2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
11 * This handles all read/write requests to block devices
13 #include <linux/config.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
35 #include <scsi/scsi_cmnd.h>
37 static void blk_unplug_work(void *data);
38 static void blk_unplug_timeout(unsigned long data);
39 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
40 static void init_request_from_bio(struct request *req, struct bio *bio);
41 static int __make_request(request_queue_t *q, struct bio *bio);
44 * For the allocated request tables
46 static kmem_cache_t *request_cachep;
49 * For queue allocation
51 static kmem_cache_t *requestq_cachep;
54 * For io context allocations
56 static kmem_cache_t *iocontext_cachep;
58 static wait_queue_head_t congestion_wqh[2] = {
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
60 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
64 * Controlling structure to kblockd
66 static struct workqueue_struct *kblockd_workqueue;
68 unsigned long blk_max_low_pfn, blk_max_pfn;
70 EXPORT_SYMBOL(blk_max_low_pfn);
71 EXPORT_SYMBOL(blk_max_pfn);
73 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
75 /* Amount of time in which a process may batch requests */
76 #define BLK_BATCH_TIME (HZ/50UL)
78 /* Number of requests a "batching" process may submit */
79 #define BLK_BATCH_REQ 32
82 * Return the threshold (number of used requests) at which the queue is
83 * considered to be congested. It include a little hysteresis to keep the
84 * context switch rate down.
86 static inline int queue_congestion_on_threshold(struct request_queue *q)
88 return q->nr_congestion_on;
92 * The threshold at which a queue is considered to be uncongested
94 static inline int queue_congestion_off_threshold(struct request_queue *q)
96 return q->nr_congestion_off;
99 static void blk_queue_congestion_threshold(struct request_queue *q)
103 nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 if (nr > q->nr_requests)
106 q->nr_congestion_on = nr;
108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
111 q->nr_congestion_off = nr;
115 * A queue has just exitted congestion. Note this in the global counter of
116 * congested queues, and wake up anyone who was waiting for requests to be
119 static void clear_queue_congested(request_queue_t *q, int rw)
122 wait_queue_head_t *wqh = &congestion_wqh[rw];
124 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
125 clear_bit(bit, &q->backing_dev_info.state);
126 smp_mb__after_clear_bit();
127 if (waitqueue_active(wqh))
132 * A queue has just entered congestion. Flag that in the queue's VM-visible
133 * state flags and increment the global gounter of congested queues.
135 static void set_queue_congested(request_queue_t *q, int rw)
139 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
140 set_bit(bit, &q->backing_dev_info.state);
144 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
147 * Locates the passed device's request queue and returns the address of its
150 * Will return NULL if the request queue cannot be located.
152 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
154 struct backing_dev_info *ret = NULL;
155 request_queue_t *q = bdev_get_queue(bdev);
158 ret = &q->backing_dev_info;
162 EXPORT_SYMBOL(blk_get_backing_dev_info);
164 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
167 q->activity_data = data;
170 EXPORT_SYMBOL(blk_queue_activity_fn);
173 * blk_queue_prep_rq - set a prepare_request function for queue
175 * @pfn: prepare_request function
177 * It's possible for a queue to register a prepare_request callback which
178 * is invoked before the request is handed to the request_fn. The goal of
179 * the function is to prepare a request for I/O, it can be used to build a
180 * cdb from the request data for instance.
183 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
188 EXPORT_SYMBOL(blk_queue_prep_rq);
191 * blk_queue_merge_bvec - set a merge_bvec function for queue
193 * @mbfn: merge_bvec_fn
195 * Usually queues have static limitations on the max sectors or segments that
196 * we can put in a request. Stacking drivers may have some settings that
197 * are dynamic, and thus we have to query the queue whether it is ok to
198 * add a new bio_vec to a bio at a given offset or not. If the block device
199 * has such limitations, it needs to register a merge_bvec_fn to control
200 * the size of bio's sent to it. Note that a block device *must* allow a
201 * single page to be added to an empty bio. The block device driver may want
202 * to use the bio_split() function to deal with these bio's. By default
203 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
206 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
208 q->merge_bvec_fn = mbfn;
211 EXPORT_SYMBOL(blk_queue_merge_bvec);
213 void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
215 q->softirq_done_fn = fn;
218 EXPORT_SYMBOL(blk_queue_softirq_done);
221 * blk_queue_make_request - define an alternate make_request function for a device
222 * @q: the request queue for the device to be affected
223 * @mfn: the alternate make_request function
226 * The normal way for &struct bios to be passed to a device
227 * driver is for them to be collected into requests on a request
228 * queue, and then to allow the device driver to select requests
229 * off that queue when it is ready. This works well for many block
230 * devices. However some block devices (typically virtual devices
231 * such as md or lvm) do not benefit from the processing on the
232 * request queue, and are served best by having the requests passed
233 * directly to them. This can be achieved by providing a function
234 * to blk_queue_make_request().
237 * The driver that does this *must* be able to deal appropriately
238 * with buffers in "highmemory". This can be accomplished by either calling
239 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
240 * blk_queue_bounce() to create a buffer in normal memory.
242 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
247 q->nr_requests = BLKDEV_MAX_RQ;
248 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
249 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
250 q->make_request_fn = mfn;
251 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
252 q->backing_dev_info.state = 0;
253 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
254 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
255 blk_queue_hardsect_size(q, 512);
256 blk_queue_dma_alignment(q, 511);
257 blk_queue_congestion_threshold(q);
258 q->nr_batching = BLK_BATCH_REQ;
260 q->unplug_thresh = 4; /* hmm */
261 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
262 if (q->unplug_delay == 0)
265 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
267 q->unplug_timer.function = blk_unplug_timeout;
268 q->unplug_timer.data = (unsigned long)q;
271 * by default assume old behaviour and bounce for any highmem page
273 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
275 blk_queue_activity_fn(q, NULL, NULL);
278 EXPORT_SYMBOL(blk_queue_make_request);
280 static inline void rq_init(request_queue_t *q, struct request *rq)
282 INIT_LIST_HEAD(&rq->queuelist);
283 INIT_LIST_HEAD(&rq->donelist);
286 rq->rq_status = RQ_ACTIVE;
287 rq->bio = rq->biotail = NULL;
296 rq->nr_phys_segments = 0;
299 rq->end_io_data = NULL;
300 rq->completion_data = NULL;
304 * blk_queue_ordered - does this queue support ordered writes
305 * @q: the request queue
306 * @ordered: one of QUEUE_ORDERED_*
307 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
310 * For journalled file systems, doing ordered writes on a commit
311 * block instead of explicitly doing wait_on_buffer (which is bad
312 * for performance) can be a big win. Block drivers supporting this
313 * feature should call this function and indicate so.
316 int blk_queue_ordered(request_queue_t *q, unsigned ordered,
317 prepare_flush_fn *prepare_flush_fn)
319 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
320 prepare_flush_fn == NULL) {
321 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
325 if (ordered != QUEUE_ORDERED_NONE &&
326 ordered != QUEUE_ORDERED_DRAIN &&
327 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
328 ordered != QUEUE_ORDERED_DRAIN_FUA &&
329 ordered != QUEUE_ORDERED_TAG &&
330 ordered != QUEUE_ORDERED_TAG_FLUSH &&
331 ordered != QUEUE_ORDERED_TAG_FUA) {
332 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
336 q->ordered = ordered;
337 q->next_ordered = ordered;
338 q->prepare_flush_fn = prepare_flush_fn;
343 EXPORT_SYMBOL(blk_queue_ordered);
346 * blk_queue_issue_flush_fn - set function for issuing a flush
347 * @q: the request queue
348 * @iff: the function to be called issuing the flush
351 * If a driver supports issuing a flush command, the support is notified
352 * to the block layer by defining it through this call.
355 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
357 q->issue_flush_fn = iff;
360 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
363 * Cache flushing for ordered writes handling
365 inline unsigned blk_ordered_cur_seq(request_queue_t *q)
369 return 1 << ffz(q->ordseq);
372 unsigned blk_ordered_req_seq(struct request *rq)
374 request_queue_t *q = rq->q;
376 BUG_ON(q->ordseq == 0);
378 if (rq == &q->pre_flush_rq)
379 return QUEUE_ORDSEQ_PREFLUSH;
380 if (rq == &q->bar_rq)
381 return QUEUE_ORDSEQ_BAR;
382 if (rq == &q->post_flush_rq)
383 return QUEUE_ORDSEQ_POSTFLUSH;
385 if ((rq->flags & REQ_ORDERED_COLOR) ==
386 (q->orig_bar_rq->flags & REQ_ORDERED_COLOR))
387 return QUEUE_ORDSEQ_DRAIN;
389 return QUEUE_ORDSEQ_DONE;
392 void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
397 if (error && !q->orderr)
400 BUG_ON(q->ordseq & seq);
403 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
407 * Okay, sequence complete.
410 uptodate = q->orderr ? q->orderr : 1;
414 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
415 end_that_request_last(rq, uptodate);
418 static void pre_flush_end_io(struct request *rq, int error)
420 elv_completed_request(rq->q, rq);
421 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
424 static void bar_end_io(struct request *rq, int error)
426 elv_completed_request(rq->q, rq);
427 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
430 static void post_flush_end_io(struct request *rq, int error)
432 elv_completed_request(rq->q, rq);
433 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
436 static void queue_flush(request_queue_t *q, unsigned which)
439 rq_end_io_fn *end_io;
441 if (which == QUEUE_ORDERED_PREFLUSH) {
442 rq = &q->pre_flush_rq;
443 end_io = pre_flush_end_io;
445 rq = &q->post_flush_rq;
446 end_io = post_flush_end_io;
450 rq->flags = REQ_HARDBARRIER;
451 rq->elevator_private = NULL;
452 rq->rq_disk = q->bar_rq.rq_disk;
455 q->prepare_flush_fn(q, rq);
457 __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
460 static inline struct request *start_ordered(request_queue_t *q,
465 q->ordered = q->next_ordered;
466 q->ordseq |= QUEUE_ORDSEQ_STARTED;
469 * Prep proxy barrier request.
471 blkdev_dequeue_request(rq);
475 rq->flags = bio_data_dir(q->orig_bar_rq->bio);
476 rq->flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
477 rq->elevator_private = NULL;
479 init_request_from_bio(rq, q->orig_bar_rq->bio);
480 rq->end_io = bar_end_io;
483 * Queue ordered sequence. As we stack them at the head, we
484 * need to queue in reverse order. Note that we rely on that
485 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
486 * request gets inbetween ordered sequence.
488 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
489 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
491 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
493 __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
495 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
496 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
497 rq = &q->pre_flush_rq;
499 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
501 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
502 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
509 int blk_do_ordered(request_queue_t *q, struct request **rqp)
511 struct request *rq = *rqp, *allowed_rq;
512 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
518 if (q->next_ordered != QUEUE_ORDERED_NONE) {
519 *rqp = start_ordered(q, rq);
523 * This can happen when the queue switches to
524 * ORDERED_NONE while this request is on it.
526 blkdev_dequeue_request(rq);
527 end_that_request_first(rq, -EOPNOTSUPP,
528 rq->hard_nr_sectors);
529 end_that_request_last(rq, -EOPNOTSUPP);
535 if (q->ordered & QUEUE_ORDERED_TAG) {
536 if (is_barrier && rq != &q->bar_rq)
541 switch (blk_ordered_cur_seq(q)) {
542 case QUEUE_ORDSEQ_PREFLUSH:
543 allowed_rq = &q->pre_flush_rq;
545 case QUEUE_ORDSEQ_BAR:
546 allowed_rq = &q->bar_rq;
548 case QUEUE_ORDSEQ_POSTFLUSH:
549 allowed_rq = &q->post_flush_rq;
556 if (rq != allowed_rq &&
557 (blk_fs_request(rq) || rq == &q->pre_flush_rq ||
558 rq == &q->post_flush_rq))
564 static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
566 request_queue_t *q = bio->bi_private;
567 struct bio_vec *bvec;
571 * This is dry run, restore bio_sector and size. We'll finish
572 * this request again with the original bi_end_io after an
573 * error occurs or post flush is complete.
582 bio_for_each_segment(bvec, bio, i) {
583 bvec->bv_len += bvec->bv_offset;
588 set_bit(BIO_UPTODATE, &bio->bi_flags);
589 bio->bi_size = q->bi_size;
590 bio->bi_sector -= (q->bi_size >> 9);
596 static inline int ordered_bio_endio(struct request *rq, struct bio *bio,
597 unsigned int nbytes, int error)
599 request_queue_t *q = rq->q;
603 if (&q->bar_rq != rq)
607 * Okay, this is the barrier request in progress, dry finish it.
609 if (error && !q->orderr)
612 endio = bio->bi_end_io;
613 private = bio->bi_private;
614 bio->bi_end_io = flush_dry_bio_endio;
617 bio_endio(bio, nbytes, error);
619 bio->bi_end_io = endio;
620 bio->bi_private = private;
626 * blk_queue_bounce_limit - set bounce buffer limit for queue
627 * @q: the request queue for the device
628 * @dma_addr: bus address limit
631 * Different hardware can have different requirements as to what pages
632 * it can do I/O directly to. A low level driver can call
633 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
634 * buffers for doing I/O to pages residing above @page. By default
635 * the block layer sets this to the highest numbered "low" memory page.
637 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
639 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
642 * set appropriate bounce gfp mask -- unfortunately we don't have a
643 * full 4GB zone, so we have to resort to low memory for any bounces.
644 * ISA has its own < 16MB zone.
646 if (bounce_pfn < blk_max_low_pfn) {
647 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
648 init_emergency_isa_pool();
649 q->bounce_gfp = GFP_NOIO | GFP_DMA;
651 q->bounce_gfp = GFP_NOIO;
653 q->bounce_pfn = bounce_pfn;
656 EXPORT_SYMBOL(blk_queue_bounce_limit);
659 * blk_queue_max_sectors - set max sectors for a request for this queue
660 * @q: the request queue for the device
661 * @max_sectors: max sectors in the usual 512b unit
664 * Enables a low level driver to set an upper limit on the size of
667 void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
669 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
670 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
671 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
674 if (BLK_DEF_MAX_SECTORS > max_sectors)
675 q->max_hw_sectors = q->max_sectors = max_sectors;
677 q->max_sectors = BLK_DEF_MAX_SECTORS;
678 q->max_hw_sectors = max_sectors;
682 EXPORT_SYMBOL(blk_queue_max_sectors);
685 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
686 * @q: the request queue for the device
687 * @max_segments: max number of segments
690 * Enables a low level driver to set an upper limit on the number of
691 * physical data segments in a request. This would be the largest sized
692 * scatter list the driver could handle.
694 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
698 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
701 q->max_phys_segments = max_segments;
704 EXPORT_SYMBOL(blk_queue_max_phys_segments);
707 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
708 * @q: the request queue for the device
709 * @max_segments: max number of segments
712 * Enables a low level driver to set an upper limit on the number of
713 * hw data segments in a request. This would be the largest number of
714 * address/length pairs the host adapter can actually give as once
717 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
721 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
724 q->max_hw_segments = max_segments;
727 EXPORT_SYMBOL(blk_queue_max_hw_segments);
730 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
731 * @q: the request queue for the device
732 * @max_size: max size of segment in bytes
735 * Enables a low level driver to set an upper limit on the size of a
738 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
740 if (max_size < PAGE_CACHE_SIZE) {
741 max_size = PAGE_CACHE_SIZE;
742 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
745 q->max_segment_size = max_size;
748 EXPORT_SYMBOL(blk_queue_max_segment_size);
751 * blk_queue_hardsect_size - set hardware sector size for the queue
752 * @q: the request queue for the device
753 * @size: the hardware sector size, in bytes
756 * This should typically be set to the lowest possible sector size
757 * that the hardware can operate on (possible without reverting to
758 * even internal read-modify-write operations). Usually the default
759 * of 512 covers most hardware.
761 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
763 q->hardsect_size = size;
766 EXPORT_SYMBOL(blk_queue_hardsect_size);
769 * Returns the minimum that is _not_ zero, unless both are zero.
771 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
774 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
775 * @t: the stacking driver (top)
776 * @b: the underlying device (bottom)
778 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
780 /* zero is "infinity" */
781 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
782 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
784 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
785 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
786 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
787 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
790 EXPORT_SYMBOL(blk_queue_stack_limits);
793 * blk_queue_segment_boundary - set boundary rules for segment merging
794 * @q: the request queue for the device
795 * @mask: the memory boundary mask
797 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
799 if (mask < PAGE_CACHE_SIZE - 1) {
800 mask = PAGE_CACHE_SIZE - 1;
801 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
804 q->seg_boundary_mask = mask;
807 EXPORT_SYMBOL(blk_queue_segment_boundary);
810 * blk_queue_dma_alignment - set dma length and memory alignment
811 * @q: the request queue for the device
812 * @mask: alignment mask
815 * set required memory and length aligment for direct dma transactions.
816 * this is used when buiding direct io requests for the queue.
819 void blk_queue_dma_alignment(request_queue_t *q, int mask)
821 q->dma_alignment = mask;
824 EXPORT_SYMBOL(blk_queue_dma_alignment);
827 * blk_queue_find_tag - find a request by its tag and queue
828 * @q: The request queue for the device
829 * @tag: The tag of the request
832 * Should be used when a device returns a tag and you want to match
835 * no locks need be held.
837 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
839 struct blk_queue_tag *bqt = q->queue_tags;
841 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
844 return bqt->tag_index[tag];
847 EXPORT_SYMBOL(blk_queue_find_tag);
850 * __blk_queue_free_tags - release tag maintenance info
851 * @q: the request queue for the device
854 * blk_cleanup_queue() will take care of calling this function, if tagging
855 * has been used. So there's no need to call this directly.
857 static void __blk_queue_free_tags(request_queue_t *q)
859 struct blk_queue_tag *bqt = q->queue_tags;
864 if (atomic_dec_and_test(&bqt->refcnt)) {
866 BUG_ON(!list_empty(&bqt->busy_list));
868 kfree(bqt->tag_index);
869 bqt->tag_index = NULL;
877 q->queue_tags = NULL;
878 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
882 * blk_queue_free_tags - release tag maintenance info
883 * @q: the request queue for the device
886 * This is used to disabled tagged queuing to a device, yet leave
889 void blk_queue_free_tags(request_queue_t *q)
891 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
894 EXPORT_SYMBOL(blk_queue_free_tags);
897 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
899 struct request **tag_index;
900 unsigned long *tag_map;
903 if (depth > q->nr_requests * 2) {
904 depth = q->nr_requests * 2;
905 printk(KERN_ERR "%s: adjusted depth to %d\n",
906 __FUNCTION__, depth);
909 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
913 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
914 tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
918 memset(tag_index, 0, depth * sizeof(struct request *));
919 memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
920 tags->real_max_depth = depth;
921 tags->max_depth = depth;
922 tags->tag_index = tag_index;
923 tags->tag_map = tag_map;
932 * blk_queue_init_tags - initialize the queue tag info
933 * @q: the request queue for the device
934 * @depth: the maximum queue depth supported
935 * @tags: the tag to use
937 int blk_queue_init_tags(request_queue_t *q, int depth,
938 struct blk_queue_tag *tags)
942 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
944 if (!tags && !q->queue_tags) {
945 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
949 if (init_tag_map(q, tags, depth))
952 INIT_LIST_HEAD(&tags->busy_list);
954 atomic_set(&tags->refcnt, 1);
955 } else if (q->queue_tags) {
956 if ((rc = blk_queue_resize_tags(q, depth)))
958 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
961 atomic_inc(&tags->refcnt);
964 * assign it, all done
966 q->queue_tags = tags;
967 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
974 EXPORT_SYMBOL(blk_queue_init_tags);
977 * blk_queue_resize_tags - change the queueing depth
978 * @q: the request queue for the device
979 * @new_depth: the new max command queueing depth
982 * Must be called with the queue lock held.
984 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
986 struct blk_queue_tag *bqt = q->queue_tags;
987 struct request **tag_index;
988 unsigned long *tag_map;
989 int max_depth, nr_ulongs;
995 * if we already have large enough real_max_depth. just
996 * adjust max_depth. *NOTE* as requests with tag value
997 * between new_depth and real_max_depth can be in-flight, tag
998 * map can not be shrunk blindly here.
1000 if (new_depth <= bqt->real_max_depth) {
1001 bqt->max_depth = new_depth;
1006 * save the old state info, so we can copy it back
1008 tag_index = bqt->tag_index;
1009 tag_map = bqt->tag_map;
1010 max_depth = bqt->real_max_depth;
1012 if (init_tag_map(q, bqt, new_depth))
1015 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1016 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1017 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1024 EXPORT_SYMBOL(blk_queue_resize_tags);
1027 * blk_queue_end_tag - end tag operations for a request
1028 * @q: the request queue for the device
1029 * @rq: the request that has completed
1032 * Typically called when end_that_request_first() returns 0, meaning
1033 * all transfers have been done for a request. It's important to call
1034 * this function before end_that_request_last(), as that will put the
1035 * request back on the free list thus corrupting the internal tag list.
1038 * queue lock must be held.
1040 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1042 struct blk_queue_tag *bqt = q->queue_tags;
1047 if (unlikely(tag >= bqt->real_max_depth))
1049 * This can happen after tag depth has been reduced.
1050 * FIXME: how about a warning or info message here?
1054 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
1055 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1060 list_del_init(&rq->queuelist);
1061 rq->flags &= ~REQ_QUEUED;
1064 if (unlikely(bqt->tag_index[tag] == NULL))
1065 printk(KERN_ERR "%s: tag %d is missing\n",
1068 bqt->tag_index[tag] = NULL;
1072 EXPORT_SYMBOL(blk_queue_end_tag);
1075 * blk_queue_start_tag - find a free tag and assign it
1076 * @q: the request queue for the device
1077 * @rq: the block request that needs tagging
1080 * This can either be used as a stand-alone helper, or possibly be
1081 * assigned as the queue &prep_rq_fn (in which case &struct request
1082 * automagically gets a tag assigned). Note that this function
1083 * assumes that any type of request can be queued! if this is not
1084 * true for your device, you must check the request type before
1085 * calling this function. The request will also be removed from
1086 * the request queue, so it's the drivers responsibility to readd
1087 * it if it should need to be restarted for some reason.
1090 * queue lock must be held.
1092 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1094 struct blk_queue_tag *bqt = q->queue_tags;
1097 if (unlikely((rq->flags & REQ_QUEUED))) {
1099 "%s: request %p for device [%s] already tagged %d",
1101 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1105 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1106 if (tag >= bqt->max_depth)
1109 __set_bit(tag, bqt->tag_map);
1111 rq->flags |= REQ_QUEUED;
1113 bqt->tag_index[tag] = rq;
1114 blkdev_dequeue_request(rq);
1115 list_add(&rq->queuelist, &bqt->busy_list);
1120 EXPORT_SYMBOL(blk_queue_start_tag);
1123 * blk_queue_invalidate_tags - invalidate all pending tags
1124 * @q: the request queue for the device
1127 * Hardware conditions may dictate a need to stop all pending requests.
1128 * In this case, we will safely clear the block side of the tag queue and
1129 * readd all requests to the request queue in the right order.
1132 * queue lock must be held.
1134 void blk_queue_invalidate_tags(request_queue_t *q)
1136 struct blk_queue_tag *bqt = q->queue_tags;
1137 struct list_head *tmp, *n;
1140 list_for_each_safe(tmp, n, &bqt->busy_list) {
1141 rq = list_entry_rq(tmp);
1143 if (rq->tag == -1) {
1145 "%s: bad tag found on list\n", __FUNCTION__);
1146 list_del_init(&rq->queuelist);
1147 rq->flags &= ~REQ_QUEUED;
1149 blk_queue_end_tag(q, rq);
1151 rq->flags &= ~REQ_STARTED;
1152 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1156 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1158 static const char * const rq_flags[] = {
1179 "REQ_DRIVE_TASKFILE",
1184 "REQ_ORDERED_COLOR",
1187 void blk_dump_rq_flags(struct request *rq, char *msg)
1191 printk("%s: dev %s: flags = ", msg,
1192 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1195 if (rq->flags & (1 << bit))
1196 printk("%s ", rq_flags[bit]);
1198 } while (bit < __REQ_NR_BITS);
1200 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1202 rq->current_nr_sectors);
1203 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1205 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1207 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1208 printk("%02x ", rq->cmd[bit]);
1213 EXPORT_SYMBOL(blk_dump_rq_flags);
1215 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1217 struct bio_vec *bv, *bvprv = NULL;
1218 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1219 int high, highprv = 1;
1221 if (unlikely(!bio->bi_io_vec))
1224 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1225 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1226 bio_for_each_segment(bv, bio, i) {
1228 * the trick here is making sure that a high page is never
1229 * considered part of another segment, since that might
1230 * change with the bounce page.
1232 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1233 if (high || highprv)
1234 goto new_hw_segment;
1236 if (seg_size + bv->bv_len > q->max_segment_size)
1238 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1240 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1242 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1243 goto new_hw_segment;
1245 seg_size += bv->bv_len;
1246 hw_seg_size += bv->bv_len;
1251 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1252 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1253 hw_seg_size += bv->bv_len;
1256 if (hw_seg_size > bio->bi_hw_front_size)
1257 bio->bi_hw_front_size = hw_seg_size;
1258 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1264 seg_size = bv->bv_len;
1267 if (hw_seg_size > bio->bi_hw_back_size)
1268 bio->bi_hw_back_size = hw_seg_size;
1269 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1270 bio->bi_hw_front_size = hw_seg_size;
1271 bio->bi_phys_segments = nr_phys_segs;
1272 bio->bi_hw_segments = nr_hw_segs;
1273 bio->bi_flags |= (1 << BIO_SEG_VALID);
1277 static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1280 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1283 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1285 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1289 * bio and nxt are contigous in memory, check if the queue allows
1290 * these two to be merged into one
1292 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1298 static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1301 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1302 blk_recount_segments(q, bio);
1303 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1304 blk_recount_segments(q, nxt);
1305 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1306 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1308 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1315 * map a request to scatterlist, return number of sg entries setup. Caller
1316 * must make sure sg can hold rq->nr_phys_segments entries
1318 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1320 struct bio_vec *bvec, *bvprv;
1322 int nsegs, i, cluster;
1325 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1328 * for each bio in rq
1331 rq_for_each_bio(bio, rq) {
1333 * for each segment in bio
1335 bio_for_each_segment(bvec, bio, i) {
1336 int nbytes = bvec->bv_len;
1338 if (bvprv && cluster) {
1339 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1342 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1344 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1347 sg[nsegs - 1].length += nbytes;
1350 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1351 sg[nsegs].page = bvec->bv_page;
1352 sg[nsegs].length = nbytes;
1353 sg[nsegs].offset = bvec->bv_offset;
1358 } /* segments in bio */
1364 EXPORT_SYMBOL(blk_rq_map_sg);
1367 * the standard queue merge functions, can be overridden with device
1368 * specific ones if so desired
1371 static inline int ll_new_mergeable(request_queue_t *q,
1372 struct request *req,
1375 int nr_phys_segs = bio_phys_segments(q, bio);
1377 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1378 req->flags |= REQ_NOMERGE;
1379 if (req == q->last_merge)
1380 q->last_merge = NULL;
1385 * A hw segment is just getting larger, bump just the phys
1388 req->nr_phys_segments += nr_phys_segs;
1392 static inline int ll_new_hw_segment(request_queue_t *q,
1393 struct request *req,
1396 int nr_hw_segs = bio_hw_segments(q, bio);
1397 int nr_phys_segs = bio_phys_segments(q, bio);
1399 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1400 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1401 req->flags |= REQ_NOMERGE;
1402 if (req == q->last_merge)
1403 q->last_merge = NULL;
1408 * This will form the start of a new hw segment. Bump both
1411 req->nr_hw_segments += nr_hw_segs;
1412 req->nr_phys_segments += nr_phys_segs;
1416 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1419 unsigned short max_sectors;
1422 if (unlikely(blk_pc_request(req)))
1423 max_sectors = q->max_hw_sectors;
1425 max_sectors = q->max_sectors;
1427 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1428 req->flags |= REQ_NOMERGE;
1429 if (req == q->last_merge)
1430 q->last_merge = NULL;
1433 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1434 blk_recount_segments(q, req->biotail);
1435 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1436 blk_recount_segments(q, bio);
1437 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1438 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1439 !BIOVEC_VIRT_OVERSIZE(len)) {
1440 int mergeable = ll_new_mergeable(q, req, bio);
1443 if (req->nr_hw_segments == 1)
1444 req->bio->bi_hw_front_size = len;
1445 if (bio->bi_hw_segments == 1)
1446 bio->bi_hw_back_size = len;
1451 return ll_new_hw_segment(q, req, bio);
1454 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1457 unsigned short max_sectors;
1460 if (unlikely(blk_pc_request(req)))
1461 max_sectors = q->max_hw_sectors;
1463 max_sectors = q->max_sectors;
1466 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1467 req->flags |= REQ_NOMERGE;
1468 if (req == q->last_merge)
1469 q->last_merge = NULL;
1472 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1473 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1474 blk_recount_segments(q, bio);
1475 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1476 blk_recount_segments(q, req->bio);
1477 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1478 !BIOVEC_VIRT_OVERSIZE(len)) {
1479 int mergeable = ll_new_mergeable(q, req, bio);
1482 if (bio->bi_hw_segments == 1)
1483 bio->bi_hw_front_size = len;
1484 if (req->nr_hw_segments == 1)
1485 req->biotail->bi_hw_back_size = len;
1490 return ll_new_hw_segment(q, req, bio);
1493 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1494 struct request *next)
1496 int total_phys_segments;
1497 int total_hw_segments;
1500 * First check if the either of the requests are re-queued
1501 * requests. Can't merge them if they are.
1503 if (req->special || next->special)
1507 * Will it become too large?
1509 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1512 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1513 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1514 total_phys_segments--;
1516 if (total_phys_segments > q->max_phys_segments)
1519 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1520 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1521 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1523 * propagate the combined length to the end of the requests
1525 if (req->nr_hw_segments == 1)
1526 req->bio->bi_hw_front_size = len;
1527 if (next->nr_hw_segments == 1)
1528 next->biotail->bi_hw_back_size = len;
1529 total_hw_segments--;
1532 if (total_hw_segments > q->max_hw_segments)
1535 /* Merge is OK... */
1536 req->nr_phys_segments = total_phys_segments;
1537 req->nr_hw_segments = total_hw_segments;
1542 * "plug" the device if there are no outstanding requests: this will
1543 * force the transfer to start only after we have put all the requests
1546 * This is called with interrupts off and no requests on the queue and
1547 * with the queue lock held.
1549 void blk_plug_device(request_queue_t *q)
1551 WARN_ON(!irqs_disabled());
1554 * don't plug a stopped queue, it must be paired with blk_start_queue()
1555 * which will restart the queueing
1557 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1560 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1561 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1564 EXPORT_SYMBOL(blk_plug_device);
1567 * remove the queue from the plugged list, if present. called with
1568 * queue lock held and interrupts disabled.
1570 int blk_remove_plug(request_queue_t *q)
1572 WARN_ON(!irqs_disabled());
1574 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1577 del_timer(&q->unplug_timer);
1581 EXPORT_SYMBOL(blk_remove_plug);
1584 * remove the plug and let it rip..
1586 void __generic_unplug_device(request_queue_t *q)
1588 if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
1591 if (!blk_remove_plug(q))
1596 EXPORT_SYMBOL(__generic_unplug_device);
1599 * generic_unplug_device - fire a request queue
1600 * @q: The &request_queue_t in question
1603 * Linux uses plugging to build bigger requests queues before letting
1604 * the device have at them. If a queue is plugged, the I/O scheduler
1605 * is still adding and merging requests on the queue. Once the queue
1606 * gets unplugged, the request_fn defined for the queue is invoked and
1607 * transfers started.
1609 void generic_unplug_device(request_queue_t *q)
1611 spin_lock_irq(q->queue_lock);
1612 __generic_unplug_device(q);
1613 spin_unlock_irq(q->queue_lock);
1615 EXPORT_SYMBOL(generic_unplug_device);
1617 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1620 request_queue_t *q = bdi->unplug_io_data;
1623 * devices don't necessarily have an ->unplug_fn defined
1629 static void blk_unplug_work(void *data)
1631 request_queue_t *q = data;
1636 static void blk_unplug_timeout(unsigned long data)
1638 request_queue_t *q = (request_queue_t *)data;
1640 kblockd_schedule_work(&q->unplug_work);
1644 * blk_start_queue - restart a previously stopped queue
1645 * @q: The &request_queue_t in question
1648 * blk_start_queue() will clear the stop flag on the queue, and call
1649 * the request_fn for the queue if it was in a stopped state when
1650 * entered. Also see blk_stop_queue(). Queue lock must be held.
1652 void blk_start_queue(request_queue_t *q)
1654 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1657 * one level of recursion is ok and is much faster than kicking
1658 * the unplug handling
1660 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1662 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1665 kblockd_schedule_work(&q->unplug_work);
1669 EXPORT_SYMBOL(blk_start_queue);
1672 * blk_stop_queue - stop a queue
1673 * @q: The &request_queue_t in question
1676 * The Linux block layer assumes that a block driver will consume all
1677 * entries on the request queue when the request_fn strategy is called.
1678 * Often this will not happen, because of hardware limitations (queue
1679 * depth settings). If a device driver gets a 'queue full' response,
1680 * or if it simply chooses not to queue more I/O at one point, it can
1681 * call this function to prevent the request_fn from being called until
1682 * the driver has signalled it's ready to go again. This happens by calling
1683 * blk_start_queue() to restart queue operations. Queue lock must be held.
1685 void blk_stop_queue(request_queue_t *q)
1688 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1690 EXPORT_SYMBOL(blk_stop_queue);
1693 * blk_sync_queue - cancel any pending callbacks on a queue
1697 * The block layer may perform asynchronous callback activity
1698 * on a queue, such as calling the unplug function after a timeout.
1699 * A block device may call blk_sync_queue to ensure that any
1700 * such activity is cancelled, thus allowing it to release resources
1701 * the the callbacks might use. The caller must already have made sure
1702 * that its ->make_request_fn will not re-add plugging prior to calling
1706 void blk_sync_queue(struct request_queue *q)
1708 del_timer_sync(&q->unplug_timer);
1711 EXPORT_SYMBOL(blk_sync_queue);
1714 * blk_run_queue - run a single device queue
1715 * @q: The queue to run
1717 void blk_run_queue(struct request_queue *q)
1719 unsigned long flags;
1721 spin_lock_irqsave(q->queue_lock, flags);
1723 if (!elv_queue_empty(q))
1725 spin_unlock_irqrestore(q->queue_lock, flags);
1727 EXPORT_SYMBOL(blk_run_queue);
1730 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1731 * @q: the request queue to be released
1734 * blk_cleanup_queue is the pair to blk_init_queue() or
1735 * blk_queue_make_request(). It should be called when a request queue is
1736 * being released; typically when a block device is being de-registered.
1737 * Currently, its primary task it to free all the &struct request
1738 * structures that were allocated to the queue and the queue itself.
1741 * Hopefully the low level driver will have finished any
1742 * outstanding requests first...
1744 void blk_cleanup_queue(request_queue_t * q)
1746 struct request_list *rl = &q->rq;
1748 if (!atomic_dec_and_test(&q->refcnt))
1752 elevator_exit(q->elevator);
1757 mempool_destroy(rl->rq_pool);
1760 __blk_queue_free_tags(q);
1762 kmem_cache_free(requestq_cachep, q);
1765 EXPORT_SYMBOL(blk_cleanup_queue);
1767 static int blk_init_free_list(request_queue_t *q)
1769 struct request_list *rl = &q->rq;
1771 rl->count[READ] = rl->count[WRITE] = 0;
1772 rl->starved[READ] = rl->starved[WRITE] = 0;
1774 init_waitqueue_head(&rl->wait[READ]);
1775 init_waitqueue_head(&rl->wait[WRITE]);
1777 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1778 mempool_free_slab, request_cachep, q->node);
1786 request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1788 return blk_alloc_queue_node(gfp_mask, -1);
1790 EXPORT_SYMBOL(blk_alloc_queue);
1792 request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1796 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1800 memset(q, 0, sizeof(*q));
1801 init_timer(&q->unplug_timer);
1802 atomic_set(&q->refcnt, 1);
1804 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1805 q->backing_dev_info.unplug_io_data = q;
1809 EXPORT_SYMBOL(blk_alloc_queue_node);
1812 * blk_init_queue - prepare a request queue for use with a block device
1813 * @rfn: The function to be called to process requests that have been
1814 * placed on the queue.
1815 * @lock: Request queue spin lock
1818 * If a block device wishes to use the standard request handling procedures,
1819 * which sorts requests and coalesces adjacent requests, then it must
1820 * call blk_init_queue(). The function @rfn will be called when there
1821 * are requests on the queue that need to be processed. If the device
1822 * supports plugging, then @rfn may not be called immediately when requests
1823 * are available on the queue, but may be called at some time later instead.
1824 * Plugged queues are generally unplugged when a buffer belonging to one
1825 * of the requests on the queue is needed, or due to memory pressure.
1827 * @rfn is not required, or even expected, to remove all requests off the
1828 * queue, but only as many as it can handle at a time. If it does leave
1829 * requests on the queue, it is responsible for arranging that the requests
1830 * get dealt with eventually.
1832 * The queue spin lock must be held while manipulating the requests on the
1835 * Function returns a pointer to the initialized request queue, or NULL if
1836 * it didn't succeed.
1839 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1840 * when the block device is deactivated (such as at module unload).
1843 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1845 return blk_init_queue_node(rfn, lock, -1);
1847 EXPORT_SYMBOL(blk_init_queue);
1850 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1852 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1858 if (blk_init_free_list(q))
1862 * if caller didn't supply a lock, they get per-queue locking with
1866 spin_lock_init(&q->__queue_lock);
1867 lock = &q->__queue_lock;
1870 q->request_fn = rfn;
1871 q->back_merge_fn = ll_back_merge_fn;
1872 q->front_merge_fn = ll_front_merge_fn;
1873 q->merge_requests_fn = ll_merge_requests_fn;
1874 q->prep_rq_fn = NULL;
1875 q->unplug_fn = generic_unplug_device;
1876 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1877 q->queue_lock = lock;
1879 blk_queue_segment_boundary(q, 0xffffffff);
1881 blk_queue_make_request(q, __make_request);
1882 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1884 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1885 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1890 if (!elevator_init(q, NULL)) {
1891 blk_queue_congestion_threshold(q);
1895 blk_cleanup_queue(q);
1897 kmem_cache_free(requestq_cachep, q);
1900 EXPORT_SYMBOL(blk_init_queue_node);
1902 int blk_get_queue(request_queue_t *q)
1904 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1905 atomic_inc(&q->refcnt);
1912 EXPORT_SYMBOL(blk_get_queue);
1914 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1916 if (rq->flags & REQ_ELVPRIV)
1917 elv_put_request(q, rq);
1918 mempool_free(rq, q->rq.rq_pool);
1921 static inline struct request *
1922 blk_alloc_request(request_queue_t *q, int rw, struct bio *bio,
1923 int priv, gfp_t gfp_mask)
1925 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1931 * first three bits are identical in rq->flags and bio->bi_rw,
1932 * see bio.h and blkdev.h
1937 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
1938 mempool_free(rq, q->rq.rq_pool);
1941 rq->flags |= REQ_ELVPRIV;
1948 * ioc_batching returns true if the ioc is a valid batching request and
1949 * should be given priority access to a request.
1951 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1957 * Make sure the process is able to allocate at least 1 request
1958 * even if the batch times out, otherwise we could theoretically
1961 return ioc->nr_batch_requests == q->nr_batching ||
1962 (ioc->nr_batch_requests > 0
1963 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1967 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1968 * will cause the process to be a "batcher" on all queues in the system. This
1969 * is the behaviour we want though - once it gets a wakeup it should be given
1972 static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1974 if (!ioc || ioc_batching(q, ioc))
1977 ioc->nr_batch_requests = q->nr_batching;
1978 ioc->last_waited = jiffies;
1981 static void __freed_request(request_queue_t *q, int rw)
1983 struct request_list *rl = &q->rq;
1985 if (rl->count[rw] < queue_congestion_off_threshold(q))
1986 clear_queue_congested(q, rw);
1988 if (rl->count[rw] + 1 <= q->nr_requests) {
1989 if (waitqueue_active(&rl->wait[rw]))
1990 wake_up(&rl->wait[rw]);
1992 blk_clear_queue_full(q, rw);
1997 * A request has just been released. Account for it, update the full and
1998 * congestion status, wake up any waiters. Called under q->queue_lock.
2000 static void freed_request(request_queue_t *q, int rw, int priv)
2002 struct request_list *rl = &q->rq;
2008 __freed_request(q, rw);
2010 if (unlikely(rl->starved[rw ^ 1]))
2011 __freed_request(q, rw ^ 1);
2014 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2016 * Get a free request, queue_lock must be held.
2017 * Returns NULL on failure, with queue_lock held.
2018 * Returns !NULL on success, with queue_lock *not held*.
2020 static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
2023 struct request *rq = NULL;
2024 struct request_list *rl = &q->rq;
2025 struct io_context *ioc = NULL;
2026 int may_queue, priv;
2028 may_queue = elv_may_queue(q, rw, bio);
2029 if (may_queue == ELV_MQUEUE_NO)
2032 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2033 if (rl->count[rw]+1 >= q->nr_requests) {
2034 ioc = current_io_context(GFP_ATOMIC);
2036 * The queue will fill after this allocation, so set
2037 * it as full, and mark this process as "batching".
2038 * This process will be allowed to complete a batch of
2039 * requests, others will be blocked.
2041 if (!blk_queue_full(q, rw)) {
2042 ioc_set_batching(q, ioc);
2043 blk_set_queue_full(q, rw);
2045 if (may_queue != ELV_MQUEUE_MUST
2046 && !ioc_batching(q, ioc)) {
2048 * The queue is full and the allocating
2049 * process is not a "batcher", and not
2050 * exempted by the IO scheduler
2056 set_queue_congested(q, rw);
2060 * Only allow batching queuers to allocate up to 50% over the defined
2061 * limit of requests, otherwise we could have thousands of requests
2062 * allocated with any setting of ->nr_requests
2064 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2068 rl->starved[rw] = 0;
2070 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2074 spin_unlock_irq(q->queue_lock);
2076 rq = blk_alloc_request(q, rw, bio, priv, gfp_mask);
2077 if (unlikely(!rq)) {
2079 * Allocation failed presumably due to memory. Undo anything
2080 * we might have messed up.
2082 * Allocating task should really be put onto the front of the
2083 * wait queue, but this is pretty rare.
2085 spin_lock_irq(q->queue_lock);
2086 freed_request(q, rw, priv);
2089 * in the very unlikely event that allocation failed and no
2090 * requests for this direction was pending, mark us starved
2091 * so that freeing of a request in the other direction will
2092 * notice us. another possible fix would be to split the
2093 * rq mempool into READ and WRITE
2096 if (unlikely(rl->count[rw] == 0))
2097 rl->starved[rw] = 1;
2103 * ioc may be NULL here, and ioc_batching will be false. That's
2104 * OK, if the queue is under the request limit then requests need
2105 * not count toward the nr_batch_requests limit. There will always
2106 * be some limit enforced by BLK_BATCH_TIME.
2108 if (ioc_batching(q, ioc))
2109 ioc->nr_batch_requests--;
2118 * No available requests for this queue, unplug the device and wait for some
2119 * requests to become available.
2121 * Called with q->queue_lock held, and returns with it unlocked.
2123 static struct request *get_request_wait(request_queue_t *q, int rw,
2128 rq = get_request(q, rw, bio, GFP_NOIO);
2131 struct request_list *rl = &q->rq;
2133 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2134 TASK_UNINTERRUPTIBLE);
2136 rq = get_request(q, rw, bio, GFP_NOIO);
2139 struct io_context *ioc;
2141 __generic_unplug_device(q);
2142 spin_unlock_irq(q->queue_lock);
2146 * After sleeping, we become a "batching" process and
2147 * will be able to allocate at least one request, and
2148 * up to a big batch of them for a small period time.
2149 * See ioc_batching, ioc_set_batching
2151 ioc = current_io_context(GFP_NOIO);
2152 ioc_set_batching(q, ioc);
2154 spin_lock_irq(q->queue_lock);
2156 finish_wait(&rl->wait[rw], &wait);
2162 struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
2166 BUG_ON(rw != READ && rw != WRITE);
2168 spin_lock_irq(q->queue_lock);
2169 if (gfp_mask & __GFP_WAIT) {
2170 rq = get_request_wait(q, rw, NULL);
2172 rq = get_request(q, rw, NULL, gfp_mask);
2174 spin_unlock_irq(q->queue_lock);
2176 /* q->queue_lock is unlocked at this point */
2180 EXPORT_SYMBOL(blk_get_request);
2183 * blk_requeue_request - put a request back on queue
2184 * @q: request queue where request should be inserted
2185 * @rq: request to be inserted
2188 * Drivers often keep queueing requests until the hardware cannot accept
2189 * more, when that condition happens we need to put the request back
2190 * on the queue. Must be called with queue lock held.
2192 void blk_requeue_request(request_queue_t *q, struct request *rq)
2194 if (blk_rq_tagged(rq))
2195 blk_queue_end_tag(q, rq);
2197 elv_requeue_request(q, rq);
2200 EXPORT_SYMBOL(blk_requeue_request);
2203 * blk_insert_request - insert a special request in to a request queue
2204 * @q: request queue where request should be inserted
2205 * @rq: request to be inserted
2206 * @at_head: insert request at head or tail of queue
2207 * @data: private data
2210 * Many block devices need to execute commands asynchronously, so they don't
2211 * block the whole kernel from preemption during request execution. This is
2212 * accomplished normally by inserting aritficial requests tagged as
2213 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2214 * scheduled for actual execution by the request queue.
2216 * We have the option of inserting the head or the tail of the queue.
2217 * Typically we use the tail for new ioctls and so forth. We use the head
2218 * of the queue for things like a QUEUE_FULL message from a device, or a
2219 * host that is unable to accept a particular command.
2221 void blk_insert_request(request_queue_t *q, struct request *rq,
2222 int at_head, void *data)
2224 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2225 unsigned long flags;
2228 * tell I/O scheduler that this isn't a regular read/write (ie it
2229 * must not attempt merges on this) and that it acts as a soft
2232 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2236 spin_lock_irqsave(q->queue_lock, flags);
2239 * If command is tagged, release the tag
2241 if (blk_rq_tagged(rq))
2242 blk_queue_end_tag(q, rq);
2244 drive_stat_acct(rq, rq->nr_sectors, 1);
2245 __elv_add_request(q, rq, where, 0);
2247 if (blk_queue_plugged(q))
2248 __generic_unplug_device(q);
2251 spin_unlock_irqrestore(q->queue_lock, flags);
2254 EXPORT_SYMBOL(blk_insert_request);
2257 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2258 * @q: request queue where request should be inserted
2259 * @rq: request structure to fill
2260 * @ubuf: the user buffer
2261 * @len: length of user data
2264 * Data will be mapped directly for zero copy io, if possible. Otherwise
2265 * a kernel bounce buffer is used.
2267 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2268 * still in process context.
2270 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2271 * before being submitted to the device, as pages mapped may be out of
2272 * reach. It's the callers responsibility to make sure this happens. The
2273 * original bio must be passed back in to blk_rq_unmap_user() for proper
2276 int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2279 unsigned long uaddr;
2283 if (len > (q->max_hw_sectors << 9))
2288 reading = rq_data_dir(rq) == READ;
2291 * if alignment requirement is satisfied, map in user pages for
2292 * direct dma. else, set up kernel bounce buffers
2294 uaddr = (unsigned long) ubuf;
2295 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2296 bio = bio_map_user(q, NULL, uaddr, len, reading);
2298 bio = bio_copy_user(q, uaddr, len, reading);
2301 rq->bio = rq->biotail = bio;
2302 blk_rq_bio_prep(q, rq, bio);
2304 rq->buffer = rq->data = NULL;
2310 * bio is the err-ptr
2312 return PTR_ERR(bio);
2315 EXPORT_SYMBOL(blk_rq_map_user);
2318 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2319 * @q: request queue where request should be inserted
2320 * @rq: request to map data to
2321 * @iov: pointer to the iovec
2322 * @iov_count: number of elements in the iovec
2325 * Data will be mapped directly for zero copy io, if possible. Otherwise
2326 * a kernel bounce buffer is used.
2328 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2329 * still in process context.
2331 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2332 * before being submitted to the device, as pages mapped may be out of
2333 * reach. It's the callers responsibility to make sure this happens. The
2334 * original bio must be passed back in to blk_rq_unmap_user() for proper
2337 int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2338 struct sg_iovec *iov, int iov_count)
2342 if (!iov || iov_count <= 0)
2345 /* we don't allow misaligned data like bio_map_user() does. If the
2346 * user is using sg, they're expected to know the alignment constraints
2347 * and respect them accordingly */
2348 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2350 return PTR_ERR(bio);
2352 rq->bio = rq->biotail = bio;
2353 blk_rq_bio_prep(q, rq, bio);
2354 rq->buffer = rq->data = NULL;
2355 rq->data_len = bio->bi_size;
2359 EXPORT_SYMBOL(blk_rq_map_user_iov);
2362 * blk_rq_unmap_user - unmap a request with user data
2363 * @bio: bio to be unmapped
2364 * @ulen: length of user buffer
2367 * Unmap a bio previously mapped by blk_rq_map_user().
2369 int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
2374 if (bio_flagged(bio, BIO_USER_MAPPED))
2375 bio_unmap_user(bio);
2377 ret = bio_uncopy_user(bio);
2383 EXPORT_SYMBOL(blk_rq_unmap_user);
2386 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2387 * @q: request queue where request should be inserted
2388 * @rq: request to fill
2389 * @kbuf: the kernel buffer
2390 * @len: length of user data
2391 * @gfp_mask: memory allocation flags
2393 int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2394 unsigned int len, gfp_t gfp_mask)
2398 if (len > (q->max_hw_sectors << 9))
2403 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2405 return PTR_ERR(bio);
2407 if (rq_data_dir(rq) == WRITE)
2408 bio->bi_rw |= (1 << BIO_RW);
2410 rq->bio = rq->biotail = bio;
2411 blk_rq_bio_prep(q, rq, bio);
2413 rq->buffer = rq->data = NULL;
2418 EXPORT_SYMBOL(blk_rq_map_kern);
2421 * blk_execute_rq_nowait - insert a request into queue for execution
2422 * @q: queue to insert the request in
2423 * @bd_disk: matching gendisk
2424 * @rq: request to insert
2425 * @at_head: insert request at head or tail of queue
2426 * @done: I/O completion handler
2429 * Insert a fully prepared request at the back of the io scheduler queue
2430 * for execution. Don't wait for completion.
2432 void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2433 struct request *rq, int at_head,
2436 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2438 rq->rq_disk = bd_disk;
2439 rq->flags |= REQ_NOMERGE;
2441 elv_add_request(q, rq, where, 1);
2442 generic_unplug_device(q);
2445 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2448 * blk_execute_rq - insert a request into queue for execution
2449 * @q: queue to insert the request in
2450 * @bd_disk: matching gendisk
2451 * @rq: request to insert
2452 * @at_head: insert request at head or tail of queue
2455 * Insert a fully prepared request at the back of the io scheduler queue
2456 * for execution and wait for completion.
2458 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2459 struct request *rq, int at_head)
2461 DECLARE_COMPLETION(wait);
2462 char sense[SCSI_SENSE_BUFFERSIZE];
2466 * we need an extra reference to the request, so we can look at
2467 * it after io completion
2472 memset(sense, 0, sizeof(sense));
2477 rq->waiting = &wait;
2478 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2479 wait_for_completion(&wait);
2488 EXPORT_SYMBOL(blk_execute_rq);
2491 * blkdev_issue_flush - queue a flush
2492 * @bdev: blockdev to issue flush for
2493 * @error_sector: error sector
2496 * Issue a flush for the block device in question. Caller can supply
2497 * room for storing the error offset in case of a flush error, if they
2498 * wish to. Caller must run wait_for_completion() on its own.
2500 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2504 if (bdev->bd_disk == NULL)
2507 q = bdev_get_queue(bdev);
2510 if (!q->issue_flush_fn)
2513 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2516 EXPORT_SYMBOL(blkdev_issue_flush);
2518 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2520 int rw = rq_data_dir(rq);
2522 if (!blk_fs_request(rq) || !rq->rq_disk)
2526 __disk_stat_inc(rq->rq_disk, merges[rw]);
2528 disk_round_stats(rq->rq_disk);
2529 rq->rq_disk->in_flight++;
2534 * add-request adds a request to the linked list.
2535 * queue lock is held and interrupts disabled, as we muck with the
2536 * request queue list.
2538 static inline void add_request(request_queue_t * q, struct request * req)
2540 drive_stat_acct(req, req->nr_sectors, 1);
2543 q->activity_fn(q->activity_data, rq_data_dir(req));
2546 * elevator indicated where it wants this request to be
2547 * inserted at elevator_merge time
2549 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2553 * disk_round_stats() - Round off the performance stats on a struct
2556 * The average IO queue length and utilisation statistics are maintained
2557 * by observing the current state of the queue length and the amount of
2558 * time it has been in this state for.
2560 * Normally, that accounting is done on IO completion, but that can result
2561 * in more than a second's worth of IO being accounted for within any one
2562 * second, leading to >100% utilisation. To deal with that, we call this
2563 * function to do a round-off before returning the results when reading
2564 * /proc/diskstats. This accounts immediately for all queue usage up to
2565 * the current jiffies and restarts the counters again.
2567 void disk_round_stats(struct gendisk *disk)
2569 unsigned long now = jiffies;
2571 if (now == disk->stamp)
2574 if (disk->in_flight) {
2575 __disk_stat_add(disk, time_in_queue,
2576 disk->in_flight * (now - disk->stamp));
2577 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2582 EXPORT_SYMBOL_GPL(disk_round_stats);
2585 * queue lock must be held
2587 void __blk_put_request(request_queue_t *q, struct request *req)
2589 struct request_list *rl = req->rl;
2593 if (unlikely(--req->ref_count))
2596 elv_completed_request(q, req);
2598 req->rq_status = RQ_INACTIVE;
2602 * Request may not have originated from ll_rw_blk. if not,
2603 * it didn't come out of our reserved rq pools
2606 int rw = rq_data_dir(req);
2607 int priv = req->flags & REQ_ELVPRIV;
2609 BUG_ON(!list_empty(&req->queuelist));
2611 blk_free_request(q, req);
2612 freed_request(q, rw, priv);
2616 EXPORT_SYMBOL_GPL(__blk_put_request);
2618 void blk_put_request(struct request *req)
2620 unsigned long flags;
2621 request_queue_t *q = req->q;
2624 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2625 * following if (q) test.
2628 spin_lock_irqsave(q->queue_lock, flags);
2629 __blk_put_request(q, req);
2630 spin_unlock_irqrestore(q->queue_lock, flags);
2634 EXPORT_SYMBOL(blk_put_request);
2637 * blk_end_sync_rq - executes a completion event on a request
2638 * @rq: request to complete
2639 * @error: end io status of the request
2641 void blk_end_sync_rq(struct request *rq, int error)
2643 struct completion *waiting = rq->waiting;
2646 __blk_put_request(rq->q, rq);
2649 * complete last, if this is a stack request the process (and thus
2650 * the rq pointer) could be invalid right after this complete()
2654 EXPORT_SYMBOL(blk_end_sync_rq);
2657 * blk_congestion_wait - wait for a queue to become uncongested
2658 * @rw: READ or WRITE
2659 * @timeout: timeout in jiffies
2661 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2662 * If no queues are congested then just wait for the next request to be
2665 long blk_congestion_wait(int rw, long timeout)
2669 wait_queue_head_t *wqh = &congestion_wqh[rw];
2671 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2672 ret = io_schedule_timeout(timeout);
2673 finish_wait(wqh, &wait);
2677 EXPORT_SYMBOL(blk_congestion_wait);
2680 * Has to be called with the request spinlock acquired
2682 static int attempt_merge(request_queue_t *q, struct request *req,
2683 struct request *next)
2685 if (!rq_mergeable(req) || !rq_mergeable(next))
2691 if (req->sector + req->nr_sectors != next->sector)
2694 if (rq_data_dir(req) != rq_data_dir(next)
2695 || req->rq_disk != next->rq_disk
2696 || next->waiting || next->special)
2700 * If we are allowed to merge, then append bio list
2701 * from next to rq and release next. merge_requests_fn
2702 * will have updated segment counts, update sector
2705 if (!q->merge_requests_fn(q, req, next))
2709 * At this point we have either done a back merge
2710 * or front merge. We need the smaller start_time of
2711 * the merged requests to be the current request
2712 * for accounting purposes.
2714 if (time_after(req->start_time, next->start_time))
2715 req->start_time = next->start_time;
2717 req->biotail->bi_next = next->bio;
2718 req->biotail = next->biotail;
2720 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2722 elv_merge_requests(q, req, next);
2725 disk_round_stats(req->rq_disk);
2726 req->rq_disk->in_flight--;
2729 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2731 __blk_put_request(q, next);
2735 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2737 struct request *next = elv_latter_request(q, rq);
2740 return attempt_merge(q, rq, next);
2745 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2747 struct request *prev = elv_former_request(q, rq);
2750 return attempt_merge(q, prev, rq);
2755 static void init_request_from_bio(struct request *req, struct bio *bio)
2757 req->flags |= REQ_CMD;
2760 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2762 if (bio_rw_ahead(bio) || bio_failfast(bio))
2763 req->flags |= REQ_FAILFAST;
2766 * REQ_BARRIER implies no merging, but lets make it explicit
2768 if (unlikely(bio_barrier(bio)))
2769 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2772 req->hard_sector = req->sector = bio->bi_sector;
2773 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2774 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2775 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2776 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2777 req->buffer = bio_data(bio); /* see ->buffer comment above */
2778 req->waiting = NULL;
2779 req->bio = req->biotail = bio;
2780 req->ioprio = bio_prio(bio);
2781 req->rq_disk = bio->bi_bdev->bd_disk;
2782 req->start_time = jiffies;
2785 static int __make_request(request_queue_t *q, struct bio *bio)
2787 struct request *req;
2788 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
2789 unsigned short prio;
2792 sector = bio->bi_sector;
2793 nr_sectors = bio_sectors(bio);
2794 cur_nr_sectors = bio_cur_sectors(bio);
2795 prio = bio_prio(bio);
2797 rw = bio_data_dir(bio);
2798 sync = bio_sync(bio);
2801 * low level driver can indicate that it wants pages above a
2802 * certain limit bounced to low memory (ie for highmem, or even
2803 * ISA dma in theory)
2805 blk_queue_bounce(q, &bio);
2807 spin_lock_prefetch(q->queue_lock);
2809 barrier = bio_barrier(bio);
2810 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2815 spin_lock_irq(q->queue_lock);
2817 if (unlikely(barrier) || elv_queue_empty(q))
2820 el_ret = elv_merge(q, &req, bio);
2822 case ELEVATOR_BACK_MERGE:
2823 BUG_ON(!rq_mergeable(req));
2825 if (!q->back_merge_fn(q, req, bio))
2828 req->biotail->bi_next = bio;
2830 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2831 req->ioprio = ioprio_best(req->ioprio, prio);
2832 drive_stat_acct(req, nr_sectors, 0);
2833 if (!attempt_back_merge(q, req))
2834 elv_merged_request(q, req);
2837 case ELEVATOR_FRONT_MERGE:
2838 BUG_ON(!rq_mergeable(req));
2840 if (!q->front_merge_fn(q, req, bio))
2843 bio->bi_next = req->bio;
2847 * may not be valid. if the low level driver said
2848 * it didn't need a bounce buffer then it better
2849 * not touch req->buffer either...
2851 req->buffer = bio_data(bio);
2852 req->current_nr_sectors = cur_nr_sectors;
2853 req->hard_cur_sectors = cur_nr_sectors;
2854 req->sector = req->hard_sector = sector;
2855 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2856 req->ioprio = ioprio_best(req->ioprio, prio);
2857 drive_stat_acct(req, nr_sectors, 0);
2858 if (!attempt_front_merge(q, req))
2859 elv_merged_request(q, req);
2862 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2869 * Grab a free request. This is might sleep but can not fail.
2870 * Returns with the queue unlocked.
2872 req = get_request_wait(q, rw, bio);
2875 * After dropping the lock and possibly sleeping here, our request
2876 * may now be mergeable after it had proven unmergeable (above).
2877 * We don't worry about that case for efficiency. It won't happen
2878 * often, and the elevators are able to handle it.
2880 init_request_from_bio(req, bio);
2882 spin_lock_irq(q->queue_lock);
2883 if (elv_queue_empty(q))
2885 add_request(q, req);
2888 __generic_unplug_device(q);
2890 spin_unlock_irq(q->queue_lock);
2894 bio_endio(bio, nr_sectors << 9, err);
2899 * If bio->bi_dev is a partition, remap the location
2901 static inline void blk_partition_remap(struct bio *bio)
2903 struct block_device *bdev = bio->bi_bdev;
2905 if (bdev != bdev->bd_contains) {
2906 struct hd_struct *p = bdev->bd_part;
2907 const int rw = bio_data_dir(bio);
2909 p->sectors[rw] += bio_sectors(bio);
2912 bio->bi_sector += p->start_sect;
2913 bio->bi_bdev = bdev->bd_contains;
2917 static void handle_bad_sector(struct bio *bio)
2919 char b[BDEVNAME_SIZE];
2921 printk(KERN_INFO "attempt to access beyond end of device\n");
2922 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2923 bdevname(bio->bi_bdev, b),
2925 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2926 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2928 set_bit(BIO_EOF, &bio->bi_flags);
2932 * generic_make_request: hand a buffer to its device driver for I/O
2933 * @bio: The bio describing the location in memory and on the device.
2935 * generic_make_request() is used to make I/O requests of block
2936 * devices. It is passed a &struct bio, which describes the I/O that needs
2939 * generic_make_request() does not return any status. The
2940 * success/failure status of the request, along with notification of
2941 * completion, is delivered asynchronously through the bio->bi_end_io
2942 * function described (one day) else where.
2944 * The caller of generic_make_request must make sure that bi_io_vec
2945 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2946 * set to describe the device address, and the
2947 * bi_end_io and optionally bi_private are set to describe how
2948 * completion notification should be signaled.
2950 * generic_make_request and the drivers it calls may use bi_next if this
2951 * bio happens to be merged with someone else, and may change bi_dev and
2952 * bi_sector for remaps as it sees fit. So the values of these fields
2953 * should NOT be depended on after the call to generic_make_request.
2955 void generic_make_request(struct bio *bio)
2959 int ret, nr_sectors = bio_sectors(bio);
2962 /* Test device or partition size, when known. */
2963 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2965 sector_t sector = bio->bi_sector;
2967 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2969 * This may well happen - the kernel calls bread()
2970 * without checking the size of the device, e.g., when
2971 * mounting a device.
2973 handle_bad_sector(bio);
2979 * Resolve the mapping until finished. (drivers are
2980 * still free to implement/resolve their own stacking
2981 * by explicitly returning 0)
2983 * NOTE: we don't repeat the blk_size check for each new device.
2984 * Stacking drivers are expected to know what they are doing.
2987 char b[BDEVNAME_SIZE];
2989 q = bdev_get_queue(bio->bi_bdev);
2992 "generic_make_request: Trying to access "
2993 "nonexistent block-device %s (%Lu)\n",
2994 bdevname(bio->bi_bdev, b),
2995 (long long) bio->bi_sector);
2997 bio_endio(bio, bio->bi_size, -EIO);
3001 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3002 printk("bio too big device %s (%u > %u)\n",
3003 bdevname(bio->bi_bdev, b),
3009 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3013 * If this device has partitions, remap block n
3014 * of partition p to block n+start(p) of the disk.
3016 blk_partition_remap(bio);
3018 ret = q->make_request_fn(q, bio);
3022 EXPORT_SYMBOL(generic_make_request);
3025 * submit_bio: submit a bio to the block device layer for I/O
3026 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3027 * @bio: The &struct bio which describes the I/O
3029 * submit_bio() is very similar in purpose to generic_make_request(), and
3030 * uses that function to do most of the work. Both are fairly rough
3031 * interfaces, @bio must be presetup and ready for I/O.
3034 void submit_bio(int rw, struct bio *bio)
3036 int count = bio_sectors(bio);
3038 BIO_BUG_ON(!bio->bi_size);
3039 BIO_BUG_ON(!bio->bi_io_vec);
3042 mod_page_state(pgpgout, count);
3044 mod_page_state(pgpgin, count);
3046 if (unlikely(block_dump)) {
3047 char b[BDEVNAME_SIZE];
3048 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3049 current->comm, current->pid,
3050 (rw & WRITE) ? "WRITE" : "READ",
3051 (unsigned long long)bio->bi_sector,
3052 bdevname(bio->bi_bdev,b));
3055 generic_make_request(bio);
3058 EXPORT_SYMBOL(submit_bio);
3060 static void blk_recalc_rq_segments(struct request *rq)
3062 struct bio *bio, *prevbio = NULL;
3063 int nr_phys_segs, nr_hw_segs;
3064 unsigned int phys_size, hw_size;
3065 request_queue_t *q = rq->q;
3070 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3071 rq_for_each_bio(bio, rq) {
3072 /* Force bio hw/phys segs to be recalculated. */
3073 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3075 nr_phys_segs += bio_phys_segments(q, bio);
3076 nr_hw_segs += bio_hw_segments(q, bio);
3078 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3079 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3081 if (blk_phys_contig_segment(q, prevbio, bio) &&
3082 pseg <= q->max_segment_size) {
3084 phys_size += prevbio->bi_size + bio->bi_size;
3088 if (blk_hw_contig_segment(q, prevbio, bio) &&
3089 hseg <= q->max_segment_size) {
3091 hw_size += prevbio->bi_size + bio->bi_size;
3098 rq->nr_phys_segments = nr_phys_segs;
3099 rq->nr_hw_segments = nr_hw_segs;
3102 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3104 if (blk_fs_request(rq)) {
3105 rq->hard_sector += nsect;
3106 rq->hard_nr_sectors -= nsect;
3109 * Move the I/O submission pointers ahead if required.
3111 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3112 (rq->sector <= rq->hard_sector)) {
3113 rq->sector = rq->hard_sector;
3114 rq->nr_sectors = rq->hard_nr_sectors;
3115 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3116 rq->current_nr_sectors = rq->hard_cur_sectors;
3117 rq->buffer = bio_data(rq->bio);
3121 * if total number of sectors is less than the first segment
3122 * size, something has gone terribly wrong
3124 if (rq->nr_sectors < rq->current_nr_sectors) {
3125 printk("blk: request botched\n");
3126 rq->nr_sectors = rq->current_nr_sectors;
3131 static int __end_that_request_first(struct request *req, int uptodate,
3134 int total_bytes, bio_nbytes, error, next_idx = 0;
3138 * extend uptodate bool to allow < 0 value to be direct io error
3141 if (end_io_error(uptodate))
3142 error = !uptodate ? -EIO : uptodate;
3145 * for a REQ_BLOCK_PC request, we want to carry any eventual
3146 * sense key with us all the way through
3148 if (!blk_pc_request(req))
3152 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3153 printk("end_request: I/O error, dev %s, sector %llu\n",
3154 req->rq_disk ? req->rq_disk->disk_name : "?",
3155 (unsigned long long)req->sector);
3158 if (blk_fs_request(req) && req->rq_disk) {
3159 const int rw = rq_data_dir(req);
3161 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3164 total_bytes = bio_nbytes = 0;
3165 while ((bio = req->bio) != NULL) {
3168 if (nr_bytes >= bio->bi_size) {
3169 req->bio = bio->bi_next;
3170 nbytes = bio->bi_size;
3171 if (!ordered_bio_endio(req, bio, nbytes, error))
3172 bio_endio(bio, nbytes, error);
3176 int idx = bio->bi_idx + next_idx;
3178 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3179 blk_dump_rq_flags(req, "__end_that");
3180 printk("%s: bio idx %d >= vcnt %d\n",
3182 bio->bi_idx, bio->bi_vcnt);
3186 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3187 BIO_BUG_ON(nbytes > bio->bi_size);
3190 * not a complete bvec done
3192 if (unlikely(nbytes > nr_bytes)) {
3193 bio_nbytes += nr_bytes;
3194 total_bytes += nr_bytes;
3199 * advance to the next vector
3202 bio_nbytes += nbytes;
3205 total_bytes += nbytes;
3208 if ((bio = req->bio)) {
3210 * end more in this run, or just return 'not-done'
3212 if (unlikely(nr_bytes <= 0))
3224 * if the request wasn't completed, update state
3227 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3228 bio_endio(bio, bio_nbytes, error);
3229 bio->bi_idx += next_idx;
3230 bio_iovec(bio)->bv_offset += nr_bytes;
3231 bio_iovec(bio)->bv_len -= nr_bytes;
3234 blk_recalc_rq_sectors(req, total_bytes >> 9);
3235 blk_recalc_rq_segments(req);
3240 * end_that_request_first - end I/O on a request
3241 * @req: the request being processed
3242 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3243 * @nr_sectors: number of sectors to end I/O on
3246 * Ends I/O on a number of sectors attached to @req, and sets it up
3247 * for the next range of segments (if any) in the cluster.
3250 * 0 - we are done with this request, call end_that_request_last()
3251 * 1 - still buffers pending for this request
3253 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3255 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3258 EXPORT_SYMBOL(end_that_request_first);
3261 * end_that_request_chunk - end I/O on a request
3262 * @req: the request being processed
3263 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3264 * @nr_bytes: number of bytes to complete
3267 * Ends I/O on a number of bytes attached to @req, and sets it up
3268 * for the next range of segments (if any). Like end_that_request_first(),
3269 * but deals with bytes instead of sectors.
3272 * 0 - we are done with this request, call end_that_request_last()
3273 * 1 - still buffers pending for this request
3275 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3277 return __end_that_request_first(req, uptodate, nr_bytes);
3280 EXPORT_SYMBOL(end_that_request_chunk);
3283 * splice the completion data to a local structure and hand off to
3284 * process_completion_queue() to complete the requests
3286 static void blk_done_softirq(struct softirq_action *h)
3288 struct list_head *cpu_list;
3289 LIST_HEAD(local_list);
3291 local_irq_disable();
3292 cpu_list = &__get_cpu_var(blk_cpu_done);
3293 list_splice_init(cpu_list, &local_list);
3296 while (!list_empty(&local_list)) {
3297 struct request *rq = list_entry(local_list.next, struct request, donelist);
3299 list_del_init(&rq->donelist);
3300 rq->q->softirq_done_fn(rq);
3304 #ifdef CONFIG_HOTPLUG_CPU
3306 static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3310 * If a CPU goes away, splice its entries to the current CPU
3311 * and trigger a run of the softirq
3313 if (action == CPU_DEAD) {
3314 int cpu = (unsigned long) hcpu;
3316 local_irq_disable();
3317 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3318 &__get_cpu_var(blk_cpu_done));
3319 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3327 static struct notifier_block __devinitdata blk_cpu_notifier = {
3328 .notifier_call = blk_cpu_notify,
3331 #endif /* CONFIG_HOTPLUG_CPU */
3334 * blk_complete_request - end I/O on a request
3335 * @req: the request being processed
3338 * Ends all I/O on a request. It does not handle partial completions,
3339 * unless the driver actually implements this in its completionc callback
3340 * through requeueing. Theh actual completion happens out-of-order,
3341 * through a softirq handler. The user must have registered a completion
3342 * callback through blk_queue_softirq_done().
3345 void blk_complete_request(struct request *req)
3347 struct list_head *cpu_list;
3348 unsigned long flags;
3350 BUG_ON(!req->q->softirq_done_fn);
3352 local_irq_save(flags);
3354 cpu_list = &__get_cpu_var(blk_cpu_done);
3355 list_add_tail(&req->donelist, cpu_list);
3356 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3358 local_irq_restore(flags);
3361 EXPORT_SYMBOL(blk_complete_request);
3364 * queue lock must be held
3366 void end_that_request_last(struct request *req, int uptodate)
3368 struct gendisk *disk = req->rq_disk;
3372 * extend uptodate bool to allow < 0 value to be direct io error
3375 if (end_io_error(uptodate))
3376 error = !uptodate ? -EIO : uptodate;
3378 if (unlikely(laptop_mode) && blk_fs_request(req))
3379 laptop_io_completion();
3381 if (disk && blk_fs_request(req)) {
3382 unsigned long duration = jiffies - req->start_time;
3383 const int rw = rq_data_dir(req);
3385 __disk_stat_inc(disk, ios[rw]);
3386 __disk_stat_add(disk, ticks[rw], duration);
3387 disk_round_stats(disk);
3391 req->end_io(req, error);
3393 __blk_put_request(req->q, req);
3396 EXPORT_SYMBOL(end_that_request_last);
3398 void end_request(struct request *req, int uptodate)
3400 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3401 add_disk_randomness(req->rq_disk);
3402 blkdev_dequeue_request(req);
3403 end_that_request_last(req, uptodate);
3407 EXPORT_SYMBOL(end_request);
3409 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3411 /* first three bits are identical in rq->flags and bio->bi_rw */
3412 rq->flags |= (bio->bi_rw & 7);
3414 rq->nr_phys_segments = bio_phys_segments(q, bio);
3415 rq->nr_hw_segments = bio_hw_segments(q, bio);
3416 rq->current_nr_sectors = bio_cur_sectors(bio);
3417 rq->hard_cur_sectors = rq->current_nr_sectors;
3418 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3419 rq->buffer = bio_data(bio);
3421 rq->bio = rq->biotail = bio;
3424 EXPORT_SYMBOL(blk_rq_bio_prep);
3426 int kblockd_schedule_work(struct work_struct *work)
3428 return queue_work(kblockd_workqueue, work);
3431 EXPORT_SYMBOL(kblockd_schedule_work);
3433 void kblockd_flush(void)
3435 flush_workqueue(kblockd_workqueue);
3437 EXPORT_SYMBOL(kblockd_flush);
3439 int __init blk_dev_init(void)
3443 kblockd_workqueue = create_workqueue("kblockd");
3444 if (!kblockd_workqueue)
3445 panic("Failed to create kblockd\n");
3447 request_cachep = kmem_cache_create("blkdev_requests",
3448 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3450 requestq_cachep = kmem_cache_create("blkdev_queue",
3451 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3453 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3454 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3456 for (i = 0; i < NR_CPUS; i++)
3457 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3459 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3460 #ifdef CONFIG_HOTPLUG_CPU
3461 register_cpu_notifier(&blk_cpu_notifier);
3464 blk_max_low_pfn = max_low_pfn;
3465 blk_max_pfn = max_pfn;
3471 * IO Context helper functions
3473 void put_io_context(struct io_context *ioc)
3478 BUG_ON(atomic_read(&ioc->refcount) == 0);
3480 if (atomic_dec_and_test(&ioc->refcount)) {
3481 if (ioc->aic && ioc->aic->dtor)
3482 ioc->aic->dtor(ioc->aic);
3483 if (ioc->cic && ioc->cic->dtor)
3484 ioc->cic->dtor(ioc->cic);
3486 kmem_cache_free(iocontext_cachep, ioc);
3489 EXPORT_SYMBOL(put_io_context);
3491 /* Called by the exitting task */
3492 void exit_io_context(void)
3494 unsigned long flags;
3495 struct io_context *ioc;
3497 local_irq_save(flags);
3499 ioc = current->io_context;
3500 current->io_context = NULL;
3502 task_unlock(current);
3503 local_irq_restore(flags);
3505 if (ioc->aic && ioc->aic->exit)
3506 ioc->aic->exit(ioc->aic);
3507 if (ioc->cic && ioc->cic->exit)
3508 ioc->cic->exit(ioc->cic);
3510 put_io_context(ioc);
3514 * If the current task has no IO context then create one and initialise it.
3515 * Otherwise, return its existing IO context.
3517 * This returned IO context doesn't have a specifically elevated refcount,
3518 * but since the current task itself holds a reference, the context can be
3519 * used in general code, so long as it stays within `current` context.
3521 struct io_context *current_io_context(gfp_t gfp_flags)
3523 struct task_struct *tsk = current;
3524 struct io_context *ret;
3526 ret = tsk->io_context;
3530 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3532 atomic_set(&ret->refcount, 1);
3533 ret->task = current;
3534 ret->set_ioprio = NULL;
3535 ret->last_waited = jiffies; /* doesn't matter... */
3536 ret->nr_batch_requests = 0; /* because this is 0 */
3539 tsk->io_context = ret;
3544 EXPORT_SYMBOL(current_io_context);
3547 * If the current task has no IO context then create one and initialise it.
3548 * If it does have a context, take a ref on it.
3550 * This is always called in the context of the task which submitted the I/O.
3552 struct io_context *get_io_context(gfp_t gfp_flags)
3554 struct io_context *ret;
3555 ret = current_io_context(gfp_flags);
3557 atomic_inc(&ret->refcount);
3560 EXPORT_SYMBOL(get_io_context);
3562 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3564 struct io_context *src = *psrc;
3565 struct io_context *dst = *pdst;
3568 BUG_ON(atomic_read(&src->refcount) == 0);
3569 atomic_inc(&src->refcount);
3570 put_io_context(dst);
3574 EXPORT_SYMBOL(copy_io_context);
3576 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3578 struct io_context *temp;
3583 EXPORT_SYMBOL(swap_io_context);
3588 struct queue_sysfs_entry {
3589 struct attribute attr;
3590 ssize_t (*show)(struct request_queue *, char *);
3591 ssize_t (*store)(struct request_queue *, const char *, size_t);
3595 queue_var_show(unsigned int var, char *page)
3597 return sprintf(page, "%d\n", var);
3601 queue_var_store(unsigned long *var, const char *page, size_t count)
3603 char *p = (char *) page;
3605 *var = simple_strtoul(p, &p, 10);
3609 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3611 return queue_var_show(q->nr_requests, (page));
3615 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3617 struct request_list *rl = &q->rq;
3619 int ret = queue_var_store(&q->nr_requests, page, count);
3620 if (q->nr_requests < BLKDEV_MIN_RQ)
3621 q->nr_requests = BLKDEV_MIN_RQ;
3622 blk_queue_congestion_threshold(q);
3624 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3625 set_queue_congested(q, READ);
3626 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3627 clear_queue_congested(q, READ);
3629 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3630 set_queue_congested(q, WRITE);
3631 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3632 clear_queue_congested(q, WRITE);
3634 if (rl->count[READ] >= q->nr_requests) {
3635 blk_set_queue_full(q, READ);
3636 } else if (rl->count[READ]+1 <= q->nr_requests) {
3637 blk_clear_queue_full(q, READ);
3638 wake_up(&rl->wait[READ]);
3641 if (rl->count[WRITE] >= q->nr_requests) {
3642 blk_set_queue_full(q, WRITE);
3643 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3644 blk_clear_queue_full(q, WRITE);
3645 wake_up(&rl->wait[WRITE]);
3650 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3652 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3654 return queue_var_show(ra_kb, (page));
3658 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3660 unsigned long ra_kb;
3661 ssize_t ret = queue_var_store(&ra_kb, page, count);
3663 spin_lock_irq(q->queue_lock);
3664 if (ra_kb > (q->max_sectors >> 1))
3665 ra_kb = (q->max_sectors >> 1);
3667 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3668 spin_unlock_irq(q->queue_lock);
3673 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3675 int max_sectors_kb = q->max_sectors >> 1;
3677 return queue_var_show(max_sectors_kb, (page));
3681 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3683 unsigned long max_sectors_kb,
3684 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3685 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3686 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3689 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3692 * Take the queue lock to update the readahead and max_sectors
3693 * values synchronously:
3695 spin_lock_irq(q->queue_lock);
3697 * Trim readahead window as well, if necessary:
3699 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3700 if (ra_kb > max_sectors_kb)
3701 q->backing_dev_info.ra_pages =
3702 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3704 q->max_sectors = max_sectors_kb << 1;
3705 spin_unlock_irq(q->queue_lock);
3710 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3712 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3714 return queue_var_show(max_hw_sectors_kb, (page));
3718 static struct queue_sysfs_entry queue_requests_entry = {
3719 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3720 .show = queue_requests_show,
3721 .store = queue_requests_store,
3724 static struct queue_sysfs_entry queue_ra_entry = {
3725 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3726 .show = queue_ra_show,
3727 .store = queue_ra_store,
3730 static struct queue_sysfs_entry queue_max_sectors_entry = {
3731 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3732 .show = queue_max_sectors_show,
3733 .store = queue_max_sectors_store,
3736 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3737 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3738 .show = queue_max_hw_sectors_show,
3741 static struct queue_sysfs_entry queue_iosched_entry = {
3742 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3743 .show = elv_iosched_show,
3744 .store = elv_iosched_store,
3747 static struct attribute *default_attrs[] = {
3748 &queue_requests_entry.attr,
3749 &queue_ra_entry.attr,
3750 &queue_max_hw_sectors_entry.attr,
3751 &queue_max_sectors_entry.attr,
3752 &queue_iosched_entry.attr,
3756 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3759 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3761 struct queue_sysfs_entry *entry = to_queue(attr);
3762 struct request_queue *q;
3764 q = container_of(kobj, struct request_queue, kobj);
3768 return entry->show(q, page);
3772 queue_attr_store(struct kobject *kobj, struct attribute *attr,
3773 const char *page, size_t length)
3775 struct queue_sysfs_entry *entry = to_queue(attr);
3776 struct request_queue *q;
3778 q = container_of(kobj, struct request_queue, kobj);
3782 return entry->store(q, page, length);
3785 static struct sysfs_ops queue_sysfs_ops = {
3786 .show = queue_attr_show,
3787 .store = queue_attr_store,
3790 static struct kobj_type queue_ktype = {
3791 .sysfs_ops = &queue_sysfs_ops,
3792 .default_attrs = default_attrs,
3795 int blk_register_queue(struct gendisk *disk)
3799 request_queue_t *q = disk->queue;
3801 if (!q || !q->request_fn)
3804 q->kobj.parent = kobject_get(&disk->kobj);
3805 if (!q->kobj.parent)
3808 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3809 q->kobj.ktype = &queue_ktype;
3811 ret = kobject_register(&q->kobj);
3815 ret = elv_register_queue(q);
3817 kobject_unregister(&q->kobj);
3824 void blk_unregister_queue(struct gendisk *disk)
3826 request_queue_t *q = disk->queue;
3828 if (q && q->request_fn) {
3829 elv_unregister_queue(q);
3831 kobject_unregister(&q->kobj);
3832 kobject_put(&disk->kobj);