Merge commit 'v2.6.29' into x86/setup-lzma
[linux-2.6] / drivers / net / wireless / ath9k / eeprom.c
1 /*
2  * Copyright (c) 2008 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include "core.h"
18 #include "hw.h"
19 #include "reg.h"
20 #include "phy.h"
21
22 static void ath9k_hw_analog_shift_rmw(struct ath_hal *ah,
23                                       u32 reg, u32 mask,
24                                       u32 shift, u32 val)
25 {
26         u32 regVal;
27
28         regVal = REG_READ(ah, reg) & ~mask;
29         regVal |= (val << shift) & mask;
30
31         REG_WRITE(ah, reg, regVal);
32
33         if (ah->ah_config.analog_shiftreg)
34                 udelay(100);
35
36         return;
37 }
38
39 static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
40 {
41
42         if (fbin == AR5416_BCHAN_UNUSED)
43                 return fbin;
44
45         return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
46 }
47
48 static inline int16_t ath9k_hw_interpolate(u16 target,
49                                            u16 srcLeft, u16 srcRight,
50                                            int16_t targetLeft,
51                                            int16_t targetRight)
52 {
53         int16_t rv;
54
55         if (srcRight == srcLeft) {
56                 rv = targetLeft;
57         } else {
58                 rv = (int16_t) (((target - srcLeft) * targetRight +
59                                  (srcRight - target) * targetLeft) /
60                                 (srcRight - srcLeft));
61         }
62         return rv;
63 }
64
65 static inline bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList,
66                                                   u16 listSize, u16 *indexL,
67                                                   u16 *indexR)
68 {
69         u16 i;
70
71         if (target <= pList[0]) {
72                 *indexL = *indexR = 0;
73                 return true;
74         }
75         if (target >= pList[listSize - 1]) {
76                 *indexL = *indexR = (u16) (listSize - 1);
77                 return true;
78         }
79
80         for (i = 0; i < listSize - 1; i++) {
81                 if (pList[i] == target) {
82                         *indexL = *indexR = i;
83                         return true;
84                 }
85                 if (target < pList[i + 1]) {
86                         *indexL = i;
87                         *indexR = (u16) (i + 1);
88                         return false;
89                 }
90         }
91         return false;
92 }
93
94 static bool ath9k_hw_eeprom_read(struct ath_hal *ah, u32 off, u16 *data)
95 {
96         (void)REG_READ(ah, AR5416_EEPROM_OFFSET + (off << AR5416_EEPROM_S));
97
98         if (!ath9k_hw_wait(ah,
99                            AR_EEPROM_STATUS_DATA,
100                            AR_EEPROM_STATUS_DATA_BUSY |
101                            AR_EEPROM_STATUS_DATA_PROT_ACCESS, 0)) {
102                 return false;
103         }
104
105         *data = MS(REG_READ(ah, AR_EEPROM_STATUS_DATA),
106                    AR_EEPROM_STATUS_DATA_VAL);
107
108         return true;
109 }
110
111 static int ath9k_hw_flash_map(struct ath_hal *ah)
112 {
113         struct ath_hal_5416 *ahp = AH5416(ah);
114
115         ahp->ah_cal_mem = ioremap(AR5416_EEPROM_START_ADDR, AR5416_EEPROM_MAX);
116
117         if (!ahp->ah_cal_mem) {
118                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
119                         "cannot remap eeprom region \n");
120                 return -EIO;
121         }
122
123         return 0;
124 }
125
126 static bool ath9k_hw_flash_read(struct ath_hal *ah, u32 off, u16 *data)
127 {
128         struct ath_hal_5416 *ahp = AH5416(ah);
129
130         *data = ioread16(ahp->ah_cal_mem + off);
131
132         return true;
133 }
134
135 static inline bool ath9k_hw_nvram_read(struct ath_hal *ah, u32 off, u16 *data)
136 {
137         if (ath9k_hw_use_flash(ah))
138                 return ath9k_hw_flash_read(ah, off, data);
139         else
140                 return ath9k_hw_eeprom_read(ah, off, data);
141 }
142
143 static bool ath9k_hw_fill_4k_eeprom(struct ath_hal *ah)
144 {
145 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
146         struct ath_hal_5416 *ahp = AH5416(ah);
147         struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k;
148         u16 *eep_data;
149         int addr, eep_start_loc = 0;
150
151         eep_start_loc = 64;
152
153         if (!ath9k_hw_use_flash(ah)) {
154                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
155                         "Reading from EEPROM, not flash\n");
156         }
157
158         eep_data = (u16 *)eep;
159
160         for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
161                 if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) {
162                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
163                                "Unable to read eeprom region \n");
164                         return false;
165                 }
166                 eep_data++;
167         }
168         return true;
169 #undef SIZE_EEPROM_4K
170 }
171
172 static bool ath9k_hw_fill_def_eeprom(struct ath_hal *ah)
173 {
174 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
175         struct ath_hal_5416 *ahp = AH5416(ah);
176         struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
177         u16 *eep_data;
178         int addr, ar5416_eep_start_loc = 0x100;
179
180         eep_data = (u16 *)eep;
181
182         for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
183                 if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
184                                          eep_data)) {
185                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
186                                 "Unable to read eeprom region\n");
187                         return false;
188                 }
189                 eep_data++;
190         }
191         return true;
192 #undef SIZE_EEPROM_DEF
193 }
194
195 static bool (*ath9k_fill_eeprom[]) (struct ath_hal *) = {
196         ath9k_hw_fill_def_eeprom,
197         ath9k_hw_fill_4k_eeprom
198 };
199
200 static inline bool ath9k_hw_fill_eeprom(struct ath_hal *ah)
201 {
202         struct ath_hal_5416 *ahp = AH5416(ah);
203
204         return ath9k_fill_eeprom[ahp->ah_eep_map](ah);
205 }
206
207 static int ath9k_hw_check_def_eeprom(struct ath_hal *ah)
208 {
209         struct ath_hal_5416 *ahp = AH5416(ah);
210         struct ar5416_eeprom_def *eep =
211                 (struct ar5416_eeprom_def *) &ahp->ah_eeprom.def;
212         u16 *eepdata, temp, magic, magic2;
213         u32 sum = 0, el;
214         bool need_swap = false;
215         int i, addr, size;
216
217         if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
218                                  &magic)) {
219                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
220                         "Reading Magic # failed\n");
221                 return false;
222         }
223
224         if (!ath9k_hw_use_flash(ah)) {
225
226                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
227                                 "Read Magic = 0x%04X\n", magic);
228
229                 if (magic != AR5416_EEPROM_MAGIC) {
230                         magic2 = swab16(magic);
231
232                         if (magic2 == AR5416_EEPROM_MAGIC) {
233                                 size = sizeof(struct ar5416_eeprom_def);
234                                 need_swap = true;
235                                 eepdata = (u16 *) (&ahp->ah_eeprom);
236
237                                 for (addr = 0; addr < size / sizeof(u16); addr++) {
238                                         temp = swab16(*eepdata);
239                                         *eepdata = temp;
240                                         eepdata++;
241
242                                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
243                                                 "0x%04X  ", *eepdata);
244
245                                         if (((addr + 1) % 6) == 0)
246                                                 DPRINTF(ah->ah_sc,
247                                                         ATH_DBG_EEPROM, "\n");
248                                 }
249                         } else {
250                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
251                                         "Invalid EEPROM Magic. "
252                                         "endianness mismatch.\n");
253                                 return -EINVAL;
254                         }
255                 }
256         }
257
258         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
259                 need_swap ? "True" : "False");
260
261         if (need_swap)
262                 el = swab16(ahp->ah_eeprom.def.baseEepHeader.length);
263         else
264                 el = ahp->ah_eeprom.def.baseEepHeader.length;
265
266         if (el > sizeof(struct ar5416_eeprom_def))
267                 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
268         else
269                 el = el / sizeof(u16);
270
271         eepdata = (u16 *)(&ahp->ah_eeprom);
272
273         for (i = 0; i < el; i++)
274                 sum ^= *eepdata++;
275
276         if (need_swap) {
277                 u32 integer, j;
278                 u16 word;
279
280                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
281                         "EEPROM Endianness is not native.. Changing \n");
282
283                 word = swab16(eep->baseEepHeader.length);
284                 eep->baseEepHeader.length = word;
285
286                 word = swab16(eep->baseEepHeader.checksum);
287                 eep->baseEepHeader.checksum = word;
288
289                 word = swab16(eep->baseEepHeader.version);
290                 eep->baseEepHeader.version = word;
291
292                 word = swab16(eep->baseEepHeader.regDmn[0]);
293                 eep->baseEepHeader.regDmn[0] = word;
294
295                 word = swab16(eep->baseEepHeader.regDmn[1]);
296                 eep->baseEepHeader.regDmn[1] = word;
297
298                 word = swab16(eep->baseEepHeader.rfSilent);
299                 eep->baseEepHeader.rfSilent = word;
300
301                 word = swab16(eep->baseEepHeader.blueToothOptions);
302                 eep->baseEepHeader.blueToothOptions = word;
303
304                 word = swab16(eep->baseEepHeader.deviceCap);
305                 eep->baseEepHeader.deviceCap = word;
306
307                 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
308                         struct modal_eep_header *pModal =
309                                 &eep->modalHeader[j];
310                         integer = swab32(pModal->antCtrlCommon);
311                         pModal->antCtrlCommon = integer;
312
313                         for (i = 0; i < AR5416_MAX_CHAINS; i++) {
314                                 integer = swab32(pModal->antCtrlChain[i]);
315                                 pModal->antCtrlChain[i] = integer;
316                         }
317
318                         for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
319                                 word = swab16(pModal->spurChans[i].spurChan);
320                                 pModal->spurChans[i].spurChan = word;
321                         }
322                 }
323         }
324
325         if (sum != 0xffff || ar5416_get_eep_ver(ahp) != AR5416_EEP_VER ||
326             ar5416_get_eep_rev(ahp) < AR5416_EEP_NO_BACK_VER) {
327                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
328                         "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
329                         sum, ar5416_get_eep_ver(ahp));
330                 return -EINVAL;
331         }
332
333         return 0;
334 }
335
336 static int ath9k_hw_check_4k_eeprom(struct ath_hal *ah)
337 {
338 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
339         struct ath_hal_5416 *ahp = AH5416(ah);
340         struct ar5416_eeprom_4k *eep =
341                 (struct ar5416_eeprom_4k *) &ahp->ah_eeprom.map4k;
342         u16 *eepdata, temp, magic, magic2;
343         u32 sum = 0, el;
344         bool need_swap = false;
345         int i, addr;
346
347
348         if (!ath9k_hw_use_flash(ah)) {
349
350                 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
351                                          &magic)) {
352                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
353                                 "Reading Magic # failed\n");
354                         return false;
355                 }
356
357                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
358                                 "Read Magic = 0x%04X\n", magic);
359
360                 if (magic != AR5416_EEPROM_MAGIC) {
361                         magic2 = swab16(magic);
362
363                         if (magic2 == AR5416_EEPROM_MAGIC) {
364                                 need_swap = true;
365                                 eepdata = (u16 *) (&ahp->ah_eeprom);
366
367                                 for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
368                                         temp = swab16(*eepdata);
369                                         *eepdata = temp;
370                                         eepdata++;
371
372                                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
373                                                 "0x%04X  ", *eepdata);
374
375                                         if (((addr + 1) % 6) == 0)
376                                                 DPRINTF(ah->ah_sc,
377                                                         ATH_DBG_EEPROM, "\n");
378                                 }
379                         } else {
380                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
381                                         "Invalid EEPROM Magic. "
382                                         "endianness mismatch.\n");
383                                 return -EINVAL;
384                         }
385                 }
386         }
387
388         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
389                 need_swap ? "True" : "False");
390
391         if (need_swap)
392                 el = swab16(ahp->ah_eeprom.map4k.baseEepHeader.length);
393         else
394                 el = ahp->ah_eeprom.map4k.baseEepHeader.length;
395
396         if (el > sizeof(struct ar5416_eeprom_def))
397                 el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
398         else
399                 el = el / sizeof(u16);
400
401         eepdata = (u16 *)(&ahp->ah_eeprom);
402
403         for (i = 0; i < el; i++)
404                 sum ^= *eepdata++;
405
406         if (need_swap) {
407                 u32 integer;
408                 u16 word;
409
410                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
411                         "EEPROM Endianness is not native.. Changing \n");
412
413                 word = swab16(eep->baseEepHeader.length);
414                 eep->baseEepHeader.length = word;
415
416                 word = swab16(eep->baseEepHeader.checksum);
417                 eep->baseEepHeader.checksum = word;
418
419                 word = swab16(eep->baseEepHeader.version);
420                 eep->baseEepHeader.version = word;
421
422                 word = swab16(eep->baseEepHeader.regDmn[0]);
423                 eep->baseEepHeader.regDmn[0] = word;
424
425                 word = swab16(eep->baseEepHeader.regDmn[1]);
426                 eep->baseEepHeader.regDmn[1] = word;
427
428                 word = swab16(eep->baseEepHeader.rfSilent);
429                 eep->baseEepHeader.rfSilent = word;
430
431                 word = swab16(eep->baseEepHeader.blueToothOptions);
432                 eep->baseEepHeader.blueToothOptions = word;
433
434                 word = swab16(eep->baseEepHeader.deviceCap);
435                 eep->baseEepHeader.deviceCap = word;
436
437                 integer = swab32(eep->modalHeader.antCtrlCommon);
438                 eep->modalHeader.antCtrlCommon = integer;
439
440                 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
441                         integer = swab32(eep->modalHeader.antCtrlChain[i]);
442                         eep->modalHeader.antCtrlChain[i] = integer;
443                 }
444
445                 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
446                         word = swab16(eep->modalHeader.spurChans[i].spurChan);
447                         eep->modalHeader.spurChans[i].spurChan = word;
448                 }
449         }
450
451         if (sum != 0xffff || ar5416_get_eep4k_ver(ahp) != AR5416_EEP_VER ||
452             ar5416_get_eep4k_rev(ahp) < AR5416_EEP_NO_BACK_VER) {
453                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
454                         "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
455                         sum, ar5416_get_eep4k_ver(ahp));
456                 return -EINVAL;
457         }
458
459         return 0;
460 #undef EEPROM_4K_SIZE
461 }
462
463 static int (*ath9k_check_eeprom[]) (struct ath_hal *) = {
464         ath9k_hw_check_def_eeprom,
465         ath9k_hw_check_4k_eeprom
466 };
467
468 static inline int ath9k_hw_check_eeprom(struct ath_hal *ah)
469 {
470         struct ath_hal_5416 *ahp = AH5416(ah);
471
472         return ath9k_check_eeprom[ahp->ah_eep_map](ah);
473 }
474
475 static inline bool ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
476                                            u8 *pVpdList, u16 numIntercepts,
477                                            u8 *pRetVpdList)
478 {
479         u16 i, k;
480         u8 currPwr = pwrMin;
481         u16 idxL = 0, idxR = 0;
482
483         for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
484                 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
485                                                numIntercepts, &(idxL),
486                                                &(idxR));
487                 if (idxR < 1)
488                         idxR = 1;
489                 if (idxL == numIntercepts - 1)
490                         idxL = (u16) (numIntercepts - 2);
491                 if (pPwrList[idxL] == pPwrList[idxR])
492                         k = pVpdList[idxL];
493                 else
494                         k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
495                                    (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
496                                   (pPwrList[idxR] - pPwrList[idxL]));
497                 pRetVpdList[i] = (u8) k;
498                 currPwr += 2;
499         }
500
501         return true;
502 }
503
504 static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hal *ah,
505                                 struct ath9k_channel *chan,
506                                 struct cal_data_per_freq_4k *pRawDataSet,
507                                 u8 *bChans, u16 availPiers,
508                                 u16 tPdGainOverlap, int16_t *pMinCalPower,
509                                 u16 *pPdGainBoundaries, u8 *pPDADCValues,
510                                 u16 numXpdGains)
511 {
512 #define TMP_VAL_VPD_TABLE \
513         ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
514         int i, j, k;
515         int16_t ss;
516         u16 idxL = 0, idxR = 0, numPiers;
517         static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
518                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
519         static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
520                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
521         static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
522                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
523
524         u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
525         u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
526         u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
527         int16_t vpdStep;
528         int16_t tmpVal;
529         u16 sizeCurrVpdTable, maxIndex, tgtIndex;
530         bool match;
531         int16_t minDelta = 0;
532         struct chan_centers centers;
533 #define PD_GAIN_BOUNDARY_DEFAULT 58;
534
535         ath9k_hw_get_channel_centers(ah, chan, &centers);
536
537         for (numPiers = 0; numPiers < availPiers; numPiers++) {
538                 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
539                         break;
540         }
541
542         match = ath9k_hw_get_lower_upper_index(
543                                         (u8)FREQ2FBIN(centers.synth_center,
544                                         IS_CHAN_2GHZ(chan)), bChans, numPiers,
545                                         &idxL, &idxR);
546
547         if (match) {
548                 for (i = 0; i < numXpdGains; i++) {
549                         minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
550                         maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
551                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
552                                         pRawDataSet[idxL].pwrPdg[i],
553                                         pRawDataSet[idxL].vpdPdg[i],
554                                         AR5416_EEP4K_PD_GAIN_ICEPTS,
555                                         vpdTableI[i]);
556                 }
557         } else {
558                 for (i = 0; i < numXpdGains; i++) {
559                         pVpdL = pRawDataSet[idxL].vpdPdg[i];
560                         pPwrL = pRawDataSet[idxL].pwrPdg[i];
561                         pVpdR = pRawDataSet[idxR].vpdPdg[i];
562                         pPwrR = pRawDataSet[idxR].pwrPdg[i];
563
564                         minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
565
566                         maxPwrT4[i] =
567                                 min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
568                                     pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
569
570
571                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
572                                                 pPwrL, pVpdL,
573                                                 AR5416_EEP4K_PD_GAIN_ICEPTS,
574                                                 vpdTableL[i]);
575                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
576                                                 pPwrR, pVpdR,
577                                                 AR5416_EEP4K_PD_GAIN_ICEPTS,
578                                                 vpdTableR[i]);
579
580                         for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
581                                 vpdTableI[i][j] =
582                                         (u8)(ath9k_hw_interpolate((u16)
583                                              FREQ2FBIN(centers.
584                                                        synth_center,
585                                                        IS_CHAN_2GHZ
586                                                        (chan)),
587                                              bChans[idxL], bChans[idxR],
588                                              vpdTableL[i][j], vpdTableR[i][j]));
589                         }
590                 }
591         }
592
593         *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
594
595         k = 0;
596
597         for (i = 0; i < numXpdGains; i++) {
598                 if (i == (numXpdGains - 1))
599                         pPdGainBoundaries[i] =
600                                 (u16)(maxPwrT4[i] / 2);
601                 else
602                         pPdGainBoundaries[i] =
603                                 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
604
605                 pPdGainBoundaries[i] =
606                         min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
607
608                 if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) {
609                         minDelta = pPdGainBoundaries[0] - 23;
610                         pPdGainBoundaries[0] = 23;
611                 } else {
612                         minDelta = 0;
613                 }
614
615                 if (i == 0) {
616                         if (AR_SREV_9280_10_OR_LATER(ah))
617                                 ss = (int16_t)(0 - (minPwrT4[i] / 2));
618                         else
619                                 ss = 0;
620                 } else {
621                         ss = (int16_t)((pPdGainBoundaries[i - 1] -
622                                         (minPwrT4[i] / 2)) -
623                                        tPdGainOverlap + 1 + minDelta);
624                 }
625                 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
626                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
627
628                 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
629                         tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
630                         pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
631                         ss++;
632                 }
633
634                 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
635                 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
636                                 (minPwrT4[i] / 2));
637                 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
638                         tgtIndex : sizeCurrVpdTable;
639
640                 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
641                         pPDADCValues[k++] = vpdTableI[i][ss++];
642
643                 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
644                                     vpdTableI[i][sizeCurrVpdTable - 2]);
645                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
646
647                 if (tgtIndex > maxIndex) {
648                         while ((ss <= tgtIndex) &&
649                                (k < (AR5416_NUM_PDADC_VALUES - 1))) {
650                                 tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
651                                 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
652                                                          255 : tmpVal);
653                                 ss++;
654                         }
655                 }
656         }
657
658         while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
659                 pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
660                 i++;
661         }
662
663         while (k < AR5416_NUM_PDADC_VALUES) {
664                 pPDADCValues[k] = pPDADCValues[k - 1];
665                 k++;
666         }
667
668         return;
669 #undef TMP_VAL_VPD_TABLE
670 }
671
672 static void ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hal *ah,
673                                 struct ath9k_channel *chan,
674                                 struct cal_data_per_freq *pRawDataSet,
675                                 u8 *bChans, u16 availPiers,
676                                 u16 tPdGainOverlap, int16_t *pMinCalPower,
677                                 u16 *pPdGainBoundaries, u8 *pPDADCValues,
678                                 u16 numXpdGains)
679 {
680         int i, j, k;
681         int16_t ss;
682         u16 idxL = 0, idxR = 0, numPiers;
683         static u8 vpdTableL[AR5416_NUM_PD_GAINS]
684                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
685         static u8 vpdTableR[AR5416_NUM_PD_GAINS]
686                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
687         static u8 vpdTableI[AR5416_NUM_PD_GAINS]
688                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
689
690         u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
691         u8 minPwrT4[AR5416_NUM_PD_GAINS];
692         u8 maxPwrT4[AR5416_NUM_PD_GAINS];
693         int16_t vpdStep;
694         int16_t tmpVal;
695         u16 sizeCurrVpdTable, maxIndex, tgtIndex;
696         bool match;
697         int16_t minDelta = 0;
698         struct chan_centers centers;
699
700         ath9k_hw_get_channel_centers(ah, chan, &centers);
701
702         for (numPiers = 0; numPiers < availPiers; numPiers++) {
703                 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
704                         break;
705         }
706
707         match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
708                                                              IS_CHAN_2GHZ(chan)),
709                                                bChans, numPiers, &idxL, &idxR);
710
711         if (match) {
712                 for (i = 0; i < numXpdGains; i++) {
713                         minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
714                         maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
715                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
716                                         pRawDataSet[idxL].pwrPdg[i],
717                                         pRawDataSet[idxL].vpdPdg[i],
718                                         AR5416_PD_GAIN_ICEPTS,
719                                         vpdTableI[i]);
720                 }
721         } else {
722                 for (i = 0; i < numXpdGains; i++) {
723                         pVpdL = pRawDataSet[idxL].vpdPdg[i];
724                         pPwrL = pRawDataSet[idxL].pwrPdg[i];
725                         pVpdR = pRawDataSet[idxR].vpdPdg[i];
726                         pPwrR = pRawDataSet[idxR].pwrPdg[i];
727
728                         minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
729
730                         maxPwrT4[i] =
731                                 min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
732                                     pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
733
734
735                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
736                                                 pPwrL, pVpdL,
737                                                 AR5416_PD_GAIN_ICEPTS,
738                                                 vpdTableL[i]);
739                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
740                                                 pPwrR, pVpdR,
741                                                 AR5416_PD_GAIN_ICEPTS,
742                                                 vpdTableR[i]);
743
744                         for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
745                                 vpdTableI[i][j] =
746                                         (u8)(ath9k_hw_interpolate((u16)
747                                              FREQ2FBIN(centers.
748                                                        synth_center,
749                                                        IS_CHAN_2GHZ
750                                                        (chan)),
751                                              bChans[idxL], bChans[idxR],
752                                              vpdTableL[i][j], vpdTableR[i][j]));
753                         }
754                 }
755         }
756
757         *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
758
759         k = 0;
760
761         for (i = 0; i < numXpdGains; i++) {
762                 if (i == (numXpdGains - 1))
763                         pPdGainBoundaries[i] =
764                                 (u16)(maxPwrT4[i] / 2);
765                 else
766                         pPdGainBoundaries[i] =
767                                 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
768
769                 pPdGainBoundaries[i] =
770                         min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
771
772                 if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) {
773                         minDelta = pPdGainBoundaries[0] - 23;
774                         pPdGainBoundaries[0] = 23;
775                 } else {
776                         minDelta = 0;
777                 }
778
779                 if (i == 0) {
780                         if (AR_SREV_9280_10_OR_LATER(ah))
781                                 ss = (int16_t)(0 - (minPwrT4[i] / 2));
782                         else
783                                 ss = 0;
784                 } else {
785                         ss = (int16_t)((pPdGainBoundaries[i - 1] -
786                                         (minPwrT4[i] / 2)) -
787                                        tPdGainOverlap + 1 + minDelta);
788                 }
789                 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
790                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
791
792                 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
793                         tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
794                         pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
795                         ss++;
796                 }
797
798                 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
799                 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
800                                 (minPwrT4[i] / 2));
801                 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
802                         tgtIndex : sizeCurrVpdTable;
803
804                 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
805                         pPDADCValues[k++] = vpdTableI[i][ss++];
806                 }
807
808                 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
809                                     vpdTableI[i][sizeCurrVpdTable - 2]);
810                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
811
812                 if (tgtIndex > maxIndex) {
813                         while ((ss <= tgtIndex) &&
814                                (k < (AR5416_NUM_PDADC_VALUES - 1))) {
815                                 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
816                                                     (ss - maxIndex + 1) * vpdStep));
817                                 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
818                                                          255 : tmpVal);
819                                 ss++;
820                         }
821                 }
822         }
823
824         while (i < AR5416_PD_GAINS_IN_MASK) {
825                 pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
826                 i++;
827         }
828
829         while (k < AR5416_NUM_PDADC_VALUES) {
830                 pPDADCValues[k] = pPDADCValues[k - 1];
831                 k++;
832         }
833
834         return;
835 }
836
837 static void ath9k_hw_get_legacy_target_powers(struct ath_hal *ah,
838                                       struct ath9k_channel *chan,
839                                       struct cal_target_power_leg *powInfo,
840                                       u16 numChannels,
841                                       struct cal_target_power_leg *pNewPower,
842                                       u16 numRates, bool isExtTarget)
843 {
844         struct chan_centers centers;
845         u16 clo, chi;
846         int i;
847         int matchIndex = -1, lowIndex = -1;
848         u16 freq;
849
850         ath9k_hw_get_channel_centers(ah, chan, &centers);
851         freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
852
853         if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
854                                        IS_CHAN_2GHZ(chan))) {
855                 matchIndex = 0;
856         } else {
857                 for (i = 0; (i < numChannels) &&
858                              (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
859                         if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
860                                                        IS_CHAN_2GHZ(chan))) {
861                                 matchIndex = i;
862                                 break;
863                         } else if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
864                                                       IS_CHAN_2GHZ(chan))) &&
865                                    (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
866                                                       IS_CHAN_2GHZ(chan)))) {
867                                 lowIndex = i - 1;
868                                 break;
869                         }
870                 }
871                 if ((matchIndex == -1) && (lowIndex == -1))
872                         matchIndex = i - 1;
873         }
874
875         if (matchIndex != -1) {
876                 *pNewPower = powInfo[matchIndex];
877         } else {
878                 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
879                                          IS_CHAN_2GHZ(chan));
880                 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
881                                          IS_CHAN_2GHZ(chan));
882
883                 for (i = 0; i < numRates; i++) {
884                         pNewPower->tPow2x[i] =
885                                 (u8)ath9k_hw_interpolate(freq, clo, chi,
886                                                 powInfo[lowIndex].tPow2x[i],
887                                                 powInfo[lowIndex + 1].tPow2x[i]);
888                 }
889         }
890 }
891
892 static void ath9k_hw_get_target_powers(struct ath_hal *ah,
893                                        struct ath9k_channel *chan,
894                                        struct cal_target_power_ht *powInfo,
895                                        u16 numChannels,
896                                        struct cal_target_power_ht *pNewPower,
897                                        u16 numRates, bool isHt40Target)
898 {
899         struct chan_centers centers;
900         u16 clo, chi;
901         int i;
902         int matchIndex = -1, lowIndex = -1;
903         u16 freq;
904
905         ath9k_hw_get_channel_centers(ah, chan, &centers);
906         freq = isHt40Target ? centers.synth_center : centers.ctl_center;
907
908         if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
909                 matchIndex = 0;
910         } else {
911                 for (i = 0; (i < numChannels) &&
912                              (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
913                         if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
914                                                        IS_CHAN_2GHZ(chan))) {
915                                 matchIndex = i;
916                                 break;
917                         } else
918                                 if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
919                                                        IS_CHAN_2GHZ(chan))) &&
920                                     (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
921                                                        IS_CHAN_2GHZ(chan)))) {
922                                         lowIndex = i - 1;
923                                         break;
924                                 }
925                 }
926                 if ((matchIndex == -1) && (lowIndex == -1))
927                         matchIndex = i - 1;
928         }
929
930         if (matchIndex != -1) {
931                 *pNewPower = powInfo[matchIndex];
932         } else {
933                 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
934                                          IS_CHAN_2GHZ(chan));
935                 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
936                                          IS_CHAN_2GHZ(chan));
937
938                 for (i = 0; i < numRates; i++) {
939                         pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
940                                                 clo, chi,
941                                                 powInfo[lowIndex].tPow2x[i],
942                                                 powInfo[lowIndex + 1].tPow2x[i]);
943                 }
944         }
945 }
946
947 static u16 ath9k_hw_get_max_edge_power(u16 freq,
948                                        struct cal_ctl_edges *pRdEdgesPower,
949                                        bool is2GHz, int num_band_edges)
950 {
951         u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
952         int i;
953
954         for (i = 0; (i < num_band_edges) &&
955                      (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
956                 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
957                         twiceMaxEdgePower = pRdEdgesPower[i].tPower;
958                         break;
959                 } else if ((i > 0) &&
960                            (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
961                                                       is2GHz))) {
962                         if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
963                                                is2GHz) < freq &&
964                             pRdEdgesPower[i - 1].flag) {
965                                 twiceMaxEdgePower =
966                                         pRdEdgesPower[i - 1].tPower;
967                         }
968                         break;
969                 }
970         }
971
972         return twiceMaxEdgePower;
973 }
974
975 static bool ath9k_hw_set_def_power_cal_table(struct ath_hal *ah,
976                                   struct ath9k_channel *chan,
977                                   int16_t *pTxPowerIndexOffset)
978 {
979         struct ath_hal_5416 *ahp = AH5416(ah);
980         struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def;
981         struct cal_data_per_freq *pRawDataset;
982         u8 *pCalBChans = NULL;
983         u16 pdGainOverlap_t2;
984         static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
985         u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
986         u16 numPiers, i, j;
987         int16_t tMinCalPower;
988         u16 numXpdGain, xpdMask;
989         u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
990         u32 reg32, regOffset, regChainOffset;
991         int16_t modalIdx;
992
993         modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
994         xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
995
996         if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
997             AR5416_EEP_MINOR_VER_2) {
998                 pdGainOverlap_t2 =
999                         pEepData->modalHeader[modalIdx].pdGainOverlap;
1000         } else {
1001                 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
1002                                             AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
1003         }
1004
1005         if (IS_CHAN_2GHZ(chan)) {
1006                 pCalBChans = pEepData->calFreqPier2G;
1007                 numPiers = AR5416_NUM_2G_CAL_PIERS;
1008         } else {
1009                 pCalBChans = pEepData->calFreqPier5G;
1010                 numPiers = AR5416_NUM_5G_CAL_PIERS;
1011         }
1012
1013         numXpdGain = 0;
1014
1015         for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
1016                 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
1017                         if (numXpdGain >= AR5416_NUM_PD_GAINS)
1018                                 break;
1019                         xpdGainValues[numXpdGain] =
1020                                 (u16)(AR5416_PD_GAINS_IN_MASK - i);
1021                         numXpdGain++;
1022                 }
1023         }
1024
1025         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
1026                       (numXpdGain - 1) & 0x3);
1027         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
1028                       xpdGainValues[0]);
1029         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
1030                       xpdGainValues[1]);
1031         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
1032                       xpdGainValues[2]);
1033
1034         for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1035                 if (AR_SREV_5416_V20_OR_LATER(ah) &&
1036                     (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) &&
1037                     (i != 0)) {
1038                         regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1039                 } else
1040                         regChainOffset = i * 0x1000;
1041
1042                 if (pEepData->baseEepHeader.txMask & (1 << i)) {
1043                         if (IS_CHAN_2GHZ(chan))
1044                                 pRawDataset = pEepData->calPierData2G[i];
1045                         else
1046                                 pRawDataset = pEepData->calPierData5G[i];
1047
1048                         ath9k_hw_get_def_gain_boundaries_pdadcs(ah, chan,
1049                                             pRawDataset, pCalBChans,
1050                                             numPiers, pdGainOverlap_t2,
1051                                             &tMinCalPower, gainBoundaries,
1052                                             pdadcValues, numXpdGain);
1053
1054                         if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
1055                                 REG_WRITE(ah,
1056                                           AR_PHY_TPCRG5 + regChainOffset,
1057                                           SM(pdGainOverlap_t2,
1058                                              AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
1059                                           | SM(gainBoundaries[0],
1060                                                AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
1061                                           | SM(gainBoundaries[1],
1062                                                AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
1063                                           | SM(gainBoundaries[2],
1064                                                AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
1065                                           | SM(gainBoundaries[3],
1066                                        AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
1067                         }
1068
1069                         regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
1070                         for (j = 0; j < 32; j++) {
1071                                 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
1072                                         ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
1073                                         ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
1074                                         ((pdadcValues[4 * j + 3] & 0xFF) << 24);
1075                                 REG_WRITE(ah, regOffset, reg32);
1076
1077                                 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1078                                         "PDADC (%d,%4x): %4.4x %8.8x\n",
1079                                         i, regChainOffset, regOffset,
1080                                         reg32);
1081                                 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1082                                         "PDADC: Chain %d | PDADC %3d "
1083                                         "Value %3d | PDADC %3d Value %3d | "
1084                                         "PDADC %3d Value %3d | PDADC %3d "
1085                                         "Value %3d |\n",
1086                                         i, 4 * j, pdadcValues[4 * j],
1087                                         4 * j + 1, pdadcValues[4 * j + 1],
1088                                         4 * j + 2, pdadcValues[4 * j + 2],
1089                                         4 * j + 3,
1090                                         pdadcValues[4 * j + 3]);
1091
1092                                 regOffset += 4;
1093                         }
1094                 }
1095         }
1096
1097         *pTxPowerIndexOffset = 0;
1098
1099         return true;
1100 }
1101
1102 static bool ath9k_hw_set_4k_power_cal_table(struct ath_hal *ah,
1103                                   struct ath9k_channel *chan,
1104                                   int16_t *pTxPowerIndexOffset)
1105 {
1106         struct ath_hal_5416 *ahp = AH5416(ah);
1107         struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k;
1108         struct cal_data_per_freq_4k *pRawDataset;
1109         u8 *pCalBChans = NULL;
1110         u16 pdGainOverlap_t2;
1111         static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
1112         u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
1113         u16 numPiers, i, j;
1114         int16_t tMinCalPower;
1115         u16 numXpdGain, xpdMask;
1116         u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
1117         u32 reg32, regOffset, regChainOffset;
1118
1119         xpdMask = pEepData->modalHeader.xpdGain;
1120
1121         if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1122             AR5416_EEP_MINOR_VER_2) {
1123                 pdGainOverlap_t2 =
1124                         pEepData->modalHeader.pdGainOverlap;
1125         } else {
1126                 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
1127                                             AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
1128         }
1129
1130         pCalBChans = pEepData->calFreqPier2G;
1131         numPiers = AR5416_NUM_2G_CAL_PIERS;
1132
1133         numXpdGain = 0;
1134
1135         for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
1136                 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
1137                         if (numXpdGain >= AR5416_NUM_PD_GAINS)
1138                                 break;
1139                         xpdGainValues[numXpdGain] =
1140                                 (u16)(AR5416_PD_GAINS_IN_MASK - i);
1141                         numXpdGain++;
1142                 }
1143         }
1144
1145         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
1146                       (numXpdGain - 1) & 0x3);
1147         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
1148                       xpdGainValues[0]);
1149         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
1150                       xpdGainValues[1]);
1151         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
1152                       xpdGainValues[2]);
1153
1154         for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1155                 if (AR_SREV_5416_V20_OR_LATER(ah) &&
1156                     (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) &&
1157                     (i != 0)) {
1158                         regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1159                 } else
1160                         regChainOffset = i * 0x1000;
1161
1162                 if (pEepData->baseEepHeader.txMask & (1 << i)) {
1163                         pRawDataset = pEepData->calPierData2G[i];
1164
1165                         ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
1166                                             pRawDataset, pCalBChans,
1167                                             numPiers, pdGainOverlap_t2,
1168                                             &tMinCalPower, gainBoundaries,
1169                                             pdadcValues, numXpdGain);
1170
1171                         if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
1172                                 REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
1173                                           SM(pdGainOverlap_t2,
1174                                              AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
1175                                           | SM(gainBoundaries[0],
1176                                                AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
1177                                           | SM(gainBoundaries[1],
1178                                                AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
1179                                           | SM(gainBoundaries[2],
1180                                                AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
1181                                           | SM(gainBoundaries[3],
1182                                        AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
1183                         }
1184
1185                         regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
1186                         for (j = 0; j < 32; j++) {
1187                                 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
1188                                         ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
1189                                         ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
1190                                         ((pdadcValues[4 * j + 3] & 0xFF) << 24);
1191                                 REG_WRITE(ah, regOffset, reg32);
1192
1193                                 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1194                                         "PDADC (%d,%4x): %4.4x %8.8x\n",
1195                                         i, regChainOffset, regOffset,
1196                                         reg32);
1197                                 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1198                                         "PDADC: Chain %d | "
1199                                         "PDADC %3d Value %3d | "
1200                                         "PDADC %3d Value %3d | "
1201                                         "PDADC %3d Value %3d | "
1202                                         "PDADC %3d Value %3d |\n",
1203                                         i, 4 * j, pdadcValues[4 * j],
1204                                         4 * j + 1, pdadcValues[4 * j + 1],
1205                                         4 * j + 2, pdadcValues[4 * j + 2],
1206                                         4 * j + 3,
1207                                         pdadcValues[4 * j + 3]);
1208
1209                                 regOffset += 4;
1210                         }
1211                 }
1212         }
1213
1214         *pTxPowerIndexOffset = 0;
1215
1216         return true;
1217 }
1218
1219 static bool ath9k_hw_set_def_power_per_rate_table(struct ath_hal *ah,
1220                                                   struct ath9k_channel *chan,
1221                                                   int16_t *ratesArray,
1222                                                   u16 cfgCtl,
1223                                                   u16 AntennaReduction,
1224                                                   u16 twiceMaxRegulatoryPower,
1225                                                   u16 powerLimit)
1226 {
1227 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
1228 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN   10 /* 10*log10(3)*2 */
1229
1230         struct ath_hal_5416 *ahp = AH5416(ah);
1231         struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def;
1232         u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1233         static const u16 tpScaleReductionTable[5] =
1234                 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
1235
1236         int i;
1237         int16_t twiceLargestAntenna;
1238         struct cal_ctl_data *rep;
1239         struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
1240                 0, { 0, 0, 0, 0}
1241         };
1242         struct cal_target_power_leg targetPowerOfdmExt = {
1243                 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
1244                 0, { 0, 0, 0, 0 }
1245         };
1246         struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
1247                 0, {0, 0, 0, 0}
1248         };
1249         u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
1250         u16 ctlModesFor11a[] =
1251                 { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
1252         u16 ctlModesFor11g[] =
1253                 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
1254                   CTL_2GHT40
1255                 };
1256         u16 numCtlModes, *pCtlMode, ctlMode, freq;
1257         struct chan_centers centers;
1258         int tx_chainmask;
1259         u16 twiceMinEdgePower;
1260
1261         tx_chainmask = ahp->ah_txchainmask;
1262
1263         ath9k_hw_get_channel_centers(ah, chan, &centers);
1264
1265         twiceLargestAntenna = max(
1266                 pEepData->modalHeader
1267                         [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
1268                 pEepData->modalHeader
1269                         [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
1270
1271         twiceLargestAntenna = max((u8)twiceLargestAntenna,
1272                                   pEepData->modalHeader
1273                                   [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1274
1275         twiceLargestAntenna = (int16_t)min(AntennaReduction -
1276                                            twiceLargestAntenna, 0);
1277
1278         maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
1279
1280         if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) {
1281                 maxRegAllowedPower -=
1282                         (tpScaleReductionTable[(ah->ah_tpScale)] * 2);
1283         }
1284
1285         scaledPower = min(powerLimit, maxRegAllowedPower);
1286
1287         switch (ar5416_get_ntxchains(tx_chainmask)) {
1288         case 1:
1289                 break;
1290         case 2:
1291                 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
1292                 break;
1293         case 3:
1294                 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
1295                 break;
1296         }
1297
1298         scaledPower = max((u16)0, scaledPower);
1299
1300         if (IS_CHAN_2GHZ(chan)) {
1301                 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
1302                         SUB_NUM_CTL_MODES_AT_2G_40;
1303                 pCtlMode = ctlModesFor11g;
1304
1305                 ath9k_hw_get_legacy_target_powers(ah, chan,
1306                         pEepData->calTargetPowerCck,
1307                         AR5416_NUM_2G_CCK_TARGET_POWERS,
1308                         &targetPowerCck, 4, false);
1309                 ath9k_hw_get_legacy_target_powers(ah, chan,
1310                         pEepData->calTargetPower2G,
1311                         AR5416_NUM_2G_20_TARGET_POWERS,
1312                         &targetPowerOfdm, 4, false);
1313                 ath9k_hw_get_target_powers(ah, chan,
1314                         pEepData->calTargetPower2GHT20,
1315                         AR5416_NUM_2G_20_TARGET_POWERS,
1316                         &targetPowerHt20, 8, false);
1317
1318                 if (IS_CHAN_HT40(chan)) {
1319                         numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1320                         ath9k_hw_get_target_powers(ah, chan,
1321                                 pEepData->calTargetPower2GHT40,
1322                                 AR5416_NUM_2G_40_TARGET_POWERS,
1323                                 &targetPowerHt40, 8, true);
1324                         ath9k_hw_get_legacy_target_powers(ah, chan,
1325                                 pEepData->calTargetPowerCck,
1326                                 AR5416_NUM_2G_CCK_TARGET_POWERS,
1327                                 &targetPowerCckExt, 4, true);
1328                         ath9k_hw_get_legacy_target_powers(ah, chan,
1329                                 pEepData->calTargetPower2G,
1330                                 AR5416_NUM_2G_20_TARGET_POWERS,
1331                                 &targetPowerOfdmExt, 4, true);
1332                 }
1333         } else {
1334                 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1335                         SUB_NUM_CTL_MODES_AT_5G_40;
1336                 pCtlMode = ctlModesFor11a;
1337
1338                 ath9k_hw_get_legacy_target_powers(ah, chan,
1339                         pEepData->calTargetPower5G,
1340                         AR5416_NUM_5G_20_TARGET_POWERS,
1341                         &targetPowerOfdm, 4, false);
1342                 ath9k_hw_get_target_powers(ah, chan,
1343                         pEepData->calTargetPower5GHT20,
1344                         AR5416_NUM_5G_20_TARGET_POWERS,
1345                         &targetPowerHt20, 8, false);
1346
1347                 if (IS_CHAN_HT40(chan)) {
1348                         numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1349                         ath9k_hw_get_target_powers(ah, chan,
1350                                 pEepData->calTargetPower5GHT40,
1351                                 AR5416_NUM_5G_40_TARGET_POWERS,
1352                                 &targetPowerHt40, 8, true);
1353                         ath9k_hw_get_legacy_target_powers(ah, chan,
1354                                 pEepData->calTargetPower5G,
1355                                 AR5416_NUM_5G_20_TARGET_POWERS,
1356                                 &targetPowerOfdmExt, 4, true);
1357                 }
1358         }
1359
1360         for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1361                 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1362                         (pCtlMode[ctlMode] == CTL_2GHT40);
1363                 if (isHt40CtlMode)
1364                         freq = centers.synth_center;
1365                 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1366                         freq = centers.ext_center;
1367                 else
1368                         freq = centers.ctl_center;
1369
1370                 if (ar5416_get_eep_ver(ahp) == 14 && ar5416_get_eep_rev(ahp) <= 2)
1371                         twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1372
1373                 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1374                         "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
1375                         "EXT_ADDITIVE %d\n",
1376                         ctlMode, numCtlModes, isHt40CtlMode,
1377                         (pCtlMode[ctlMode] & EXT_ADDITIVE));
1378
1379                 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1380                         DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1381                                 "  LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
1382                                 "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
1383                                 "chan %d\n",
1384                                 i, cfgCtl, pCtlMode[ctlMode],
1385                                 pEepData->ctlIndex[i], chan->channel);
1386
1387                         if ((((cfgCtl & ~CTL_MODE_M) |
1388                               (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1389                              pEepData->ctlIndex[i]) ||
1390                             (((cfgCtl & ~CTL_MODE_M) |
1391                               (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1392                              ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1393                                 rep = &(pEepData->ctlData[i]);
1394
1395                                 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1396                                 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1397                                 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1398
1399                                 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1400                                         "    MATCH-EE_IDX %d: ch %d is2 %d "
1401                                         "2xMinEdge %d chainmask %d chains %d\n",
1402                                         i, freq, IS_CHAN_2GHZ(chan),
1403                                         twiceMinEdgePower, tx_chainmask,
1404                                         ar5416_get_ntxchains
1405                                         (tx_chainmask));
1406                                 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1407                                         twiceMaxEdgePower = min(twiceMaxEdgePower,
1408                                                                 twiceMinEdgePower);
1409                                 } else {
1410                                         twiceMaxEdgePower = twiceMinEdgePower;
1411                                         break;
1412                                 }
1413                         }
1414                 }
1415
1416                 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1417
1418                 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1419                         "    SEL-Min ctlMode %d pCtlMode %d "
1420                         "2xMaxEdge %d sP %d minCtlPwr %d\n",
1421                         ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
1422                         scaledPower, minCtlPower);
1423
1424                 switch (pCtlMode[ctlMode]) {
1425                 case CTL_11B:
1426                         for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1427                                 targetPowerCck.tPow2x[i] =
1428                                         min((u16)targetPowerCck.tPow2x[i],
1429                                             minCtlPower);
1430                         }
1431                         break;
1432                 case CTL_11A:
1433                 case CTL_11G:
1434                         for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1435                                 targetPowerOfdm.tPow2x[i] =
1436                                         min((u16)targetPowerOfdm.tPow2x[i],
1437                                             minCtlPower);
1438                         }
1439                         break;
1440                 case CTL_5GHT20:
1441                 case CTL_2GHT20:
1442                         for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1443                                 targetPowerHt20.tPow2x[i] =
1444                                         min((u16)targetPowerHt20.tPow2x[i],
1445                                             minCtlPower);
1446                         }
1447                         break;
1448                 case CTL_11B_EXT:
1449                         targetPowerCckExt.tPow2x[0] = min((u16)
1450                                         targetPowerCckExt.tPow2x[0],
1451                                         minCtlPower);
1452                         break;
1453                 case CTL_11A_EXT:
1454                 case CTL_11G_EXT:
1455                         targetPowerOfdmExt.tPow2x[0] = min((u16)
1456                                         targetPowerOfdmExt.tPow2x[0],
1457                                         minCtlPower);
1458                         break;
1459                 case CTL_5GHT40:
1460                 case CTL_2GHT40:
1461                         for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1462                                 targetPowerHt40.tPow2x[i] =
1463                                         min((u16)targetPowerHt40.tPow2x[i],
1464                                             minCtlPower);
1465                         }
1466                         break;
1467                 default:
1468                         break;
1469                 }
1470         }
1471
1472         ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1473                 ratesArray[rate18mb] = ratesArray[rate24mb] =
1474                 targetPowerOfdm.tPow2x[0];
1475         ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1476         ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1477         ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1478         ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1479
1480         for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1481                 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1482
1483         if (IS_CHAN_2GHZ(chan)) {
1484                 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1485                 ratesArray[rate2s] = ratesArray[rate2l] =
1486                         targetPowerCck.tPow2x[1];
1487                 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1488                         targetPowerCck.tPow2x[2];
1489                 ;
1490                 ratesArray[rate11s] = ratesArray[rate11l] =
1491                         targetPowerCck.tPow2x[3];
1492                 ;
1493         }
1494         if (IS_CHAN_HT40(chan)) {
1495                 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1496                         ratesArray[rateHt40_0 + i] =
1497                                 targetPowerHt40.tPow2x[i];
1498                 }
1499                 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1500                 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1501                 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1502                 if (IS_CHAN_2GHZ(chan)) {
1503                         ratesArray[rateExtCck] =
1504                                 targetPowerCckExt.tPow2x[0];
1505                 }
1506         }
1507         return true;
1508 }
1509
1510 static bool ath9k_hw_set_4k_power_per_rate_table(struct ath_hal *ah,
1511                                                  struct ath9k_channel *chan,
1512                                                  int16_t *ratesArray,
1513                                                  u16 cfgCtl,
1514                                                  u16 AntennaReduction,
1515                                                  u16 twiceMaxRegulatoryPower,
1516                                                  u16 powerLimit)
1517 {
1518         struct ath_hal_5416 *ahp = AH5416(ah);
1519         struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k;
1520         u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1521         static const u16 tpScaleReductionTable[5] =
1522                 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
1523
1524         int i;
1525         int16_t twiceLargestAntenna;
1526         struct cal_ctl_data_4k *rep;
1527         struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
1528                 0, { 0, 0, 0, 0}
1529         };
1530         struct cal_target_power_leg targetPowerOfdmExt = {
1531                 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
1532                 0, { 0, 0, 0, 0 }
1533         };
1534         struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
1535                 0, {0, 0, 0, 0}
1536         };
1537         u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
1538         u16 ctlModesFor11g[] =
1539                 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
1540                   CTL_2GHT40
1541                 };
1542         u16 numCtlModes, *pCtlMode, ctlMode, freq;
1543         struct chan_centers centers;
1544         int tx_chainmask;
1545         u16 twiceMinEdgePower;
1546
1547         tx_chainmask = ahp->ah_txchainmask;
1548
1549         ath9k_hw_get_channel_centers(ah, chan, &centers);
1550
1551         twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
1552
1553         twiceLargestAntenna = (int16_t)min(AntennaReduction -
1554                                            twiceLargestAntenna, 0);
1555
1556         maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
1557
1558         if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) {
1559                 maxRegAllowedPower -=
1560                         (tpScaleReductionTable[(ah->ah_tpScale)] * 2);
1561         }
1562
1563         scaledPower = min(powerLimit, maxRegAllowedPower);
1564         scaledPower = max((u16)0, scaledPower);
1565
1566         numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
1567         pCtlMode = ctlModesFor11g;
1568
1569         ath9k_hw_get_legacy_target_powers(ah, chan,
1570                         pEepData->calTargetPowerCck,
1571                         AR5416_NUM_2G_CCK_TARGET_POWERS,
1572                         &targetPowerCck, 4, false);
1573         ath9k_hw_get_legacy_target_powers(ah, chan,
1574                         pEepData->calTargetPower2G,
1575                         AR5416_NUM_2G_20_TARGET_POWERS,
1576                         &targetPowerOfdm, 4, false);
1577         ath9k_hw_get_target_powers(ah, chan,
1578                         pEepData->calTargetPower2GHT20,
1579                         AR5416_NUM_2G_20_TARGET_POWERS,
1580                         &targetPowerHt20, 8, false);
1581
1582         if (IS_CHAN_HT40(chan)) {
1583                 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1584                 ath9k_hw_get_target_powers(ah, chan,
1585                                 pEepData->calTargetPower2GHT40,
1586                                 AR5416_NUM_2G_40_TARGET_POWERS,
1587                                 &targetPowerHt40, 8, true);
1588                 ath9k_hw_get_legacy_target_powers(ah, chan,
1589                                 pEepData->calTargetPowerCck,
1590                                 AR5416_NUM_2G_CCK_TARGET_POWERS,
1591                                 &targetPowerCckExt, 4, true);
1592                 ath9k_hw_get_legacy_target_powers(ah, chan,
1593                                 pEepData->calTargetPower2G,
1594                                 AR5416_NUM_2G_20_TARGET_POWERS,
1595                                 &targetPowerOfdmExt, 4, true);
1596         }
1597
1598         for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1599                 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1600                         (pCtlMode[ctlMode] == CTL_2GHT40);
1601                 if (isHt40CtlMode)
1602                         freq = centers.synth_center;
1603                 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1604                         freq = centers.ext_center;
1605                 else
1606                         freq = centers.ctl_center;
1607
1608                 if (ar5416_get_eep_ver(ahp) == 14 &&
1609                                 ar5416_get_eep_rev(ahp) <= 2)
1610                         twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1611
1612                 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1613                         "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
1614                         "EXT_ADDITIVE %d\n",
1615                         ctlMode, numCtlModes, isHt40CtlMode,
1616                         (pCtlMode[ctlMode] & EXT_ADDITIVE));
1617
1618                 for (i = 0; (i < AR5416_NUM_CTLS) &&
1619                                 pEepData->ctlIndex[i]; i++) {
1620                         DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1621                                 "  LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
1622                                 "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
1623                                 "chan %d\n",
1624                                 i, cfgCtl, pCtlMode[ctlMode],
1625                                 pEepData->ctlIndex[i], chan->channel);
1626
1627                         if ((((cfgCtl & ~CTL_MODE_M) |
1628                               (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1629                              pEepData->ctlIndex[i]) ||
1630                             (((cfgCtl & ~CTL_MODE_M) |
1631                               (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1632                              ((pEepData->ctlIndex[i] & CTL_MODE_M) |
1633                               SD_NO_CTL))) {
1634                                 rep = &(pEepData->ctlData[i]);
1635
1636                                 twiceMinEdgePower =
1637                                         ath9k_hw_get_max_edge_power(freq,
1638                                 rep->ctlEdges[ar5416_get_ntxchains
1639                                                 (tx_chainmask) - 1],
1640                                 IS_CHAN_2GHZ(chan),
1641                                 AR5416_EEP4K_NUM_BAND_EDGES);
1642
1643                                 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1644                                         "    MATCH-EE_IDX %d: ch %d is2 %d "
1645                                         "2xMinEdge %d chainmask %d chains %d\n",
1646                                         i, freq, IS_CHAN_2GHZ(chan),
1647                                         twiceMinEdgePower, tx_chainmask,
1648                                         ar5416_get_ntxchains
1649                                         (tx_chainmask));
1650                                 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1651                                         twiceMaxEdgePower =
1652                                                 min(twiceMaxEdgePower,
1653                                                     twiceMinEdgePower);
1654                                 } else {
1655                                         twiceMaxEdgePower = twiceMinEdgePower;
1656                                         break;
1657                                 }
1658                         }
1659                 }
1660
1661                 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
1662
1663                 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
1664                         "    SEL-Min ctlMode %d pCtlMode %d "
1665                         "2xMaxEdge %d sP %d minCtlPwr %d\n",
1666                         ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
1667                         scaledPower, minCtlPower);
1668
1669                 switch (pCtlMode[ctlMode]) {
1670                 case CTL_11B:
1671                         for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x);
1672                                         i++) {
1673                                 targetPowerCck.tPow2x[i] =
1674                                         min((u16)targetPowerCck.tPow2x[i],
1675                                             minCtlPower);
1676                         }
1677                         break;
1678                 case CTL_11G:
1679                         for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
1680                                         i++) {
1681                                 targetPowerOfdm.tPow2x[i] =
1682                                         min((u16)targetPowerOfdm.tPow2x[i],
1683                                             minCtlPower);
1684                         }
1685                         break;
1686                 case CTL_2GHT20:
1687                         for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x);
1688                                         i++) {
1689                                 targetPowerHt20.tPow2x[i] =
1690                                         min((u16)targetPowerHt20.tPow2x[i],
1691                                             minCtlPower);
1692                         }
1693                         break;
1694                 case CTL_11B_EXT:
1695                         targetPowerCckExt.tPow2x[0] = min((u16)
1696                                         targetPowerCckExt.tPow2x[0],
1697                                         minCtlPower);
1698                         break;
1699                 case CTL_11G_EXT:
1700                         targetPowerOfdmExt.tPow2x[0] = min((u16)
1701                                         targetPowerOfdmExt.tPow2x[0],
1702                                         minCtlPower);
1703                         break;
1704                 case CTL_2GHT40:
1705                         for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x);
1706                                         i++) {
1707                                 targetPowerHt40.tPow2x[i] =
1708                                         min((u16)targetPowerHt40.tPow2x[i],
1709                                             minCtlPower);
1710                         }
1711                         break;
1712                 default:
1713                         break;
1714                 }
1715         }
1716
1717         ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1718                 ratesArray[rate18mb] = ratesArray[rate24mb] =
1719                 targetPowerOfdm.tPow2x[0];
1720         ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1721         ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1722         ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1723         ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1724
1725         for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1726                 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1727
1728         ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1729         ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
1730         ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
1731         ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
1732
1733         if (IS_CHAN_HT40(chan)) {
1734                 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1735                         ratesArray[rateHt40_0 + i] =
1736                                 targetPowerHt40.tPow2x[i];
1737                 }
1738                 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1739                 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1740                 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1741                 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
1742         }
1743         return true;
1744 }
1745
1746 static int ath9k_hw_def_set_txpower(struct ath_hal *ah,
1747                          struct ath9k_channel *chan,
1748                          u16 cfgCtl,
1749                          u8 twiceAntennaReduction,
1750                          u8 twiceMaxRegulatoryPower,
1751                          u8 powerLimit)
1752 {
1753         struct ath_hal_5416 *ahp = AH5416(ah);
1754         struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def;
1755         struct modal_eep_header *pModal =
1756                 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1757         int16_t ratesArray[Ar5416RateSize];
1758         int16_t txPowerIndexOffset = 0;
1759         u8 ht40PowerIncForPdadc = 2;
1760         int i;
1761
1762         memset(ratesArray, 0, sizeof(ratesArray));
1763
1764         if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1765             AR5416_EEP_MINOR_VER_2) {
1766                 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1767         }
1768
1769         if (!ath9k_hw_set_def_power_per_rate_table(ah, chan,
1770                                                &ratesArray[0], cfgCtl,
1771                                                twiceAntennaReduction,
1772                                                twiceMaxRegulatoryPower,
1773                                                powerLimit)) {
1774                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1775                         "ath9k_hw_set_txpower: unable to set "
1776                         "tx power per rate table\n");
1777                 return -EIO;
1778         }
1779
1780         if (!ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset)) {
1781                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1782                          "ath9k_hw_set_txpower: unable to set power table\n");
1783                 return -EIO;
1784         }
1785
1786         for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1787                 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1788                 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1789                         ratesArray[i] = AR5416_MAX_RATE_POWER;
1790         }
1791
1792         if (AR_SREV_9280_10_OR_LATER(ah)) {
1793                 for (i = 0; i < Ar5416RateSize; i++)
1794                         ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
1795         }
1796
1797         REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1798                   ATH9K_POW_SM(ratesArray[rate18mb], 24)
1799                   | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1800                   | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1801                   | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1802         REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1803                   ATH9K_POW_SM(ratesArray[rate54mb], 24)
1804                   | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1805                   | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1806                   | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1807
1808         if (IS_CHAN_2GHZ(chan)) {
1809                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1810                           ATH9K_POW_SM(ratesArray[rate2s], 24)
1811                           | ATH9K_POW_SM(ratesArray[rate2l], 16)
1812                           | ATH9K_POW_SM(ratesArray[rateXr], 8)
1813                           | ATH9K_POW_SM(ratesArray[rate1l], 0));
1814                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1815                           ATH9K_POW_SM(ratesArray[rate11s], 24)
1816                           | ATH9K_POW_SM(ratesArray[rate11l], 16)
1817                           | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1818                           | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1819         }
1820
1821         REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1822                   ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1823                   | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1824                   | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1825                   | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1826         REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1827                   ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1828                   | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1829                   | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1830                   | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1831
1832         if (IS_CHAN_HT40(chan)) {
1833                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1834                           ATH9K_POW_SM(ratesArray[rateHt40_3] +
1835                                        ht40PowerIncForPdadc, 24)
1836                           | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1837                                          ht40PowerIncForPdadc, 16)
1838                           | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1839                                          ht40PowerIncForPdadc, 8)
1840                           | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1841                                          ht40PowerIncForPdadc, 0));
1842                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1843                           ATH9K_POW_SM(ratesArray[rateHt40_7] +
1844                                        ht40PowerIncForPdadc, 24)
1845                           | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1846                                          ht40PowerIncForPdadc, 16)
1847                           | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1848                                          ht40PowerIncForPdadc, 8)
1849                           | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1850                                          ht40PowerIncForPdadc, 0));
1851
1852                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1853                           ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1854                           | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1855                           | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1856                           | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1857         }
1858
1859         REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1860                   ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1861                   | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1862
1863         i = rate6mb;
1864
1865         if (IS_CHAN_HT40(chan))
1866                 i = rateHt40_0;
1867         else if (IS_CHAN_HT20(chan))
1868                 i = rateHt20_0;
1869
1870         if (AR_SREV_9280_10_OR_LATER(ah))
1871                 ah->ah_maxPowerLevel =
1872                         ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
1873         else
1874                 ah->ah_maxPowerLevel = ratesArray[i];
1875
1876         return 0;
1877 }
1878
1879 static int ath9k_hw_4k_set_txpower(struct ath_hal *ah,
1880                          struct ath9k_channel *chan,
1881                          u16 cfgCtl,
1882                          u8 twiceAntennaReduction,
1883                          u8 twiceMaxRegulatoryPower,
1884                          u8 powerLimit)
1885 {
1886         struct ath_hal_5416 *ahp = AH5416(ah);
1887         struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k;
1888         struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
1889         int16_t ratesArray[Ar5416RateSize];
1890         int16_t txPowerIndexOffset = 0;
1891         u8 ht40PowerIncForPdadc = 2;
1892         int i;
1893
1894         memset(ratesArray, 0, sizeof(ratesArray));
1895
1896         if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1897             AR5416_EEP_MINOR_VER_2) {
1898                 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1899         }
1900
1901         if (!ath9k_hw_set_4k_power_per_rate_table(ah, chan,
1902                                                &ratesArray[0], cfgCtl,
1903                                                twiceAntennaReduction,
1904                                                twiceMaxRegulatoryPower,
1905                                                powerLimit)) {
1906                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1907                         "ath9k_hw_set_txpower: unable to set "
1908                         "tx power per rate table\n");
1909                 return -EIO;
1910         }
1911
1912         if (!ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset)) {
1913                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1914                          "ath9k_hw_set_txpower: unable to set power table\n");
1915                 return -EIO;
1916         }
1917
1918         for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1919                 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1920                 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1921                         ratesArray[i] = AR5416_MAX_RATE_POWER;
1922         }
1923
1924         if (AR_SREV_9280_10_OR_LATER(ah)) {
1925                 for (i = 0; i < Ar5416RateSize; i++)
1926                         ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
1927         }
1928
1929         REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1930                   ATH9K_POW_SM(ratesArray[rate18mb], 24)
1931                   | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1932                   | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1933                   | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1934         REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1935                   ATH9K_POW_SM(ratesArray[rate54mb], 24)
1936                   | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1937                   | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1938                   | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1939
1940         if (IS_CHAN_2GHZ(chan)) {
1941                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1942                           ATH9K_POW_SM(ratesArray[rate2s], 24)
1943                           | ATH9K_POW_SM(ratesArray[rate2l], 16)
1944                           | ATH9K_POW_SM(ratesArray[rateXr], 8)
1945                           | ATH9K_POW_SM(ratesArray[rate1l], 0));
1946                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1947                           ATH9K_POW_SM(ratesArray[rate11s], 24)
1948                           | ATH9K_POW_SM(ratesArray[rate11l], 16)
1949                           | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1950                           | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1951         }
1952
1953         REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1954                   ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1955                   | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1956                   | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1957                   | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1958         REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1959                   ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1960                   | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1961                   | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1962                   | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1963
1964         if (IS_CHAN_HT40(chan)) {
1965                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1966                           ATH9K_POW_SM(ratesArray[rateHt40_3] +
1967                                        ht40PowerIncForPdadc, 24)
1968                           | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1969                                          ht40PowerIncForPdadc, 16)
1970                           | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1971                                          ht40PowerIncForPdadc, 8)
1972                           | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1973                                          ht40PowerIncForPdadc, 0));
1974                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1975                           ATH9K_POW_SM(ratesArray[rateHt40_7] +
1976                                        ht40PowerIncForPdadc, 24)
1977                           | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1978                                          ht40PowerIncForPdadc, 16)
1979                           | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1980                                          ht40PowerIncForPdadc, 8)
1981                           | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1982                                          ht40PowerIncForPdadc, 0));
1983
1984                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1985                           ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1986                           | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1987                           | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1988                           | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1989         }
1990
1991         i = rate6mb;
1992
1993         if (IS_CHAN_HT40(chan))
1994                 i = rateHt40_0;
1995         else if (IS_CHAN_HT20(chan))
1996                 i = rateHt20_0;
1997
1998         if (AR_SREV_9280_10_OR_LATER(ah))
1999                 ah->ah_maxPowerLevel =
2000                         ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
2001         else
2002                 ah->ah_maxPowerLevel = ratesArray[i];
2003
2004         return 0;
2005 }
2006
2007 static int (*ath9k_set_txpower[]) (struct ath_hal *,
2008                                    struct ath9k_channel *,
2009                                    u16, u8, u8, u8) = {
2010         ath9k_hw_def_set_txpower,
2011         ath9k_hw_4k_set_txpower
2012 };
2013
2014 int ath9k_hw_set_txpower(struct ath_hal *ah,
2015                          struct ath9k_channel *chan,
2016                          u16 cfgCtl,
2017                          u8 twiceAntennaReduction,
2018                          u8 twiceMaxRegulatoryPower,
2019                          u8 powerLimit)
2020 {
2021         struct ath_hal_5416 *ahp = AH5416(ah);
2022
2023         return ath9k_set_txpower[ahp->ah_eep_map](ah, chan, cfgCtl,
2024                         twiceAntennaReduction, twiceMaxRegulatoryPower,
2025                         powerLimit);
2026 }
2027
2028 static void ath9k_hw_set_def_addac(struct ath_hal *ah,
2029                                    struct ath9k_channel *chan)
2030 {
2031 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
2032         struct modal_eep_header *pModal;
2033         struct ath_hal_5416 *ahp = AH5416(ah);
2034         struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
2035         u8 biaslevel;
2036
2037         if (ah->ah_macVersion != AR_SREV_VERSION_9160)
2038                 return;
2039
2040         if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7)
2041                 return;
2042
2043         pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
2044
2045         if (pModal->xpaBiasLvl != 0xff) {
2046                 biaslevel = pModal->xpaBiasLvl;
2047         } else {
2048                 u16 resetFreqBin, freqBin, freqCount = 0;
2049                 struct chan_centers centers;
2050
2051                 ath9k_hw_get_channel_centers(ah, chan, &centers);
2052
2053                 resetFreqBin = FREQ2FBIN(centers.synth_center,
2054                                          IS_CHAN_2GHZ(chan));
2055                 freqBin = XPA_LVL_FREQ(0) & 0xff;
2056                 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
2057
2058                 freqCount++;
2059
2060                 while (freqCount < 3) {
2061                         if (XPA_LVL_FREQ(freqCount) == 0x0)
2062                                 break;
2063
2064                         freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
2065                         if (resetFreqBin >= freqBin)
2066                                 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
2067                         else
2068                                 break;
2069                         freqCount++;
2070                 }
2071         }
2072
2073         if (IS_CHAN_2GHZ(chan)) {
2074                 INI_RA(&ahp->ah_iniAddac, 7, 1) = (INI_RA(&ahp->ah_iniAddac,
2075                                         7, 1) & (~0x18)) | biaslevel << 3;
2076         } else {
2077                 INI_RA(&ahp->ah_iniAddac, 6, 1) = (INI_RA(&ahp->ah_iniAddac,
2078                                         6, 1) & (~0xc0)) | biaslevel << 6;
2079         }
2080 #undef XPA_LVL_FREQ
2081 }
2082
2083 static void ath9k_hw_set_4k_addac(struct ath_hal *ah,
2084                                   struct ath9k_channel *chan)
2085 {
2086         struct modal_eep_4k_header *pModal;
2087         struct ath_hal_5416 *ahp = AH5416(ah);
2088         struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k;
2089         u8 biaslevel;
2090
2091         if (ah->ah_macVersion != AR_SREV_VERSION_9160)
2092                 return;
2093
2094         if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7)
2095                 return;
2096
2097         pModal = &eep->modalHeader;
2098
2099         if (pModal->xpaBiasLvl != 0xff) {
2100                 biaslevel = pModal->xpaBiasLvl;
2101                 INI_RA(&ahp->ah_iniAddac, 7, 1) =
2102                   (INI_RA(&ahp->ah_iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
2103         }
2104 }
2105
2106 static void (*ath9k_set_addac[]) (struct ath_hal *, struct ath9k_channel *) = {
2107         ath9k_hw_set_def_addac,
2108         ath9k_hw_set_4k_addac
2109 };
2110
2111 void ath9k_hw_set_addac(struct ath_hal *ah, struct ath9k_channel *chan)
2112 {
2113         struct ath_hal_5416 *ahp = AH5416(ah);
2114
2115         ath9k_set_addac[ahp->ah_eep_map](ah, chan);
2116 }
2117
2118
2119
2120 /* XXX: Clean me up, make me more legible */
2121 static bool ath9k_hw_eeprom_set_def_board_values(struct ath_hal *ah,
2122                                       struct ath9k_channel *chan)
2123 {
2124         struct modal_eep_header *pModal;
2125         struct ath_hal_5416 *ahp = AH5416(ah);
2126         struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
2127         int i, regChainOffset;
2128         u8 txRxAttenLocal;
2129         u16 ant_config;
2130
2131         pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
2132
2133         txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
2134
2135         ath9k_hw_get_eeprom_antenna_cfg(ah, chan, 0, &ant_config);
2136         REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
2137
2138         for (i = 0; i < AR5416_MAX_CHAINS; i++) {
2139                 if (AR_SREV_9280(ah)) {
2140                         if (i >= 2)
2141                                 break;
2142                 }
2143
2144                 if (AR_SREV_5416_V20_OR_LATER(ah) &&
2145                     (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5)
2146                     && (i != 0))
2147                         regChainOffset = (i == 1) ? 0x2000 : 0x1000;
2148                 else
2149                         regChainOffset = i * 0x1000;
2150
2151                 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
2152                           pModal->antCtrlChain[i]);
2153
2154                 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
2155                           (REG_READ(ah,
2156                                     AR_PHY_TIMING_CTRL4(0) +
2157                                     regChainOffset) &
2158                            ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
2159                              AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
2160                           SM(pModal->iqCalICh[i],
2161                              AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
2162                           SM(pModal->iqCalQCh[i],
2163                              AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
2164
2165                 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
2166                         if ((eep->baseEepHeader.version &
2167                              AR5416_EEP_VER_MINOR_MASK) >=
2168                             AR5416_EEP_MINOR_VER_3) {
2169                                 txRxAttenLocal = pModal->txRxAttenCh[i];
2170                                 if (AR_SREV_9280_10_OR_LATER(ah)) {
2171                                         REG_RMW_FIELD(ah,
2172                                                 AR_PHY_GAIN_2GHZ +
2173                                                 regChainOffset,
2174                                                 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
2175                                                 pModal->
2176                                                 bswMargin[i]);
2177                                         REG_RMW_FIELD(ah,
2178                                                 AR_PHY_GAIN_2GHZ +
2179                                                 regChainOffset,
2180                                                 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
2181                                                 pModal->
2182                                                 bswAtten[i]);
2183                                         REG_RMW_FIELD(ah,
2184                                                 AR_PHY_GAIN_2GHZ +
2185                                                 regChainOffset,
2186                                                 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
2187                                                 pModal->
2188                                                 xatten2Margin[i]);
2189                                         REG_RMW_FIELD(ah,
2190                                                 AR_PHY_GAIN_2GHZ +
2191                                                 regChainOffset,
2192                                                 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
2193                                                 pModal->
2194                                                 xatten2Db[i]);
2195                                 } else {
2196                                         REG_WRITE(ah,
2197                                                   AR_PHY_GAIN_2GHZ +
2198                                                   regChainOffset,
2199                                                   (REG_READ(ah,
2200                                                             AR_PHY_GAIN_2GHZ +
2201                                                             regChainOffset) &
2202                                                    ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
2203                                                   | SM(pModal->
2204                                                   bswMargin[i],
2205                                                   AR_PHY_GAIN_2GHZ_BSW_MARGIN));
2206                                         REG_WRITE(ah,
2207                                                   AR_PHY_GAIN_2GHZ +
2208                                                   regChainOffset,
2209                                                   (REG_READ(ah,
2210                                                             AR_PHY_GAIN_2GHZ +
2211                                                             regChainOffset) &
2212                                                    ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
2213                                                   | SM(pModal->bswAtten[i],
2214                                                   AR_PHY_GAIN_2GHZ_BSW_ATTEN));
2215                                 }
2216                         }
2217                         if (AR_SREV_9280_10_OR_LATER(ah)) {
2218                                 REG_RMW_FIELD(ah,
2219                                               AR_PHY_RXGAIN +
2220                                               regChainOffset,
2221                                               AR9280_PHY_RXGAIN_TXRX_ATTEN,
2222                                               txRxAttenLocal);
2223                                 REG_RMW_FIELD(ah,
2224                                               AR_PHY_RXGAIN +
2225                                               regChainOffset,
2226                                               AR9280_PHY_RXGAIN_TXRX_MARGIN,
2227                                               pModal->rxTxMarginCh[i]);
2228                         } else {
2229                                 REG_WRITE(ah,
2230                                           AR_PHY_RXGAIN + regChainOffset,
2231                                           (REG_READ(ah,
2232                                                     AR_PHY_RXGAIN +
2233                                                     regChainOffset) &
2234                                            ~AR_PHY_RXGAIN_TXRX_ATTEN) |
2235                                           SM(txRxAttenLocal,
2236                                              AR_PHY_RXGAIN_TXRX_ATTEN));
2237                                 REG_WRITE(ah,
2238                                           AR_PHY_GAIN_2GHZ +
2239                                           regChainOffset,
2240                                           (REG_READ(ah,
2241                                                     AR_PHY_GAIN_2GHZ +
2242                                                     regChainOffset) &
2243                                            ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
2244                                           SM(pModal->rxTxMarginCh[i],
2245                                              AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
2246                         }
2247                 }
2248         }
2249
2250         if (AR_SREV_9280_10_OR_LATER(ah)) {
2251                 if (IS_CHAN_2GHZ(chan)) {
2252                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
2253                                                   AR_AN_RF2G1_CH0_OB,
2254                                                   AR_AN_RF2G1_CH0_OB_S,
2255                                                   pModal->ob);
2256                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
2257                                                   AR_AN_RF2G1_CH0_DB,
2258                                                   AR_AN_RF2G1_CH0_DB_S,
2259                                                   pModal->db);
2260                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
2261                                                   AR_AN_RF2G1_CH1_OB,
2262                                                   AR_AN_RF2G1_CH1_OB_S,
2263                                                   pModal->ob_ch1);
2264                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
2265                                                   AR_AN_RF2G1_CH1_DB,
2266                                                   AR_AN_RF2G1_CH1_DB_S,
2267                                                   pModal->db_ch1);
2268                 } else {
2269                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
2270                                                   AR_AN_RF5G1_CH0_OB5,
2271                                                   AR_AN_RF5G1_CH0_OB5_S,
2272                                                   pModal->ob);
2273                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
2274                                                   AR_AN_RF5G1_CH0_DB5,
2275                                                   AR_AN_RF5G1_CH0_DB5_S,
2276                                                   pModal->db);
2277                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
2278                                                   AR_AN_RF5G1_CH1_OB5,
2279                                                   AR_AN_RF5G1_CH1_OB5_S,
2280                                                   pModal->ob_ch1);
2281                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
2282                                                   AR_AN_RF5G1_CH1_DB5,
2283                                                   AR_AN_RF5G1_CH1_DB5_S,
2284                                                   pModal->db_ch1);
2285                 }
2286                 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
2287                                           AR_AN_TOP2_XPABIAS_LVL,
2288                                           AR_AN_TOP2_XPABIAS_LVL_S,
2289                                           pModal->xpaBiasLvl);
2290                 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
2291                                           AR_AN_TOP2_LOCALBIAS,
2292                                           AR_AN_TOP2_LOCALBIAS_S,
2293                                           pModal->local_bias);
2294                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "ForceXPAon: %d\n",
2295                         pModal->force_xpaon);
2296                 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
2297                               pModal->force_xpaon);
2298         }
2299
2300         REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
2301                       pModal->switchSettling);
2302         REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
2303                       pModal->adcDesiredSize);
2304
2305         if (!AR_SREV_9280_10_OR_LATER(ah))
2306                 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
2307                               AR_PHY_DESIRED_SZ_PGA,
2308                               pModal->pgaDesiredSize);
2309
2310         REG_WRITE(ah, AR_PHY_RF_CTL4,
2311                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
2312                   | SM(pModal->txEndToXpaOff,
2313                        AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
2314                   | SM(pModal->txFrameToXpaOn,
2315                        AR_PHY_RF_CTL4_FRAME_XPAA_ON)
2316                   | SM(pModal->txFrameToXpaOn,
2317                        AR_PHY_RF_CTL4_FRAME_XPAB_ON));
2318
2319         REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
2320                       pModal->txEndToRxOn);
2321         if (AR_SREV_9280_10_OR_LATER(ah)) {
2322                 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
2323                               pModal->thresh62);
2324                 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
2325                               AR_PHY_EXT_CCA0_THRESH62,
2326                               pModal->thresh62);
2327         } else {
2328                 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
2329                               pModal->thresh62);
2330                 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
2331                               AR_PHY_EXT_CCA_THRESH62,
2332                               pModal->thresh62);
2333         }
2334
2335         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
2336             AR5416_EEP_MINOR_VER_2) {
2337                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
2338                               AR_PHY_TX_END_DATA_START,
2339                               pModal->txFrameToDataStart);
2340                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
2341                               pModal->txFrameToPaOn);
2342         }
2343
2344         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
2345             AR5416_EEP_MINOR_VER_3) {
2346                 if (IS_CHAN_HT40(chan))
2347                         REG_RMW_FIELD(ah, AR_PHY_SETTLING,
2348                                       AR_PHY_SETTLING_SWITCH,
2349                                       pModal->swSettleHt40);
2350         }
2351
2352         return true;
2353 }
2354
2355 static bool ath9k_hw_eeprom_set_4k_board_values(struct ath_hal *ah,
2356                                       struct ath9k_channel *chan)
2357 {
2358         struct modal_eep_4k_header *pModal;
2359         struct ath_hal_5416 *ahp = AH5416(ah);
2360         struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k;
2361         int regChainOffset;
2362         u8 txRxAttenLocal;
2363         u16 ant_config = 0;
2364         u8 ob[5], db1[5], db2[5];
2365         u8 ant_div_control1, ant_div_control2;
2366         u32 regVal;
2367
2368
2369         pModal = &eep->modalHeader;
2370
2371         txRxAttenLocal = 23;
2372
2373         ath9k_hw_get_eeprom_antenna_cfg(ah, chan, 0, &ant_config);
2374         REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
2375
2376         regChainOffset = 0;
2377         REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
2378                   pModal->antCtrlChain[0]);
2379
2380         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
2381                  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
2382                  ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
2383                  AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
2384                  SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
2385                  SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
2386
2387         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
2388                         AR5416_EEP_MINOR_VER_3) {
2389                 txRxAttenLocal = pModal->txRxAttenCh[0];
2390                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
2391                         AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
2392                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
2393                         AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
2394                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
2395                         AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
2396                         pModal->xatten2Margin[0]);
2397                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
2398                         AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
2399         }
2400
2401         REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
2402                         AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
2403         REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
2404                         AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
2405
2406         if (AR_SREV_9285_11(ah))
2407                 REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
2408
2409         /* Initialize Ant Diversity settings from EEPROM */
2410         if (pModal->version == 3) {
2411                 ant_div_control1 = ((pModal->ob_234 >> 12) & 0xf);
2412                 ant_div_control2 = ((pModal->db1_234 >> 12) & 0xf);
2413                 regVal = REG_READ(ah, 0x99ac);
2414                 regVal &= (~(0x7f000000));
2415                 regVal |= ((ant_div_control1 & 0x1) << 24);
2416                 regVal |= (((ant_div_control1 >> 1) & 0x1) << 29);
2417                 regVal |= (((ant_div_control1 >> 2) & 0x1) << 30);
2418                 regVal |= ((ant_div_control2 & 0x3) << 25);
2419                 regVal |= (((ant_div_control2 >> 2) & 0x3) << 27);
2420                 REG_WRITE(ah, 0x99ac, regVal);
2421                 regVal = REG_READ(ah, 0x99ac);
2422                 regVal = REG_READ(ah, 0xa208);
2423                 regVal &= (~(0x1 << 13));
2424                 regVal |= (((ant_div_control1 >> 3) & 0x1) << 13);
2425                 REG_WRITE(ah, 0xa208, regVal);
2426                 regVal = REG_READ(ah, 0xa208);
2427         }
2428
2429         if (pModal->version >= 2) {
2430                 ob[0] = (pModal->ob_01 & 0xf);
2431                 ob[1] = (pModal->ob_01 >> 4) & 0xf;
2432                 ob[2] = (pModal->ob_234 & 0xf);
2433                 ob[3] = ((pModal->ob_234 >> 4) & 0xf);
2434                 ob[4] = ((pModal->ob_234 >> 8) & 0xf);
2435
2436                 db1[0] = (pModal->db1_01 & 0xf);
2437                 db1[1] = ((pModal->db1_01 >> 4) & 0xf);
2438                 db1[2] = (pModal->db1_234 & 0xf);
2439                 db1[3] = ((pModal->db1_234 >> 4) & 0xf);
2440                 db1[4] = ((pModal->db1_234 >> 8) & 0xf);
2441
2442                 db2[0] = (pModal->db2_01 & 0xf);
2443                 db2[1] = ((pModal->db2_01 >> 4) & 0xf);
2444                 db2[2] = (pModal->db2_234 & 0xf);
2445                 db2[3] = ((pModal->db2_234 >> 4) & 0xf);
2446                 db2[4] = ((pModal->db2_234 >> 8) & 0xf);
2447
2448         } else if (pModal->version == 1) {
2449
2450                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
2451                         "EEPROM Model version is set to 1 \n");
2452                 ob[0] = (pModal->ob_01 & 0xf);
2453                 ob[1] = ob[2] = ob[3] = ob[4] = (pModal->ob_01 >> 4) & 0xf;
2454                 db1[0] = (pModal->db1_01 & 0xf);
2455                 db1[1] = db1[2] = db1[3] =
2456                         db1[4] = ((pModal->db1_01 >> 4) & 0xf);
2457                 db2[0] = (pModal->db2_01 & 0xf);
2458                 db2[1] = db2[2] = db2[3] =
2459                         db2[4] = ((pModal->db2_01 >> 4) & 0xf);
2460         } else {
2461                 int i;
2462                 for (i = 0; i < 5; i++) {
2463                         ob[i] = pModal->ob_01;
2464                         db1[i] = pModal->db1_01;
2465                         db2[i] = pModal->db1_01;
2466                 }
2467         }
2468
2469         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2470                         AR9285_AN_RF2G3_OB_0, AR9285_AN_RF2G3_OB_0_S, ob[0]);
2471         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2472                         AR9285_AN_RF2G3_OB_1, AR9285_AN_RF2G3_OB_1_S, ob[1]);
2473         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2474                         AR9285_AN_RF2G3_OB_2, AR9285_AN_RF2G3_OB_2_S, ob[2]);
2475         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2476                         AR9285_AN_RF2G3_OB_3, AR9285_AN_RF2G3_OB_3_S, ob[3]);
2477         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2478                         AR9285_AN_RF2G3_OB_4, AR9285_AN_RF2G3_OB_4_S, ob[4]);
2479
2480         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2481                         AR9285_AN_RF2G3_DB1_0, AR9285_AN_RF2G3_DB1_0_S, db1[0]);
2482         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2483                         AR9285_AN_RF2G3_DB1_1, AR9285_AN_RF2G3_DB1_1_S, db1[1]);
2484         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
2485                         AR9285_AN_RF2G3_DB1_2, AR9285_AN_RF2G3_DB1_2_S, db1[2]);
2486         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2487                         AR9285_AN_RF2G4_DB1_3, AR9285_AN_RF2G4_DB1_3_S, db1[3]);
2488         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2489                         AR9285_AN_RF2G4_DB1_4, AR9285_AN_RF2G4_DB1_4_S, db1[4]);
2490
2491         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2492                         AR9285_AN_RF2G4_DB2_0, AR9285_AN_RF2G4_DB2_0_S, db2[0]);
2493         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2494                         AR9285_AN_RF2G4_DB2_1, AR9285_AN_RF2G4_DB2_1_S, db2[1]);
2495         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2496                         AR9285_AN_RF2G4_DB2_2, AR9285_AN_RF2G4_DB2_2_S, db2[2]);
2497         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2498                         AR9285_AN_RF2G4_DB2_3, AR9285_AN_RF2G4_DB2_3_S, db2[3]);
2499         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
2500                         AR9285_AN_RF2G4_DB2_4, AR9285_AN_RF2G4_DB2_4_S, db2[4]);
2501
2502
2503         if (AR_SREV_9285_11(ah))
2504                 REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
2505
2506         REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
2507                       pModal->switchSettling);
2508         REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
2509                       pModal->adcDesiredSize);
2510
2511         REG_WRITE(ah, AR_PHY_RF_CTL4,
2512                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
2513                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
2514                   SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
2515                   SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
2516
2517         REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
2518                       pModal->txEndToRxOn);
2519         REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
2520                       pModal->thresh62);
2521         REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
2522                       pModal->thresh62);
2523
2524         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
2525                                                 AR5416_EEP_MINOR_VER_2) {
2526                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
2527                               pModal->txFrameToDataStart);
2528                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
2529                               pModal->txFrameToPaOn);
2530         }
2531
2532         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
2533                                                 AR5416_EEP_MINOR_VER_3) {
2534                 if (IS_CHAN_HT40(chan))
2535                         REG_RMW_FIELD(ah, AR_PHY_SETTLING,
2536                                       AR_PHY_SETTLING_SWITCH,
2537                                       pModal->swSettleHt40);
2538         }
2539
2540         return true;
2541 }
2542
2543 static bool (*ath9k_eeprom_set_board_values[])(struct ath_hal *,
2544                                                struct ath9k_channel *) = {
2545         ath9k_hw_eeprom_set_def_board_values,
2546         ath9k_hw_eeprom_set_4k_board_values
2547 };
2548
2549 bool ath9k_hw_eeprom_set_board_values(struct ath_hal *ah,
2550                                       struct ath9k_channel *chan)
2551 {
2552         struct ath_hal_5416 *ahp = AH5416(ah);
2553
2554         return ath9k_eeprom_set_board_values[ahp->ah_eep_map](ah, chan);
2555 }
2556
2557 static int ath9k_hw_get_def_eeprom_antenna_cfg(struct ath_hal *ah,
2558                                     struct ath9k_channel *chan,
2559                                     u8 index, u16 *config)
2560 {
2561         struct ath_hal_5416 *ahp = AH5416(ah);
2562         struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
2563         struct modal_eep_header *pModal =
2564                 &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
2565         struct base_eep_header *pBase = &eep->baseEepHeader;
2566
2567         switch (index) {
2568         case 0:
2569                 *config = pModal->antCtrlCommon & 0xFFFF;
2570                 return 0;
2571         case 1:
2572                 if (pBase->version >= 0x0E0D) {
2573                         if (pModal->useAnt1) {
2574                                 *config =
2575                                 ((pModal->antCtrlCommon & 0xFFFF0000) >> 16);
2576                                 return 0;
2577                         }
2578                 }
2579                 break;
2580         default:
2581                 break;
2582         }
2583
2584         return -EINVAL;
2585 }
2586
2587 static int ath9k_hw_get_4k_eeprom_antenna_cfg(struct ath_hal *ah,
2588                                     struct ath9k_channel *chan,
2589                                     u8 index, u16 *config)
2590 {
2591         struct ath_hal_5416 *ahp = AH5416(ah);
2592         struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k;
2593         struct modal_eep_4k_header *pModal = &eep->modalHeader;
2594
2595         switch (index) {
2596         case 0:
2597                 *config = pModal->antCtrlCommon & 0xFFFF;
2598                 return 0;
2599         default:
2600                 break;
2601         }
2602
2603         return -EINVAL;
2604 }
2605
2606 static int (*ath9k_get_eeprom_antenna_cfg[])(struct ath_hal *,
2607                                              struct ath9k_channel *,
2608                                              u8, u16 *) = {
2609         ath9k_hw_get_def_eeprom_antenna_cfg,
2610         ath9k_hw_get_4k_eeprom_antenna_cfg
2611 };
2612
2613 int ath9k_hw_get_eeprom_antenna_cfg(struct ath_hal *ah,
2614                                     struct ath9k_channel *chan,
2615                                     u8 index, u16 *config)
2616 {
2617         struct ath_hal_5416 *ahp = AH5416(ah);
2618
2619         return ath9k_get_eeprom_antenna_cfg[ahp->ah_eep_map](ah, chan,
2620                                                              index, config);
2621 }
2622
2623 static u8 ath9k_hw_get_4k_num_ant_config(struct ath_hal *ah,
2624                                          enum ieee80211_band freq_band)
2625 {
2626         return 1;
2627 }
2628
2629 static u8 ath9k_hw_get_def_num_ant_config(struct ath_hal *ah,
2630                                           enum ieee80211_band freq_band)
2631 {
2632         struct ath_hal_5416 *ahp = AH5416(ah);
2633         struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
2634         struct modal_eep_header *pModal =
2635                 &(eep->modalHeader[ATH9K_HAL_FREQ_BAND_2GHZ == freq_band]);
2636         struct base_eep_header *pBase = &eep->baseEepHeader;
2637         u8 num_ant_config;
2638
2639         num_ant_config = 1;
2640
2641         if (pBase->version >= 0x0E0D)
2642                 if (pModal->useAnt1)
2643                         num_ant_config += 1;
2644
2645         return num_ant_config;
2646 }
2647
2648 static u8 (*ath9k_get_num_ant_config[])(struct ath_hal *,
2649                                         enum ieee80211_band) = {
2650         ath9k_hw_get_def_num_ant_config,
2651         ath9k_hw_get_4k_num_ant_config
2652 };
2653
2654 u8 ath9k_hw_get_num_ant_config(struct ath_hal *ah,
2655                                enum ieee80211_band freq_band)
2656 {
2657         struct ath_hal_5416 *ahp = AH5416(ah);
2658
2659         return ath9k_get_num_ant_config[ahp->ah_eep_map](ah, freq_band);
2660 }
2661
2662 u16 ath9k_hw_eeprom_get_spur_chan(struct ath_hal *ah, u16 i, bool is2GHz)
2663 {
2664 #define EEP_MAP4K_SPURCHAN \
2665         (ahp->ah_eeprom.map4k.modalHeader.spurChans[i].spurChan)
2666 #define EEP_DEF_SPURCHAN \
2667         (ahp->ah_eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
2668         struct ath_hal_5416 *ahp = AH5416(ah);
2669         u16 spur_val = AR_NO_SPUR;
2670
2671         DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2672                 "Getting spur idx %d is2Ghz. %d val %x\n",
2673                 i, is2GHz, ah->ah_config.spurchans[i][is2GHz]);
2674
2675         switch (ah->ah_config.spurmode) {
2676         case SPUR_DISABLE:
2677                 break;
2678         case SPUR_ENABLE_IOCTL:
2679                 spur_val = ah->ah_config.spurchans[i][is2GHz];
2680                 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2681                         "Getting spur val from new loc. %d\n", spur_val);
2682                 break;
2683         case SPUR_ENABLE_EEPROM:
2684                 if (ahp->ah_eep_map == EEP_MAP_4KBITS)
2685                         spur_val = EEP_MAP4K_SPURCHAN;
2686                 else
2687                         spur_val = EEP_DEF_SPURCHAN;
2688                 break;
2689
2690         }
2691
2692         return spur_val;
2693 #undef EEP_DEF_SPURCHAN
2694 #undef EEP_MAP4K_SPURCHAN
2695 }
2696
2697 static u32 ath9k_hw_get_eeprom_4k(struct ath_hal *ah,
2698                                   enum eeprom_param param)
2699 {
2700         struct ath_hal_5416 *ahp = AH5416(ah);
2701         struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k;
2702         struct modal_eep_4k_header *pModal = &eep->modalHeader;
2703         struct base_eep_header_4k *pBase = &eep->baseEepHeader;
2704
2705         switch (param) {
2706         case EEP_NFTHRESH_2:
2707                 return pModal[1].noiseFloorThreshCh[0];
2708         case AR_EEPROM_MAC(0):
2709                 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
2710         case AR_EEPROM_MAC(1):
2711                 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
2712         case AR_EEPROM_MAC(2):
2713                 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
2714         case EEP_REG_0:
2715                 return pBase->regDmn[0];
2716         case EEP_REG_1:
2717                 return pBase->regDmn[1];
2718         case EEP_OP_CAP:
2719                 return pBase->deviceCap;
2720         case EEP_OP_MODE:
2721                 return pBase->opCapFlags;
2722         case EEP_RF_SILENT:
2723                 return pBase->rfSilent;
2724         case EEP_OB_2:
2725                 return pModal->ob_01;
2726         case EEP_DB_2:
2727                 return pModal->db1_01;
2728         case EEP_MINOR_REV:
2729                 return pBase->version & AR5416_EEP_VER_MINOR_MASK;
2730         case EEP_TX_MASK:
2731                 return pBase->txMask;
2732         case EEP_RX_MASK:
2733                 return pBase->rxMask;
2734         default:
2735                 return 0;
2736         }
2737 }
2738
2739 static u32 ath9k_hw_get_eeprom_def(struct ath_hal *ah,
2740                                    enum eeprom_param param)
2741 {
2742         struct ath_hal_5416 *ahp = AH5416(ah);
2743         struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
2744         struct modal_eep_header *pModal = eep->modalHeader;
2745         struct base_eep_header *pBase = &eep->baseEepHeader;
2746
2747         switch (param) {
2748         case EEP_NFTHRESH_5:
2749                 return pModal[0].noiseFloorThreshCh[0];
2750         case EEP_NFTHRESH_2:
2751                 return pModal[1].noiseFloorThreshCh[0];
2752         case AR_EEPROM_MAC(0):
2753                 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
2754         case AR_EEPROM_MAC(1):
2755                 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
2756         case AR_EEPROM_MAC(2):
2757                 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
2758         case EEP_REG_0:
2759                 return pBase->regDmn[0];
2760         case EEP_REG_1:
2761                 return pBase->regDmn[1];
2762         case EEP_OP_CAP:
2763                 return pBase->deviceCap;
2764         case EEP_OP_MODE:
2765                 return pBase->opCapFlags;
2766         case EEP_RF_SILENT:
2767                 return pBase->rfSilent;
2768         case EEP_OB_5:
2769                 return pModal[0].ob;
2770         case EEP_DB_5:
2771                 return pModal[0].db;
2772         case EEP_OB_2:
2773                 return pModal[1].ob;
2774         case EEP_DB_2:
2775                 return pModal[1].db;
2776         case EEP_MINOR_REV:
2777                 return pBase->version & AR5416_EEP_VER_MINOR_MASK;
2778         case EEP_TX_MASK:
2779                 return pBase->txMask;
2780         case EEP_RX_MASK:
2781                 return pBase->rxMask;
2782         case EEP_RXGAIN_TYPE:
2783                 return pBase->rxGainType;
2784         case EEP_TXGAIN_TYPE:
2785                 return pBase->txGainType;
2786
2787         default:
2788                 return 0;
2789         }
2790 }
2791
2792 static u32 (*ath9k_get_eeprom[])(struct ath_hal *, enum eeprom_param) = {
2793         ath9k_hw_get_eeprom_def,
2794         ath9k_hw_get_eeprom_4k
2795 };
2796
2797 u32 ath9k_hw_get_eeprom(struct ath_hal *ah,
2798                         enum eeprom_param param)
2799 {
2800         struct ath_hal_5416 *ahp = AH5416(ah);
2801
2802         return ath9k_get_eeprom[ahp->ah_eep_map](ah, param);
2803 }
2804
2805 int ath9k_hw_eeprom_attach(struct ath_hal *ah)
2806 {
2807         int status;
2808         struct ath_hal_5416 *ahp = AH5416(ah);
2809
2810         if (ath9k_hw_use_flash(ah))
2811                 ath9k_hw_flash_map(ah);
2812
2813         if (AR_SREV_9285(ah))
2814                 ahp->ah_eep_map = EEP_MAP_4KBITS;
2815         else
2816                 ahp->ah_eep_map = EEP_MAP_DEFAULT;
2817
2818         if (!ath9k_hw_fill_eeprom(ah))
2819                 return -EIO;
2820
2821         status = ath9k_hw_check_eeprom(ah);
2822
2823         return status;
2824 }