Merge branch 'docs-next' of git://git.lwn.net/linux-2.6
[linux-2.6] / drivers / parisc / ccio-dma.c
1 /*
2 ** ccio-dma.c:
3 **      DMA management routines for first generation cache-coherent machines.
4 **      Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
5 **
6 **      (c) Copyright 2000 Grant Grundler
7 **      (c) Copyright 2000 Ryan Bradetich
8 **      (c) Copyright 2000 Hewlett-Packard Company
9 **
10 ** This program is free software; you can redistribute it and/or modify
11 ** it under the terms of the GNU General Public License as published by
12 ** the Free Software Foundation; either version 2 of the License, or
13 ** (at your option) any later version.
14 **
15 **
16 **  "Real Mode" operation refers to U2/Uturn chip operation.
17 **  U2/Uturn were designed to perform coherency checks w/o using
18 **  the I/O MMU - basically what x86 does.
19 **
20 **  Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
21 **      CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
22 **      cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
23 **
24 **  I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
25 **
26 **  Drawbacks of using Real Mode are:
27 **      o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
28 **      o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
29 **      o Ability to do scatter/gather in HW is lost.
30 **      o Doesn't work under PCX-U/U+ machines since they didn't follow
31 **        the coherency design originally worked out. Only PCX-W does.
32 */
33
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/init.h>
37 #include <linux/mm.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
41 #include <linux/pci.h>
42 #include <linux/reboot.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/scatterlist.h>
46 #include <linux/iommu-helper.h>
47
48 #include <asm/byteorder.h>
49 #include <asm/cache.h>          /* for L1_CACHE_BYTES */
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52 #include <asm/dma.h>
53 #include <asm/io.h>
54 #include <asm/hardware.h>       /* for register_module() */
55 #include <asm/parisc-device.h>
56
57 /* 
58 ** Choose "ccio" since that's what HP-UX calls it.
59 ** Make it easier for folks to migrate from one to the other :^)
60 */
61 #define MODULE_NAME "ccio"
62
63 #undef DEBUG_CCIO_RES
64 #undef DEBUG_CCIO_RUN
65 #undef DEBUG_CCIO_INIT
66 #undef DEBUG_CCIO_RUN_SG
67
68 #ifdef CONFIG_PROC_FS
69 /* depends on proc fs support. But costs CPU performance. */
70 #undef CCIO_COLLECT_STATS
71 #endif
72
73 #include <linux/proc_fs.h>
74 #include <asm/runway.h>         /* for proc_runway_root */
75
76 #ifdef DEBUG_CCIO_INIT
77 #define DBG_INIT(x...)  printk(x)
78 #else
79 #define DBG_INIT(x...)
80 #endif
81
82 #ifdef DEBUG_CCIO_RUN
83 #define DBG_RUN(x...)   printk(x)
84 #else
85 #define DBG_RUN(x...)
86 #endif
87
88 #ifdef DEBUG_CCIO_RES
89 #define DBG_RES(x...)   printk(x)
90 #else
91 #define DBG_RES(x...)
92 #endif
93
94 #ifdef DEBUG_CCIO_RUN_SG
95 #define DBG_RUN_SG(x...) printk(x)
96 #else
97 #define DBG_RUN_SG(x...)
98 #endif
99
100 #define CCIO_INLINE     inline
101 #define WRITE_U32(value, addr) __raw_writel(value, addr)
102 #define READ_U32(addr) __raw_readl(addr)
103
104 #define U2_IOA_RUNWAY 0x580
105 #define U2_BC_GSC     0x501
106 #define UTURN_IOA_RUNWAY 0x581
107 #define UTURN_BC_GSC     0x502
108
109 #define IOA_NORMAL_MODE      0x00020080 /* IO_CONTROL to turn on CCIO        */
110 #define CMD_TLB_DIRECT_WRITE 35         /* IO_COMMAND for I/O TLB Writes     */
111 #define CMD_TLB_PURGE        33         /* IO_COMMAND to Purge I/O TLB entry */
112
113 struct ioa_registers {
114         /* Runway Supervisory Set */
115         int32_t    unused1[12];
116         uint32_t   io_command;             /* Offset 12 */
117         uint32_t   io_status;              /* Offset 13 */
118         uint32_t   io_control;             /* Offset 14 */
119         int32_t    unused2[1];
120
121         /* Runway Auxiliary Register Set */
122         uint32_t   io_err_resp;            /* Offset  0 */
123         uint32_t   io_err_info;            /* Offset  1 */
124         uint32_t   io_err_req;             /* Offset  2 */
125         uint32_t   io_err_resp_hi;         /* Offset  3 */
126         uint32_t   io_tlb_entry_m;         /* Offset  4 */
127         uint32_t   io_tlb_entry_l;         /* Offset  5 */
128         uint32_t   unused3[1];
129         uint32_t   io_pdir_base;           /* Offset  7 */
130         uint32_t   io_io_low_hv;           /* Offset  8 */
131         uint32_t   io_io_high_hv;          /* Offset  9 */
132         uint32_t   unused4[1];
133         uint32_t   io_chain_id_mask;       /* Offset 11 */
134         uint32_t   unused5[2];
135         uint32_t   io_io_low;              /* Offset 14 */
136         uint32_t   io_io_high;             /* Offset 15 */
137 };
138
139 /*
140 ** IOA Registers
141 ** -------------
142 **
143 ** Runway IO_CONTROL Register (+0x38)
144 ** 
145 ** The Runway IO_CONTROL register controls the forwarding of transactions.
146 **
147 ** | 0  ...  13  |  14 15 | 16 ... 21 | 22 | 23 24 |  25 ... 31 |
148 ** |    HV       |   TLB  |  reserved | HV | mode  |  reserved  |
149 **
150 ** o mode field indicates the address translation of transactions
151 **   forwarded from Runway to GSC+:
152 **       Mode Name     Value        Definition
153 **       Off (default)   0          Opaque to matching addresses.
154 **       Include         1          Transparent for matching addresses.
155 **       Peek            3          Map matching addresses.
156 **
157 **       + "Off" mode: Runway transactions which match the I/O range
158 **         specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
159 **       + "Include" mode: all addresses within the I/O range specified
160 **         by the IO_IO_LOW and IO_IO_HIGH registers are transparently
161 **         forwarded. This is the I/O Adapter's normal operating mode.
162 **       + "Peek" mode: used during system configuration to initialize the
163 **         GSC+ bus. Runway Write_Shorts in the address range specified by
164 **         IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
165 **         *AND* the GSC+ address is remapped to the Broadcast Physical
166 **         Address space by setting the 14 high order address bits of the
167 **         32 bit GSC+ address to ones.
168 **
169 ** o TLB field affects transactions which are forwarded from GSC+ to Runway.
170 **   "Real" mode is the poweron default.
171 ** 
172 **   TLB Mode  Value  Description
173 **   Real        0    No TLB translation. Address is directly mapped and the
174 **                    virtual address is composed of selected physical bits.
175 **   Error       1    Software fills the TLB manually.
176 **   Normal      2    IOA fetches IO TLB misses from IO PDIR (in host memory).
177 **
178 **
179 ** IO_IO_LOW_HV   +0x60 (HV dependent)
180 ** IO_IO_HIGH_HV  +0x64 (HV dependent)
181 ** IO_IO_LOW      +0x78 (Architected register)
182 ** IO_IO_HIGH     +0x7c (Architected register)
183 **
184 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
185 ** I/O Adapter address space, respectively.
186 **
187 ** 0  ... 7 | 8 ... 15 |  16   ...   31 |
188 ** 11111111 | 11111111 |      address   |
189 **
190 ** Each LOW/HIGH pair describes a disjoint address space region.
191 ** (2 per GSC+ port). Each incoming Runway transaction address is compared
192 ** with both sets of LOW/HIGH registers. If the address is in the range
193 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
194 ** for forwarded to the respective GSC+ bus.
195 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
196 ** an address space region.
197 **
198 ** In order for a Runway address to reside within GSC+ extended address space:
199 **      Runway Address [0:7]    must identically compare to 8'b11111111
200 **      Runway Address [8:11]   must be equal to IO_IO_LOW(_HV)[16:19]
201 **      Runway Address [12:23]  must be greater than or equal to
202 **                 IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
203 **      Runway Address [24:39]  is not used in the comparison.
204 **
205 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is
206 ** as follows:
207 **      GSC+ Address[0:3]       4'b1111
208 **      GSC+ Address[4:29]      Runway Address[12:37]
209 **      GSC+ Address[30:31]     2'b00
210 **
211 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus
212 ** is interrogated and address space is defined. The operating system will
213 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
214 ** the PDC initialization.  However, the hardware version dependent IO_IO_LOW
215 ** and IO_IO_HIGH registers should not be subsequently altered by the OS.
216 ** 
217 ** Writes to both sets of registers will take effect immediately, bypassing
218 ** the queues, which ensures that subsequent Runway transactions are checked
219 ** against the updated bounds values. However reads are queued, introducing
220 ** the possibility of a read being bypassed by a subsequent write to the same
221 ** register. This sequence can be avoided by having software wait for read
222 ** returns before issuing subsequent writes.
223 */
224
225 struct ioc {
226         struct ioa_registers __iomem *ioc_regs;  /* I/O MMU base address */
227         u8  *res_map;                   /* resource map, bit == pdir entry */
228         u64 *pdir_base;                 /* physical base address */
229         u32 pdir_size;                  /* bytes, function of IOV Space size */
230         u32 res_hint;                   /* next available IOVP - 
231                                            circular search */
232         u32 res_size;                   /* size of resource map in bytes */
233         spinlock_t res_lock;
234
235 #ifdef CCIO_COLLECT_STATS
236 #define CCIO_SEARCH_SAMPLE 0x100
237         unsigned long avg_search[CCIO_SEARCH_SAMPLE];
238         unsigned long avg_idx;            /* current index into avg_search */
239         unsigned long used_pages;
240         unsigned long msingle_calls;
241         unsigned long msingle_pages;
242         unsigned long msg_calls;
243         unsigned long msg_pages;
244         unsigned long usingle_calls;
245         unsigned long usingle_pages;
246         unsigned long usg_calls;
247         unsigned long usg_pages;
248 #endif
249         unsigned short cujo20_bug;
250
251         /* STUFF We don't need in performance path */
252         u32 chainid_shift;              /* specify bit location of chain_id */
253         struct ioc *next;               /* Linked list of discovered iocs */
254         const char *name;               /* device name from firmware */
255         unsigned int hw_path;           /* the hardware path this ioc is associatd with */
256         struct pci_dev *fake_pci_dev;   /* the fake pci_dev for non-pci devs */
257         struct resource mmio_region[2]; /* The "routed" MMIO regions */
258 };
259
260 static struct ioc *ioc_list;
261 static int ioc_count;
262
263 /**************************************************************
264 *
265 *   I/O Pdir Resource Management
266 *
267 *   Bits set in the resource map are in use.
268 *   Each bit can represent a number of pages.
269 *   LSbs represent lower addresses (IOVA's).
270 *
271 *   This was was copied from sba_iommu.c. Don't try to unify
272 *   the two resource managers unless a way to have different
273 *   allocation policies is also adjusted. We'd like to avoid
274 *   I/O TLB thrashing by having resource allocation policy
275 *   match the I/O TLB replacement policy.
276 *
277 ***************************************************************/
278 #define IOVP_SIZE PAGE_SIZE
279 #define IOVP_SHIFT PAGE_SHIFT
280 #define IOVP_MASK PAGE_MASK
281
282 /* Convert from IOVP to IOVA and vice versa. */
283 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
284 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
285
286 #define PDIR_INDEX(iovp)    ((iovp)>>IOVP_SHIFT)
287 #define MKIOVP(pdir_idx)    ((long)(pdir_idx) << IOVP_SHIFT)
288 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
289
290 /*
291 ** Don't worry about the 150% average search length on a miss.
292 ** If the search wraps around, and passes the res_hint, it will
293 ** cause the kernel to panic anyhow.
294 */
295 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size)  \
296        for(; res_ptr < res_end; ++res_ptr) { \
297                 int ret;\
298                 unsigned int idx;\
299                 idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
300                 ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
301                 if ((0 == (*res_ptr & mask)) && !ret) { \
302                         *res_ptr |= mask; \
303                         res_idx = idx;\
304                         ioc->res_hint = res_idx + (size >> 3); \
305                         goto resource_found; \
306                 } \
307         }
308
309 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
310        u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
311        u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
312        CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
313        res_ptr = (u##size *)&(ioc)->res_map[0]; \
314        CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
315
316 /*
317 ** Find available bit in this ioa's resource map.
318 ** Use a "circular" search:
319 **   o Most IOVA's are "temporary" - avg search time should be small.
320 ** o keep a history of what happened for debugging
321 ** o KISS.
322 **
323 ** Perf optimizations:
324 ** o search for log2(size) bits at a time.
325 ** o search for available resource bits using byte/word/whatever.
326 ** o use different search for "large" (eg > 4 pages) or "very large"
327 **   (eg > 16 pages) mappings.
328 */
329
330 /**
331  * ccio_alloc_range - Allocate pages in the ioc's resource map.
332  * @ioc: The I/O Controller.
333  * @pages_needed: The requested number of pages to be mapped into the
334  * I/O Pdir...
335  *
336  * This function searches the resource map of the ioc to locate a range
337  * of available pages for the requested size.
338  */
339 static int
340 ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
341 {
342         unsigned int pages_needed = size >> IOVP_SHIFT;
343         unsigned int res_idx;
344         unsigned long boundary_size;
345 #ifdef CCIO_COLLECT_STATS
346         unsigned long cr_start = mfctl(16);
347 #endif
348         
349         BUG_ON(pages_needed == 0);
350         BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
351      
352         DBG_RES("%s() size: %d pages_needed %d\n", 
353                 __func__, size, pages_needed);
354
355         /*
356         ** "seek and ye shall find"...praying never hurts either...
357         ** ggg sacrifices another 710 to the computer gods.
358         */
359
360         boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
361                               1ULL << IOVP_SHIFT) >> IOVP_SHIFT;
362
363         if (pages_needed <= 8) {
364                 /*
365                  * LAN traffic will not thrash the TLB IFF the same NIC
366                  * uses 8 adjacent pages to map separate payload data.
367                  * ie the same byte in the resource bit map.
368                  */
369 #if 0
370                 /* FIXME: bit search should shift it's way through
371                  * an unsigned long - not byte at a time. As it is now,
372                  * we effectively allocate this byte to this mapping.
373                  */
374                 unsigned long mask = ~(~0UL >> pages_needed);
375                 CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
376 #else
377                 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
378 #endif
379         } else if (pages_needed <= 16) {
380                 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
381         } else if (pages_needed <= 32) {
382                 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
383 #ifdef __LP64__
384         } else if (pages_needed <= 64) {
385                 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
386 #endif
387         } else {
388                 panic("%s: %s() Too many pages to map. pages_needed: %u\n",
389                        __FILE__,  __func__, pages_needed);
390         }
391
392         panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
393               __func__);
394         
395 resource_found:
396         
397         DBG_RES("%s() res_idx %d res_hint: %d\n",
398                 __func__, res_idx, ioc->res_hint);
399
400 #ifdef CCIO_COLLECT_STATS
401         {
402                 unsigned long cr_end = mfctl(16);
403                 unsigned long tmp = cr_end - cr_start;
404                 /* check for roll over */
405                 cr_start = (cr_end < cr_start) ?  -(tmp) : (tmp);
406         }
407         ioc->avg_search[ioc->avg_idx++] = cr_start;
408         ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
409         ioc->used_pages += pages_needed;
410 #endif
411         /* 
412         ** return the bit address.
413         */
414         return res_idx << 3;
415 }
416
417 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
418         u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
419         BUG_ON((*res_ptr & mask) != mask); \
420         *res_ptr &= ~(mask);
421
422 /**
423  * ccio_free_range - Free pages from the ioc's resource map.
424  * @ioc: The I/O Controller.
425  * @iova: The I/O Virtual Address.
426  * @pages_mapped: The requested number of pages to be freed from the
427  * I/O Pdir.
428  *
429  * This function frees the resouces allocated for the iova.
430  */
431 static void
432 ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
433 {
434         unsigned long iovp = CCIO_IOVP(iova);
435         unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
436
437         BUG_ON(pages_mapped == 0);
438         BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
439         BUG_ON(pages_mapped > BITS_PER_LONG);
440
441         DBG_RES("%s():  res_idx: %d pages_mapped %d\n", 
442                 __func__, res_idx, pages_mapped);
443
444 #ifdef CCIO_COLLECT_STATS
445         ioc->used_pages -= pages_mapped;
446 #endif
447
448         if(pages_mapped <= 8) {
449 #if 0
450                 /* see matching comments in alloc_range */
451                 unsigned long mask = ~(~0UL >> pages_mapped);
452                 CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
453 #else
454                 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
455 #endif
456         } else if(pages_mapped <= 16) {
457                 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
458         } else if(pages_mapped <= 32) {
459                 CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
460 #ifdef __LP64__
461         } else if(pages_mapped <= 64) {
462                 CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
463 #endif
464         } else {
465                 panic("%s:%s() Too many pages to unmap.\n", __FILE__,
466                       __func__);
467         }
468 }
469
470 /****************************************************************
471 **
472 **          CCIO dma_ops support routines
473 **
474 *****************************************************************/
475
476 typedef unsigned long space_t;
477 #define KERNEL_SPACE 0
478
479 /*
480 ** DMA "Page Type" and Hints 
481 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
482 **   set for subcacheline DMA transfers since we don't want to damage the
483 **   other part of a cacheline.
484 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
485 **   This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
486 **   data can avoid this if the mapping covers full cache lines.
487 ** o STOP_MOST is needed for atomicity across cachelines.
488 **   Apparently only "some EISA devices" need this.
489 **   Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
490 **   to use this hint iff the EISA devices needs this feature.
491 **   According to the U2 ERS, STOP_MOST enabled pages hurt performance.
492 ** o PREFETCH should *not* be set for cases like Multiple PCI devices
493 **   behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
494 **   device can be fetched and multiply DMA streams will thrash the
495 **   prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
496 **   and Invalidation of Prefetch Entries".
497 **
498 ** FIXME: the default hints need to be per GSC device - not global.
499 ** 
500 ** HP-UX dorks: linux device driver programming model is totally different
501 **    than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
502 **    do special things to work on non-coherent platforms...linux has to
503 **    be much more careful with this.
504 */
505 #define IOPDIR_VALID    0x01UL
506 #define HINT_SAFE_DMA   0x02UL  /* used for pci_alloc_consistent() pages */
507 #ifdef CONFIG_EISA
508 #define HINT_STOP_MOST  0x04UL  /* LSL support */
509 #else
510 #define HINT_STOP_MOST  0x00UL  /* only needed for "some EISA devices" */
511 #endif
512 #define HINT_UDPATE_ENB 0x08UL  /* not used/supported by U2 */
513 #define HINT_PREFETCH   0x10UL  /* for outbound pages which are not SAFE */
514
515
516 /*
517 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
518 ** ccio_alloc_consistent() depends on this to get SAFE_DMA
519 ** when it passes in BIDIRECTIONAL flag.
520 */
521 static u32 hint_lookup[] = {
522         [PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
523         [PCI_DMA_TODEVICE]      = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
524         [PCI_DMA_FROMDEVICE]    = HINT_STOP_MOST | IOPDIR_VALID,
525 };
526
527 /**
528  * ccio_io_pdir_entry - Initialize an I/O Pdir.
529  * @pdir_ptr: A pointer into I/O Pdir.
530  * @sid: The Space Identifier.
531  * @vba: The virtual address.
532  * @hints: The DMA Hint.
533  *
534  * Given a virtual address (vba, arg2) and space id, (sid, arg1),
535  * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
536  * entry consists of 8 bytes as shown below (MSB == bit 0):
537  *
538  *
539  * WORD 0:
540  * +------+----------------+-----------------------------------------------+
541  * | Phys | Virtual Index  |               Phys                            |
542  * | 0:3  |     0:11       |               4:19                            |
543  * |4 bits|   12 bits      |              16 bits                          |
544  * +------+----------------+-----------------------------------------------+
545  * WORD 1:
546  * +-----------------------+-----------------------------------------------+
547  * |      Phys    |  Rsvd  | Prefetch |Update |Rsvd  |Lock  |Safe  |Valid  |
548  * |     20:39    |        | Enable   |Enable |      |Enable|DMA   |       |
549  * |    20 bits   | 5 bits | 1 bit    |1 bit  |2 bits|1 bit |1 bit |1 bit  |
550  * +-----------------------+-----------------------------------------------+
551  *
552  * The virtual index field is filled with the results of the LCI
553  * (Load Coherence Index) instruction.  The 8 bits used for the virtual
554  * index are bits 12:19 of the value returned by LCI.
555  */ 
556 static void CCIO_INLINE
557 ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
558                    unsigned long hints)
559 {
560         register unsigned long pa;
561         register unsigned long ci; /* coherent index */
562
563         /* We currently only support kernel addresses */
564         BUG_ON(sid != KERNEL_SPACE);
565
566         mtsp(sid,1);
567
568         /*
569         ** WORD 1 - low order word
570         ** "hints" parm includes the VALID bit!
571         ** "dep" clobbers the physical address offset bits as well.
572         */
573         pa = virt_to_phys(vba);
574         asm volatile("depw  %1,31,12,%0" : "+r" (pa) : "r" (hints));
575         ((u32 *)pdir_ptr)[1] = (u32) pa;
576
577         /*
578         ** WORD 0 - high order word
579         */
580
581 #ifdef __LP64__
582         /*
583         ** get bits 12:15 of physical address
584         ** shift bits 16:31 of physical address
585         ** and deposit them
586         */
587         asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
588         asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
589         asm volatile ("depd  %1,35,4,%0" : "+r" (pa) : "r" (ci));
590 #else
591         pa = 0;
592 #endif
593         /*
594         ** get CPU coherency index bits
595         ** Grab virtual index [0:11]
596         ** Deposit virt_idx bits into I/O PDIR word
597         */
598         asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
599         asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
600         asm volatile ("depw  %1,15,12,%0" : "+r" (pa) : "r" (ci));
601
602         ((u32 *)pdir_ptr)[0] = (u32) pa;
603
604
605         /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
606         **        PCX-U/U+ do. (eg C200/C240)
607         **        PCX-T'? Don't know. (eg C110 or similar K-class)
608         **
609         ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
610         ** Hopefully we can patch (NOP) these out at boot time somehow.
611         **
612         ** "Since PCX-U employs an offset hash that is incompatible with
613         ** the real mode coherence index generation of U2, the PDIR entry
614         ** must be flushed to memory to retain coherence."
615         */
616         asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
617         asm volatile("sync");
618 }
619
620 /**
621  * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
622  * @ioc: The I/O Controller.
623  * @iovp: The I/O Virtual Page.
624  * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
625  *
626  * Purge invalid I/O PDIR entries from the I/O TLB.
627  *
628  * FIXME: Can we change the byte_cnt to pages_mapped?
629  */
630 static CCIO_INLINE void
631 ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
632 {
633         u32 chain_size = 1 << ioc->chainid_shift;
634
635         iovp &= IOVP_MASK;      /* clear offset bits, just want pagenum */
636         byte_cnt += chain_size;
637
638         while(byte_cnt > chain_size) {
639                 WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
640                 iovp += chain_size;
641                 byte_cnt -= chain_size;
642         }
643 }
644
645 /**
646  * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
647  * @ioc: The I/O Controller.
648  * @iova: The I/O Virtual Address.
649  * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
650  *
651  * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
652  * TLB entries.
653  *
654  * FIXME: at some threshhold it might be "cheaper" to just blow
655  *        away the entire I/O TLB instead of individual entries.
656  *
657  * FIXME: Uturn has 256 TLB entries. We don't need to purge every
658  *        PDIR entry - just once for each possible TLB entry.
659  *        (We do need to maker I/O PDIR entries invalid regardless).
660  *
661  * FIXME: Can we change byte_cnt to pages_mapped?
662  */ 
663 static CCIO_INLINE void
664 ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
665 {
666         u32 iovp = (u32)CCIO_IOVP(iova);
667         size_t saved_byte_cnt;
668
669         /* round up to nearest page size */
670         saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
671
672         while(byte_cnt > 0) {
673                 /* invalidate one page at a time */
674                 unsigned int idx = PDIR_INDEX(iovp);
675                 char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
676
677                 BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
678                 pdir_ptr[7] = 0;        /* clear only VALID bit */ 
679                 /*
680                 ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
681                 **   PCX-U/U+ do. (eg C200/C240)
682                 ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
683                 **
684                 ** Hopefully someone figures out how to patch (NOP) the
685                 ** FDC/SYNC out at boot time.
686                 */
687                 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7]));
688
689                 iovp     += IOVP_SIZE;
690                 byte_cnt -= IOVP_SIZE;
691         }
692
693         asm volatile("sync");
694         ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
695 }
696
697 /****************************************************************
698 **
699 **          CCIO dma_ops
700 **
701 *****************************************************************/
702
703 /**
704  * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
705  * @dev: The PCI device.
706  * @mask: A bit mask describing the DMA address range of the device.
707  *
708  * This function implements the pci_dma_supported function.
709  */
710 static int 
711 ccio_dma_supported(struct device *dev, u64 mask)
712 {
713         if(dev == NULL) {
714                 printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
715                 BUG();
716                 return 0;
717         }
718
719         /* only support 32-bit devices (ie PCI/GSC) */
720         return (int)(mask == 0xffffffffUL);
721 }
722
723 /**
724  * ccio_map_single - Map an address range into the IOMMU.
725  * @dev: The PCI device.
726  * @addr: The start address of the DMA region.
727  * @size: The length of the DMA region.
728  * @direction: The direction of the DMA transaction (to/from device).
729  *
730  * This function implements the pci_map_single function.
731  */
732 static dma_addr_t 
733 ccio_map_single(struct device *dev, void *addr, size_t size,
734                 enum dma_data_direction direction)
735 {
736         int idx;
737         struct ioc *ioc;
738         unsigned long flags;
739         dma_addr_t iovp;
740         dma_addr_t offset;
741         u64 *pdir_start;
742         unsigned long hint = hint_lookup[(int)direction];
743
744         BUG_ON(!dev);
745         ioc = GET_IOC(dev);
746
747         BUG_ON(size <= 0);
748
749         /* save offset bits */
750         offset = ((unsigned long) addr) & ~IOVP_MASK;
751
752         /* round up to nearest IOVP_SIZE */
753         size = ALIGN(size + offset, IOVP_SIZE);
754         spin_lock_irqsave(&ioc->res_lock, flags);
755
756 #ifdef CCIO_COLLECT_STATS
757         ioc->msingle_calls++;
758         ioc->msingle_pages += size >> IOVP_SHIFT;
759 #endif
760
761         idx = ccio_alloc_range(ioc, dev, size);
762         iovp = (dma_addr_t)MKIOVP(idx);
763
764         pdir_start = &(ioc->pdir_base[idx]);
765
766         DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
767                 __func__, addr, (long)iovp | offset, size);
768
769         /* If not cacheline aligned, force SAFE_DMA on the whole mess */
770         if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
771                 hint |= HINT_SAFE_DMA;
772
773         while(size > 0) {
774                 ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
775
776                 DBG_RUN(" pdir %p %08x%08x\n",
777                         pdir_start,
778                         (u32) (((u32 *) pdir_start)[0]),
779                         (u32) (((u32 *) pdir_start)[1]));
780                 ++pdir_start;
781                 addr += IOVP_SIZE;
782                 size -= IOVP_SIZE;
783         }
784
785         spin_unlock_irqrestore(&ioc->res_lock, flags);
786
787         /* form complete address */
788         return CCIO_IOVA(iovp, offset);
789 }
790
791 /**
792  * ccio_unmap_single - Unmap an address range from the IOMMU.
793  * @dev: The PCI device.
794  * @addr: The start address of the DMA region.
795  * @size: The length of the DMA region.
796  * @direction: The direction of the DMA transaction (to/from device).
797  *
798  * This function implements the pci_unmap_single function.
799  */
800 static void 
801 ccio_unmap_single(struct device *dev, dma_addr_t iova, size_t size, 
802                   enum dma_data_direction direction)
803 {
804         struct ioc *ioc;
805         unsigned long flags; 
806         dma_addr_t offset = iova & ~IOVP_MASK;
807         
808         BUG_ON(!dev);
809         ioc = GET_IOC(dev);
810
811         DBG_RUN("%s() iovp 0x%lx/%x\n",
812                 __func__, (long)iova, size);
813
814         iova ^= offset;        /* clear offset bits */
815         size += offset;
816         size = ALIGN(size, IOVP_SIZE);
817
818         spin_lock_irqsave(&ioc->res_lock, flags);
819
820 #ifdef CCIO_COLLECT_STATS
821         ioc->usingle_calls++;
822         ioc->usingle_pages += size >> IOVP_SHIFT;
823 #endif
824
825         ccio_mark_invalid(ioc, iova, size);
826         ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
827         spin_unlock_irqrestore(&ioc->res_lock, flags);
828 }
829
830 /**
831  * ccio_alloc_consistent - Allocate a consistent DMA mapping.
832  * @dev: The PCI device.
833  * @size: The length of the DMA region.
834  * @dma_handle: The DMA address handed back to the device (not the cpu).
835  *
836  * This function implements the pci_alloc_consistent function.
837  */
838 static void * 
839 ccio_alloc_consistent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag)
840 {
841       void *ret;
842 #if 0
843 /* GRANT Need to establish hierarchy for non-PCI devs as well
844 ** and then provide matching gsc_map_xxx() functions for them as well.
845 */
846         if(!hwdev) {
847                 /* only support PCI */
848                 *dma_handle = 0;
849                 return 0;
850         }
851 #endif
852         ret = (void *) __get_free_pages(flag, get_order(size));
853
854         if (ret) {
855                 memset(ret, 0, size);
856                 *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
857         }
858
859         return ret;
860 }
861
862 /**
863  * ccio_free_consistent - Free a consistent DMA mapping.
864  * @dev: The PCI device.
865  * @size: The length of the DMA region.
866  * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
867  * @dma_handle: The device address returned from the ccio_alloc_consistent.
868  *
869  * This function implements the pci_free_consistent function.
870  */
871 static void 
872 ccio_free_consistent(struct device *dev, size_t size, void *cpu_addr, 
873                      dma_addr_t dma_handle)
874 {
875         ccio_unmap_single(dev, dma_handle, size, 0);
876         free_pages((unsigned long)cpu_addr, get_order(size));
877 }
878
879 /*
880 ** Since 0 is a valid pdir_base index value, can't use that
881 ** to determine if a value is valid or not. Use a flag to indicate
882 ** the SG list entry contains a valid pdir index.
883 */
884 #define PIDE_FLAG 0x80000000UL
885
886 #ifdef CCIO_COLLECT_STATS
887 #define IOMMU_MAP_STATS
888 #endif
889 #include "iommu-helpers.h"
890
891 /**
892  * ccio_map_sg - Map the scatter/gather list into the IOMMU.
893  * @dev: The PCI device.
894  * @sglist: The scatter/gather list to be mapped in the IOMMU.
895  * @nents: The number of entries in the scatter/gather list.
896  * @direction: The direction of the DMA transaction (to/from device).
897  *
898  * This function implements the pci_map_sg function.
899  */
900 static int
901 ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents, 
902             enum dma_data_direction direction)
903 {
904         struct ioc *ioc;
905         int coalesced, filled = 0;
906         unsigned long flags;
907         unsigned long hint = hint_lookup[(int)direction];
908         unsigned long prev_len = 0, current_len = 0;
909         int i;
910         
911         BUG_ON(!dev);
912         ioc = GET_IOC(dev);
913         
914         DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
915
916         /* Fast path single entry scatterlists. */
917         if (nents == 1) {
918                 sg_dma_address(sglist) = ccio_map_single(dev,
919                                 (void *)sg_virt_addr(sglist), sglist->length,
920                                 direction);
921                 sg_dma_len(sglist) = sglist->length;
922                 return 1;
923         }
924
925         for(i = 0; i < nents; i++)
926                 prev_len += sglist[i].length;
927         
928         spin_lock_irqsave(&ioc->res_lock, flags);
929
930 #ifdef CCIO_COLLECT_STATS
931         ioc->msg_calls++;
932 #endif
933
934         /*
935         ** First coalesce the chunks and allocate I/O pdir space
936         **
937         ** If this is one DMA stream, we can properly map using the
938         ** correct virtual address associated with each DMA page.
939         ** w/o this association, we wouldn't have coherent DMA!
940         ** Access to the virtual address is what forces a two pass algorithm.
941         */
942         coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
943
944         /*
945         ** Program the I/O Pdir
946         **
947         ** map the virtual addresses to the I/O Pdir
948         ** o dma_address will contain the pdir index
949         ** o dma_len will contain the number of bytes to map 
950         ** o page/offset contain the virtual address.
951         */
952         filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
953
954         spin_unlock_irqrestore(&ioc->res_lock, flags);
955
956         BUG_ON(coalesced != filled);
957
958         DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
959
960         for (i = 0; i < filled; i++)
961                 current_len += sg_dma_len(sglist + i);
962
963         BUG_ON(current_len != prev_len);
964
965         return filled;
966 }
967
968 /**
969  * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
970  * @dev: The PCI device.
971  * @sglist: The scatter/gather list to be unmapped from the IOMMU.
972  * @nents: The number of entries in the scatter/gather list.
973  * @direction: The direction of the DMA transaction (to/from device).
974  *
975  * This function implements the pci_unmap_sg function.
976  */
977 static void 
978 ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, 
979               enum dma_data_direction direction)
980 {
981         struct ioc *ioc;
982
983         BUG_ON(!dev);
984         ioc = GET_IOC(dev);
985
986         DBG_RUN_SG("%s() START %d entries,  %08lx,%x\n",
987                 __func__, nents, sg_virt_addr(sglist), sglist->length);
988
989 #ifdef CCIO_COLLECT_STATS
990         ioc->usg_calls++;
991 #endif
992
993         while(sg_dma_len(sglist) && nents--) {
994
995 #ifdef CCIO_COLLECT_STATS
996                 ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
997 #endif
998                 ccio_unmap_single(dev, sg_dma_address(sglist),
999                                   sg_dma_len(sglist), direction);
1000                 ++sglist;
1001         }
1002
1003         DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1004 }
1005
1006 static struct hppa_dma_ops ccio_ops = {
1007         .dma_supported =        ccio_dma_supported,
1008         .alloc_consistent =     ccio_alloc_consistent,
1009         .alloc_noncoherent =    ccio_alloc_consistent,
1010         .free_consistent =      ccio_free_consistent,
1011         .map_single =           ccio_map_single,
1012         .unmap_single =         ccio_unmap_single,
1013         .map_sg =               ccio_map_sg,
1014         .unmap_sg =             ccio_unmap_sg,
1015         .dma_sync_single_for_cpu =      NULL,   /* NOP for U2/Uturn */
1016         .dma_sync_single_for_device =   NULL,   /* NOP for U2/Uturn */
1017         .dma_sync_sg_for_cpu =          NULL,   /* ditto */
1018         .dma_sync_sg_for_device =               NULL,   /* ditto */
1019 };
1020
1021 #ifdef CONFIG_PROC_FS
1022 static int ccio_proc_info(struct seq_file *m, void *p)
1023 {
1024         int len = 0;
1025         struct ioc *ioc = ioc_list;
1026
1027         while (ioc != NULL) {
1028                 unsigned int total_pages = ioc->res_size << 3;
1029 #ifdef CCIO_COLLECT_STATS
1030                 unsigned long avg = 0, min, max;
1031                 int j;
1032 #endif
1033
1034                 len += seq_printf(m, "%s\n", ioc->name);
1035                 
1036                 len += seq_printf(m, "Cujo 2.0 bug    : %s\n",
1037                                   (ioc->cujo20_bug ? "yes" : "no"));
1038                 
1039                 len += seq_printf(m, "IO PDIR size    : %d bytes (%d entries)\n",
1040                                total_pages * 8, total_pages);
1041
1042 #ifdef CCIO_COLLECT_STATS
1043                 len += seq_printf(m, "IO PDIR entries : %ld free  %ld used (%d%%)\n",
1044                                   total_pages - ioc->used_pages, ioc->used_pages,
1045                                   (int)(ioc->used_pages * 100 / total_pages));
1046 #endif
1047
1048                 len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n", 
1049                                   ioc->res_size, total_pages);
1050
1051 #ifdef CCIO_COLLECT_STATS
1052                 min = max = ioc->avg_search[0];
1053                 for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1054                         avg += ioc->avg_search[j];
1055                         if(ioc->avg_search[j] > max) 
1056                                 max = ioc->avg_search[j];
1057                         if(ioc->avg_search[j] < min) 
1058                                 min = ioc->avg_search[j];
1059                 }
1060                 avg /= CCIO_SEARCH_SAMPLE;
1061                 len += seq_printf(m, "  Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1062                                   min, avg, max);
1063
1064                 len += seq_printf(m, "pci_map_single(): %8ld calls  %8ld pages (avg %d/1000)\n",
1065                                   ioc->msingle_calls, ioc->msingle_pages,
1066                                   (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1067
1068                 /* KLUGE - unmap_sg calls unmap_single for each mapped page */
1069                 min = ioc->usingle_calls - ioc->usg_calls;
1070                 max = ioc->usingle_pages - ioc->usg_pages;
1071                 len += seq_printf(m, "pci_unmap_single: %8ld calls  %8ld pages (avg %d/1000)\n",
1072                                   min, max, (int)((max * 1000)/min));
1073  
1074                 len += seq_printf(m, "pci_map_sg()    : %8ld calls  %8ld pages (avg %d/1000)\n",
1075                                   ioc->msg_calls, ioc->msg_pages,
1076                                   (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1077
1078                 len += seq_printf(m, "pci_unmap_sg()  : %8ld calls  %8ld pages (avg %d/1000)\n\n\n",
1079                                   ioc->usg_calls, ioc->usg_pages,
1080                                   (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1081 #endif  /* CCIO_COLLECT_STATS */
1082
1083                 ioc = ioc->next;
1084         }
1085
1086         return 0;
1087 }
1088
1089 static int ccio_proc_info_open(struct inode *inode, struct file *file)
1090 {
1091         return single_open(file, &ccio_proc_info, NULL);
1092 }
1093
1094 static const struct file_operations ccio_proc_info_fops = {
1095         .owner = THIS_MODULE,
1096         .open = ccio_proc_info_open,
1097         .read = seq_read,
1098         .llseek = seq_lseek,
1099         .release = single_release,
1100 };
1101
1102 static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1103 {
1104         int len = 0;
1105         struct ioc *ioc = ioc_list;
1106
1107         while (ioc != NULL) {
1108                 u32 *res_ptr = (u32 *)ioc->res_map;
1109                 int j;
1110
1111                 for (j = 0; j < (ioc->res_size / sizeof(u32)); j++) {
1112                         if ((j & 7) == 0)
1113                                 len += seq_puts(m, "\n   ");
1114                         len += seq_printf(m, "%08x", *res_ptr);
1115                         res_ptr++;
1116                 }
1117                 len += seq_puts(m, "\n\n");
1118                 ioc = ioc->next;
1119                 break; /* XXX - remove me */
1120         }
1121
1122         return 0;
1123 }
1124
1125 static int ccio_proc_bitmap_open(struct inode *inode, struct file *file)
1126 {
1127         return single_open(file, &ccio_proc_bitmap_info, NULL);
1128 }
1129
1130 static const struct file_operations ccio_proc_bitmap_fops = {
1131         .owner = THIS_MODULE,
1132         .open = ccio_proc_bitmap_open,
1133         .read = seq_read,
1134         .llseek = seq_lseek,
1135         .release = single_release,
1136 };
1137 #endif
1138
1139 /**
1140  * ccio_find_ioc - Find the ioc in the ioc_list
1141  * @hw_path: The hardware path of the ioc.
1142  *
1143  * This function searches the ioc_list for an ioc that matches
1144  * the provide hardware path.
1145  */
1146 static struct ioc * ccio_find_ioc(int hw_path)
1147 {
1148         int i;
1149         struct ioc *ioc;
1150
1151         ioc = ioc_list;
1152         for (i = 0; i < ioc_count; i++) {
1153                 if (ioc->hw_path == hw_path)
1154                         return ioc;
1155
1156                 ioc = ioc->next;
1157         }
1158
1159         return NULL;
1160 }
1161
1162 /**
1163  * ccio_get_iommu - Find the iommu which controls this device
1164  * @dev: The parisc device.
1165  *
1166  * This function searches through the registered IOMMU's and returns
1167  * the appropriate IOMMU for the device based on its hardware path.
1168  */
1169 void * ccio_get_iommu(const struct parisc_device *dev)
1170 {
1171         dev = find_pa_parent_type(dev, HPHW_IOA);
1172         if (!dev)
1173                 return NULL;
1174
1175         return ccio_find_ioc(dev->hw_path);
1176 }
1177
1178 #define CUJO_20_STEP       0x10000000   /* inc upper nibble */
1179
1180 /* Cujo 2.0 has a bug which will silently corrupt data being transferred
1181  * to/from certain pages.  To avoid this happening, we mark these pages
1182  * as `used', and ensure that nothing will try to allocate from them.
1183  */
1184 void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1185 {
1186         unsigned int idx;
1187         struct parisc_device *dev = parisc_parent(cujo);
1188         struct ioc *ioc = ccio_get_iommu(dev);
1189         u8 *res_ptr;
1190
1191         ioc->cujo20_bug = 1;
1192         res_ptr = ioc->res_map;
1193         idx = PDIR_INDEX(iovp) >> 3;
1194
1195         while (idx < ioc->res_size) {
1196                 res_ptr[idx] |= 0xff;
1197                 idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1198         }
1199 }
1200
1201 #if 0
1202 /* GRANT -  is this needed for U2 or not? */
1203
1204 /*
1205 ** Get the size of the I/O TLB for this I/O MMU.
1206 **
1207 ** If spa_shift is non-zero (ie probably U2),
1208 ** then calculate the I/O TLB size using spa_shift.
1209 **
1210 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1211 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1212 ** I think only Java (K/D/R-class too?) systems don't do this.
1213 */
1214 static int
1215 ccio_get_iotlb_size(struct parisc_device *dev)
1216 {
1217         if (dev->spa_shift == 0) {
1218                 panic("%s() : Can't determine I/O TLB size.\n", __func__);
1219         }
1220         return (1 << dev->spa_shift);
1221 }
1222 #else
1223
1224 /* Uturn supports 256 TLB entries */
1225 #define CCIO_CHAINID_SHIFT      8
1226 #define CCIO_CHAINID_MASK       0xff
1227 #endif /* 0 */
1228
1229 /* We *can't* support JAVA (T600). Venture there at your own risk. */
1230 static const struct parisc_device_id ccio_tbl[] = {
1231         { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1232         { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1233         { 0, }
1234 };
1235
1236 static int ccio_probe(struct parisc_device *dev);
1237
1238 static struct parisc_driver ccio_driver = {
1239         .name =         "ccio",
1240         .id_table =     ccio_tbl,
1241         .probe =        ccio_probe,
1242 };
1243
1244 /**
1245  * ccio_ioc_init - Initalize the I/O Controller
1246  * @ioc: The I/O Controller.
1247  *
1248  * Initalize the I/O Controller which includes setting up the
1249  * I/O Page Directory, the resource map, and initalizing the
1250  * U2/Uturn chip into virtual mode.
1251  */
1252 static void
1253 ccio_ioc_init(struct ioc *ioc)
1254 {
1255         int i;
1256         unsigned int iov_order;
1257         u32 iova_space_size;
1258
1259         /*
1260         ** Determine IOVA Space size from memory size.
1261         **
1262         ** Ideally, PCI drivers would register the maximum number
1263         ** of DMA they can have outstanding for each device they
1264         ** own.  Next best thing would be to guess how much DMA
1265         ** can be outstanding based on PCI Class/sub-class. Both
1266         ** methods still require some "extra" to support PCI
1267         ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1268         */
1269
1270         iova_space_size = (u32) (num_physpages / count_parisc_driver(&ccio_driver));
1271
1272         /* limit IOVA space size to 1MB-1GB */
1273
1274         if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1275                 iova_space_size =  1 << (20 - PAGE_SHIFT);
1276 #ifdef __LP64__
1277         } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1278                 iova_space_size =  1 << (30 - PAGE_SHIFT);
1279 #endif
1280         }
1281
1282         /*
1283         ** iova space must be log2() in size.
1284         ** thus, pdir/res_map will also be log2().
1285         */
1286
1287         /* We could use larger page sizes in order to *decrease* the number
1288         ** of mappings needed.  (ie 8k pages means 1/2 the mappings).
1289         **
1290         ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1291         **   since the pages must also be physically contiguous - typically
1292         **   this is the case under linux."
1293         */
1294
1295         iov_order = get_order(iova_space_size << PAGE_SHIFT);
1296
1297         /* iova_space_size is now bytes, not pages */
1298         iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1299
1300         ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1301
1302         BUG_ON(ioc->pdir_size > 8 * 1024 * 1024);   /* max pdir size <= 8MB */
1303
1304         /* Verify it's a power of two */
1305         BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1306
1307         DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1308                         __func__, ioc->ioc_regs,
1309                         (unsigned long) num_physpages >> (20 - PAGE_SHIFT),
1310                         iova_space_size>>20,
1311                         iov_order + PAGE_SHIFT);
1312
1313         ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL, 
1314                                                  get_order(ioc->pdir_size));
1315         if(NULL == ioc->pdir_base) {
1316                 panic("%s() could not allocate I/O Page Table\n", __func__);
1317         }
1318         memset(ioc->pdir_base, 0, ioc->pdir_size);
1319
1320         BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1321         DBG_INIT(" base %p\n", ioc->pdir_base);
1322
1323         /* resource map size dictated by pdir_size */
1324         ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1325         DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1326         
1327         ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL, 
1328                                               get_order(ioc->res_size));
1329         if(NULL == ioc->res_map) {
1330                 panic("%s() could not allocate resource map\n", __func__);
1331         }
1332         memset(ioc->res_map, 0, ioc->res_size);
1333
1334         /* Initialize the res_hint to 16 */
1335         ioc->res_hint = 16;
1336
1337         /* Initialize the spinlock */
1338         spin_lock_init(&ioc->res_lock);
1339
1340         /*
1341         ** Chainid is the upper most bits of an IOVP used to determine
1342         ** which TLB entry an IOVP will use.
1343         */
1344         ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1345         DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1346
1347         /*
1348         ** Initialize IOA hardware
1349         */
1350         WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift, 
1351                   &ioc->ioc_regs->io_chain_id_mask);
1352
1353         WRITE_U32(virt_to_phys(ioc->pdir_base), 
1354                   &ioc->ioc_regs->io_pdir_base);
1355
1356         /*
1357         ** Go to "Virtual Mode"
1358         */
1359         WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1360
1361         /*
1362         ** Initialize all I/O TLB entries to 0 (Valid bit off).
1363         */
1364         WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1365         WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1366
1367         for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1368                 WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1369                           &ioc->ioc_regs->io_command);
1370         }
1371 }
1372
1373 static void __init
1374 ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1375 {
1376         int result;
1377
1378         res->parent = NULL;
1379         res->flags = IORESOURCE_MEM;
1380         /*
1381          * bracing ((signed) ...) are required for 64bit kernel because
1382          * we only want to sign extend the lower 16 bits of the register.
1383          * The upper 16-bits of range registers are hardcoded to 0xffff.
1384          */
1385         res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1386         res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1387         res->name = name;
1388         /*
1389          * Check if this MMIO range is disable
1390          */
1391         if (res->end + 1 == res->start)
1392                 return;
1393
1394         /* On some platforms (e.g. K-Class), we have already registered
1395          * resources for devices reported by firmware. Some are children
1396          * of ccio.
1397          * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1398          */
1399         result = insert_resource(&iomem_resource, res);
1400         if (result < 0) {
1401                 printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n", 
1402                         __func__, (unsigned long)res->start, (unsigned long)res->end);
1403         }
1404 }
1405
1406 static void __init ccio_init_resources(struct ioc *ioc)
1407 {
1408         struct resource *res = ioc->mmio_region;
1409         char *name = kmalloc(14, GFP_KERNEL);
1410
1411         snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1412
1413         ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1414         ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1415 }
1416
1417 static int new_ioc_area(struct resource *res, unsigned long size,
1418                 unsigned long min, unsigned long max, unsigned long align)
1419 {
1420         if (max <= min)
1421                 return -EBUSY;
1422
1423         res->start = (max - size + 1) &~ (align - 1);
1424         res->end = res->start + size;
1425         
1426         /* We might be trying to expand the MMIO range to include
1427          * a child device that has already registered it's MMIO space.
1428          * Use "insert" instead of request_resource().
1429          */
1430         if (!insert_resource(&iomem_resource, res))
1431                 return 0;
1432
1433         return new_ioc_area(res, size, min, max - size, align);
1434 }
1435
1436 static int expand_ioc_area(struct resource *res, unsigned long size,
1437                 unsigned long min, unsigned long max, unsigned long align)
1438 {
1439         unsigned long start, len;
1440
1441         if (!res->parent)
1442                 return new_ioc_area(res, size, min, max, align);
1443
1444         start = (res->start - size) &~ (align - 1);
1445         len = res->end - start + 1;
1446         if (start >= min) {
1447                 if (!adjust_resource(res, start, len))
1448                         return 0;
1449         }
1450
1451         start = res->start;
1452         len = ((size + res->end + align) &~ (align - 1)) - start;
1453         if (start + len <= max) {
1454                 if (!adjust_resource(res, start, len))
1455                         return 0;
1456         }
1457
1458         return -EBUSY;
1459 }
1460
1461 /*
1462  * Dino calls this function.  Beware that we may get called on systems
1463  * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1464  * So it's legal to find no parent IOC.
1465  *
1466  * Some other issues: one of the resources in the ioc may be unassigned.
1467  */
1468 int ccio_allocate_resource(const struct parisc_device *dev,
1469                 struct resource *res, unsigned long size,
1470                 unsigned long min, unsigned long max, unsigned long align)
1471 {
1472         struct resource *parent = &iomem_resource;
1473         struct ioc *ioc = ccio_get_iommu(dev);
1474         if (!ioc)
1475                 goto out;
1476
1477         parent = ioc->mmio_region;
1478         if (parent->parent &&
1479             !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1480                 return 0;
1481
1482         if ((parent + 1)->parent &&
1483             !allocate_resource(parent + 1, res, size, min, max, align,
1484                                 NULL, NULL))
1485                 return 0;
1486
1487         if (!expand_ioc_area(parent, size, min, max, align)) {
1488                 __raw_writel(((parent->start)>>16) | 0xffff0000,
1489                              &ioc->ioc_regs->io_io_low);
1490                 __raw_writel(((parent->end)>>16) | 0xffff0000,
1491                              &ioc->ioc_regs->io_io_high);
1492         } else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1493                 parent++;
1494                 __raw_writel(((parent->start)>>16) | 0xffff0000,
1495                              &ioc->ioc_regs->io_io_low_hv);
1496                 __raw_writel(((parent->end)>>16) | 0xffff0000,
1497                              &ioc->ioc_regs->io_io_high_hv);
1498         } else {
1499                 return -EBUSY;
1500         }
1501
1502  out:
1503         return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1504 }
1505
1506 int ccio_request_resource(const struct parisc_device *dev,
1507                 struct resource *res)
1508 {
1509         struct resource *parent;
1510         struct ioc *ioc = ccio_get_iommu(dev);
1511
1512         if (!ioc) {
1513                 parent = &iomem_resource;
1514         } else if ((ioc->mmio_region->start <= res->start) &&
1515                         (res->end <= ioc->mmio_region->end)) {
1516                 parent = ioc->mmio_region;
1517         } else if (((ioc->mmio_region + 1)->start <= res->start) &&
1518                         (res->end <= (ioc->mmio_region + 1)->end)) {
1519                 parent = ioc->mmio_region + 1;
1520         } else {
1521                 return -EBUSY;
1522         }
1523
1524         /* "transparent" bus bridges need to register MMIO resources
1525          * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1526          * registered their resources in the PDC "bus walk" (See
1527          * arch/parisc/kernel/inventory.c).
1528          */
1529         return insert_resource(parent, res);
1530 }
1531
1532 /**
1533  * ccio_probe - Determine if ccio should claim this device.
1534  * @dev: The device which has been found
1535  *
1536  * Determine if ccio should claim this chip (return 0) or not (return 1).
1537  * If so, initialize the chip and tell other partners in crime they
1538  * have work to do.
1539  */
1540 static int __init ccio_probe(struct parisc_device *dev)
1541 {
1542         int i;
1543         struct ioc *ioc, **ioc_p = &ioc_list;
1544
1545         ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1546         if (ioc == NULL) {
1547                 printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1548                 return 1;
1549         }
1550
1551         ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1552
1553         printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1554                 (unsigned long)dev->hpa.start);
1555
1556         for (i = 0; i < ioc_count; i++) {
1557                 ioc_p = &(*ioc_p)->next;
1558         }
1559         *ioc_p = ioc;
1560
1561         ioc->hw_path = dev->hw_path;
1562         ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
1563         ccio_ioc_init(ioc);
1564         ccio_init_resources(ioc);
1565         hppa_dma_ops = &ccio_ops;
1566         dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL);
1567
1568         /* if this fails, no I/O cards will work, so may as well bug */
1569         BUG_ON(dev->dev.platform_data == NULL);
1570         HBA_DATA(dev->dev.platform_data)->iommu = ioc;
1571         
1572         if (ioc_count == 0) {
1573                 proc_create(MODULE_NAME, 0, proc_runway_root,
1574                             &ccio_proc_info_fops);
1575                 proc_create(MODULE_NAME"-bitmap", 0, proc_runway_root,
1576                             &ccio_proc_bitmap_fops);
1577         }
1578
1579         ioc_count++;
1580
1581         parisc_has_iommu();
1582         return 0;
1583 }
1584
1585 /**
1586  * ccio_init - ccio initialization procedure.
1587  *
1588  * Register this driver.
1589  */
1590 void __init ccio_init(void)
1591 {
1592         register_parisc_driver(&ccio_driver);
1593 }
1594