Merge commit 'v2.6.29' into x86/setup-lzma
[linux-2.6] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16 #include <linux/kvm_host.h>
17
18 #include "kvm_svm.h"
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28
29 #include <asm/desc.h>
30
31 #include <asm/virtext.h>
32
33 #define __ex(x) __kvm_handle_fault_on_reboot(x)
34
35 MODULE_AUTHOR("Qumranet");
36 MODULE_LICENSE("GPL");
37
38 #define IOPM_ALLOC_ORDER 2
39 #define MSRPM_ALLOC_ORDER 1
40
41 #define DR7_GD_MASK (1 << 13)
42 #define DR6_BD_MASK (1 << 13)
43
44 #define SEG_TYPE_LDT 2
45 #define SEG_TYPE_BUSY_TSS16 3
46
47 #define SVM_FEATURE_NPT  (1 << 0)
48 #define SVM_FEATURE_LBRV (1 << 1)
49 #define SVM_FEATURE_SVML (1 << 2)
50
51 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
52
53 /* enable NPT for AMD64 and X86 with PAE */
54 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
55 static bool npt_enabled = true;
56 #else
57 static bool npt_enabled = false;
58 #endif
59 static int npt = 1;
60
61 module_param(npt, int, S_IRUGO);
62
63 static void kvm_reput_irq(struct vcpu_svm *svm);
64 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
65
66 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
67 {
68         return container_of(vcpu, struct vcpu_svm, vcpu);
69 }
70
71 static unsigned long iopm_base;
72
73 struct kvm_ldttss_desc {
74         u16 limit0;
75         u16 base0;
76         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
77         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
78         u32 base3;
79         u32 zero1;
80 } __attribute__((packed));
81
82 struct svm_cpu_data {
83         int cpu;
84
85         u64 asid_generation;
86         u32 max_asid;
87         u32 next_asid;
88         struct kvm_ldttss_desc *tss_desc;
89
90         struct page *save_area;
91 };
92
93 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
94 static uint32_t svm_features;
95
96 struct svm_init_data {
97         int cpu;
98         int r;
99 };
100
101 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
102
103 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
104 #define MSRS_RANGE_SIZE 2048
105 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
106
107 #define MAX_INST_SIZE 15
108
109 static inline u32 svm_has(u32 feat)
110 {
111         return svm_features & feat;
112 }
113
114 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
115 {
116         int word_index = __ffs(vcpu->arch.irq_summary);
117         int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
118         int irq = word_index * BITS_PER_LONG + bit_index;
119
120         clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
121         if (!vcpu->arch.irq_pending[word_index])
122                 clear_bit(word_index, &vcpu->arch.irq_summary);
123         return irq;
124 }
125
126 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
127 {
128         set_bit(irq, vcpu->arch.irq_pending);
129         set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
130 }
131
132 static inline void clgi(void)
133 {
134         asm volatile (__ex(SVM_CLGI));
135 }
136
137 static inline void stgi(void)
138 {
139         asm volatile (__ex(SVM_STGI));
140 }
141
142 static inline void invlpga(unsigned long addr, u32 asid)
143 {
144         asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
145 }
146
147 static inline unsigned long kvm_read_cr2(void)
148 {
149         unsigned long cr2;
150
151         asm volatile ("mov %%cr2, %0" : "=r" (cr2));
152         return cr2;
153 }
154
155 static inline void kvm_write_cr2(unsigned long val)
156 {
157         asm volatile ("mov %0, %%cr2" :: "r" (val));
158 }
159
160 static inline unsigned long read_dr6(void)
161 {
162         unsigned long dr6;
163
164         asm volatile ("mov %%dr6, %0" : "=r" (dr6));
165         return dr6;
166 }
167
168 static inline void write_dr6(unsigned long val)
169 {
170         asm volatile ("mov %0, %%dr6" :: "r" (val));
171 }
172
173 static inline unsigned long read_dr7(void)
174 {
175         unsigned long dr7;
176
177         asm volatile ("mov %%dr7, %0" : "=r" (dr7));
178         return dr7;
179 }
180
181 static inline void write_dr7(unsigned long val)
182 {
183         asm volatile ("mov %0, %%dr7" :: "r" (val));
184 }
185
186 static inline void force_new_asid(struct kvm_vcpu *vcpu)
187 {
188         to_svm(vcpu)->asid_generation--;
189 }
190
191 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
192 {
193         force_new_asid(vcpu);
194 }
195
196 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
197 {
198         if (!npt_enabled && !(efer & EFER_LMA))
199                 efer &= ~EFER_LME;
200
201         to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
202         vcpu->arch.shadow_efer = efer;
203 }
204
205 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
206                                 bool has_error_code, u32 error_code)
207 {
208         struct vcpu_svm *svm = to_svm(vcpu);
209
210         svm->vmcb->control.event_inj = nr
211                 | SVM_EVTINJ_VALID
212                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
213                 | SVM_EVTINJ_TYPE_EXEPT;
214         svm->vmcb->control.event_inj_err = error_code;
215 }
216
217 static bool svm_exception_injected(struct kvm_vcpu *vcpu)
218 {
219         struct vcpu_svm *svm = to_svm(vcpu);
220
221         return !(svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID);
222 }
223
224 static int is_external_interrupt(u32 info)
225 {
226         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
227         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
228 }
229
230 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
231 {
232         struct vcpu_svm *svm = to_svm(vcpu);
233
234         if (!svm->next_rip) {
235                 printk(KERN_DEBUG "%s: NOP\n", __func__);
236                 return;
237         }
238         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
239                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
240                        __func__, kvm_rip_read(vcpu), svm->next_rip);
241
242         kvm_rip_write(vcpu, svm->next_rip);
243         svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
244
245         vcpu->arch.interrupt_window_open = 1;
246 }
247
248 static int has_svm(void)
249 {
250         const char *msg;
251
252         if (!cpu_has_svm(&msg)) {
253                 printk(KERN_INFO "has_svn: %s\n", msg);
254                 return 0;
255         }
256
257         return 1;
258 }
259
260 static void svm_hardware_disable(void *garbage)
261 {
262         cpu_svm_disable();
263 }
264
265 static void svm_hardware_enable(void *garbage)
266 {
267
268         struct svm_cpu_data *svm_data;
269         uint64_t efer;
270         struct desc_ptr gdt_descr;
271         struct desc_struct *gdt;
272         int me = raw_smp_processor_id();
273
274         if (!has_svm()) {
275                 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
276                 return;
277         }
278         svm_data = per_cpu(svm_data, me);
279
280         if (!svm_data) {
281                 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
282                        me);
283                 return;
284         }
285
286         svm_data->asid_generation = 1;
287         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
288         svm_data->next_asid = svm_data->max_asid + 1;
289
290         asm volatile ("sgdt %0" : "=m"(gdt_descr));
291         gdt = (struct desc_struct *)gdt_descr.address;
292         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
293
294         rdmsrl(MSR_EFER, efer);
295         wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
296
297         wrmsrl(MSR_VM_HSAVE_PA,
298                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
299 }
300
301 static void svm_cpu_uninit(int cpu)
302 {
303         struct svm_cpu_data *svm_data
304                 = per_cpu(svm_data, raw_smp_processor_id());
305
306         if (!svm_data)
307                 return;
308
309         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
310         __free_page(svm_data->save_area);
311         kfree(svm_data);
312 }
313
314 static int svm_cpu_init(int cpu)
315 {
316         struct svm_cpu_data *svm_data;
317         int r;
318
319         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
320         if (!svm_data)
321                 return -ENOMEM;
322         svm_data->cpu = cpu;
323         svm_data->save_area = alloc_page(GFP_KERNEL);
324         r = -ENOMEM;
325         if (!svm_data->save_area)
326                 goto err_1;
327
328         per_cpu(svm_data, cpu) = svm_data;
329
330         return 0;
331
332 err_1:
333         kfree(svm_data);
334         return r;
335
336 }
337
338 static void set_msr_interception(u32 *msrpm, unsigned msr,
339                                  int read, int write)
340 {
341         int i;
342
343         for (i = 0; i < NUM_MSR_MAPS; i++) {
344                 if (msr >= msrpm_ranges[i] &&
345                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
346                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
347                                           msrpm_ranges[i]) * 2;
348
349                         u32 *base = msrpm + (msr_offset / 32);
350                         u32 msr_shift = msr_offset % 32;
351                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
352                         *base = (*base & ~(0x3 << msr_shift)) |
353                                 (mask << msr_shift);
354                         return;
355                 }
356         }
357         BUG();
358 }
359
360 static void svm_vcpu_init_msrpm(u32 *msrpm)
361 {
362         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
363
364 #ifdef CONFIG_X86_64
365         set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
366         set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
367         set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
368         set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
369         set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
370         set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
371 #endif
372         set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
373         set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
374         set_msr_interception(msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
375         set_msr_interception(msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
376 }
377
378 static void svm_enable_lbrv(struct vcpu_svm *svm)
379 {
380         u32 *msrpm = svm->msrpm;
381
382         svm->vmcb->control.lbr_ctl = 1;
383         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
384         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
385         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
386         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
387 }
388
389 static void svm_disable_lbrv(struct vcpu_svm *svm)
390 {
391         u32 *msrpm = svm->msrpm;
392
393         svm->vmcb->control.lbr_ctl = 0;
394         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
395         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
396         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
397         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
398 }
399
400 static __init int svm_hardware_setup(void)
401 {
402         int cpu;
403         struct page *iopm_pages;
404         void *iopm_va;
405         int r;
406
407         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
408
409         if (!iopm_pages)
410                 return -ENOMEM;
411
412         iopm_va = page_address(iopm_pages);
413         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
414         clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
415         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
416
417         if (boot_cpu_has(X86_FEATURE_NX))
418                 kvm_enable_efer_bits(EFER_NX);
419
420         for_each_online_cpu(cpu) {
421                 r = svm_cpu_init(cpu);
422                 if (r)
423                         goto err;
424         }
425
426         svm_features = cpuid_edx(SVM_CPUID_FUNC);
427
428         if (!svm_has(SVM_FEATURE_NPT))
429                 npt_enabled = false;
430
431         if (npt_enabled && !npt) {
432                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
433                 npt_enabled = false;
434         }
435
436         if (npt_enabled) {
437                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
438                 kvm_enable_tdp();
439         } else
440                 kvm_disable_tdp();
441
442         return 0;
443
444 err:
445         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
446         iopm_base = 0;
447         return r;
448 }
449
450 static __exit void svm_hardware_unsetup(void)
451 {
452         int cpu;
453
454         for_each_online_cpu(cpu)
455                 svm_cpu_uninit(cpu);
456
457         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
458         iopm_base = 0;
459 }
460
461 static void init_seg(struct vmcb_seg *seg)
462 {
463         seg->selector = 0;
464         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
465                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
466         seg->limit = 0xffff;
467         seg->base = 0;
468 }
469
470 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
471 {
472         seg->selector = 0;
473         seg->attrib = SVM_SELECTOR_P_MASK | type;
474         seg->limit = 0xffff;
475         seg->base = 0;
476 }
477
478 static void init_vmcb(struct vcpu_svm *svm)
479 {
480         struct vmcb_control_area *control = &svm->vmcb->control;
481         struct vmcb_save_area *save = &svm->vmcb->save;
482
483         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
484                                         INTERCEPT_CR3_MASK |
485                                         INTERCEPT_CR4_MASK;
486
487         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
488                                         INTERCEPT_CR3_MASK |
489                                         INTERCEPT_CR4_MASK |
490                                         INTERCEPT_CR8_MASK;
491
492         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
493                                         INTERCEPT_DR1_MASK |
494                                         INTERCEPT_DR2_MASK |
495                                         INTERCEPT_DR3_MASK;
496
497         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
498                                         INTERCEPT_DR1_MASK |
499                                         INTERCEPT_DR2_MASK |
500                                         INTERCEPT_DR3_MASK |
501                                         INTERCEPT_DR5_MASK |
502                                         INTERCEPT_DR7_MASK;
503
504         control->intercept_exceptions = (1 << PF_VECTOR) |
505                                         (1 << UD_VECTOR) |
506                                         (1 << MC_VECTOR);
507
508
509         control->intercept =    (1ULL << INTERCEPT_INTR) |
510                                 (1ULL << INTERCEPT_NMI) |
511                                 (1ULL << INTERCEPT_SMI) |
512                                 (1ULL << INTERCEPT_CPUID) |
513                                 (1ULL << INTERCEPT_INVD) |
514                                 (1ULL << INTERCEPT_HLT) |
515                                 (1ULL << INTERCEPT_INVLPG) |
516                                 (1ULL << INTERCEPT_INVLPGA) |
517                                 (1ULL << INTERCEPT_IOIO_PROT) |
518                                 (1ULL << INTERCEPT_MSR_PROT) |
519                                 (1ULL << INTERCEPT_TASK_SWITCH) |
520                                 (1ULL << INTERCEPT_SHUTDOWN) |
521                                 (1ULL << INTERCEPT_VMRUN) |
522                                 (1ULL << INTERCEPT_VMMCALL) |
523                                 (1ULL << INTERCEPT_VMLOAD) |
524                                 (1ULL << INTERCEPT_VMSAVE) |
525                                 (1ULL << INTERCEPT_STGI) |
526                                 (1ULL << INTERCEPT_CLGI) |
527                                 (1ULL << INTERCEPT_SKINIT) |
528                                 (1ULL << INTERCEPT_WBINVD) |
529                                 (1ULL << INTERCEPT_MONITOR) |
530                                 (1ULL << INTERCEPT_MWAIT);
531
532         control->iopm_base_pa = iopm_base;
533         control->msrpm_base_pa = __pa(svm->msrpm);
534         control->tsc_offset = 0;
535         control->int_ctl = V_INTR_MASKING_MASK;
536
537         init_seg(&save->es);
538         init_seg(&save->ss);
539         init_seg(&save->ds);
540         init_seg(&save->fs);
541         init_seg(&save->gs);
542
543         save->cs.selector = 0xf000;
544         /* Executable/Readable Code Segment */
545         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
546                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
547         save->cs.limit = 0xffff;
548         /*
549          * cs.base should really be 0xffff0000, but vmx can't handle that, so
550          * be consistent with it.
551          *
552          * Replace when we have real mode working for vmx.
553          */
554         save->cs.base = 0xf0000;
555
556         save->gdtr.limit = 0xffff;
557         save->idtr.limit = 0xffff;
558
559         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
560         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
561
562         save->efer = MSR_EFER_SVME_MASK;
563         save->dr6 = 0xffff0ff0;
564         save->dr7 = 0x400;
565         save->rflags = 2;
566         save->rip = 0x0000fff0;
567         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
568
569         /*
570          * cr0 val on cpu init should be 0x60000010, we enable cpu
571          * cache by default. the orderly way is to enable cache in bios.
572          */
573         save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
574         save->cr4 = X86_CR4_PAE;
575         /* rdx = ?? */
576
577         if (npt_enabled) {
578                 /* Setup VMCB for Nested Paging */
579                 control->nested_ctl = 1;
580                 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
581                                         (1ULL << INTERCEPT_INVLPG));
582                 control->intercept_exceptions &= ~(1 << PF_VECTOR);
583                 control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
584                                                 INTERCEPT_CR3_MASK);
585                 control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
586                                                  INTERCEPT_CR3_MASK);
587                 save->g_pat = 0x0007040600070406ULL;
588                 /* enable caching because the QEMU Bios doesn't enable it */
589                 save->cr0 = X86_CR0_ET;
590                 save->cr3 = 0;
591                 save->cr4 = 0;
592         }
593         force_new_asid(&svm->vcpu);
594 }
595
596 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
597 {
598         struct vcpu_svm *svm = to_svm(vcpu);
599
600         init_vmcb(svm);
601
602         if (vcpu->vcpu_id != 0) {
603                 kvm_rip_write(vcpu, 0);
604                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
605                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
606         }
607         vcpu->arch.regs_avail = ~0;
608         vcpu->arch.regs_dirty = ~0;
609
610         return 0;
611 }
612
613 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
614 {
615         struct vcpu_svm *svm;
616         struct page *page;
617         struct page *msrpm_pages;
618         int err;
619
620         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
621         if (!svm) {
622                 err = -ENOMEM;
623                 goto out;
624         }
625
626         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
627         if (err)
628                 goto free_svm;
629
630         page = alloc_page(GFP_KERNEL);
631         if (!page) {
632                 err = -ENOMEM;
633                 goto uninit;
634         }
635
636         err = -ENOMEM;
637         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
638         if (!msrpm_pages)
639                 goto uninit;
640         svm->msrpm = page_address(msrpm_pages);
641         svm_vcpu_init_msrpm(svm->msrpm);
642
643         svm->vmcb = page_address(page);
644         clear_page(svm->vmcb);
645         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
646         svm->asid_generation = 0;
647         memset(svm->db_regs, 0, sizeof(svm->db_regs));
648         init_vmcb(svm);
649
650         fx_init(&svm->vcpu);
651         svm->vcpu.fpu_active = 1;
652         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
653         if (svm->vcpu.vcpu_id == 0)
654                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
655
656         return &svm->vcpu;
657
658 uninit:
659         kvm_vcpu_uninit(&svm->vcpu);
660 free_svm:
661         kmem_cache_free(kvm_vcpu_cache, svm);
662 out:
663         return ERR_PTR(err);
664 }
665
666 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
667 {
668         struct vcpu_svm *svm = to_svm(vcpu);
669
670         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
671         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
672         kvm_vcpu_uninit(vcpu);
673         kmem_cache_free(kvm_vcpu_cache, svm);
674 }
675
676 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
677 {
678         struct vcpu_svm *svm = to_svm(vcpu);
679         int i;
680
681         if (unlikely(cpu != vcpu->cpu)) {
682                 u64 tsc_this, delta;
683
684                 /*
685                  * Make sure that the guest sees a monotonically
686                  * increasing TSC.
687                  */
688                 rdtscll(tsc_this);
689                 delta = vcpu->arch.host_tsc - tsc_this;
690                 svm->vmcb->control.tsc_offset += delta;
691                 vcpu->cpu = cpu;
692                 kvm_migrate_timers(vcpu);
693         }
694
695         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
696                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
697 }
698
699 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
700 {
701         struct vcpu_svm *svm = to_svm(vcpu);
702         int i;
703
704         ++vcpu->stat.host_state_reload;
705         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
706                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
707
708         rdtscll(vcpu->arch.host_tsc);
709 }
710
711 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
712 {
713         return to_svm(vcpu)->vmcb->save.rflags;
714 }
715
716 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
717 {
718         to_svm(vcpu)->vmcb->save.rflags = rflags;
719 }
720
721 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
722 {
723         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
724
725         switch (seg) {
726         case VCPU_SREG_CS: return &save->cs;
727         case VCPU_SREG_DS: return &save->ds;
728         case VCPU_SREG_ES: return &save->es;
729         case VCPU_SREG_FS: return &save->fs;
730         case VCPU_SREG_GS: return &save->gs;
731         case VCPU_SREG_SS: return &save->ss;
732         case VCPU_SREG_TR: return &save->tr;
733         case VCPU_SREG_LDTR: return &save->ldtr;
734         }
735         BUG();
736         return NULL;
737 }
738
739 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
740 {
741         struct vmcb_seg *s = svm_seg(vcpu, seg);
742
743         return s->base;
744 }
745
746 static void svm_get_segment(struct kvm_vcpu *vcpu,
747                             struct kvm_segment *var, int seg)
748 {
749         struct vmcb_seg *s = svm_seg(vcpu, seg);
750
751         var->base = s->base;
752         var->limit = s->limit;
753         var->selector = s->selector;
754         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
755         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
756         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
757         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
758         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
759         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
760         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
761         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
762
763         /*
764          * SVM always stores 0 for the 'G' bit in the CS selector in
765          * the VMCB on a VMEXIT. This hurts cross-vendor migration:
766          * Intel's VMENTRY has a check on the 'G' bit.
767          */
768         if (seg == VCPU_SREG_CS)
769                 var->g = s->limit > 0xfffff;
770
771         /*
772          * Work around a bug where the busy flag in the tr selector
773          * isn't exposed
774          */
775         if (seg == VCPU_SREG_TR)
776                 var->type |= 0x2;
777
778         var->unusable = !var->present;
779 }
780
781 static int svm_get_cpl(struct kvm_vcpu *vcpu)
782 {
783         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
784
785         return save->cpl;
786 }
787
788 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
789 {
790         struct vcpu_svm *svm = to_svm(vcpu);
791
792         dt->limit = svm->vmcb->save.idtr.limit;
793         dt->base = svm->vmcb->save.idtr.base;
794 }
795
796 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
797 {
798         struct vcpu_svm *svm = to_svm(vcpu);
799
800         svm->vmcb->save.idtr.limit = dt->limit;
801         svm->vmcb->save.idtr.base = dt->base ;
802 }
803
804 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
805 {
806         struct vcpu_svm *svm = to_svm(vcpu);
807
808         dt->limit = svm->vmcb->save.gdtr.limit;
809         dt->base = svm->vmcb->save.gdtr.base;
810 }
811
812 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
813 {
814         struct vcpu_svm *svm = to_svm(vcpu);
815
816         svm->vmcb->save.gdtr.limit = dt->limit;
817         svm->vmcb->save.gdtr.base = dt->base ;
818 }
819
820 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
821 {
822 }
823
824 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
825 {
826         struct vcpu_svm *svm = to_svm(vcpu);
827
828 #ifdef CONFIG_X86_64
829         if (vcpu->arch.shadow_efer & EFER_LME) {
830                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
831                         vcpu->arch.shadow_efer |= EFER_LMA;
832                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
833                 }
834
835                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
836                         vcpu->arch.shadow_efer &= ~EFER_LMA;
837                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
838                 }
839         }
840 #endif
841         if (npt_enabled)
842                 goto set;
843
844         if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
845                 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
846                 vcpu->fpu_active = 1;
847         }
848
849         vcpu->arch.cr0 = cr0;
850         cr0 |= X86_CR0_PG | X86_CR0_WP;
851         if (!vcpu->fpu_active) {
852                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
853                 cr0 |= X86_CR0_TS;
854         }
855 set:
856         /*
857          * re-enable caching here because the QEMU bios
858          * does not do it - this results in some delay at
859          * reboot
860          */
861         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
862         svm->vmcb->save.cr0 = cr0;
863 }
864
865 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
866 {
867         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
868         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
869
870         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
871                 force_new_asid(vcpu);
872
873         vcpu->arch.cr4 = cr4;
874         if (!npt_enabled)
875                 cr4 |= X86_CR4_PAE;
876         cr4 |= host_cr4_mce;
877         to_svm(vcpu)->vmcb->save.cr4 = cr4;
878 }
879
880 static void svm_set_segment(struct kvm_vcpu *vcpu,
881                             struct kvm_segment *var, int seg)
882 {
883         struct vcpu_svm *svm = to_svm(vcpu);
884         struct vmcb_seg *s = svm_seg(vcpu, seg);
885
886         s->base = var->base;
887         s->limit = var->limit;
888         s->selector = var->selector;
889         if (var->unusable)
890                 s->attrib = 0;
891         else {
892                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
893                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
894                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
895                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
896                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
897                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
898                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
899                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
900         }
901         if (seg == VCPU_SREG_CS)
902                 svm->vmcb->save.cpl
903                         = (svm->vmcb->save.cs.attrib
904                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
905
906 }
907
908 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
909 {
910         return -EOPNOTSUPP;
911 }
912
913 static int svm_get_irq(struct kvm_vcpu *vcpu)
914 {
915         struct vcpu_svm *svm = to_svm(vcpu);
916         u32 exit_int_info = svm->vmcb->control.exit_int_info;
917
918         if (is_external_interrupt(exit_int_info))
919                 return exit_int_info & SVM_EVTINJ_VEC_MASK;
920         return -1;
921 }
922
923 static void load_host_msrs(struct kvm_vcpu *vcpu)
924 {
925 #ifdef CONFIG_X86_64
926         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
927 #endif
928 }
929
930 static void save_host_msrs(struct kvm_vcpu *vcpu)
931 {
932 #ifdef CONFIG_X86_64
933         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
934 #endif
935 }
936
937 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
938 {
939         if (svm_data->next_asid > svm_data->max_asid) {
940                 ++svm_data->asid_generation;
941                 svm_data->next_asid = 1;
942                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
943         }
944
945         svm->vcpu.cpu = svm_data->cpu;
946         svm->asid_generation = svm_data->asid_generation;
947         svm->vmcb->control.asid = svm_data->next_asid++;
948 }
949
950 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
951 {
952         unsigned long val = to_svm(vcpu)->db_regs[dr];
953         KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
954         return val;
955 }
956
957 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
958                        int *exception)
959 {
960         struct vcpu_svm *svm = to_svm(vcpu);
961
962         *exception = 0;
963
964         if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
965                 svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
966                 svm->vmcb->save.dr6 |= DR6_BD_MASK;
967                 *exception = DB_VECTOR;
968                 return;
969         }
970
971         switch (dr) {
972         case 0 ... 3:
973                 svm->db_regs[dr] = value;
974                 return;
975         case 4 ... 5:
976                 if (vcpu->arch.cr4 & X86_CR4_DE) {
977                         *exception = UD_VECTOR;
978                         return;
979                 }
980         case 7: {
981                 if (value & ~((1ULL << 32) - 1)) {
982                         *exception = GP_VECTOR;
983                         return;
984                 }
985                 svm->vmcb->save.dr7 = value;
986                 return;
987         }
988         default:
989                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
990                        __func__, dr);
991                 *exception = UD_VECTOR;
992                 return;
993         }
994 }
995
996 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
997 {
998         u32 exit_int_info = svm->vmcb->control.exit_int_info;
999         struct kvm *kvm = svm->vcpu.kvm;
1000         u64 fault_address;
1001         u32 error_code;
1002         bool event_injection = false;
1003
1004         if (!irqchip_in_kernel(kvm) &&
1005             is_external_interrupt(exit_int_info)) {
1006                 event_injection = true;
1007                 push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
1008         }
1009
1010         fault_address  = svm->vmcb->control.exit_info_2;
1011         error_code = svm->vmcb->control.exit_info_1;
1012
1013         if (!npt_enabled)
1014                 KVMTRACE_3D(PAGE_FAULT, &svm->vcpu, error_code,
1015                             (u32)fault_address, (u32)(fault_address >> 32),
1016                             handler);
1017         else
1018                 KVMTRACE_3D(TDP_FAULT, &svm->vcpu, error_code,
1019                             (u32)fault_address, (u32)(fault_address >> 32),
1020                             handler);
1021         /*
1022          * FIXME: Tis shouldn't be necessary here, but there is a flush
1023          * missing in the MMU code. Until we find this bug, flush the
1024          * complete TLB here on an NPF
1025          */
1026         if (npt_enabled)
1027                 svm_flush_tlb(&svm->vcpu);
1028
1029         if (!npt_enabled && event_injection)
1030                 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1031         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1032 }
1033
1034 static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1035 {
1036         int er;
1037
1038         er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
1039         if (er != EMULATE_DONE)
1040                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1041         return 1;
1042 }
1043
1044 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1045 {
1046         svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1047         if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
1048                 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
1049         svm->vcpu.fpu_active = 1;
1050
1051         return 1;
1052 }
1053
1054 static int mc_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1055 {
1056         /*
1057          * On an #MC intercept the MCE handler is not called automatically in
1058          * the host. So do it by hand here.
1059          */
1060         asm volatile (
1061                 "int $0x12\n");
1062         /* not sure if we ever come back to this point */
1063
1064         return 1;
1065 }
1066
1067 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1068 {
1069         /*
1070          * VMCB is undefined after a SHUTDOWN intercept
1071          * so reinitialize it.
1072          */
1073         clear_page(svm->vmcb);
1074         init_vmcb(svm);
1075
1076         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1077         return 0;
1078 }
1079
1080 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1081 {
1082         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1083         int size, down, in, string, rep;
1084         unsigned port;
1085
1086         ++svm->vcpu.stat.io_exits;
1087
1088         svm->next_rip = svm->vmcb->control.exit_info_2;
1089
1090         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1091
1092         if (string) {
1093                 if (emulate_instruction(&svm->vcpu,
1094                                         kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
1095                         return 0;
1096                 return 1;
1097         }
1098
1099         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1100         port = io_info >> 16;
1101         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1102         rep = (io_info & SVM_IOIO_REP_MASK) != 0;
1103         down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
1104
1105         skip_emulated_instruction(&svm->vcpu);
1106         return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
1107 }
1108
1109 static int nmi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1110 {
1111         KVMTRACE_0D(NMI, &svm->vcpu, handler);
1112         return 1;
1113 }
1114
1115 static int intr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1116 {
1117         ++svm->vcpu.stat.irq_exits;
1118         KVMTRACE_0D(INTR, &svm->vcpu, handler);
1119         return 1;
1120 }
1121
1122 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1123 {
1124         return 1;
1125 }
1126
1127 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1128 {
1129         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1130         skip_emulated_instruction(&svm->vcpu);
1131         return kvm_emulate_halt(&svm->vcpu);
1132 }
1133
1134 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1135 {
1136         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1137         skip_emulated_instruction(&svm->vcpu);
1138         kvm_emulate_hypercall(&svm->vcpu);
1139         return 1;
1140 }
1141
1142 static int invalid_op_interception(struct vcpu_svm *svm,
1143                                    struct kvm_run *kvm_run)
1144 {
1145         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1146         return 1;
1147 }
1148
1149 static int task_switch_interception(struct vcpu_svm *svm,
1150                                     struct kvm_run *kvm_run)
1151 {
1152         u16 tss_selector;
1153
1154         tss_selector = (u16)svm->vmcb->control.exit_info_1;
1155         if (svm->vmcb->control.exit_info_2 &
1156             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
1157                 return kvm_task_switch(&svm->vcpu, tss_selector,
1158                                        TASK_SWITCH_IRET);
1159         if (svm->vmcb->control.exit_info_2 &
1160             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
1161                 return kvm_task_switch(&svm->vcpu, tss_selector,
1162                                        TASK_SWITCH_JMP);
1163         return kvm_task_switch(&svm->vcpu, tss_selector, TASK_SWITCH_CALL);
1164 }
1165
1166 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1167 {
1168         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
1169         kvm_emulate_cpuid(&svm->vcpu);
1170         return 1;
1171 }
1172
1173 static int invlpg_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1174 {
1175         if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0) != EMULATE_DONE)
1176                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
1177         return 1;
1178 }
1179
1180 static int emulate_on_interception(struct vcpu_svm *svm,
1181                                    struct kvm_run *kvm_run)
1182 {
1183         if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
1184                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
1185         return 1;
1186 }
1187
1188 static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1189 {
1190         emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
1191         if (irqchip_in_kernel(svm->vcpu.kvm))
1192                 return 1;
1193         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1194         return 0;
1195 }
1196
1197 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1198 {
1199         struct vcpu_svm *svm = to_svm(vcpu);
1200
1201         switch (ecx) {
1202         case MSR_IA32_TIME_STAMP_COUNTER: {
1203                 u64 tsc;
1204
1205                 rdtscll(tsc);
1206                 *data = svm->vmcb->control.tsc_offset + tsc;
1207                 break;
1208         }
1209         case MSR_K6_STAR:
1210                 *data = svm->vmcb->save.star;
1211                 break;
1212 #ifdef CONFIG_X86_64
1213         case MSR_LSTAR:
1214                 *data = svm->vmcb->save.lstar;
1215                 break;
1216         case MSR_CSTAR:
1217                 *data = svm->vmcb->save.cstar;
1218                 break;
1219         case MSR_KERNEL_GS_BASE:
1220                 *data = svm->vmcb->save.kernel_gs_base;
1221                 break;
1222         case MSR_SYSCALL_MASK:
1223                 *data = svm->vmcb->save.sfmask;
1224                 break;
1225 #endif
1226         case MSR_IA32_SYSENTER_CS:
1227                 *data = svm->vmcb->save.sysenter_cs;
1228                 break;
1229         case MSR_IA32_SYSENTER_EIP:
1230                 *data = svm->vmcb->save.sysenter_eip;
1231                 break;
1232         case MSR_IA32_SYSENTER_ESP:
1233                 *data = svm->vmcb->save.sysenter_esp;
1234                 break;
1235         /* Nobody will change the following 5 values in the VMCB so
1236            we can safely return them on rdmsr. They will always be 0
1237            until LBRV is implemented. */
1238         case MSR_IA32_DEBUGCTLMSR:
1239                 *data = svm->vmcb->save.dbgctl;
1240                 break;
1241         case MSR_IA32_LASTBRANCHFROMIP:
1242                 *data = svm->vmcb->save.br_from;
1243                 break;
1244         case MSR_IA32_LASTBRANCHTOIP:
1245                 *data = svm->vmcb->save.br_to;
1246                 break;
1247         case MSR_IA32_LASTINTFROMIP:
1248                 *data = svm->vmcb->save.last_excp_from;
1249                 break;
1250         case MSR_IA32_LASTINTTOIP:
1251                 *data = svm->vmcb->save.last_excp_to;
1252                 break;
1253         default:
1254                 return kvm_get_msr_common(vcpu, ecx, data);
1255         }
1256         return 0;
1257 }
1258
1259 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1260 {
1261         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1262         u64 data;
1263
1264         if (svm_get_msr(&svm->vcpu, ecx, &data))
1265                 kvm_inject_gp(&svm->vcpu, 0);
1266         else {
1267                 KVMTRACE_3D(MSR_READ, &svm->vcpu, ecx, (u32)data,
1268                             (u32)(data >> 32), handler);
1269
1270                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
1271                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
1272                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
1273                 skip_emulated_instruction(&svm->vcpu);
1274         }
1275         return 1;
1276 }
1277
1278 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1279 {
1280         struct vcpu_svm *svm = to_svm(vcpu);
1281
1282         switch (ecx) {
1283         case MSR_IA32_TIME_STAMP_COUNTER: {
1284                 u64 tsc;
1285
1286                 rdtscll(tsc);
1287                 svm->vmcb->control.tsc_offset = data - tsc;
1288                 break;
1289         }
1290         case MSR_K6_STAR:
1291                 svm->vmcb->save.star = data;
1292                 break;
1293 #ifdef CONFIG_X86_64
1294         case MSR_LSTAR:
1295                 svm->vmcb->save.lstar = data;
1296                 break;
1297         case MSR_CSTAR:
1298                 svm->vmcb->save.cstar = data;
1299                 break;
1300         case MSR_KERNEL_GS_BASE:
1301                 svm->vmcb->save.kernel_gs_base = data;
1302                 break;
1303         case MSR_SYSCALL_MASK:
1304                 svm->vmcb->save.sfmask = data;
1305                 break;
1306 #endif
1307         case MSR_IA32_SYSENTER_CS:
1308                 svm->vmcb->save.sysenter_cs = data;
1309                 break;
1310         case MSR_IA32_SYSENTER_EIP:
1311                 svm->vmcb->save.sysenter_eip = data;
1312                 break;
1313         case MSR_IA32_SYSENTER_ESP:
1314                 svm->vmcb->save.sysenter_esp = data;
1315                 break;
1316         case MSR_IA32_DEBUGCTLMSR:
1317                 if (!svm_has(SVM_FEATURE_LBRV)) {
1318                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
1319                                         __func__, data);
1320                         break;
1321                 }
1322                 if (data & DEBUGCTL_RESERVED_BITS)
1323                         return 1;
1324
1325                 svm->vmcb->save.dbgctl = data;
1326                 if (data & (1ULL<<0))
1327                         svm_enable_lbrv(svm);
1328                 else
1329                         svm_disable_lbrv(svm);
1330                 break;
1331         case MSR_K7_EVNTSEL0:
1332         case MSR_K7_EVNTSEL1:
1333         case MSR_K7_EVNTSEL2:
1334         case MSR_K7_EVNTSEL3:
1335         case MSR_K7_PERFCTR0:
1336         case MSR_K7_PERFCTR1:
1337         case MSR_K7_PERFCTR2:
1338         case MSR_K7_PERFCTR3:
1339                 /*
1340                  * Just discard all writes to the performance counters; this
1341                  * should keep both older linux and windows 64-bit guests
1342                  * happy
1343                  */
1344                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", ecx, data);
1345
1346                 break;
1347         default:
1348                 return kvm_set_msr_common(vcpu, ecx, data);
1349         }
1350         return 0;
1351 }
1352
1353 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1354 {
1355         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1356         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
1357                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
1358
1359         KVMTRACE_3D(MSR_WRITE, &svm->vcpu, ecx, (u32)data, (u32)(data >> 32),
1360                     handler);
1361
1362         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
1363         if (svm_set_msr(&svm->vcpu, ecx, data))
1364                 kvm_inject_gp(&svm->vcpu, 0);
1365         else
1366                 skip_emulated_instruction(&svm->vcpu);
1367         return 1;
1368 }
1369
1370 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1371 {
1372         if (svm->vmcb->control.exit_info_1)
1373                 return wrmsr_interception(svm, kvm_run);
1374         else
1375                 return rdmsr_interception(svm, kvm_run);
1376 }
1377
1378 static int interrupt_window_interception(struct vcpu_svm *svm,
1379                                    struct kvm_run *kvm_run)
1380 {
1381         KVMTRACE_0D(PEND_INTR, &svm->vcpu, handler);
1382
1383         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1384         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1385         /*
1386          * If the user space waits to inject interrupts, exit as soon as
1387          * possible
1388          */
1389         if (kvm_run->request_interrupt_window &&
1390             !svm->vcpu.arch.irq_summary) {
1391                 ++svm->vcpu.stat.irq_window_exits;
1392                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1393                 return 0;
1394         }
1395
1396         return 1;
1397 }
1398
1399 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
1400                                       struct kvm_run *kvm_run) = {
1401         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
1402         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
1403         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
1404         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
1405         /* for now: */
1406         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
1407         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
1408         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
1409         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
1410         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
1411         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
1412         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
1413         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
1414         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
1415         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
1416         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
1417         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
1418         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
1419         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
1420         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
1421         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
1422         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
1423         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
1424         [SVM_EXIT_INTR]                         = intr_interception,
1425         [SVM_EXIT_NMI]                          = nmi_interception,
1426         [SVM_EXIT_SMI]                          = nop_on_interception,
1427         [SVM_EXIT_INIT]                         = nop_on_interception,
1428         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
1429         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
1430         [SVM_EXIT_CPUID]                        = cpuid_interception,
1431         [SVM_EXIT_INVD]                         = emulate_on_interception,
1432         [SVM_EXIT_HLT]                          = halt_interception,
1433         [SVM_EXIT_INVLPG]                       = invlpg_interception,
1434         [SVM_EXIT_INVLPGA]                      = invalid_op_interception,
1435         [SVM_EXIT_IOIO]                         = io_interception,
1436         [SVM_EXIT_MSR]                          = msr_interception,
1437         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
1438         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
1439         [SVM_EXIT_VMRUN]                        = invalid_op_interception,
1440         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
1441         [SVM_EXIT_VMLOAD]                       = invalid_op_interception,
1442         [SVM_EXIT_VMSAVE]                       = invalid_op_interception,
1443         [SVM_EXIT_STGI]                         = invalid_op_interception,
1444         [SVM_EXIT_CLGI]                         = invalid_op_interception,
1445         [SVM_EXIT_SKINIT]                       = invalid_op_interception,
1446         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
1447         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
1448         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
1449         [SVM_EXIT_NPF]                          = pf_interception,
1450 };
1451
1452 static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1453 {
1454         struct vcpu_svm *svm = to_svm(vcpu);
1455         u32 exit_code = svm->vmcb->control.exit_code;
1456
1457         KVMTRACE_3D(VMEXIT, vcpu, exit_code, (u32)svm->vmcb->save.rip,
1458                     (u32)((u64)svm->vmcb->save.rip >> 32), entryexit);
1459
1460         if (npt_enabled) {
1461                 int mmu_reload = 0;
1462                 if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
1463                         svm_set_cr0(vcpu, svm->vmcb->save.cr0);
1464                         mmu_reload = 1;
1465                 }
1466                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
1467                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
1468                 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1469                         if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
1470                                 kvm_inject_gp(vcpu, 0);
1471                                 return 1;
1472                         }
1473                 }
1474                 if (mmu_reload) {
1475                         kvm_mmu_reset_context(vcpu);
1476                         kvm_mmu_load(vcpu);
1477                 }
1478         }
1479
1480         kvm_reput_irq(svm);
1481
1482         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1483                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1484                 kvm_run->fail_entry.hardware_entry_failure_reason
1485                         = svm->vmcb->control.exit_code;
1486                 return 0;
1487         }
1488
1489         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
1490             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
1491             exit_code != SVM_EXIT_NPF)
1492                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1493                        "exit_code 0x%x\n",
1494                        __func__, svm->vmcb->control.exit_int_info,
1495                        exit_code);
1496
1497         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1498             || !svm_exit_handlers[exit_code]) {
1499                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1500                 kvm_run->hw.hardware_exit_reason = exit_code;
1501                 return 0;
1502         }
1503
1504         return svm_exit_handlers[exit_code](svm, kvm_run);
1505 }
1506
1507 static void reload_tss(struct kvm_vcpu *vcpu)
1508 {
1509         int cpu = raw_smp_processor_id();
1510
1511         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1512         svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
1513         load_TR_desc();
1514 }
1515
1516 static void pre_svm_run(struct vcpu_svm *svm)
1517 {
1518         int cpu = raw_smp_processor_id();
1519
1520         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1521
1522         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1523         if (svm->vcpu.cpu != cpu ||
1524             svm->asid_generation != svm_data->asid_generation)
1525                 new_asid(svm, svm_data);
1526 }
1527
1528
1529 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
1530 {
1531         struct vmcb_control_area *control;
1532
1533         KVMTRACE_1D(INJ_VIRQ, &svm->vcpu, (u32)irq, handler);
1534
1535         ++svm->vcpu.stat.irq_injections;
1536         control = &svm->vmcb->control;
1537         control->int_vector = irq;
1538         control->int_ctl &= ~V_INTR_PRIO_MASK;
1539         control->int_ctl |= V_IRQ_MASK |
1540                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1541 }
1542
1543 static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
1544 {
1545         struct vcpu_svm *svm = to_svm(vcpu);
1546
1547         svm_inject_irq(svm, irq);
1548 }
1549
1550 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
1551 {
1552         struct vcpu_svm *svm = to_svm(vcpu);
1553         struct vmcb *vmcb = svm->vmcb;
1554         int max_irr, tpr;
1555
1556         if (!irqchip_in_kernel(vcpu->kvm) || vcpu->arch.apic->vapic_addr)
1557                 return;
1558
1559         vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
1560
1561         max_irr = kvm_lapic_find_highest_irr(vcpu);
1562         if (max_irr == -1)
1563                 return;
1564
1565         tpr = kvm_lapic_get_cr8(vcpu) << 4;
1566
1567         if (tpr >= (max_irr & 0xf0))
1568                 vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
1569 }
1570
1571 static void svm_intr_assist(struct kvm_vcpu *vcpu)
1572 {
1573         struct vcpu_svm *svm = to_svm(vcpu);
1574         struct vmcb *vmcb = svm->vmcb;
1575         int intr_vector = -1;
1576
1577         if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
1578             ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
1579                 intr_vector = vmcb->control.exit_int_info &
1580                               SVM_EVTINJ_VEC_MASK;
1581                 vmcb->control.exit_int_info = 0;
1582                 svm_inject_irq(svm, intr_vector);
1583                 goto out;
1584         }
1585
1586         if (vmcb->control.int_ctl & V_IRQ_MASK)
1587                 goto out;
1588
1589         if (!kvm_cpu_has_interrupt(vcpu))
1590                 goto out;
1591
1592         if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
1593             (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
1594             (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
1595                 /* unable to deliver irq, set pending irq */
1596                 vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1597                 svm_inject_irq(svm, 0x0);
1598                 goto out;
1599         }
1600         /* Okay, we can deliver the interrupt: grab it and update PIC state. */
1601         intr_vector = kvm_cpu_get_interrupt(vcpu);
1602         svm_inject_irq(svm, intr_vector);
1603 out:
1604         update_cr8_intercept(vcpu);
1605 }
1606
1607 static void kvm_reput_irq(struct vcpu_svm *svm)
1608 {
1609         struct vmcb_control_area *control = &svm->vmcb->control;
1610
1611         if ((control->int_ctl & V_IRQ_MASK)
1612             && !irqchip_in_kernel(svm->vcpu.kvm)) {
1613                 control->int_ctl &= ~V_IRQ_MASK;
1614                 push_irq(&svm->vcpu, control->int_vector);
1615         }
1616
1617         svm->vcpu.arch.interrupt_window_open =
1618                 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1619 }
1620
1621 static void svm_do_inject_vector(struct vcpu_svm *svm)
1622 {
1623         struct kvm_vcpu *vcpu = &svm->vcpu;
1624         int word_index = __ffs(vcpu->arch.irq_summary);
1625         int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
1626         int irq = word_index * BITS_PER_LONG + bit_index;
1627
1628         clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
1629         if (!vcpu->arch.irq_pending[word_index])
1630                 clear_bit(word_index, &vcpu->arch.irq_summary);
1631         svm_inject_irq(svm, irq);
1632 }
1633
1634 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1635                                        struct kvm_run *kvm_run)
1636 {
1637         struct vcpu_svm *svm = to_svm(vcpu);
1638         struct vmcb_control_area *control = &svm->vmcb->control;
1639
1640         svm->vcpu.arch.interrupt_window_open =
1641                 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1642                  (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1643
1644         if (svm->vcpu.arch.interrupt_window_open && svm->vcpu.arch.irq_summary)
1645                 /*
1646                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1647                  */
1648                 svm_do_inject_vector(svm);
1649
1650         /*
1651          * Interrupts blocked.  Wait for unblock.
1652          */
1653         if (!svm->vcpu.arch.interrupt_window_open &&
1654             (svm->vcpu.arch.irq_summary || kvm_run->request_interrupt_window))
1655                 control->intercept |= 1ULL << INTERCEPT_VINTR;
1656          else
1657                 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1658 }
1659
1660 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
1661 {
1662         return 0;
1663 }
1664
1665 static void save_db_regs(unsigned long *db_regs)
1666 {
1667         asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1668         asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1669         asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1670         asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1671 }
1672
1673 static void load_db_regs(unsigned long *db_regs)
1674 {
1675         asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1676         asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1677         asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1678         asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1679 }
1680
1681 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1682 {
1683         force_new_asid(vcpu);
1684 }
1685
1686 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1687 {
1688 }
1689
1690 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
1691 {
1692         struct vcpu_svm *svm = to_svm(vcpu);
1693
1694         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
1695                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
1696                 kvm_lapic_set_tpr(vcpu, cr8);
1697         }
1698 }
1699
1700 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
1701 {
1702         struct vcpu_svm *svm = to_svm(vcpu);
1703         u64 cr8;
1704
1705         if (!irqchip_in_kernel(vcpu->kvm))
1706                 return;
1707
1708         cr8 = kvm_get_cr8(vcpu);
1709         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
1710         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
1711 }
1712
1713 #ifdef CONFIG_X86_64
1714 #define R "r"
1715 #else
1716 #define R "e"
1717 #endif
1718
1719 static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1720 {
1721         struct vcpu_svm *svm = to_svm(vcpu);
1722         u16 fs_selector;
1723         u16 gs_selector;
1724         u16 ldt_selector;
1725
1726         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
1727         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
1728         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
1729
1730         pre_svm_run(svm);
1731
1732         sync_lapic_to_cr8(vcpu);
1733
1734         save_host_msrs(vcpu);
1735         fs_selector = kvm_read_fs();
1736         gs_selector = kvm_read_gs();
1737         ldt_selector = kvm_read_ldt();
1738         svm->host_cr2 = kvm_read_cr2();
1739         svm->host_dr6 = read_dr6();
1740         svm->host_dr7 = read_dr7();
1741         svm->vmcb->save.cr2 = vcpu->arch.cr2;
1742         /* required for live migration with NPT */
1743         if (npt_enabled)
1744                 svm->vmcb->save.cr3 = vcpu->arch.cr3;
1745
1746         if (svm->vmcb->save.dr7 & 0xff) {
1747                 write_dr7(0);
1748                 save_db_regs(svm->host_db_regs);
1749                 load_db_regs(svm->db_regs);
1750         }
1751
1752         clgi();
1753
1754         local_irq_enable();
1755
1756         asm volatile (
1757                 "push %%"R"bp; \n\t"
1758                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
1759                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
1760                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
1761                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
1762                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
1763                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
1764 #ifdef CONFIG_X86_64
1765                 "mov %c[r8](%[svm]),  %%r8  \n\t"
1766                 "mov %c[r9](%[svm]),  %%r9  \n\t"
1767                 "mov %c[r10](%[svm]), %%r10 \n\t"
1768                 "mov %c[r11](%[svm]), %%r11 \n\t"
1769                 "mov %c[r12](%[svm]), %%r12 \n\t"
1770                 "mov %c[r13](%[svm]), %%r13 \n\t"
1771                 "mov %c[r14](%[svm]), %%r14 \n\t"
1772                 "mov %c[r15](%[svm]), %%r15 \n\t"
1773 #endif
1774
1775                 /* Enter guest mode */
1776                 "push %%"R"ax \n\t"
1777                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
1778                 __ex(SVM_VMLOAD) "\n\t"
1779                 __ex(SVM_VMRUN) "\n\t"
1780                 __ex(SVM_VMSAVE) "\n\t"
1781                 "pop %%"R"ax \n\t"
1782
1783                 /* Save guest registers, load host registers */
1784                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
1785                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
1786                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
1787                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
1788                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
1789                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
1790 #ifdef CONFIG_X86_64
1791                 "mov %%r8,  %c[r8](%[svm]) \n\t"
1792                 "mov %%r9,  %c[r9](%[svm]) \n\t"
1793                 "mov %%r10, %c[r10](%[svm]) \n\t"
1794                 "mov %%r11, %c[r11](%[svm]) \n\t"
1795                 "mov %%r12, %c[r12](%[svm]) \n\t"
1796                 "mov %%r13, %c[r13](%[svm]) \n\t"
1797                 "mov %%r14, %c[r14](%[svm]) \n\t"
1798                 "mov %%r15, %c[r15](%[svm]) \n\t"
1799 #endif
1800                 "pop %%"R"bp"
1801                 :
1802                 : [svm]"a"(svm),
1803                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1804                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
1805                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
1806                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
1807                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
1808                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
1809                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
1810 #ifdef CONFIG_X86_64
1811                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
1812                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
1813                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
1814                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
1815                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
1816                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
1817                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
1818                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
1819 #endif
1820                 : "cc", "memory"
1821                 , R"bx", R"cx", R"dx", R"si", R"di"
1822 #ifdef CONFIG_X86_64
1823                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
1824 #endif
1825                 );
1826
1827         if ((svm->vmcb->save.dr7 & 0xff))
1828                 load_db_regs(svm->host_db_regs);
1829
1830         vcpu->arch.cr2 = svm->vmcb->save.cr2;
1831         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
1832         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
1833         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
1834
1835         write_dr6(svm->host_dr6);
1836         write_dr7(svm->host_dr7);
1837         kvm_write_cr2(svm->host_cr2);
1838
1839         kvm_load_fs(fs_selector);
1840         kvm_load_gs(gs_selector);
1841         kvm_load_ldt(ldt_selector);
1842         load_host_msrs(vcpu);
1843
1844         reload_tss(vcpu);
1845
1846         local_irq_disable();
1847
1848         stgi();
1849
1850         sync_cr8_to_lapic(vcpu);
1851
1852         svm->next_rip = 0;
1853 }
1854
1855 #undef R
1856
1857 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1858 {
1859         struct vcpu_svm *svm = to_svm(vcpu);
1860
1861         if (npt_enabled) {
1862                 svm->vmcb->control.nested_cr3 = root;
1863                 force_new_asid(vcpu);
1864                 return;
1865         }
1866
1867         svm->vmcb->save.cr3 = root;
1868         force_new_asid(vcpu);
1869
1870         if (vcpu->fpu_active) {
1871                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1872                 svm->vmcb->save.cr0 |= X86_CR0_TS;
1873                 vcpu->fpu_active = 0;
1874         }
1875 }
1876
1877 static int is_disabled(void)
1878 {
1879         u64 vm_cr;
1880
1881         rdmsrl(MSR_VM_CR, vm_cr);
1882         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1883                 return 1;
1884
1885         return 0;
1886 }
1887
1888 static void
1889 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1890 {
1891         /*
1892          * Patch in the VMMCALL instruction:
1893          */
1894         hypercall[0] = 0x0f;
1895         hypercall[1] = 0x01;
1896         hypercall[2] = 0xd9;
1897 }
1898
1899 static void svm_check_processor_compat(void *rtn)
1900 {
1901         *(int *)rtn = 0;
1902 }
1903
1904 static bool svm_cpu_has_accelerated_tpr(void)
1905 {
1906         return false;
1907 }
1908
1909 static int get_npt_level(void)
1910 {
1911 #ifdef CONFIG_X86_64
1912         return PT64_ROOT_LEVEL;
1913 #else
1914         return PT32E_ROOT_LEVEL;
1915 #endif
1916 }
1917
1918 static int svm_get_mt_mask_shift(void)
1919 {
1920         return 0;
1921 }
1922
1923 static struct kvm_x86_ops svm_x86_ops = {
1924         .cpu_has_kvm_support = has_svm,
1925         .disabled_by_bios = is_disabled,
1926         .hardware_setup = svm_hardware_setup,
1927         .hardware_unsetup = svm_hardware_unsetup,
1928         .check_processor_compatibility = svm_check_processor_compat,
1929         .hardware_enable = svm_hardware_enable,
1930         .hardware_disable = svm_hardware_disable,
1931         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
1932
1933         .vcpu_create = svm_create_vcpu,
1934         .vcpu_free = svm_free_vcpu,
1935         .vcpu_reset = svm_vcpu_reset,
1936
1937         .prepare_guest_switch = svm_prepare_guest_switch,
1938         .vcpu_load = svm_vcpu_load,
1939         .vcpu_put = svm_vcpu_put,
1940
1941         .set_guest_debug = svm_guest_debug,
1942         .get_msr = svm_get_msr,
1943         .set_msr = svm_set_msr,
1944         .get_segment_base = svm_get_segment_base,
1945         .get_segment = svm_get_segment,
1946         .set_segment = svm_set_segment,
1947         .get_cpl = svm_get_cpl,
1948         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
1949         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1950         .set_cr0 = svm_set_cr0,
1951         .set_cr3 = svm_set_cr3,
1952         .set_cr4 = svm_set_cr4,
1953         .set_efer = svm_set_efer,
1954         .get_idt = svm_get_idt,
1955         .set_idt = svm_set_idt,
1956         .get_gdt = svm_get_gdt,
1957         .set_gdt = svm_set_gdt,
1958         .get_dr = svm_get_dr,
1959         .set_dr = svm_set_dr,
1960         .get_rflags = svm_get_rflags,
1961         .set_rflags = svm_set_rflags,
1962
1963         .tlb_flush = svm_flush_tlb,
1964
1965         .run = svm_vcpu_run,
1966         .handle_exit = handle_exit,
1967         .skip_emulated_instruction = skip_emulated_instruction,
1968         .patch_hypercall = svm_patch_hypercall,
1969         .get_irq = svm_get_irq,
1970         .set_irq = svm_set_irq,
1971         .queue_exception = svm_queue_exception,
1972         .exception_injected = svm_exception_injected,
1973         .inject_pending_irq = svm_intr_assist,
1974         .inject_pending_vectors = do_interrupt_requests,
1975
1976         .set_tss_addr = svm_set_tss_addr,
1977         .get_tdp_level = get_npt_level,
1978         .get_mt_mask_shift = svm_get_mt_mask_shift,
1979 };
1980
1981 static int __init svm_init(void)
1982 {
1983         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
1984                               THIS_MODULE);
1985 }
1986
1987 static void __exit svm_exit(void)
1988 {
1989         kvm_exit();
1990 }
1991
1992 module_init(svm_init)
1993 module_exit(svm_exit)