the memory controller. Reclaim will begin when
138 * we hit the water mark. May be even add a low water mark, such that
139 * no reclaim occurs from a cgroup at it's low water mark, this is
140 * a feature that will be implemented much later in the future.
143 struct cgroup_subsys_state css;
145 * the counter to account for memory usage
147 struct res_counter res;
149 * the counter to account for mem+swap usage.
151 struct res_counter memsw;
153 * Per cgroup active and inactive list, similar to the
154 * per zone LRU lists.
156 struct mem_cgroup_lru_info info;
159 protect against reclaim related member.
161 spinlock_t reclaim_param_lock;
163 int prev_priority; /* for recording reclaim priority */
166 * While reclaiming in a hiearchy, we cache the last child we
169 int last_scanned_child;
171 * Should the accounting and control be hierarchical, per subtree?
174 unsigned long last_oom_jiffies;
177 unsigned int swappiness;
180 * statistics. This must be placed at the end of memcg.
182 struct mem_cgroup_stat stat;
186 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
187 MEM_CGROUP_CHARGE_TYPE_MAPPED,
188 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
189 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
190 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
194 /* only for here (for easy reading.) */
195 #define PCGF_CACHE (1UL << PCG_CACHE)
196 #define PCGF_USED (1UL << PCG_USED)
197 #define PCGF_LOCK (1UL << PCG_LOCK)
198 static const unsigned long
199 pcg_default_flags[NR_CHARGE_TYPE] = {
200 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
201 PCGF_USED | PCGF_LOCK, /* Anon */
202 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
206 /* for encoding cft->private value on file */
209 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
210 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
211 #define MEMFILE_ATTR(val) ((val) & 0xffff)
213 static void mem_cgroup_get(struct mem_cgroup *mem);
214 static void mem_cgroup_put(struct mem_cgroup *mem);
215 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
217 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
218 struct page_cgroup *pc,
221 int val = (charge)? 1 : -1;
222 struct mem_cgroup_stat *stat = &mem->stat;
223 struct mem_cgroup_stat_cpu *cpustat;
226 cpustat = &stat->cpustat[cpu];
227 if (PageCgroupCache(pc))
228 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
230 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
233 __mem_cgroup_stat_add_safe(cpustat,
234 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
236 __mem_cgroup_stat_add_safe(cpustat,
237 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
241 static struct mem_cgroup_per_zone *
242 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
244 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
247 static struct mem_cgroup_per_zone *
248 page_cgroup_zoneinfo(struct page_cgroup *pc)
250 struct mem_cgroup *mem = pc->mem_cgroup;
251 int nid = page_cgroup_nid(pc);
252 int zid = page_cgroup_zid(pc);
257 return mem_cgroup_zoneinfo(mem, nid, zid);
260 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
264 struct mem_cgroup_per_zone *mz;
267 for_each_online_node(nid)
268 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
269 mz = mem_cgroup_zoneinfo(mem, nid, zid);
270 total += MEM_CGROUP_ZSTAT(mz, idx);
275 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
277 return container_of(cgroup_subsys_state(cont,
278 mem_cgroup_subsys_id), struct mem_cgroup,
282 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
285 * mm_update_next_owner() may clear mm->owner to NULL
286 * if it races with swapoff, page migration, etc.
287 * So this can be called with p == NULL.
292 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
293 struct mem_cgroup, css);
296 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
298 struct mem_cgroup *mem = NULL;
303 * Because we have no locks, mm->owner's may be being moved to other
304 * cgroup. We use css_tryget() here even if this looks
305 * pessimistic (rather than adding locks here).
309 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
312 } while (!css_tryget(&mem->css));
318 * Call callback function against all cgroup under hierarchy tree.
320 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
321 int (*func)(struct mem_cgroup *, void *))
323 int found, ret, nextid;
324 struct cgroup_subsys_state *css;
325 struct mem_cgroup *mem;
327 if (!root->use_hierarchy)
328 return (*func)(root, data);
336 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
338 if (css && css_tryget(css))
339 mem = container_of(css, struct mem_cgroup, css);
343 ret = (*func)(mem, data);
347 } while (!ret && css);
353 * Following LRU functions are allowed to be used without PCG_LOCK.
354 * Operations are called by routine of global LRU independently from memcg.
355 * What we have to take care of here is validness of pc->mem_cgroup.
357 * Changes to pc->mem_cgroup happens when
360 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
361 * It is added to LRU before charge.
362 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
363 * When moving account, the page is not on LRU. It's isolated.
366 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
368 struct page_cgroup *pc;
369 struct mem_cgroup *mem;
370 struct mem_cgroup_per_zone *mz;
372 if (mem_cgroup_disabled())
374 pc = lookup_page_cgroup(page);
375 /* can happen while we handle swapcache. */
376 if (list_empty(&pc->lru) || !pc->mem_cgroup)
379 * We don't check PCG_USED bit. It's cleared when the "page" is finally
380 * removed from global LRU.
382 mz = page_cgroup_zoneinfo(pc);
383 mem = pc->mem_cgroup;
384 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
385 list_del_init(&pc->lru);
389 void mem_cgroup_del_lru(struct page *page)
391 mem_cgroup_del_lru_list(page, page_lru(page));
394 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
396 struct mem_cgroup_per_zone *mz;
397 struct page_cgroup *pc;
399 if (mem_cgroup_disabled())
402 pc = lookup_page_cgroup(page);
404 * Used bit is set without atomic ops but after smp_wmb().
405 * For making pc->mem_cgroup visible, insert smp_rmb() here.
408 /* unused page is not rotated. */
409 if (!PageCgroupUsed(pc))
411 mz = page_cgroup_zoneinfo(pc);
412 list_move(&pc->lru, &mz->lists[lru]);
415 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
417 struct page_cgroup *pc;
418 struct mem_cgroup_per_zone *mz;
420 if (mem_cgroup_disabled())
422 pc = lookup_page_cgroup(page);
424 * Used bit is set without atomic ops but after smp_wmb().
425 * For making pc->mem_cgroup visible, insert smp_rmb() here.
428 if (!PageCgroupUsed(pc))
431 mz = page_cgroup_zoneinfo(pc);
432 MEM_CGROUP_ZSTAT(mz, lru) += 1;
433 list_add(&pc->lru, &mz->lists[lru]);
437 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
438 * lru because the page may.be reused after it's fully uncharged (because of
439 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
440 * it again. This function is only used to charge SwapCache. It's done under
441 * lock_page and expected that zone->lru_lock is never held.
443 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
446 struct zone *zone = page_zone(page);
447 struct page_cgroup *pc = lookup_page_cgroup(page);
449 spin_lock_irqsave(&zone->lru_lock, flags);
451 * Forget old LRU when this page_cgroup is *not* used. This Used bit
452 * is guarded by lock_page() because the page is SwapCache.
454 if (!PageCgroupUsed(pc))
455 mem_cgroup_del_lru_list(page, page_lru(page));
456 spin_unlock_irqrestore(&zone->lru_lock, flags);
459 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
462 struct zone *zone = page_zone(page);
463 struct page_cgroup *pc = lookup_page_cgroup(page);
465 spin_lock_irqsave(&zone->lru_lock, flags);
466 /* link when the page is linked to LRU but page_cgroup isn't */
467 if (PageLRU(page) && list_empty(&pc->lru))
468 mem_cgroup_add_lru_list(page, page_lru(page));
469 spin_unlock_irqrestore(&zone->lru_lock, flags);
473 void mem_cgroup_move_lists(struct page *page,
474 enum lru_list from, enum lru_list to)
476 if (mem_cgroup_disabled())
478 mem_cgroup_del_lru_list(page, from);
479 mem_cgroup_add_lru_list(page, to);
482 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
485 struct mem_cgroup *curr = NULL;
489 curr = try_get_mem_cgroup_from_mm(task->mm);
494 if (curr->use_hierarchy)
495 ret = css_is_ancestor(&curr->css, &mem->css);
503 * prev_priority control...this will be used in memory reclaim path.
505 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
509 spin_lock(&mem->reclaim_param_lock);
510 prev_priority = mem->prev_priority;
511 spin_unlock(&mem->reclaim_param_lock);
513 return prev_priority;
516 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
518 spin_lock(&mem->reclaim_param_lock);
519 if (priority < mem->prev_priority)
520 mem->prev_priority = priority;
521 spin_unlock(&mem->reclaim_param_lock);
524 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
526 spin_lock(&mem->reclaim_param_lock);
527 mem->prev_priority = priority;
528 spin_unlock(&mem->reclaim_param_lock);
531 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
533 unsigned long active;
534 unsigned long inactive;
536 unsigned long inactive_ratio;
538 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
539 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
541 gb = (inactive + active) >> (30 - PAGE_SHIFT);
543 inactive_ratio = int_sqrt(10 * gb);
548 present_pages[0] = inactive;
549 present_pages[1] = active;
552 return inactive_ratio;
555 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
557 unsigned long active;
558 unsigned long inactive;
559 unsigned long present_pages[2];
560 unsigned long inactive_ratio;
562 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
564 inactive = present_pages[0];
565 active = present_pages[1];
567 if (inactive * inactive_ratio < active)
573 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
575 unsigned long active;
576 unsigned long inactive;
578 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
579 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
581 return (active > inactive);
584 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
588 int nid = zone->zone_pgdat->node_id;
589 int zid = zone_idx(zone);
590 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
592 return MEM_CGROUP_ZSTAT(mz, lru);
595 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
598 int nid = zone->zone_pgdat->node_id;
599 int zid = zone_idx(zone);
600 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
602 return &mz->reclaim_stat;
605 struct zone_reclaim_stat *
606 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
608 struct page_cgroup *pc;
609 struct mem_cgroup_per_zone *mz;
611 if (mem_cgroup_disabled())
614 pc = lookup_page_cgroup(page);
616 * Used bit is set without atomic ops but after smp_wmb().
617 * For making pc->mem_cgroup visible, insert smp_rmb() here.
620 if (!PageCgroupUsed(pc))
623 mz = page_cgroup_zoneinfo(pc);
627 return &mz->reclaim_stat;
630 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
631 struct list_head *dst,
632 unsigned long *scanned, int order,
633 int mode, struct zone *z,
634 struct mem_cgroup *mem_cont,
635 int active, int file)
637 unsigned long nr_taken = 0;
641 struct list_head *src;
642 struct page_cgroup *pc, *tmp;
643 int nid = z->zone_pgdat->node_id;
644 int zid = zone_idx(z);
645 struct mem_cgroup_per_zone *mz;
646 int lru = LRU_FILE * !!file + !!active;
649 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
650 src = &mz->lists[lru];
653 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
654 if (scan >= nr_to_scan)
658 if (unlikely(!PageCgroupUsed(pc)))
660 if (unlikely(!PageLRU(page)))
664 if (__isolate_lru_page(page, mode, file) == 0) {
665 list_move(&page->lru, dst);
674 #define mem_cgroup_from_res_counter(counter, member) \
675 container_of(counter, struct mem_cgroup, member)
677 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
679 if (do_swap_account) {
680 if (res_counter_check_under_limit(&mem->res) &&
681 res_counter_check_under_limit(&mem->memsw))
684 if (res_counter_check_under_limit(&mem->res))
689 static unsigned int get_swappiness(struct mem_cgroup *memcg)
691 struct cgroup *cgrp = memcg->css.cgroup;
692 unsigned int swappiness;
695 if (cgrp->parent == NULL)
696 return vm_swappiness;
698 spin_lock(&memcg->reclaim_param_lock);
699 swappiness = memcg->swappiness;
700 spin_unlock(&memcg->reclaim_param_lock);
705 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
713 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
714 * @memcg: The memory cgroup that went over limit
715 * @p: Task that is going to be killed
717 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
720 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
722 struct cgroup *task_cgrp;
723 struct cgroup *mem_cgrp;
725 * Need a buffer in BSS, can't rely on allocations. The code relies
726 * on the assumption that OOM is serialized for memory controller.
727 * If this assumption is broken, revisit this code.
729 static char memcg_name[PATH_MAX];
738 mem_cgrp = memcg->css.cgroup;
739 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
741 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
744 * Unfortunately, we are unable to convert to a useful name
745 * But we'll still print out the usage information
752 printk(KERN_INFO "Task in %s killed", memcg_name);
755 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
763 * Continues from above, so we don't need an KERN_ level
765 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
768 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
769 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
770 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
771 res_counter_read_u64(&memcg->res, RES_FAILCNT));
772 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
774 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
775 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
776 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
780 * This function returns the number of memcg under hierarchy tree. Returns
781 * 1(self count) if no children.
783 static int mem_cgroup_count_children(struct mem_cgroup *mem)
786 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
791 * Visit the first child (need not be the first child as per the ordering
792 * of the cgroup list, since we track last_scanned_child) of @mem and use
793 * that to reclaim free pages from.
795 static struct mem_cgroup *
796 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
798 struct mem_cgroup *ret = NULL;
799 struct cgroup_subsys_state *css;
802 if (!root_mem->use_hierarchy) {
803 css_get(&root_mem->css);
809 nextid = root_mem->last_scanned_child + 1;
810 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
812 if (css && css_tryget(css))
813 ret = container_of(css, struct mem_cgroup, css);
816 /* Updates scanning parameter */
817 spin_lock(&root_mem->reclaim_param_lock);
819 /* this means start scan from ID:1 */
820 root_mem->last_scanned_child = 0;
822 root_mem->last_scanned_child = found;
823 spin_unlock(&root_mem->reclaim_param_lock);
830 * Scan the hierarchy if needed to reclaim memory. We remember the last child
831 * we reclaimed from, so that we don't end up penalizing one child extensively
832 * based on its position in the children list.
834 * root_mem is the original ancestor that we've been reclaim from.
836 * We give up and return to the caller when we visit root_mem twice.
837 * (other groups can be removed while we're walking....)
839 * If shrink==true, for avoiding to free too much, this returns immedieately.
841 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
842 gfp_t gfp_mask, bool noswap, bool shrink)
844 struct mem_cgroup *victim;
849 victim = mem_cgroup_select_victim(root_mem);
850 if (victim == root_mem)
852 if (!mem_cgroup_local_usage(&victim->stat)) {
853 /* this cgroup's local usage == 0 */
854 css_put(&victim->css);
857 /* we use swappiness of local cgroup */
858 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
859 get_swappiness(victim));
860 css_put(&victim->css);
862 * At shrinking usage, we can't check we should stop here or
863 * reclaim more. It's depends on callers. last_scanned_child
864 * will work enough for keeping fairness under tree.
869 if (mem_cgroup_check_under_limit(root_mem))
875 bool mem_cgroup_oom_called(struct task_struct *task)
878 struct mem_cgroup *mem;
879 struct mm_struct *mm;
885 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
886 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
892 static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
894 mem->last_oom_jiffies = jiffies;
898 static void record_last_oom(struct mem_cgroup *mem)
900 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
905 * Unlike exported interface, "oom" parameter is added. if oom==true,
906 * oom-killer can be invoked.
908 static int __mem_cgroup_try_charge(struct mm_struct *mm,
909 gfp_t gfp_mask, struct mem_cgroup **memcg,
912 struct mem_cgroup *mem, *mem_over_limit;
913 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
914 struct res_counter *fail_res;
916 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
917 /* Don't account this! */
923 * We always charge the cgroup the mm_struct belongs to.
924 * The mm_struct's mem_cgroup changes on task migration if the
925 * thread group leader migrates. It's possible that mm is not
926 * set, if so charge the init_mm (happens for pagecache usage).
930 mem = try_get_mem_cgroup_from_mm(mm);
938 VM_BUG_ON(css_is_removed(&mem->css));
944 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
946 if (!do_swap_account)
948 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
952 /* mem+swap counter fails */
953 res_counter_uncharge(&mem->res, PAGE_SIZE);
955 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
958 /* mem counter fails */
959 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
962 if (!(gfp_mask & __GFP_WAIT))
965 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
971 * try_to_free_mem_cgroup_pages() might not give us a full
972 * picture of reclaim. Some pages are reclaimed and might be
973 * moved to swap cache or just unmapped from the cgroup.
974 * Check the limit again to see if the reclaim reduced the
975 * current usage of the cgroup before giving up
978 if (mem_cgroup_check_under_limit(mem_over_limit))
983 mutex_lock(&memcg_tasklist);
984 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
985 mutex_unlock(&memcg_tasklist);
986 record_last_oom(mem_over_limit);
999 * A helper function to get mem_cgroup from ID. must be called under
1000 * rcu_read_lock(). The caller must check css_is_removed() or some if
1001 * it's concern. (dropping refcnt from swap can be called against removed
1004 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1006 struct cgroup_subsys_state *css;
1008 /* ID 0 is unused ID */
1011 css = css_lookup(&mem_cgroup_subsys, id);
1014 return container_of(css, struct mem_cgroup, css);
1017 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1019 struct mem_cgroup *mem;
1020 struct page_cgroup *pc;
1024 VM_BUG_ON(!PageLocked(page));
1026 if (!PageSwapCache(page))
1029 pc = lookup_page_cgroup(page);
1030 lock_page_cgroup(pc);
1031 if (PageCgroupUsed(pc)) {
1032 mem = pc->mem_cgroup;
1033 if (mem && !css_tryget(&mem->css))
1036 ent.val = page_private(page);
1037 id = lookup_swap_cgroup(ent);
1039 mem = mem_cgroup_lookup(id);
1040 if (mem && !css_tryget(&mem->css))
1044 unlock_page_cgroup(pc);
1049 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1050 * USED state. If already USED, uncharge and return.
1053 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1054 struct page_cgroup *pc,
1055 enum charge_type ctype)
1057 /* try_charge() can return NULL to *memcg, taking care of it. */
1061 lock_page_cgroup(pc);
1062 if (unlikely(PageCgroupUsed(pc))) {
1063 unlock_page_cgroup(pc);
1064 res_counter_uncharge(&mem->res, PAGE_SIZE);
1065 if (do_swap_account)
1066 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1070 pc->mem_cgroup = mem;
1072 pc->flags = pcg_default_flags[ctype];
1074 mem_cgroup_charge_statistics(mem, pc, true);
1076 unlock_page_cgroup(pc);
1080 * mem_cgroup_move_account - move account of the page
1081 * @pc: page_cgroup of the page.
1082 * @from: mem_cgroup which the page is moved from.
1083 * @to: mem_cgroup which the page is moved to. @from != @to.
1085 * The caller must confirm following.
1086 * - page is not on LRU (isolate_page() is useful.)
1088 * returns 0 at success,
1089 * returns -EBUSY when lock is busy or "pc" is unstable.
1091 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1092 * new cgroup. It should be done by a caller.
1095 static int mem_cgroup_move_account(struct page_cgroup *pc,
1096 struct mem_cgroup *from, struct mem_cgroup *to)
1098 struct mem_cgroup_per_zone *from_mz, *to_mz;
1102 VM_BUG_ON(from == to);
1103 VM_BUG_ON(PageLRU(pc->page));
1105 nid = page_cgroup_nid(pc);
1106 zid = page_cgroup_zid(pc);
1107 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
1108 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
1110 if (!trylock_page_cgroup(pc))
1113 if (!PageCgroupUsed(pc))
1116 if (pc->mem_cgroup != from)
1119 res_counter_uncharge(&from->res, PAGE_SIZE);
1120 mem_cgroup_charge_statistics(from, pc, false);
1121 if (do_swap_account)
1122 res_counter_uncharge(&from->memsw, PAGE_SIZE);
1123 css_put(&from->css);
1126 pc->mem_cgroup = to;
1127 mem_cgroup_charge_statistics(to, pc, true);
1130 unlock_page_cgroup(pc);
1135 * move charges to its parent.
1138 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1139 struct mem_cgroup *child,
1142 struct page *page = pc->page;
1143 struct cgroup *cg = child->css.cgroup;
1144 struct cgroup *pcg = cg->parent;
1145 struct mem_cgroup *parent;
1153 parent = mem_cgroup_from_cont(pcg);
1156 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1160 if (!get_page_unless_zero(page)) {
1165 ret = isolate_lru_page(page);
1170 ret = mem_cgroup_move_account(pc, child, parent);
1172 putback_lru_page(page);
1175 /* drop extra refcnt by try_charge() */
1176 css_put(&parent->css);
1183 /* drop extra refcnt by try_charge() */
1184 css_put(&parent->css);
1185 /* uncharge if move fails */
1186 res_counter_uncharge(&parent->res, PAGE_SIZE);
1187 if (do_swap_account)
1188 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1193 * Charge the memory controller for page usage.
1195 * 0 if the charge was successful
1196 * < 0 if the cgroup is over its limit
1198 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1199 gfp_t gfp_mask, enum charge_type ctype,
1200 struct mem_cgroup *memcg)
1202 struct mem_cgroup *mem;
1203 struct page_cgroup *pc;
1206 pc = lookup_page_cgroup(page);
1207 /* can happen at boot */
1213 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1217 __mem_cgroup_commit_charge(mem, pc, ctype);
1221 int mem_cgroup_newpage_charge(struct page *page,
1222 struct mm_struct *mm, gfp_t gfp_mask)
1224 if (mem_cgroup_disabled())
1226 if (PageCompound(page))
1229 * If already mapped, we don't have to account.
1230 * If page cache, page->mapping has address_space.
1231 * But page->mapping may have out-of-use anon_vma pointer,
1232 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1235 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1239 return mem_cgroup_charge_common(page, mm, gfp_mask,
1240 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1244 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1245 enum charge_type ctype);
1247 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1250 struct mem_cgroup *mem = NULL;
1253 if (mem_cgroup_disabled())
1255 if (PageCompound(page))
1258 * Corner case handling. This is called from add_to_page_cache()
1259 * in usual. But some FS (shmem) precharges this page before calling it
1260 * and call add_to_page_cache() with GFP_NOWAIT.
1262 * For GFP_NOWAIT case, the page may be pre-charged before calling
1263 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1264 * charge twice. (It works but has to pay a bit larger cost.)
1265 * And when the page is SwapCache, it should take swap information
1266 * into account. This is under lock_page() now.
1268 if (!(gfp_mask & __GFP_WAIT)) {
1269 struct page_cgroup *pc;
1272 pc = lookup_page_cgroup(page);
1275 lock_page_cgroup(pc);
1276 if (PageCgroupUsed(pc)) {
1277 unlock_page_cgroup(pc);
1280 unlock_page_cgroup(pc);
1283 if (unlikely(!mm && !mem))
1286 if (page_is_file_cache(page))
1287 return mem_cgroup_charge_common(page, mm, gfp_mask,
1288 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1291 if (PageSwapCache(page)) {
1292 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1294 __mem_cgroup_commit_charge_swapin(page, mem,
1295 MEM_CGROUP_CHARGE_TYPE_SHMEM);
1297 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1298 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1304 * While swap-in, try_charge -> commit or cancel, the page is locked.
1305 * And when try_charge() successfully returns, one refcnt to memcg without
1306 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1307 * "commit()" or removed by "cancel()"
1309 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1311 gfp_t mask, struct mem_cgroup **ptr)
1313 struct mem_cgroup *mem;
1316 if (mem_cgroup_disabled())
1319 if (!do_swap_account)
1322 * A racing thread's fault, or swapoff, may have already updated
1323 * the pte, and even removed page from swap cache: return success
1324 * to go on to do_swap_page()'s pte_same() test, which should fail.
1326 if (!PageSwapCache(page))
1328 mem = try_get_mem_cgroup_from_swapcache(page);
1332 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1333 /* drop extra refcnt from tryget */
1339 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1343 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1344 enum charge_type ctype)
1346 struct page_cgroup *pc;
1348 if (mem_cgroup_disabled())
1352 pc = lookup_page_cgroup(page);
1353 mem_cgroup_lru_del_before_commit_swapcache(page);
1354 __mem_cgroup_commit_charge(ptr, pc, ctype);
1355 mem_cgroup_lru_add_after_commit_swapcache(page);
1357 * Now swap is on-memory. This means this page may be
1358 * counted both as mem and swap....double count.
1359 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1360 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1361 * may call delete_from_swap_cache() before reach here.
1363 if (do_swap_account && PageSwapCache(page)) {
1364 swp_entry_t ent = {.val = page_private(page)};
1366 struct mem_cgroup *memcg;
1368 id = swap_cgroup_record(ent, 0);
1370 memcg = mem_cgroup_lookup(id);
1373 * This recorded memcg can be obsolete one. So, avoid
1374 * calling css_tryget
1376 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1377 mem_cgroup_put(memcg);
1381 /* add this page(page_cgroup) to the LRU we want. */
1385 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1387 __mem_cgroup_commit_charge_swapin(page, ptr,
1388 MEM_CGROUP_CHARGE_TYPE_MAPPED);
1391 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1393 if (mem_cgroup_disabled())
1397 res_counter_uncharge(&mem->res, PAGE_SIZE);
1398 if (do_swap_account)
1399 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1405 * uncharge if !page_mapped(page)
1407 static struct mem_cgroup *
1408 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1410 struct page_cgroup *pc;
1411 struct mem_cgroup *mem = NULL;
1412 struct mem_cgroup_per_zone *mz;
1414 if (mem_cgroup_disabled())
1417 if (PageSwapCache(page))
1421 * Check if our page_cgroup is valid
1423 pc = lookup_page_cgroup(page);
1424 if (unlikely(!pc || !PageCgroupUsed(pc)))
1427 lock_page_cgroup(pc);
1429 mem = pc->mem_cgroup;
1431 if (!PageCgroupUsed(pc))
1435 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1436 if (page_mapped(page))
1439 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1440 if (!PageAnon(page)) { /* Shared memory */
1441 if (page->mapping && !page_is_file_cache(page))
1443 } else if (page_mapped(page)) /* Anon */
1450 res_counter_uncharge(&mem->res, PAGE_SIZE);
1451 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1452 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1453 mem_cgroup_charge_statistics(mem, pc, false);
1455 ClearPageCgroupUsed(pc);
1457 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1458 * freed from LRU. This is safe because uncharged page is expected not
1459 * to be reused (freed soon). Exception is SwapCache, it's handled by
1460 * special functions.
1463 mz = page_cgroup_zoneinfo(pc);
1464 unlock_page_cgroup(pc);
1466 /* at swapout, this memcg will be accessed to record to swap */
1467 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1473 unlock_page_cgroup(pc);
1477 void mem_cgroup_uncharge_page(struct page *page)
1480 if (page_mapped(page))
1482 if (page->mapping && !PageAnon(page))
1484 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1487 void mem_cgroup_uncharge_cache_page(struct page *page)
1489 VM_BUG_ON(page_mapped(page));
1490 VM_BUG_ON(page->mapping);
1491 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1496 * called after __delete_from_swap_cache() and drop "page" account.
1497 * memcg information is recorded to swap_cgroup of "ent"
1499 void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1501 struct mem_cgroup *memcg;
1503 memcg = __mem_cgroup_uncharge_common(page,
1504 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1505 /* record memcg information */
1506 if (do_swap_account && memcg) {
1507 swap_cgroup_record(ent, css_id(&memcg->css));
1508 mem_cgroup_get(memcg);
1511 css_put(&memcg->css);
1515 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1517 * called from swap_entry_free(). remove record in swap_cgroup and
1518 * uncharge "memsw" account.
1520 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1522 struct mem_cgroup *memcg;
1525 if (!do_swap_account)
1528 id = swap_cgroup_record(ent, 0);
1530 memcg = mem_cgroup_lookup(id);
1533 * We uncharge this because swap is freed.
1534 * This memcg can be obsolete one. We avoid calling css_tryget
1536 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1537 mem_cgroup_put(memcg);
1544 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1547 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1549 struct page_cgroup *pc;
1550 struct mem_cgroup *mem = NULL;
1553 if (mem_cgroup_disabled())
1556 pc = lookup_page_cgroup(page);
1557 lock_page_cgroup(pc);
1558 if (PageCgroupUsed(pc)) {
1559 mem = pc->mem_cgroup;
1562 unlock_page_cgroup(pc);
1565 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1572 /* remove redundant charge if migration failed*/
1573 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1574 struct page *oldpage, struct page *newpage)
1576 struct page *target, *unused;
1577 struct page_cgroup *pc;
1578 enum charge_type ctype;
1583 /* at migration success, oldpage->mapping is NULL. */
1584 if (oldpage->mapping) {
1592 if (PageAnon(target))
1593 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1594 else if (page_is_file_cache(target))
1595 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1597 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1599 /* unused page is not on radix-tree now. */
1601 __mem_cgroup_uncharge_common(unused, ctype);
1603 pc = lookup_page_cgroup(target);
1605 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1606 * So, double-counting is effectively avoided.
1608 __mem_cgroup_commit_charge(mem, pc, ctype);
1611 * Both of oldpage and newpage are still under lock_page().
1612 * Then, we don't have to care about race in radix-tree.
1613 * But we have to be careful that this page is unmapped or not.
1615 * There is a case for !page_mapped(). At the start of
1616 * migration, oldpage was mapped. But now, it's zapped.
1617 * But we know *target* page is not freed/reused under us.
1618 * mem_cgroup_uncharge_page() does all necessary checks.
1620 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1621 mem_cgroup_uncharge_page(target);
1625 * A call to try to shrink memory usage on charge failure at shmem's swapin.
1626 * Calling hierarchical_reclaim is not enough because we should update
1627 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
1628 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
1629 * not from the memcg which this page would be charged to.
1630 * try_charge_swapin does all of these works properly.
1632 int mem_cgroup_shmem_charge_fallback(struct page *page,
1633 struct mm_struct *mm,
1636 struct mem_cgroup *mem = NULL;
1639 if (mem_cgroup_disabled())
1642 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1644 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
1649 static DEFINE_MUTEX(set_limit_mutex);
1651 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1652 unsigned long long val)
1658 int children = mem_cgroup_count_children(memcg);
1659 u64 curusage, oldusage;
1662 * For keeping hierarchical_reclaim simple, how long we should retry
1663 * is depends on callers. We set our retry-count to be function
1664 * of # of children which we should visit in this loop.
1666 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
1668 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1670 while (retry_count) {
1671 if (signal_pending(current)) {
1676 * Rather than hide all in some function, I do this in
1677 * open coded manner. You see what this really does.
1678 * We have to guarantee mem->res.limit < mem->memsw.limit.
1680 mutex_lock(&set_limit_mutex);
1681 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1682 if (memswlimit < val) {
1684 mutex_unlock(&set_limit_mutex);
1687 ret = res_counter_set_limit(&memcg->res, val);
1688 mutex_unlock(&set_limit_mutex);
1693 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1695 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1696 /* Usage is reduced ? */
1697 if (curusage >= oldusage)
1700 oldusage = curusage;
1706 int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1707 unsigned long long val)
1710 u64 memlimit, oldusage, curusage;
1711 int children = mem_cgroup_count_children(memcg);
1714 if (!do_swap_account)
1716 /* see mem_cgroup_resize_res_limit */
1717 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
1718 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1719 while (retry_count) {
1720 if (signal_pending(current)) {
1725 * Rather than hide all in some function, I do this in
1726 * open coded manner. You see what this really does.
1727 * We have to guarantee mem->res.limit < mem->memsw.limit.
1729 mutex_lock(&set_limit_mutex);
1730 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1731 if (memlimit > val) {
1733 mutex_unlock(&set_limit_mutex);
1736 ret = res_counter_set_limit(&memcg->memsw, val);
1737 mutex_unlock(&set_limit_mutex);
1742 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
1743 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1744 /* Usage is reduced ? */
1745 if (curusage >= oldusage)
1748 oldusage = curusage;
1754 * This routine traverse page_cgroup in given list and drop them all.
1755 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1757 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1758 int node, int zid, enum lru_list lru)
1761 struct mem_cgroup_per_zone *mz;
1762 struct page_cgroup *pc, *busy;
1763 unsigned long flags, loop;
1764 struct list_head *list;
1767 zone = &NODE_DATA(node)->node_zones[zid];
1768 mz = mem_cgroup_zoneinfo(mem, node, zid);
1769 list = &mz->lists[lru];
1771 loop = MEM_CGROUP_ZSTAT(mz, lru);
1772 /* give some margin against EBUSY etc...*/
1777 spin_lock_irqsave(&zone->lru_lock, flags);
1778 if (list_empty(list)) {
1779 spin_unlock_irqrestore(&zone->lru_lock, flags);
1782 pc = list_entry(list->prev, struct page_cgroup, lru);
1784 list_move(&pc->lru, list);
1786 spin_unlock_irqrestore(&zone->lru_lock, flags);
1789 spin_unlock_irqrestore(&zone->lru_lock, flags);
1791 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1795 if (ret == -EBUSY || ret == -EINVAL) {
1796 /* found lock contention or "pc" is obsolete. */
1803 if (!ret && !list_empty(list))
1809 * make mem_cgroup's charge to be 0 if there is no task.
1810 * This enables deleting this mem_cgroup.
1812 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1815 int node, zid, shrink;
1816 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1817 struct cgroup *cgrp = mem->css.cgroup;
1822 /* should free all ? */
1826 while (mem->res.usage > 0) {
1828 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1831 if (signal_pending(current))
1833 /* This is for making all *used* pages to be on LRU. */
1834 lru_add_drain_all();
1836 for_each_node_state(node, N_HIGH_MEMORY) {
1837 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1840 ret = mem_cgroup_force_empty_list(mem,
1849 /* it seems parent cgroup doesn't have enough mem */
1860 /* returns EBUSY if there is a task or if we come here twice. */
1861 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1865 /* we call try-to-free pages for make this cgroup empty */
1866 lru_add_drain_all();
1867 /* try to free all pages in this cgroup */
1869 while (nr_retries && mem->res.usage > 0) {
1872 if (signal_pending(current)) {
1876 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1877 false, get_swappiness(mem));
1880 /* maybe some writeback is necessary */
1881 congestion_wait(WRITE, HZ/10);
1886 /* try move_account...there may be some *locked* pages. */
1893 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1895 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1899 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1901 return mem_cgroup_from_cont(cont)->use_hierarchy;
1904 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1908 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1909 struct cgroup *parent = cont->parent;
1910 struct mem_cgroup *parent_mem = NULL;
1913 parent_mem = mem_cgroup_from_cont(parent);
1917 * If parent's use_hiearchy is set, we can't make any modifications
1918 * in the child subtrees. If it is unset, then the change can
1919 * occur, provided the current cgroup has no children.
1921 * For the root cgroup, parent_mem is NULL, we allow value to be
1922 * set if there are no children.
1924 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1925 (val == 1 || val == 0)) {
1926 if (list_empty(&cont->children))
1927 mem->use_hierarchy = val;
1937 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1939 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1943 type = MEMFILE_TYPE(cft->private);
1944 name = MEMFILE_ATTR(cft->private);
1947 val = res_counter_read_u64(&mem->res, name);
1950 if (do_swap_account)
1951 val = res_counter_read_u64(&mem->memsw, name);
1960 * The user of this function is...
1963 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1966 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1968 unsigned long long val;
1971 type = MEMFILE_TYPE(cft->private);
1972 name = MEMFILE_ATTR(cft->private);
1975 /* This function does all necessary parse...reuse it */
1976 ret = res_counter_memparse_write_strategy(buffer, &val);
1980 ret = mem_cgroup_resize_limit(memcg, val);
1982 ret = mem_cgroup_resize_memsw_limit(memcg, val);
1985 ret = -EINVAL; /* should be BUG() ? */
1991 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1992 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1994 struct cgroup *cgroup;
1995 unsigned long long min_limit, min_memsw_limit, tmp;
1997 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1998 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1999 cgroup = memcg->css.cgroup;
2000 if (!memcg->use_hierarchy)
2003 while (cgroup->parent) {
2004 cgroup = cgroup->parent;
2005 memcg = mem_cgroup_from_cont(cgroup);
2006 if (!memcg->use_hierarchy)
2008 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2009 min_limit = min(min_limit, tmp);
2010 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2011 min_memsw_limit = min(min_memsw_limit, tmp);
2014 *mem_limit = min_limit;
2015 *memsw_limit = min_memsw_limit;
2019 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2021 struct mem_cgroup *mem;
2024 mem = mem_cgroup_from_cont(cont);
2025 type = MEMFILE_TYPE(event);
2026 name = MEMFILE_ATTR(event);
2030 res_counter_reset_max(&mem->res);
2032 res_counter_reset_max(&mem->memsw);
2036 res_counter_reset_failcnt(&mem->res);
2038 res_counter_reset_failcnt(&mem->memsw);
2045 /* For read statistics */
2059 struct mcs_total_stat {
2060 s64 stat[NR_MCS_STAT];
2066 } memcg_stat_strings[NR_MCS_STAT] = {
2067 {"cache", "total_cache"},
2068 {"rss", "total_rss"},
2069 {"pgpgin", "total_pgpgin"},
2070 {"pgpgout", "total_pgpgout"},
2071 {"inactive_anon", "total_inactive_anon"},
2072 {"active_anon", "total_active_anon"},
2073 {"inactive_file", "total_inactive_file"},
2074 {"active_file", "total_active_file"},
2075 {"unevictable", "total_unevictable"}
2079 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2081 struct mcs_total_stat *s = data;
2085 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2086 s->stat[MCS_CACHE] += val * PAGE_SIZE;
2087 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2088 s->stat[MCS_RSS] += val * PAGE_SIZE;
2089 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2090 s->stat[MCS_PGPGIN] += val;
2091 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2092 s->stat[MCS_PGPGOUT] += val;
2095 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2096 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2097 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2098 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2099 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2100 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2101 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2102 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2103 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2104 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2109 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2111 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2114 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2115 struct cgroup_map_cb *cb)
2117 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
2118 struct mcs_total_stat mystat;
2121 memset(&mystat, 0, sizeof(mystat));
2122 mem_cgroup_get_local_stat(mem_cont, &mystat);
2124 for (i = 0; i < NR_MCS_STAT; i++)
2125 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2127 /* Hierarchical information */
2129 unsigned long long limit, memsw_limit;
2130 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2131 cb->fill(cb, "hierarchical_memory_limit", limit);
2132 if (do_swap_account)
2133 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2136 memset(&mystat, 0, sizeof(mystat));
2137 mem_cgroup_get_total_stat(mem_cont, &mystat);
2138 for (i = 0; i < NR_MCS_STAT; i++)
2139 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2142 #ifdef CONFIG_DEBUG_VM
2143 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
2147 struct mem_cgroup_per_zone *mz;
2148 unsigned long recent_rotated[2] = {0, 0};
2149 unsigned long recent_scanned[2] = {0, 0};
2151 for_each_online_node(nid)
2152 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2153 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2155 recent_rotated[0] +=
2156 mz->reclaim_stat.recent_rotated[0];
2157 recent_rotated[1] +=
2158 mz->reclaim_stat.recent_rotated[1];
2159 recent_scanned[0] +=
2160 mz->reclaim_stat.recent_scanned[0];
2161 recent_scanned[1] +=
2162 mz->reclaim_stat.recent_scanned[1];
2164 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2165 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2166 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2167 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2174 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2176 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2178 return get_swappiness(memcg);
2181 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2184 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2185 struct mem_cgroup *parent;
2190 if (cgrp->parent == NULL)
2193 parent = mem_cgroup_from_cont(cgrp->parent);
2197 /* If under hierarchy, only empty-root can set this value */
2198 if ((parent->use_hierarchy) ||
2199 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2204 spin_lock(&memcg->reclaim_param_lock);
2205 memcg->swappiness = val;
2206 spin_unlock(&memcg->reclaim_param_lock);
2214 static struct cftype mem_cgroup_files[] = {
2216 .name = "usage_in_bytes",
2217 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2218 .read_u64 = mem_cgroup_read,
2221 .name = "max_usage_in_bytes",
2222 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2223 .trigger = mem_cgroup_reset,
2224 .read_u64 = mem_cgroup_read,
2227 .name = "limit_in_bytes",
2228 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2229 .write_string = mem_cgroup_write,
2230 .read_u64 = mem_cgroup_read,
2234 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2235 .trigger = mem_cgroup_reset,
2236 .read_u64 = mem_cgroup_read,
2240 .read_map = mem_control_stat_show,
2243 .name = "force_empty",
2244 .trigger = mem_cgroup_force_empty_write,
2247 .name = "use_hierarchy",
2248 .write_u64 = mem_cgroup_hierarchy_write,
2249 .read_u64 = mem_cgroup_hierarchy_read,
2252 .name = "swappiness",
2253 .read_u64 = mem_cgroup_swappiness_read,
2254 .write_u64 = mem_cgroup_swappiness_write,
2258 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2259 static struct cftype memsw_cgroup_files[] = {
2261 .name = "memsw.usage_in_bytes",
2262 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2263 .read_u64 = mem_cgroup_read,
2266 .name = "memsw.max_usage_in_bytes",
2267 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2268 .trigger = mem_cgroup_reset,
2269 .read_u64 = mem_cgroup_read,
2272 .name = "memsw.limit_in_bytes",
2273 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2274 .write_string = mem_cgroup_write,
2275 .read_u64 = mem_cgroup_read,
2278 .name = "memsw.failcnt",
2279 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2280 .trigger = mem_cgroup_reset,
2281 .read_u64 = mem_cgroup_read,
2285 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2287 if (!do_swap_account)
2289 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2290 ARRAY_SIZE(memsw_cgroup_files));
2293 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2299 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2301 struct mem_cgroup_per_node *pn;
2302 struct mem_cgroup_per_zone *mz;
2304 int zone, tmp = node;
2306 * This routine is called against possible nodes.
2307 * But it's BUG to call kmalloc() against offline node.
2309 * TODO: this routine can waste much memory for nodes which will
2310 * never be onlined. It's better to use memory hotplug callback
2313 if (!node_state(node, N_NORMAL_MEMORY))
2315 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2319 mem->info.nodeinfo[node] = pn;
2320 memset(pn, 0, sizeof(*pn));
2322 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2323 mz = &pn->zoneinfo[zone];
2325 INIT_LIST_HEAD(&mz->lists[l]);
2330 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2332 kfree(mem->info.nodeinfo[node]);
2335 static int mem_cgroup_size(void)
2337 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2338 return sizeof(struct mem_cgroup) + cpustat_size;
2341 static struct mem_cgroup *mem_cgroup_alloc(void)
2343 struct mem_cgroup *mem;
2344 int size = mem_cgroup_size();
2346 if (size < PAGE_SIZE)
2347 mem = kmalloc(size, GFP_KERNEL);
2349 mem = vmalloc(size);
2352 memset(mem, 0, size);
2357 * At destroying mem_cgroup, references from swap_cgroup can remain.
2358 * (scanning all at force_empty is too costly...)
2360 * Instead of clearing all references at force_empty, we remember
2361 * the number of reference from swap_cgroup and free mem_cgroup when
2362 * it goes down to 0.
2364 * Removal of cgroup itself succeeds regardless of refs from swap.
2367 static void __mem_cgroup_free(struct mem_cgroup *mem)
2371 free_css_id(&mem_cgroup_subsys, &mem->css);
2373 for_each_node_state(node, N_POSSIBLE)
2374 free_mem_cgroup_per_zone_info(mem, node);
2376 if (mem_cgroup_size() < PAGE_SIZE)
2382 static void mem_cgroup_get(struct mem_cgroup *mem)
2384 atomic_inc(&mem->refcnt);
2387 static void mem_cgroup_put(struct mem_cgroup *mem)
2389 if (atomic_dec_and_test(&mem->refcnt)) {
2390 struct mem_cgroup *parent = parent_mem_cgroup(mem);
2391 __mem_cgroup_free(mem);
2393 mem_cgroup_put(parent);
2398 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2400 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2402 if (!mem->res.parent)
2404 return mem_cgroup_from_res_counter(mem->res.parent, res);
2407 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2408 static void __init enable_swap_cgroup(void)
2410 if (!mem_cgroup_disabled() && really_do_swap_account)
2411 do_swap_account = 1;
2414 static void __init enable_swap_cgroup(void)
2419 static struct cgroup_subsys_state * __ref
2420 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2422 struct mem_cgroup *mem, *parent;
2423 long error = -ENOMEM;
2426 mem = mem_cgroup_alloc();
2428 return ERR_PTR(error);
2430 for_each_node_state(node, N_POSSIBLE)
2431 if (alloc_mem_cgroup_per_zone_info(mem, node))
2434 if (cont->parent == NULL) {
2435 enable_swap_cgroup();
2438 parent = mem_cgroup_from_cont(cont->parent);
2439 mem->use_hierarchy = parent->use_hierarchy;
2442 if (parent && parent->use_hierarchy) {
2443 res_counter_init(&mem->res, &parent->res);
2444 res_counter_init(&mem->memsw, &parent->memsw);
2446 * We increment refcnt of the parent to ensure that we can
2447 * safely access it on res_counter_charge/uncharge.
2448 * This refcnt will be decremented when freeing this
2449 * mem_cgroup(see mem_cgroup_put).
2451 mem_cgroup_get(parent);
2453 res_counter_init(&mem->res, NULL);
2454 res_counter_init(&mem->memsw, NULL);
2456 mem->last_scanned_child = 0;
2457 spin_lock_init(&mem->reclaim_param_lock);
2460 mem->swappiness = get_swappiness(parent);
2461 atomic_set(&mem->refcnt, 1);
2464 __mem_cgroup_free(mem);
2465 return ERR_PTR(error);
2468 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2469 struct cgroup *cont)
2471 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2473 return mem_cgroup_force_empty(mem, false);
2476 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2477 struct cgroup *cont)
2479 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2481 mem_cgroup_put(mem);
2484 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2485 struct cgroup *cont)
2489 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2490 ARRAY_SIZE(mem_cgroup_files));
2493 ret = register_memsw_files(cont, ss);
2497 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2498 struct cgroup *cont,
2499 struct cgroup *old_cont,
2500 struct task_struct *p)
2502 mutex_lock(&memcg_tasklist);
2504 * FIXME: It's better to move charges of this process from old
2505 * memcg to new memcg. But it's just on TODO-List now.
2507 mutex_unlock(&memcg_tasklist);
2510 struct cgroup_subsys mem_cgroup_subsys = {
2512 .subsys_id = mem_cgroup_subsys_id,
2513 .create = mem_cgroup_create,
2514 .pre_destroy = mem_cgroup_pre_destroy,
2515 .destroy = mem_cgroup_destroy,
2516 .populate = mem_cgroup_populate,
2517 .attach = mem_cgroup_move_task,
2522 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2524 static int __init disable_swap_account(char *s)
2526 really_do_swap_account = 0;
2529 __setup("noswapaccount", disable_swap_account);