2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
43 #include "ext4_extents.h"
45 #define MPAGE_DA_EXTENT_TAIL 0x01
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
50 return jbd2_journal_begin_ordered_truncate(
51 EXT4_SB(inode->i_sb)->s_journal,
52 &EXT4_I(inode)->jinode,
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
59 * Test whether an inode is a fast symlink.
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
63 int ea_blocks = EXT4_I(inode)->i_file_acl ?
64 (inode->i_sb->s_blocksize >> 9) : 0;
66 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
70 * The ext4 forget function must perform a revoke if we are freeing data
71 * which has been journaled. Metadata (eg. indirect blocks) must be
72 * revoked in all cases.
74 * "bh" may be NULL: a metadata block may have been freed from memory
75 * but there may still be a record of it in the journal, and that record
76 * still needs to be revoked.
78 * If the handle isn't valid we're not journaling so there's nothing to do.
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 struct buffer_head *bh, ext4_fsblk_t blocknr)
85 if (!ext4_handle_valid(handle))
90 BUFFER_TRACE(bh, "enter");
92 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
94 bh, is_metadata, inode->i_mode,
95 test_opt(inode->i_sb, DATA_FLAGS));
97 /* Never use the revoke function if we are doing full data
98 * journaling: there is no need to, and a V1 superblock won't
99 * support it. Otherwise, only skip the revoke on un-journaled
102 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 (!is_metadata && !ext4_should_journal_data(inode))) {
105 BUFFER_TRACE(bh, "call jbd2_journal_forget");
106 return ext4_journal_forget(handle, bh);
112 * data!=journal && (is_metadata || should_journal_data(inode))
114 BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 err = ext4_journal_revoke(handle, blocknr, bh);
117 ext4_abort(inode->i_sb, __func__,
118 "error %d when attempting revoke", err);
119 BUFFER_TRACE(bh, "exit");
124 * Work out how many blocks we need to proceed with the next chunk of a
125 * truncate transaction.
127 static unsigned long blocks_for_truncate(struct inode *inode)
131 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
133 /* Give ourselves just enough room to cope with inodes in which
134 * i_blocks is corrupt: we've seen disk corruptions in the past
135 * which resulted in random data in an inode which looked enough
136 * like a regular file for ext4 to try to delete it. Things
137 * will go a bit crazy if that happens, but at least we should
138 * try not to panic the whole kernel. */
142 /* But we need to bound the transaction so we don't overflow the
144 if (needed > EXT4_MAX_TRANS_DATA)
145 needed = EXT4_MAX_TRANS_DATA;
147 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
151 * Truncate transactions can be complex and absolutely huge. So we need to
152 * be able to restart the transaction at a conventient checkpoint to make
153 * sure we don't overflow the journal.
155 * start_transaction gets us a new handle for a truncate transaction,
156 * and extend_transaction tries to extend the existing one a bit. If
157 * extend fails, we need to propagate the failure up and restart the
158 * transaction in the top-level truncate loop. --sct
160 static handle_t *start_transaction(struct inode *inode)
164 result = ext4_journal_start(inode, blocks_for_truncate(inode));
168 ext4_std_error(inode->i_sb, PTR_ERR(result));
173 * Try to extend this transaction for the purposes of truncation.
175 * Returns 0 if we managed to create more room. If we can't create more
176 * room, and the transaction must be restarted we return 1.
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
180 if (!ext4_handle_valid(handle))
182 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
184 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
190 * Restart the transaction associated with *handle. This does a commit,
191 * so before we call here everything must be consistently dirtied against
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
196 BUG_ON(EXT4_JOURNAL(inode) == NULL);
197 jbd_debug(2, "restarting handle %p\n", handle);
198 return ext4_journal_restart(handle, blocks_for_truncate(inode));
202 * Called at the last iput() if i_nlink is zero.
204 void ext4_delete_inode(struct inode *inode)
209 if (ext4_should_order_data(inode))
210 ext4_begin_ordered_truncate(inode, 0);
211 truncate_inode_pages(&inode->i_data, 0);
213 if (is_bad_inode(inode))
216 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217 if (IS_ERR(handle)) {
218 ext4_std_error(inode->i_sb, PTR_ERR(handle));
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
224 ext4_orphan_del(NULL, inode);
229 ext4_handle_sync(handle);
231 err = ext4_mark_inode_dirty(handle, inode);
233 ext4_warning(inode->i_sb, __func__,
234 "couldn't mark inode dirty (err %d)", err);
238 ext4_truncate(inode);
241 * ext4_ext_truncate() doesn't reserve any slop when it
242 * restarts journal transactions; therefore there may not be
243 * enough credits left in the handle to remove the inode from
244 * the orphan list and set the dtime field.
246 if (!ext4_handle_has_enough_credits(handle, 3)) {
247 err = ext4_journal_extend(handle, 3);
249 err = ext4_journal_restart(handle, 3);
251 ext4_warning(inode->i_sb, __func__,
252 "couldn't extend journal (err %d)", err);
254 ext4_journal_stop(handle);
260 * Kill off the orphan record which ext4_truncate created.
261 * AKPM: I think this can be inside the above `if'.
262 * Note that ext4_orphan_del() has to be able to cope with the
263 * deletion of a non-existent orphan - this is because we don't
264 * know if ext4_truncate() actually created an orphan record.
265 * (Well, we could do this if we need to, but heck - it works)
267 ext4_orphan_del(handle, inode);
268 EXT4_I(inode)->i_dtime = get_seconds();
271 * One subtle ordering requirement: if anything has gone wrong
272 * (transaction abort, IO errors, whatever), then we can still
273 * do these next steps (the fs will already have been marked as
274 * having errors), but we can't free the inode if the mark_dirty
277 if (ext4_mark_inode_dirty(handle, inode))
278 /* If that failed, just do the required in-core inode clear. */
281 ext4_free_inode(handle, inode);
282 ext4_journal_stop(handle);
285 clear_inode(inode); /* We must guarantee clearing of inode... */
291 struct buffer_head *bh;
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
296 p->key = *(p->p = v);
301 * ext4_block_to_path - parse the block number into array of offsets
302 * @inode: inode in question (we are only interested in its superblock)
303 * @i_block: block number to be parsed
304 * @offsets: array to store the offsets in
305 * @boundary: set this non-zero if the referred-to block is likely to be
306 * followed (on disk) by an indirect block.
308 * To store the locations of file's data ext4 uses a data structure common
309 * for UNIX filesystems - tree of pointers anchored in the inode, with
310 * data blocks at leaves and indirect blocks in intermediate nodes.
311 * This function translates the block number into path in that tree -
312 * return value is the path length and @offsets[n] is the offset of
313 * pointer to (n+1)th node in the nth one. If @block is out of range
314 * (negative or too large) warning is printed and zero returned.
316 * Note: function doesn't find node addresses, so no IO is needed. All
317 * we need to know is the capacity of indirect blocks (taken from the
322 * Portability note: the last comparison (check that we fit into triple
323 * indirect block) is spelled differently, because otherwise on an
324 * architecture with 32-bit longs and 8Kb pages we might get into trouble
325 * if our filesystem had 8Kb blocks. We might use long long, but that would
326 * kill us on x86. Oh, well, at least the sign propagation does not matter -
327 * i_block would have to be negative in the very beginning, so we would not
331 static int ext4_block_to_path(struct inode *inode,
333 ext4_lblk_t offsets[4], int *boundary)
335 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 const long direct_blocks = EXT4_NDIR_BLOCKS,
338 indirect_blocks = ptrs,
339 double_blocks = (1 << (ptrs_bits * 2));
344 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345 } else if (i_block < direct_blocks) {
346 offsets[n++] = i_block;
347 final = direct_blocks;
348 } else if ((i_block -= direct_blocks) < indirect_blocks) {
349 offsets[n++] = EXT4_IND_BLOCK;
350 offsets[n++] = i_block;
352 } else if ((i_block -= indirect_blocks) < double_blocks) {
353 offsets[n++] = EXT4_DIND_BLOCK;
354 offsets[n++] = i_block >> ptrs_bits;
355 offsets[n++] = i_block & (ptrs - 1);
357 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358 offsets[n++] = EXT4_TIND_BLOCK;
359 offsets[n++] = i_block >> (ptrs_bits * 2);
360 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 offsets[n++] = i_block & (ptrs - 1);
364 ext4_warning(inode->i_sb, "ext4_block_to_path",
365 "block %lu > max in inode %lu",
366 i_block + direct_blocks +
367 indirect_blocks + double_blocks, inode->i_ino);
370 *boundary = final - 1 - (i_block & (ptrs - 1));
374 static int __ext4_check_blockref(const char *function, struct inode *inode,
375 __le32 *p, unsigned int max)
380 while (bref < p+max) {
381 blk = le32_to_cpu(*bref++);
383 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
385 ext4_error(inode->i_sb, function,
386 "invalid block reference %u "
387 "in inode #%lu", blk, inode->i_ino);
395 #define ext4_check_indirect_blockref(inode, bh) \
396 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
397 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
399 #define ext4_check_inode_blockref(inode) \
400 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
404 * ext4_get_branch - read the chain of indirect blocks leading to data
405 * @inode: inode in question
406 * @depth: depth of the chain (1 - direct pointer, etc.)
407 * @offsets: offsets of pointers in inode/indirect blocks
408 * @chain: place to store the result
409 * @err: here we store the error value
411 * Function fills the array of triples <key, p, bh> and returns %NULL
412 * if everything went OK or the pointer to the last filled triple
413 * (incomplete one) otherwise. Upon the return chain[i].key contains
414 * the number of (i+1)-th block in the chain (as it is stored in memory,
415 * i.e. little-endian 32-bit), chain[i].p contains the address of that
416 * number (it points into struct inode for i==0 and into the bh->b_data
417 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
418 * block for i>0 and NULL for i==0. In other words, it holds the block
419 * numbers of the chain, addresses they were taken from (and where we can
420 * verify that chain did not change) and buffer_heads hosting these
423 * Function stops when it stumbles upon zero pointer (absent block)
424 * (pointer to last triple returned, *@err == 0)
425 * or when it gets an IO error reading an indirect block
426 * (ditto, *@err == -EIO)
427 * or when it reads all @depth-1 indirect blocks successfully and finds
428 * the whole chain, all way to the data (returns %NULL, *err == 0).
430 * Need to be called with
431 * down_read(&EXT4_I(inode)->i_data_sem)
433 static Indirect *ext4_get_branch(struct inode *inode, int depth,
434 ext4_lblk_t *offsets,
435 Indirect chain[4], int *err)
437 struct super_block *sb = inode->i_sb;
439 struct buffer_head *bh;
442 /* i_data is not going away, no lock needed */
443 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
447 bh = sb_getblk(sb, le32_to_cpu(p->key));
451 if (!bh_uptodate_or_lock(bh)) {
452 if (bh_submit_read(bh) < 0) {
456 /* validate block references */
457 if (ext4_check_indirect_blockref(inode, bh)) {
463 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
477 * ext4_find_near - find a place for allocation with sufficient locality
479 * @ind: descriptor of indirect block.
481 * This function returns the preferred place for block allocation.
482 * It is used when heuristic for sequential allocation fails.
484 * + if there is a block to the left of our position - allocate near it.
485 * + if pointer will live in indirect block - allocate near that block.
486 * + if pointer will live in inode - allocate in the same
489 * In the latter case we colour the starting block by the callers PID to
490 * prevent it from clashing with concurrent allocations for a different inode
491 * in the same block group. The PID is used here so that functionally related
492 * files will be close-by on-disk.
494 * Caller must make sure that @ind is valid and will stay that way.
496 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
498 struct ext4_inode_info *ei = EXT4_I(inode);
499 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
501 ext4_fsblk_t bg_start;
502 ext4_fsblk_t last_block;
503 ext4_grpblk_t colour;
504 ext4_group_t block_group;
505 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
507 /* Try to find previous block */
508 for (p = ind->p - 1; p >= start; p--) {
510 return le32_to_cpu(*p);
513 /* No such thing, so let's try location of indirect block */
515 return ind->bh->b_blocknr;
518 * It is going to be referred to from the inode itself? OK, just put it
519 * into the same cylinder group then.
521 block_group = ei->i_block_group;
522 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
523 block_group &= ~(flex_size-1);
524 if (S_ISREG(inode->i_mode))
527 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
528 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
531 * If we are doing delayed allocation, we don't need take
532 * colour into account.
534 if (test_opt(inode->i_sb, DELALLOC))
537 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
538 colour = (current->pid % 16) *
539 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
541 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
542 return bg_start + colour;
546 * ext4_find_goal - find a preferred place for allocation.
548 * @block: block we want
549 * @partial: pointer to the last triple within a chain
551 * Normally this function find the preferred place for block allocation,
554 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
558 * XXX need to get goal block from mballoc's data structures
561 return ext4_find_near(inode, partial);
565 * ext4_blks_to_allocate: Look up the block map and count the number
566 * of direct blocks need to be allocated for the given branch.
568 * @branch: chain of indirect blocks
569 * @k: number of blocks need for indirect blocks
570 * @blks: number of data blocks to be mapped.
571 * @blocks_to_boundary: the offset in the indirect block
573 * return the total number of blocks to be allocate, including the
574 * direct and indirect blocks.
576 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
577 int blocks_to_boundary)
579 unsigned int count = 0;
582 * Simple case, [t,d]Indirect block(s) has not allocated yet
583 * then it's clear blocks on that path have not allocated
586 /* right now we don't handle cross boundary allocation */
587 if (blks < blocks_to_boundary + 1)
590 count += blocks_to_boundary + 1;
595 while (count < blks && count <= blocks_to_boundary &&
596 le32_to_cpu(*(branch[0].p + count)) == 0) {
603 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
604 * @indirect_blks: the number of blocks need to allocate for indirect
607 * @new_blocks: on return it will store the new block numbers for
608 * the indirect blocks(if needed) and the first direct block,
609 * @blks: on return it will store the total number of allocated
612 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
613 ext4_lblk_t iblock, ext4_fsblk_t goal,
614 int indirect_blks, int blks,
615 ext4_fsblk_t new_blocks[4], int *err)
617 struct ext4_allocation_request ar;
619 unsigned long count = 0, blk_allocated = 0;
621 ext4_fsblk_t current_block = 0;
625 * Here we try to allocate the requested multiple blocks at once,
626 * on a best-effort basis.
627 * To build a branch, we should allocate blocks for
628 * the indirect blocks(if not allocated yet), and at least
629 * the first direct block of this branch. That's the
630 * minimum number of blocks need to allocate(required)
632 /* first we try to allocate the indirect blocks */
633 target = indirect_blks;
636 /* allocating blocks for indirect blocks and direct blocks */
637 current_block = ext4_new_meta_blocks(handle, inode,
643 /* allocate blocks for indirect blocks */
644 while (index < indirect_blks && count) {
645 new_blocks[index++] = current_block++;
650 * save the new block number
651 * for the first direct block
653 new_blocks[index] = current_block;
654 printk(KERN_INFO "%s returned more blocks than "
655 "requested\n", __func__);
661 target = blks - count ;
662 blk_allocated = count;
665 /* Now allocate data blocks */
666 memset(&ar, 0, sizeof(ar));
671 if (S_ISREG(inode->i_mode))
672 /* enable in-core preallocation only for regular files */
673 ar.flags = EXT4_MB_HINT_DATA;
675 current_block = ext4_mb_new_blocks(handle, &ar, err);
677 if (*err && (target == blks)) {
679 * if the allocation failed and we didn't allocate
685 if (target == blks) {
687 * save the new block number
688 * for the first direct block
690 new_blocks[index] = current_block;
692 blk_allocated += ar.len;
695 /* total number of blocks allocated for direct blocks */
700 for (i = 0; i < index; i++)
701 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
706 * ext4_alloc_branch - allocate and set up a chain of blocks.
708 * @indirect_blks: number of allocated indirect blocks
709 * @blks: number of allocated direct blocks
710 * @offsets: offsets (in the blocks) to store the pointers to next.
711 * @branch: place to store the chain in.
713 * This function allocates blocks, zeroes out all but the last one,
714 * links them into chain and (if we are synchronous) writes them to disk.
715 * In other words, it prepares a branch that can be spliced onto the
716 * inode. It stores the information about that chain in the branch[], in
717 * the same format as ext4_get_branch() would do. We are calling it after
718 * we had read the existing part of chain and partial points to the last
719 * triple of that (one with zero ->key). Upon the exit we have the same
720 * picture as after the successful ext4_get_block(), except that in one
721 * place chain is disconnected - *branch->p is still zero (we did not
722 * set the last link), but branch->key contains the number that should
723 * be placed into *branch->p to fill that gap.
725 * If allocation fails we free all blocks we've allocated (and forget
726 * their buffer_heads) and return the error value the from failed
727 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
728 * as described above and return 0.
730 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
731 ext4_lblk_t iblock, int indirect_blks,
732 int *blks, ext4_fsblk_t goal,
733 ext4_lblk_t *offsets, Indirect *branch)
735 int blocksize = inode->i_sb->s_blocksize;
738 struct buffer_head *bh;
740 ext4_fsblk_t new_blocks[4];
741 ext4_fsblk_t current_block;
743 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
744 *blks, new_blocks, &err);
748 branch[0].key = cpu_to_le32(new_blocks[0]);
750 * metadata blocks and data blocks are allocated.
752 for (n = 1; n <= indirect_blks; n++) {
754 * Get buffer_head for parent block, zero it out
755 * and set the pointer to new one, then send
758 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
761 BUFFER_TRACE(bh, "call get_create_access");
762 err = ext4_journal_get_create_access(handle, bh);
769 memset(bh->b_data, 0, blocksize);
770 branch[n].p = (__le32 *) bh->b_data + offsets[n];
771 branch[n].key = cpu_to_le32(new_blocks[n]);
772 *branch[n].p = branch[n].key;
773 if (n == indirect_blks) {
774 current_block = new_blocks[n];
776 * End of chain, update the last new metablock of
777 * the chain to point to the new allocated
778 * data blocks numbers
780 for (i=1; i < num; i++)
781 *(branch[n].p + i) = cpu_to_le32(++current_block);
783 BUFFER_TRACE(bh, "marking uptodate");
784 set_buffer_uptodate(bh);
787 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
788 err = ext4_handle_dirty_metadata(handle, inode, bh);
795 /* Allocation failed, free what we already allocated */
796 for (i = 1; i <= n ; i++) {
797 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
798 ext4_journal_forget(handle, branch[i].bh);
800 for (i = 0; i < indirect_blks; i++)
801 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
803 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
809 * ext4_splice_branch - splice the allocated branch onto inode.
811 * @block: (logical) number of block we are adding
812 * @chain: chain of indirect blocks (with a missing link - see
814 * @where: location of missing link
815 * @num: number of indirect blocks we are adding
816 * @blks: number of direct blocks we are adding
818 * This function fills the missing link and does all housekeeping needed in
819 * inode (->i_blocks, etc.). In case of success we end up with the full
820 * chain to new block and return 0.
822 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
823 ext4_lblk_t block, Indirect *where, int num, int blks)
827 ext4_fsblk_t current_block;
830 * If we're splicing into a [td]indirect block (as opposed to the
831 * inode) then we need to get write access to the [td]indirect block
835 BUFFER_TRACE(where->bh, "get_write_access");
836 err = ext4_journal_get_write_access(handle, where->bh);
842 *where->p = where->key;
845 * Update the host buffer_head or inode to point to more just allocated
846 * direct blocks blocks
848 if (num == 0 && blks > 1) {
849 current_block = le32_to_cpu(where->key) + 1;
850 for (i = 1; i < blks; i++)
851 *(where->p + i) = cpu_to_le32(current_block++);
854 /* We are done with atomic stuff, now do the rest of housekeeping */
856 inode->i_ctime = ext4_current_time(inode);
857 ext4_mark_inode_dirty(handle, inode);
859 /* had we spliced it onto indirect block? */
862 * If we spliced it onto an indirect block, we haven't
863 * altered the inode. Note however that if it is being spliced
864 * onto an indirect block at the very end of the file (the
865 * file is growing) then we *will* alter the inode to reflect
866 * the new i_size. But that is not done here - it is done in
867 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
869 jbd_debug(5, "splicing indirect only\n");
870 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
871 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
876 * OK, we spliced it into the inode itself on a direct block.
877 * Inode was dirtied above.
879 jbd_debug(5, "splicing direct\n");
884 for (i = 1; i <= num; i++) {
885 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
886 ext4_journal_forget(handle, where[i].bh);
887 ext4_free_blocks(handle, inode,
888 le32_to_cpu(where[i-1].key), 1, 0);
890 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
896 * The ext4_ind_get_blocks() function handles non-extents inodes
897 * (i.e., using the traditional indirect/double-indirect i_blocks
898 * scheme) for ext4_get_blocks().
900 * Allocation strategy is simple: if we have to allocate something, we will
901 * have to go the whole way to leaf. So let's do it before attaching anything
902 * to tree, set linkage between the newborn blocks, write them if sync is
903 * required, recheck the path, free and repeat if check fails, otherwise
904 * set the last missing link (that will protect us from any truncate-generated
905 * removals - all blocks on the path are immune now) and possibly force the
906 * write on the parent block.
907 * That has a nice additional property: no special recovery from the failed
908 * allocations is needed - we simply release blocks and do not touch anything
909 * reachable from inode.
911 * `handle' can be NULL if create == 0.
913 * return > 0, # of blocks mapped or allocated.
914 * return = 0, if plain lookup failed.
915 * return < 0, error case.
917 * The ext4_ind_get_blocks() function should be called with
918 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
919 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
920 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
923 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
924 ext4_lblk_t iblock, unsigned int maxblocks,
925 struct buffer_head *bh_result,
929 ext4_lblk_t offsets[4];
934 int blocks_to_boundary = 0;
937 ext4_fsblk_t first_block = 0;
939 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
940 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
941 depth = ext4_block_to_path(inode, iblock, offsets,
942 &blocks_to_boundary);
947 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
949 /* Simplest case - block found, no allocation needed */
951 first_block = le32_to_cpu(chain[depth - 1].key);
952 clear_buffer_new(bh_result);
955 while (count < maxblocks && count <= blocks_to_boundary) {
958 blk = le32_to_cpu(*(chain[depth-1].p + count));
960 if (blk == first_block + count)
968 /* Next simple case - plain lookup or failed read of indirect block */
969 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
973 * Okay, we need to do block allocation.
975 goal = ext4_find_goal(inode, iblock, partial);
977 /* the number of blocks need to allocate for [d,t]indirect blocks */
978 indirect_blks = (chain + depth) - partial - 1;
981 * Next look up the indirect map to count the totoal number of
982 * direct blocks to allocate for this branch.
984 count = ext4_blks_to_allocate(partial, indirect_blks,
985 maxblocks, blocks_to_boundary);
987 * Block out ext4_truncate while we alter the tree
989 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
991 offsets + (partial - chain), partial);
994 * The ext4_splice_branch call will free and forget any buffers
995 * on the new chain if there is a failure, but that risks using
996 * up transaction credits, especially for bitmaps where the
997 * credits cannot be returned. Can we handle this somehow? We
998 * may need to return -EAGAIN upwards in the worst case. --sct
1001 err = ext4_splice_branch(handle, inode, iblock,
1002 partial, indirect_blks, count);
1006 set_buffer_new(bh_result);
1008 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1009 if (count > blocks_to_boundary)
1010 set_buffer_boundary(bh_result);
1012 /* Clean up and exit */
1013 partial = chain + depth - 1; /* the whole chain */
1015 while (partial > chain) {
1016 BUFFER_TRACE(partial->bh, "call brelse");
1017 brelse(partial->bh);
1020 BUFFER_TRACE(bh_result, "returned");
1025 qsize_t ext4_get_reserved_space(struct inode *inode)
1027 unsigned long long total;
1029 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1030 total = EXT4_I(inode)->i_reserved_data_blocks +
1031 EXT4_I(inode)->i_reserved_meta_blocks;
1032 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1037 * Calculate the number of metadata blocks need to reserve
1038 * to allocate @blocks for non extent file based file
1040 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1042 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1043 int ind_blks, dind_blks, tind_blks;
1045 /* number of new indirect blocks needed */
1046 ind_blks = (blocks + icap - 1) / icap;
1048 dind_blks = (ind_blks + icap - 1) / icap;
1052 return ind_blks + dind_blks + tind_blks;
1056 * Calculate the number of metadata blocks need to reserve
1057 * to allocate given number of blocks
1059 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1064 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1065 return ext4_ext_calc_metadata_amount(inode, blocks);
1067 return ext4_indirect_calc_metadata_amount(inode, blocks);
1070 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1072 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1073 int total, mdb, mdb_free;
1075 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1076 /* recalculate the number of metablocks still need to be reserved */
1077 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1078 mdb = ext4_calc_metadata_amount(inode, total);
1080 /* figure out how many metablocks to release */
1081 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1082 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1085 /* Account for allocated meta_blocks */
1086 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1088 /* update fs dirty blocks counter */
1089 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1090 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1091 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1094 /* update per-inode reservations */
1095 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1096 EXT4_I(inode)->i_reserved_data_blocks -= used;
1097 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1100 * free those over-booking quota for metadata blocks
1103 vfs_dq_release_reservation_block(inode, mdb_free);
1106 * If we have done all the pending block allocations and if
1107 * there aren't any writers on the inode, we can discard the
1108 * inode's preallocations.
1110 if (!total && (atomic_read(&inode->i_writecount) == 0))
1111 ext4_discard_preallocations(inode);
1114 static int check_block_validity(struct inode *inode, sector_t logical,
1115 sector_t phys, int len)
1117 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1118 ext4_error(inode->i_sb, "check_block_validity",
1119 "inode #%lu logical block %llu mapped to %llu "
1120 "(size %d)", inode->i_ino,
1121 (unsigned long long) logical,
1122 (unsigned long long) phys, len);
1130 * The ext4_get_blocks() function tries to look up the requested blocks,
1131 * and returns if the blocks are already mapped.
1133 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1134 * and store the allocated blocks in the result buffer head and mark it
1137 * If file type is extents based, it will call ext4_ext_get_blocks(),
1138 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1141 * On success, it returns the number of blocks being mapped or allocate.
1142 * if create==0 and the blocks are pre-allocated and uninitialized block,
1143 * the result buffer head is unmapped. If the create ==1, it will make sure
1144 * the buffer head is mapped.
1146 * It returns 0 if plain look up failed (blocks have not been allocated), in
1147 * that casem, buffer head is unmapped
1149 * It returns the error in case of allocation failure.
1151 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1152 unsigned int max_blocks, struct buffer_head *bh,
1157 clear_buffer_mapped(bh);
1158 clear_buffer_unwritten(bh);
1161 * Try to see if we can get the block without requesting a new
1162 * file system block.
1164 down_read((&EXT4_I(inode)->i_data_sem));
1165 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1166 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1169 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1172 up_read((&EXT4_I(inode)->i_data_sem));
1174 if (retval > 0 && buffer_mapped(bh)) {
1175 int ret = check_block_validity(inode, block,
1176 bh->b_blocknr, retval);
1181 /* If it is only a block(s) look up */
1182 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1186 * Returns if the blocks have already allocated
1188 * Note that if blocks have been preallocated
1189 * ext4_ext_get_block() returns th create = 0
1190 * with buffer head unmapped.
1192 if (retval > 0 && buffer_mapped(bh))
1196 * When we call get_blocks without the create flag, the
1197 * BH_Unwritten flag could have gotten set if the blocks
1198 * requested were part of a uninitialized extent. We need to
1199 * clear this flag now that we are committed to convert all or
1200 * part of the uninitialized extent to be an initialized
1201 * extent. This is because we need to avoid the combination
1202 * of BH_Unwritten and BH_Mapped flags being simultaneously
1203 * set on the buffer_head.
1205 clear_buffer_unwritten(bh);
1208 * New blocks allocate and/or writing to uninitialized extent
1209 * will possibly result in updating i_data, so we take
1210 * the write lock of i_data_sem, and call get_blocks()
1211 * with create == 1 flag.
1213 down_write((&EXT4_I(inode)->i_data_sem));
1216 * if the caller is from delayed allocation writeout path
1217 * we have already reserved fs blocks for allocation
1218 * let the underlying get_block() function know to
1219 * avoid double accounting
1221 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1222 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1224 * We need to check for EXT4 here because migrate
1225 * could have changed the inode type in between
1227 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1228 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1231 retval = ext4_ind_get_blocks(handle, inode, block,
1232 max_blocks, bh, flags);
1234 if (retval > 0 && buffer_new(bh)) {
1236 * We allocated new blocks which will result in
1237 * i_data's format changing. Force the migrate
1238 * to fail by clearing migrate flags
1240 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1245 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1246 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1249 * Update reserved blocks/metadata blocks after successful
1250 * block allocation which had been deferred till now.
1252 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1253 ext4_da_update_reserve_space(inode, retval);
1255 up_write((&EXT4_I(inode)->i_data_sem));
1256 if (retval > 0 && buffer_mapped(bh)) {
1257 int ret = check_block_validity(inode, block,
1258 bh->b_blocknr, retval);
1265 /* Maximum number of blocks we map for direct IO at once. */
1266 #define DIO_MAX_BLOCKS 4096
1268 int ext4_get_block(struct inode *inode, sector_t iblock,
1269 struct buffer_head *bh_result, int create)
1271 handle_t *handle = ext4_journal_current_handle();
1272 int ret = 0, started = 0;
1273 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1276 if (create && !handle) {
1277 /* Direct IO write... */
1278 if (max_blocks > DIO_MAX_BLOCKS)
1279 max_blocks = DIO_MAX_BLOCKS;
1280 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1281 handle = ext4_journal_start(inode, dio_credits);
1282 if (IS_ERR(handle)) {
1283 ret = PTR_ERR(handle);
1289 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1290 create ? EXT4_GET_BLOCKS_CREATE : 0);
1292 bh_result->b_size = (ret << inode->i_blkbits);
1296 ext4_journal_stop(handle);
1302 * `handle' can be NULL if create is zero
1304 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1305 ext4_lblk_t block, int create, int *errp)
1307 struct buffer_head dummy;
1311 J_ASSERT(handle != NULL || create == 0);
1314 dummy.b_blocknr = -1000;
1315 buffer_trace_init(&dummy.b_history);
1317 flags |= EXT4_GET_BLOCKS_CREATE;
1318 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1320 * ext4_get_blocks() returns number of blocks mapped. 0 in
1329 if (!err && buffer_mapped(&dummy)) {
1330 struct buffer_head *bh;
1331 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1336 if (buffer_new(&dummy)) {
1337 J_ASSERT(create != 0);
1338 J_ASSERT(handle != NULL);
1341 * Now that we do not always journal data, we should
1342 * keep in mind whether this should always journal the
1343 * new buffer as metadata. For now, regular file
1344 * writes use ext4_get_block instead, so it's not a
1348 BUFFER_TRACE(bh, "call get_create_access");
1349 fatal = ext4_journal_get_create_access(handle, bh);
1350 if (!fatal && !buffer_uptodate(bh)) {
1351 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1352 set_buffer_uptodate(bh);
1355 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1356 err = ext4_handle_dirty_metadata(handle, inode, bh);
1360 BUFFER_TRACE(bh, "not a new buffer");
1373 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1374 ext4_lblk_t block, int create, int *err)
1376 struct buffer_head *bh;
1378 bh = ext4_getblk(handle, inode, block, create, err);
1381 if (buffer_uptodate(bh))
1383 ll_rw_block(READ_META, 1, &bh);
1385 if (buffer_uptodate(bh))
1392 static int walk_page_buffers(handle_t *handle,
1393 struct buffer_head *head,
1397 int (*fn)(handle_t *handle,
1398 struct buffer_head *bh))
1400 struct buffer_head *bh;
1401 unsigned block_start, block_end;
1402 unsigned blocksize = head->b_size;
1404 struct buffer_head *next;
1406 for (bh = head, block_start = 0;
1407 ret == 0 && (bh != head || !block_start);
1408 block_start = block_end, bh = next)
1410 next = bh->b_this_page;
1411 block_end = block_start + blocksize;
1412 if (block_end <= from || block_start >= to) {
1413 if (partial && !buffer_uptodate(bh))
1417 err = (*fn)(handle, bh);
1425 * To preserve ordering, it is essential that the hole instantiation and
1426 * the data write be encapsulated in a single transaction. We cannot
1427 * close off a transaction and start a new one between the ext4_get_block()
1428 * and the commit_write(). So doing the jbd2_journal_start at the start of
1429 * prepare_write() is the right place.
1431 * Also, this function can nest inside ext4_writepage() ->
1432 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1433 * has generated enough buffer credits to do the whole page. So we won't
1434 * block on the journal in that case, which is good, because the caller may
1437 * By accident, ext4 can be reentered when a transaction is open via
1438 * quota file writes. If we were to commit the transaction while thus
1439 * reentered, there can be a deadlock - we would be holding a quota
1440 * lock, and the commit would never complete if another thread had a
1441 * transaction open and was blocking on the quota lock - a ranking
1444 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1445 * will _not_ run commit under these circumstances because handle->h_ref
1446 * is elevated. We'll still have enough credits for the tiny quotafile
1449 static int do_journal_get_write_access(handle_t *handle,
1450 struct buffer_head *bh)
1452 if (!buffer_mapped(bh) || buffer_freed(bh))
1454 return ext4_journal_get_write_access(handle, bh);
1457 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1458 loff_t pos, unsigned len, unsigned flags,
1459 struct page **pagep, void **fsdata)
1461 struct inode *inode = mapping->host;
1462 int ret, needed_blocks;
1469 trace_mark(ext4_write_begin,
1470 "dev %s ino %lu pos %llu len %u flags %u",
1471 inode->i_sb->s_id, inode->i_ino,
1472 (unsigned long long) pos, len, flags);
1474 * Reserve one block more for addition to orphan list in case
1475 * we allocate blocks but write fails for some reason
1477 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1478 index = pos >> PAGE_CACHE_SHIFT;
1479 from = pos & (PAGE_CACHE_SIZE - 1);
1483 handle = ext4_journal_start(inode, needed_blocks);
1484 if (IS_ERR(handle)) {
1485 ret = PTR_ERR(handle);
1489 /* We cannot recurse into the filesystem as the transaction is already
1491 flags |= AOP_FLAG_NOFS;
1493 page = grab_cache_page_write_begin(mapping, index, flags);
1495 ext4_journal_stop(handle);
1501 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1504 if (!ret && ext4_should_journal_data(inode)) {
1505 ret = walk_page_buffers(handle, page_buffers(page),
1506 from, to, NULL, do_journal_get_write_access);
1511 page_cache_release(page);
1513 * block_write_begin may have instantiated a few blocks
1514 * outside i_size. Trim these off again. Don't need
1515 * i_size_read because we hold i_mutex.
1517 * Add inode to orphan list in case we crash before
1520 if (pos + len > inode->i_size)
1521 ext4_orphan_add(handle, inode);
1523 ext4_journal_stop(handle);
1524 if (pos + len > inode->i_size) {
1525 vmtruncate(inode, inode->i_size);
1527 * If vmtruncate failed early the inode might
1528 * still be on the orphan list; we need to
1529 * make sure the inode is removed from the
1530 * orphan list in that case.
1533 ext4_orphan_del(NULL, inode);
1537 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1543 /* For write_end() in data=journal mode */
1544 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1546 if (!buffer_mapped(bh) || buffer_freed(bh))
1548 set_buffer_uptodate(bh);
1549 return ext4_handle_dirty_metadata(handle, NULL, bh);
1553 * We need to pick up the new inode size which generic_commit_write gave us
1554 * `file' can be NULL - eg, when called from page_symlink().
1556 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1557 * buffers are managed internally.
1559 static int ext4_ordered_write_end(struct file *file,
1560 struct address_space *mapping,
1561 loff_t pos, unsigned len, unsigned copied,
1562 struct page *page, void *fsdata)
1564 handle_t *handle = ext4_journal_current_handle();
1565 struct inode *inode = mapping->host;
1568 trace_mark(ext4_ordered_write_end,
1569 "dev %s ino %lu pos %llu len %u copied %u",
1570 inode->i_sb->s_id, inode->i_ino,
1571 (unsigned long long) pos, len, copied);
1572 ret = ext4_jbd2_file_inode(handle, inode);
1577 new_i_size = pos + copied;
1578 if (new_i_size > EXT4_I(inode)->i_disksize) {
1579 ext4_update_i_disksize(inode, new_i_size);
1580 /* We need to mark inode dirty even if
1581 * new_i_size is less that inode->i_size
1582 * bu greater than i_disksize.(hint delalloc)
1584 ext4_mark_inode_dirty(handle, inode);
1587 ret2 = generic_write_end(file, mapping, pos, len, copied,
1593 ret2 = ext4_journal_stop(handle);
1597 return ret ? ret : copied;
1600 static int ext4_writeback_write_end(struct file *file,
1601 struct address_space *mapping,
1602 loff_t pos, unsigned len, unsigned copied,
1603 struct page *page, void *fsdata)
1605 handle_t *handle = ext4_journal_current_handle();
1606 struct inode *inode = mapping->host;
1610 trace_mark(ext4_writeback_write_end,
1611 "dev %s ino %lu pos %llu len %u copied %u",
1612 inode->i_sb->s_id, inode->i_ino,
1613 (unsigned long long) pos, len, copied);
1614 new_i_size = pos + copied;
1615 if (new_i_size > EXT4_I(inode)->i_disksize) {
1616 ext4_update_i_disksize(inode, new_i_size);
1617 /* We need to mark inode dirty even if
1618 * new_i_size is less that inode->i_size
1619 * bu greater than i_disksize.(hint delalloc)
1621 ext4_mark_inode_dirty(handle, inode);
1624 ret2 = generic_write_end(file, mapping, pos, len, copied,
1630 ret2 = ext4_journal_stop(handle);
1634 return ret ? ret : copied;
1637 static int ext4_journalled_write_end(struct file *file,
1638 struct address_space *mapping,
1639 loff_t pos, unsigned len, unsigned copied,
1640 struct page *page, void *fsdata)
1642 handle_t *handle = ext4_journal_current_handle();
1643 struct inode *inode = mapping->host;
1649 trace_mark(ext4_journalled_write_end,
1650 "dev %s ino %lu pos %llu len %u copied %u",
1651 inode->i_sb->s_id, inode->i_ino,
1652 (unsigned long long) pos, len, copied);
1653 from = pos & (PAGE_CACHE_SIZE - 1);
1657 if (!PageUptodate(page))
1659 page_zero_new_buffers(page, from+copied, to);
1662 ret = walk_page_buffers(handle, page_buffers(page), from,
1663 to, &partial, write_end_fn);
1665 SetPageUptodate(page);
1666 new_i_size = pos + copied;
1667 if (new_i_size > inode->i_size)
1668 i_size_write(inode, pos+copied);
1669 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1670 if (new_i_size > EXT4_I(inode)->i_disksize) {
1671 ext4_update_i_disksize(inode, new_i_size);
1672 ret2 = ext4_mark_inode_dirty(handle, inode);
1678 ret2 = ext4_journal_stop(handle);
1681 page_cache_release(page);
1683 return ret ? ret : copied;
1686 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1689 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1690 unsigned long md_needed, mdblocks, total = 0;
1693 * recalculate the amount of metadata blocks to reserve
1694 * in order to allocate nrblocks
1695 * worse case is one extent per block
1698 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1699 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1700 mdblocks = ext4_calc_metadata_amount(inode, total);
1701 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1703 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1704 total = md_needed + nrblocks;
1707 * Make quota reservation here to prevent quota overflow
1708 * later. Real quota accounting is done at pages writeout
1711 if (vfs_dq_reserve_block(inode, total)) {
1712 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1716 if (ext4_claim_free_blocks(sbi, total)) {
1717 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1718 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1722 vfs_dq_release_reservation_block(inode, total);
1725 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1726 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1728 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1729 return 0; /* success */
1732 static void ext4_da_release_space(struct inode *inode, int to_free)
1734 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1735 int total, mdb, mdb_free, release;
1738 return; /* Nothing to release, exit */
1740 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1742 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1744 * if there is no reserved blocks, but we try to free some
1745 * then the counter is messed up somewhere.
1746 * but since this function is called from invalidate
1747 * page, it's harmless to return without any action
1749 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1750 "blocks for inode %lu, but there is no reserved "
1751 "data blocks\n", to_free, inode->i_ino);
1752 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1756 /* recalculate the number of metablocks still need to be reserved */
1757 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1758 mdb = ext4_calc_metadata_amount(inode, total);
1760 /* figure out how many metablocks to release */
1761 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1762 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1764 release = to_free + mdb_free;
1766 /* update fs dirty blocks counter for truncate case */
1767 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1769 /* update per-inode reservations */
1770 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1771 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1773 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1774 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1775 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1777 vfs_dq_release_reservation_block(inode, release);
1780 static void ext4_da_page_release_reservation(struct page *page,
1781 unsigned long offset)
1784 struct buffer_head *head, *bh;
1785 unsigned int curr_off = 0;
1787 head = page_buffers(page);
1790 unsigned int next_off = curr_off + bh->b_size;
1792 if ((offset <= curr_off) && (buffer_delay(bh))) {
1794 clear_buffer_delay(bh);
1796 curr_off = next_off;
1797 } while ((bh = bh->b_this_page) != head);
1798 ext4_da_release_space(page->mapping->host, to_release);
1802 * Delayed allocation stuff
1805 struct mpage_da_data {
1806 struct inode *inode;
1807 sector_t b_blocknr; /* start block number of extent */
1808 size_t b_size; /* size of extent */
1809 unsigned long b_state; /* state of the extent */
1810 unsigned long first_page, next_page; /* extent of pages */
1811 struct writeback_control *wbc;
1818 * mpage_da_submit_io - walks through extent of pages and try to write
1819 * them with writepage() call back
1821 * @mpd->inode: inode
1822 * @mpd->first_page: first page of the extent
1823 * @mpd->next_page: page after the last page of the extent
1825 * By the time mpage_da_submit_io() is called we expect all blocks
1826 * to be allocated. this may be wrong if allocation failed.
1828 * As pages are already locked by write_cache_pages(), we can't use it
1830 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1833 struct pagevec pvec;
1834 unsigned long index, end;
1835 int ret = 0, err, nr_pages, i;
1836 struct inode *inode = mpd->inode;
1837 struct address_space *mapping = inode->i_mapping;
1839 BUG_ON(mpd->next_page <= mpd->first_page);
1841 * We need to start from the first_page to the next_page - 1
1842 * to make sure we also write the mapped dirty buffer_heads.
1843 * If we look at mpd->b_blocknr we would only be looking
1844 * at the currently mapped buffer_heads.
1846 index = mpd->first_page;
1847 end = mpd->next_page - 1;
1849 pagevec_init(&pvec, 0);
1850 while (index <= end) {
1851 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1854 for (i = 0; i < nr_pages; i++) {
1855 struct page *page = pvec.pages[i];
1857 index = page->index;
1862 BUG_ON(!PageLocked(page));
1863 BUG_ON(PageWriteback(page));
1865 pages_skipped = mpd->wbc->pages_skipped;
1866 err = mapping->a_ops->writepage(page, mpd->wbc);
1867 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1869 * have successfully written the page
1870 * without skipping the same
1872 mpd->pages_written++;
1874 * In error case, we have to continue because
1875 * remaining pages are still locked
1876 * XXX: unlock and re-dirty them?
1881 pagevec_release(&pvec);
1887 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1889 * @mpd->inode - inode to walk through
1890 * @exbh->b_blocknr - first block on a disk
1891 * @exbh->b_size - amount of space in bytes
1892 * @logical - first logical block to start assignment with
1894 * the function goes through all passed space and put actual disk
1895 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1897 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1898 struct buffer_head *exbh)
1900 struct inode *inode = mpd->inode;
1901 struct address_space *mapping = inode->i_mapping;
1902 int blocks = exbh->b_size >> inode->i_blkbits;
1903 sector_t pblock = exbh->b_blocknr, cur_logical;
1904 struct buffer_head *head, *bh;
1906 struct pagevec pvec;
1909 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1910 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1911 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1913 pagevec_init(&pvec, 0);
1915 while (index <= end) {
1916 /* XXX: optimize tail */
1917 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1920 for (i = 0; i < nr_pages; i++) {
1921 struct page *page = pvec.pages[i];
1923 index = page->index;
1928 BUG_ON(!PageLocked(page));
1929 BUG_ON(PageWriteback(page));
1930 BUG_ON(!page_has_buffers(page));
1932 bh = page_buffers(page);
1935 /* skip blocks out of the range */
1937 if (cur_logical >= logical)
1940 } while ((bh = bh->b_this_page) != head);
1943 if (cur_logical >= logical + blocks)
1946 if (buffer_delay(bh) ||
1947 buffer_unwritten(bh)) {
1949 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
1951 if (buffer_delay(bh)) {
1952 clear_buffer_delay(bh);
1953 bh->b_blocknr = pblock;
1956 * unwritten already should have
1957 * blocknr assigned. Verify that
1959 clear_buffer_unwritten(bh);
1960 BUG_ON(bh->b_blocknr != pblock);
1963 } else if (buffer_mapped(bh))
1964 BUG_ON(bh->b_blocknr != pblock);
1968 } while ((bh = bh->b_this_page) != head);
1970 pagevec_release(&pvec);
1976 * __unmap_underlying_blocks - just a helper function to unmap
1977 * set of blocks described by @bh
1979 static inline void __unmap_underlying_blocks(struct inode *inode,
1980 struct buffer_head *bh)
1982 struct block_device *bdev = inode->i_sb->s_bdev;
1985 blocks = bh->b_size >> inode->i_blkbits;
1986 for (i = 0; i < blocks; i++)
1987 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1990 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1991 sector_t logical, long blk_cnt)
1995 struct pagevec pvec;
1996 struct inode *inode = mpd->inode;
1997 struct address_space *mapping = inode->i_mapping;
1999 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2000 end = (logical + blk_cnt - 1) >>
2001 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2002 while (index <= end) {
2003 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2006 for (i = 0; i < nr_pages; i++) {
2007 struct page *page = pvec.pages[i];
2008 index = page->index;
2013 BUG_ON(!PageLocked(page));
2014 BUG_ON(PageWriteback(page));
2015 block_invalidatepage(page, 0);
2016 ClearPageUptodate(page);
2023 static void ext4_print_free_blocks(struct inode *inode)
2025 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2026 printk(KERN_EMERG "Total free blocks count %lld\n",
2027 ext4_count_free_blocks(inode->i_sb));
2028 printk(KERN_EMERG "Free/Dirty block details\n");
2029 printk(KERN_EMERG "free_blocks=%lld\n",
2030 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2031 printk(KERN_EMERG "dirty_blocks=%lld\n",
2032 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2033 printk(KERN_EMERG "Block reservation details\n");
2034 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2035 EXT4_I(inode)->i_reserved_data_blocks);
2036 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2037 EXT4_I(inode)->i_reserved_meta_blocks);
2042 * mpage_da_map_blocks - go through given space
2044 * @mpd - bh describing space
2046 * The function skips space we know is already mapped to disk blocks.
2049 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2051 int err, blks, get_blocks_flags;
2052 struct buffer_head new;
2053 sector_t next = mpd->b_blocknr;
2054 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2055 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2056 handle_t *handle = NULL;
2059 * We consider only non-mapped and non-allocated blocks
2061 if ((mpd->b_state & (1 << BH_Mapped)) &&
2062 !(mpd->b_state & (1 << BH_Delay)) &&
2063 !(mpd->b_state & (1 << BH_Unwritten)))
2067 * If we didn't accumulate anything to write simply return
2072 handle = ext4_journal_current_handle();
2076 * Call ext4_get_blocks() to allocate any delayed allocation
2077 * blocks, or to convert an uninitialized extent to be
2078 * initialized (in the case where we have written into
2079 * one or more preallocated blocks).
2081 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2082 * indicate that we are on the delayed allocation path. This
2083 * affects functions in many different parts of the allocation
2084 * call path. This flag exists primarily because we don't
2085 * want to change *many* call functions, so ext4_get_blocks()
2086 * will set the magic i_delalloc_reserved_flag once the
2087 * inode's allocation semaphore is taken.
2089 * If the blocks in questions were delalloc blocks, set
2090 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2091 * variables are updated after the blocks have been allocated.
2094 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2095 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2096 if (mpd->b_state & (1 << BH_Delay))
2097 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2098 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2099 &new, get_blocks_flags);
2103 * If get block returns with error we simply
2104 * return. Later writepage will redirty the page and
2105 * writepages will find the dirty page again
2110 if (err == -ENOSPC &&
2111 ext4_count_free_blocks(mpd->inode->i_sb)) {
2117 * get block failure will cause us to loop in
2118 * writepages, because a_ops->writepage won't be able
2119 * to make progress. The page will be redirtied by
2120 * writepage and writepages will again try to write
2123 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2124 "at logical offset %llu with max blocks "
2125 "%zd with error %d\n",
2126 __func__, mpd->inode->i_ino,
2127 (unsigned long long)next,
2128 mpd->b_size >> mpd->inode->i_blkbits, err);
2129 printk(KERN_EMERG "This should not happen.!! "
2130 "Data will be lost\n");
2131 if (err == -ENOSPC) {
2132 ext4_print_free_blocks(mpd->inode);
2134 /* invalidate all the pages */
2135 ext4_da_block_invalidatepages(mpd, next,
2136 mpd->b_size >> mpd->inode->i_blkbits);
2141 new.b_size = (blks << mpd->inode->i_blkbits);
2143 if (buffer_new(&new))
2144 __unmap_underlying_blocks(mpd->inode, &new);
2147 * If blocks are delayed marked, we need to
2148 * put actual blocknr and drop delayed bit
2150 if ((mpd->b_state & (1 << BH_Delay)) ||
2151 (mpd->b_state & (1 << BH_Unwritten)))
2152 mpage_put_bnr_to_bhs(mpd, next, &new);
2154 if (ext4_should_order_data(mpd->inode)) {
2155 err = ext4_jbd2_file_inode(handle, mpd->inode);
2161 * Update on-disk size along with block allocation.
2163 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2164 if (disksize > i_size_read(mpd->inode))
2165 disksize = i_size_read(mpd->inode);
2166 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2167 ext4_update_i_disksize(mpd->inode, disksize);
2168 return ext4_mark_inode_dirty(handle, mpd->inode);
2174 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2175 (1 << BH_Delay) | (1 << BH_Unwritten))
2178 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2180 * @mpd->lbh - extent of blocks
2181 * @logical - logical number of the block in the file
2182 * @bh - bh of the block (used to access block's state)
2184 * the function is used to collect contig. blocks in same state
2186 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2187 sector_t logical, size_t b_size,
2188 unsigned long b_state)
2191 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2193 /* check if thereserved journal credits might overflow */
2194 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2195 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2197 * With non-extent format we are limited by the journal
2198 * credit available. Total credit needed to insert
2199 * nrblocks contiguous blocks is dependent on the
2200 * nrblocks. So limit nrblocks.
2203 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2204 EXT4_MAX_TRANS_DATA) {
2206 * Adding the new buffer_head would make it cross the
2207 * allowed limit for which we have journal credit
2208 * reserved. So limit the new bh->b_size
2210 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2211 mpd->inode->i_blkbits;
2212 /* we will do mpage_da_submit_io in the next loop */
2216 * First block in the extent
2218 if (mpd->b_size == 0) {
2219 mpd->b_blocknr = logical;
2220 mpd->b_size = b_size;
2221 mpd->b_state = b_state & BH_FLAGS;
2225 next = mpd->b_blocknr + nrblocks;
2227 * Can we merge the block to our big extent?
2229 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2230 mpd->b_size += b_size;
2236 * We couldn't merge the block to our extent, so we
2237 * need to flush current extent and start new one
2239 if (mpage_da_map_blocks(mpd) == 0)
2240 mpage_da_submit_io(mpd);
2245 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2248 * unmapped buffer is possible for holes.
2249 * delay buffer is possible with delayed allocation.
2250 * We also need to consider unwritten buffer as unmapped.
2252 return (!buffer_mapped(bh) || buffer_delay(bh) ||
2253 buffer_unwritten(bh)) && buffer_dirty(bh);
2257 * __mpage_da_writepage - finds extent of pages and blocks
2259 * @page: page to consider
2260 * @wbc: not used, we just follow rules
2263 * The function finds extents of pages and scan them for all blocks.
2265 static int __mpage_da_writepage(struct page *page,
2266 struct writeback_control *wbc, void *data)
2268 struct mpage_da_data *mpd = data;
2269 struct inode *inode = mpd->inode;
2270 struct buffer_head *bh, *head;
2275 * Rest of the page in the page_vec
2276 * redirty then and skip then. We will
2277 * try to to write them again after
2278 * starting a new transaction
2280 redirty_page_for_writepage(wbc, page);
2282 return MPAGE_DA_EXTENT_TAIL;
2285 * Can we merge this page to current extent?
2287 if (mpd->next_page != page->index) {
2289 * Nope, we can't. So, we map non-allocated blocks
2290 * and start IO on them using writepage()
2292 if (mpd->next_page != mpd->first_page) {
2293 if (mpage_da_map_blocks(mpd) == 0)
2294 mpage_da_submit_io(mpd);
2296 * skip rest of the page in the page_vec
2299 redirty_page_for_writepage(wbc, page);
2301 return MPAGE_DA_EXTENT_TAIL;
2305 * Start next extent of pages ...
2307 mpd->first_page = page->index;
2317 mpd->next_page = page->index + 1;
2318 logical = (sector_t) page->index <<
2319 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2321 if (!page_has_buffers(page)) {
2322 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2323 (1 << BH_Dirty) | (1 << BH_Uptodate));
2325 return MPAGE_DA_EXTENT_TAIL;
2328 * Page with regular buffer heads, just add all dirty ones
2330 head = page_buffers(page);
2333 BUG_ON(buffer_locked(bh));
2335 * We need to try to allocate
2336 * unmapped blocks in the same page.
2337 * Otherwise we won't make progress
2338 * with the page in ext4_da_writepage
2340 if (ext4_bh_unmapped_or_delay(NULL, bh)) {
2341 mpage_add_bh_to_extent(mpd, logical,
2345 return MPAGE_DA_EXTENT_TAIL;
2346 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2348 * mapped dirty buffer. We need to update
2349 * the b_state because we look at
2350 * b_state in mpage_da_map_blocks. We don't
2351 * update b_size because if we find an
2352 * unmapped buffer_head later we need to
2353 * use the b_state flag of that buffer_head.
2355 if (mpd->b_size == 0)
2356 mpd->b_state = bh->b_state & BH_FLAGS;
2359 } while ((bh = bh->b_this_page) != head);
2366 * This is a special get_blocks_t callback which is used by
2367 * ext4_da_write_begin(). It will either return mapped block or
2368 * reserve space for a single block.
2370 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2371 * We also have b_blocknr = -1 and b_bdev initialized properly
2373 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2374 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2375 * initialized properly.
2377 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2378 struct buffer_head *bh_result, int create)
2381 sector_t invalid_block = ~((sector_t) 0xffff);
2383 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2386 BUG_ON(create == 0);
2387 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2390 * first, we need to know whether the block is allocated already
2391 * preallocated blocks are unmapped but should treated
2392 * the same as allocated blocks.
2394 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2395 if ((ret == 0) && !buffer_delay(bh_result)) {
2396 /* the block isn't (pre)allocated yet, let's reserve space */
2398 * XXX: __block_prepare_write() unmaps passed block,
2401 ret = ext4_da_reserve_space(inode, 1);
2403 /* not enough space to reserve */
2406 map_bh(bh_result, inode->i_sb, invalid_block);
2407 set_buffer_new(bh_result);
2408 set_buffer_delay(bh_result);
2409 } else if (ret > 0) {
2410 bh_result->b_size = (ret << inode->i_blkbits);
2411 if (buffer_unwritten(bh_result)) {
2412 /* A delayed write to unwritten bh should
2413 * be marked new and mapped. Mapped ensures
2414 * that we don't do get_block multiple times
2415 * when we write to the same offset and new
2416 * ensures that we do proper zero out for
2419 set_buffer_new(bh_result);
2420 set_buffer_mapped(bh_result);
2429 * This function is used as a standard get_block_t calback function
2430 * when there is no desire to allocate any blocks. It is used as a
2431 * callback function for block_prepare_write(), nobh_writepage(), and
2432 * block_write_full_page(). These functions should only try to map a
2433 * single block at a time.
2435 * Since this function doesn't do block allocations even if the caller
2436 * requests it by passing in create=1, it is critically important that
2437 * any caller checks to make sure that any buffer heads are returned
2438 * by this function are either all already mapped or marked for
2439 * delayed allocation before calling nobh_writepage() or
2440 * block_write_full_page(). Otherwise, b_blocknr could be left
2441 * unitialized, and the page write functions will be taken by
2444 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2445 struct buffer_head *bh_result, int create)
2448 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2450 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2453 * we don't want to do block allocation in writepage
2454 * so call get_block_wrap with create = 0
2456 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2457 BUG_ON(create && ret == 0);
2459 bh_result->b_size = (ret << inode->i_blkbits);
2466 * This function can get called via...
2467 * - ext4_da_writepages after taking page lock (have journal handle)
2468 * - journal_submit_inode_data_buffers (no journal handle)
2469 * - shrink_page_list via pdflush (no journal handle)
2470 * - grab_page_cache when doing write_begin (have journal handle)
2472 static int ext4_da_writepage(struct page *page,
2473 struct writeback_control *wbc)
2478 struct buffer_head *page_bufs;
2479 struct inode *inode = page->mapping->host;
2481 trace_mark(ext4_da_writepage,
2482 "dev %s ino %lu page_index %lu",
2483 inode->i_sb->s_id, inode->i_ino, page->index);
2484 size = i_size_read(inode);
2485 if (page->index == size >> PAGE_CACHE_SHIFT)
2486 len = size & ~PAGE_CACHE_MASK;
2488 len = PAGE_CACHE_SIZE;
2490 if (page_has_buffers(page)) {
2491 page_bufs = page_buffers(page);
2492 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2493 ext4_bh_unmapped_or_delay)) {
2495 * We don't want to do block allocation
2496 * So redirty the page and return
2497 * We may reach here when we do a journal commit
2498 * via journal_submit_inode_data_buffers.
2499 * If we don't have mapping block we just ignore
2500 * them. We can also reach here via shrink_page_list
2502 redirty_page_for_writepage(wbc, page);
2508 * The test for page_has_buffers() is subtle:
2509 * We know the page is dirty but it lost buffers. That means
2510 * that at some moment in time after write_begin()/write_end()
2511 * has been called all buffers have been clean and thus they
2512 * must have been written at least once. So they are all
2513 * mapped and we can happily proceed with mapping them
2514 * and writing the page.
2516 * Try to initialize the buffer_heads and check whether
2517 * all are mapped and non delay. We don't want to
2518 * do block allocation here.
2520 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2521 noalloc_get_block_write);
2523 page_bufs = page_buffers(page);
2524 /* check whether all are mapped and non delay */
2525 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2526 ext4_bh_unmapped_or_delay)) {
2527 redirty_page_for_writepage(wbc, page);
2533 * We can't do block allocation here
2534 * so just redity the page and unlock
2537 redirty_page_for_writepage(wbc, page);
2541 /* now mark the buffer_heads as dirty and uptodate */
2542 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2545 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2546 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2548 ret = block_write_full_page(page, noalloc_get_block_write,
2555 * This is called via ext4_da_writepages() to
2556 * calulate the total number of credits to reserve to fit
2557 * a single extent allocation into a single transaction,
2558 * ext4_da_writpeages() will loop calling this before
2559 * the block allocation.
2562 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2564 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2567 * With non-extent format the journal credit needed to
2568 * insert nrblocks contiguous block is dependent on
2569 * number of contiguous block. So we will limit
2570 * number of contiguous block to a sane value
2572 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2573 (max_blocks > EXT4_MAX_TRANS_DATA))
2574 max_blocks = EXT4_MAX_TRANS_DATA;
2576 return ext4_chunk_trans_blocks(inode, max_blocks);
2579 static int ext4_da_writepages(struct address_space *mapping,
2580 struct writeback_control *wbc)
2583 int range_whole = 0;
2584 handle_t *handle = NULL;
2585 struct mpage_da_data mpd;
2586 struct inode *inode = mapping->host;
2587 int no_nrwrite_index_update;
2588 int pages_written = 0;
2590 int range_cyclic, cycled = 1, io_done = 0;
2591 int needed_blocks, ret = 0, nr_to_writebump = 0;
2592 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2594 trace_mark(ext4_da_writepages,
2595 "dev %s ino %lu nr_t_write %ld "
2596 "pages_skipped %ld range_start %llu "
2597 "range_end %llu nonblocking %d "
2598 "for_kupdate %d for_reclaim %d "
2599 "for_writepages %d range_cyclic %d",
2600 inode->i_sb->s_id, inode->i_ino,
2601 wbc->nr_to_write, wbc->pages_skipped,
2602 (unsigned long long) wbc->range_start,
2603 (unsigned long long) wbc->range_end,
2604 wbc->nonblocking, wbc->for_kupdate,
2605 wbc->for_reclaim, wbc->for_writepages,
2609 * No pages to write? This is mainly a kludge to avoid starting
2610 * a transaction for special inodes like journal inode on last iput()
2611 * because that could violate lock ordering on umount
2613 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2617 * If the filesystem has aborted, it is read-only, so return
2618 * right away instead of dumping stack traces later on that
2619 * will obscure the real source of the problem. We test
2620 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2621 * the latter could be true if the filesystem is mounted
2622 * read-only, and in that case, ext4_da_writepages should
2623 * *never* be called, so if that ever happens, we would want
2626 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2630 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2631 * This make sure small files blocks are allocated in
2632 * single attempt. This ensure that small files
2633 * get less fragmented.
2635 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2636 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2637 wbc->nr_to_write = sbi->s_mb_stream_request;
2639 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2642 range_cyclic = wbc->range_cyclic;
2643 if (wbc->range_cyclic) {
2644 index = mapping->writeback_index;
2647 wbc->range_start = index << PAGE_CACHE_SHIFT;
2648 wbc->range_end = LLONG_MAX;
2649 wbc->range_cyclic = 0;
2651 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2654 mpd.inode = mapping->host;
2657 * we don't want write_cache_pages to update
2658 * nr_to_write and writeback_index
2660 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2661 wbc->no_nrwrite_index_update = 1;
2662 pages_skipped = wbc->pages_skipped;
2665 while (!ret && wbc->nr_to_write > 0) {
2668 * we insert one extent at a time. So we need
2669 * credit needed for single extent allocation.
2670 * journalled mode is currently not supported
2673 BUG_ON(ext4_should_journal_data(inode));
2674 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2676 /* start a new transaction*/
2677 handle = ext4_journal_start(inode, needed_blocks);
2678 if (IS_ERR(handle)) {
2679 ret = PTR_ERR(handle);
2680 printk(KERN_CRIT "%s: jbd2_start: "
2681 "%ld pages, ino %lu; err %d\n", __func__,
2682 wbc->nr_to_write, inode->i_ino, ret);
2684 goto out_writepages;
2688 * Now call __mpage_da_writepage to find the next
2689 * contiguous region of logical blocks that need
2690 * blocks to be allocated by ext4. We don't actually
2691 * submit the blocks for I/O here, even though
2692 * write_cache_pages thinks it will, and will set the
2693 * pages as clean for write before calling
2694 * __mpage_da_writepage().
2702 mpd.pages_written = 0;
2704 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2707 * If we have a contigous extent of pages and we
2708 * haven't done the I/O yet, map the blocks and submit
2711 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2712 if (mpage_da_map_blocks(&mpd) == 0)
2713 mpage_da_submit_io(&mpd);
2715 ret = MPAGE_DA_EXTENT_TAIL;
2717 wbc->nr_to_write -= mpd.pages_written;
2719 ext4_journal_stop(handle);
2721 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2722 /* commit the transaction which would
2723 * free blocks released in the transaction
2726 jbd2_journal_force_commit_nested(sbi->s_journal);
2727 wbc->pages_skipped = pages_skipped;
2729 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2731 * got one extent now try with
2734 pages_written += mpd.pages_written;
2735 wbc->pages_skipped = pages_skipped;
2738 } else if (wbc->nr_to_write)
2740 * There is no more writeout needed
2741 * or we requested for a noblocking writeout
2742 * and we found the device congested
2746 if (!io_done && !cycled) {
2749 wbc->range_start = index << PAGE_CACHE_SHIFT;
2750 wbc->range_end = mapping->writeback_index - 1;
2753 if (pages_skipped != wbc->pages_skipped)
2754 printk(KERN_EMERG "This should not happen leaving %s "
2755 "with nr_to_write = %ld ret = %d\n",
2756 __func__, wbc->nr_to_write, ret);
2759 index += pages_written;
2760 wbc->range_cyclic = range_cyclic;
2761 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2763 * set the writeback_index so that range_cyclic
2764 * mode will write it back later
2766 mapping->writeback_index = index;
2769 if (!no_nrwrite_index_update)
2770 wbc->no_nrwrite_index_update = 0;
2771 wbc->nr_to_write -= nr_to_writebump;
2772 trace_mark(ext4_da_writepage_result,
2773 "dev %s ino %lu ret %d pages_written %d "
2774 "pages_skipped %ld congestion %d "
2775 "more_io %d no_nrwrite_index_update %d",
2776 inode->i_sb->s_id, inode->i_ino, ret,
2777 pages_written, wbc->pages_skipped,
2778 wbc->encountered_congestion, wbc->more_io,
2779 wbc->no_nrwrite_index_update);
2783 #define FALL_BACK_TO_NONDELALLOC 1
2784 static int ext4_nonda_switch(struct super_block *sb)
2786 s64 free_blocks, dirty_blocks;
2787 struct ext4_sb_info *sbi = EXT4_SB(sb);
2790 * switch to non delalloc mode if we are running low
2791 * on free block. The free block accounting via percpu
2792 * counters can get slightly wrong with percpu_counter_batch getting
2793 * accumulated on each CPU without updating global counters
2794 * Delalloc need an accurate free block accounting. So switch
2795 * to non delalloc when we are near to error range.
2797 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2798 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2799 if (2 * free_blocks < 3 * dirty_blocks ||
2800 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2802 * free block count is less that 150% of dirty blocks
2803 * or free blocks is less that watermark
2810 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2811 loff_t pos, unsigned len, unsigned flags,
2812 struct page **pagep, void **fsdata)
2814 int ret, retries = 0;
2818 struct inode *inode = mapping->host;
2821 index = pos >> PAGE_CACHE_SHIFT;
2822 from = pos & (PAGE_CACHE_SIZE - 1);
2825 if (ext4_nonda_switch(inode->i_sb)) {
2826 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2827 return ext4_write_begin(file, mapping, pos,
2828 len, flags, pagep, fsdata);
2830 *fsdata = (void *)0;
2832 trace_mark(ext4_da_write_begin,
2833 "dev %s ino %lu pos %llu len %u flags %u",
2834 inode->i_sb->s_id, inode->i_ino,
2835 (unsigned long long) pos, len, flags);
2838 * With delayed allocation, we don't log the i_disksize update
2839 * if there is delayed block allocation. But we still need
2840 * to journalling the i_disksize update if writes to the end
2841 * of file which has an already mapped buffer.
2843 handle = ext4_journal_start(inode, 1);
2844 if (IS_ERR(handle)) {
2845 ret = PTR_ERR(handle);
2848 /* We cannot recurse into the filesystem as the transaction is already
2850 flags |= AOP_FLAG_NOFS;
2852 page = grab_cache_page_write_begin(mapping, index, flags);
2854 ext4_journal_stop(handle);
2860 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2861 ext4_da_get_block_prep);
2864 ext4_journal_stop(handle);
2865 page_cache_release(page);
2867 * block_write_begin may have instantiated a few blocks
2868 * outside i_size. Trim these off again. Don't need
2869 * i_size_read because we hold i_mutex.
2871 if (pos + len > inode->i_size)
2872 vmtruncate(inode, inode->i_size);
2875 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2882 * Check if we should update i_disksize
2883 * when write to the end of file but not require block allocation
2885 static int ext4_da_should_update_i_disksize(struct page *page,
2886 unsigned long offset)
2888 struct buffer_head *bh;
2889 struct inode *inode = page->mapping->host;
2893 bh = page_buffers(page);
2894 idx = offset >> inode->i_blkbits;
2896 for (i = 0; i < idx; i++)
2897 bh = bh->b_this_page;
2899 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2904 static int ext4_da_write_end(struct file *file,
2905 struct address_space *mapping,
2906 loff_t pos, unsigned len, unsigned copied,
2907 struct page *page, void *fsdata)
2909 struct inode *inode = mapping->host;
2911 handle_t *handle = ext4_journal_current_handle();
2913 unsigned long start, end;
2914 int write_mode = (int)(unsigned long)fsdata;
2916 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2917 if (ext4_should_order_data(inode)) {
2918 return ext4_ordered_write_end(file, mapping, pos,
2919 len, copied, page, fsdata);
2920 } else if (ext4_should_writeback_data(inode)) {
2921 return ext4_writeback_write_end(file, mapping, pos,
2922 len, copied, page, fsdata);
2928 trace_mark(ext4_da_write_end,
2929 "dev %s ino %lu pos %llu len %u copied %u",
2930 inode->i_sb->s_id, inode->i_ino,
2931 (unsigned long long) pos, len, copied);
2932 start = pos & (PAGE_CACHE_SIZE - 1);
2933 end = start + copied - 1;
2936 * generic_write_end() will run mark_inode_dirty() if i_size
2937 * changes. So let's piggyback the i_disksize mark_inode_dirty
2941 new_i_size = pos + copied;
2942 if (new_i_size > EXT4_I(inode)->i_disksize) {
2943 if (ext4_da_should_update_i_disksize(page, end)) {
2944 down_write(&EXT4_I(inode)->i_data_sem);
2945 if (new_i_size > EXT4_I(inode)->i_disksize) {
2947 * Updating i_disksize when extending file
2948 * without needing block allocation
2950 if (ext4_should_order_data(inode))
2951 ret = ext4_jbd2_file_inode(handle,
2954 EXT4_I(inode)->i_disksize = new_i_size;
2956 up_write(&EXT4_I(inode)->i_data_sem);
2957 /* We need to mark inode dirty even if
2958 * new_i_size is less that inode->i_size
2959 * bu greater than i_disksize.(hint delalloc)
2961 ext4_mark_inode_dirty(handle, inode);
2964 ret2 = generic_write_end(file, mapping, pos, len, copied,
2969 ret2 = ext4_journal_stop(handle);
2973 return ret ? ret : copied;
2976 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2979 * Drop reserved blocks
2981 BUG_ON(!PageLocked(page));
2982 if (!page_has_buffers(page))
2985 ext4_da_page_release_reservation(page, offset);
2988 ext4_invalidatepage(page, offset);
2994 * Force all delayed allocation blocks to be allocated for a given inode.
2996 int ext4_alloc_da_blocks(struct inode *inode)
2998 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2999 !EXT4_I(inode)->i_reserved_meta_blocks)
3003 * We do something simple for now. The filemap_flush() will
3004 * also start triggering a write of the data blocks, which is
3005 * not strictly speaking necessary (and for users of
3006 * laptop_mode, not even desirable). However, to do otherwise
3007 * would require replicating code paths in:
3009 * ext4_da_writepages() ->
3010 * write_cache_pages() ---> (via passed in callback function)
3011 * __mpage_da_writepage() -->
3012 * mpage_add_bh_to_extent()
3013 * mpage_da_map_blocks()
3015 * The problem is that write_cache_pages(), located in
3016 * mm/page-writeback.c, marks pages clean in preparation for
3017 * doing I/O, which is not desirable if we're not planning on
3020 * We could call write_cache_pages(), and then redirty all of
3021 * the pages by calling redirty_page_for_writeback() but that
3022 * would be ugly in the extreme. So instead we would need to
3023 * replicate parts of the code in the above functions,
3024 * simplifying them becuase we wouldn't actually intend to
3025 * write out the pages, but rather only collect contiguous
3026 * logical block extents, call the multi-block allocator, and
3027 * then update the buffer heads with the block allocations.
3029 * For now, though, we'll cheat by calling filemap_flush(),
3030 * which will map the blocks, and start the I/O, but not
3031 * actually wait for the I/O to complete.
3033 return filemap_flush(inode->i_mapping);
3037 * bmap() is special. It gets used by applications such as lilo and by
3038 * the swapper to find the on-disk block of a specific piece of data.
3040 * Naturally, this is dangerous if the block concerned is still in the
3041 * journal. If somebody makes a swapfile on an ext4 data-journaling
3042 * filesystem and enables swap, then they may get a nasty shock when the
3043 * data getting swapped to that swapfile suddenly gets overwritten by
3044 * the original zero's written out previously to the journal and
3045 * awaiting writeback in the kernel's buffer cache.
3047 * So, if we see any bmap calls here on a modified, data-journaled file,
3048 * take extra steps to flush any blocks which might be in the cache.
3050 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3052 struct inode *inode = mapping->host;
3056 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3057 test_opt(inode->i_sb, DELALLOC)) {
3059 * With delalloc we want to sync the file
3060 * so that we can make sure we allocate
3063 filemap_write_and_wait(mapping);
3066 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3068 * This is a REALLY heavyweight approach, but the use of
3069 * bmap on dirty files is expected to be extremely rare:
3070 * only if we run lilo or swapon on a freshly made file
3071 * do we expect this to happen.
3073 * (bmap requires CAP_SYS_RAWIO so this does not
3074 * represent an unprivileged user DOS attack --- we'd be
3075 * in trouble if mortal users could trigger this path at
3078 * NB. EXT4_STATE_JDATA is not set on files other than
3079 * regular files. If somebody wants to bmap a directory
3080 * or symlink and gets confused because the buffer
3081 * hasn't yet been flushed to disk, they deserve
3082 * everything they get.
3085 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3086 journal = EXT4_JOURNAL(inode);
3087 jbd2_journal_lock_updates(journal);
3088 err = jbd2_journal_flush(journal);
3089 jbd2_journal_unlock_updates(journal);
3095 return generic_block_bmap(mapping, block, ext4_get_block);
3098 static int bget_one(handle_t *handle, struct buffer_head *bh)
3104 static int bput_one(handle_t *handle, struct buffer_head *bh)
3111 * Note that we don't need to start a transaction unless we're journaling data
3112 * because we should have holes filled from ext4_page_mkwrite(). We even don't
3113 * need to file the inode to the transaction's list in ordered mode because if
3114 * we are writing back data added by write(), the inode is already there and if
3115 * we are writing back data modified via mmap(), noone guarantees in which
3116 * transaction the data will hit the disk. In case we are journaling data, we
3117 * cannot start transaction directly because transaction start ranks above page
3118 * lock so we have to do some magic.
3120 * In all journaling modes block_write_full_page() will start the I/O.
3124 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3129 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3131 * Same applies to ext4_get_block(). We will deadlock on various things like
3132 * lock_journal and i_data_sem
3134 * Setting PF_MEMALLOC here doesn't work - too many internal memory
3137 * 16May01: If we're reentered then journal_current_handle() will be
3138 * non-zero. We simply *return*.
3140 * 1 July 2001: @@@ FIXME:
3141 * In journalled data mode, a data buffer may be metadata against the
3142 * current transaction. But the same file is part of a shared mapping
3143 * and someone does a writepage() on it.
3145 * We will move the buffer onto the async_data list, but *after* it has
3146 * been dirtied. So there's a small window where we have dirty data on
3149 * Note that this only applies to the last partial page in the file. The
3150 * bit which block_write_full_page() uses prepare/commit for. (That's
3151 * broken code anyway: it's wrong for msync()).
3153 * It's a rare case: affects the final partial page, for journalled data
3154 * where the file is subject to bith write() and writepage() in the same
3155 * transction. To fix it we'll need a custom block_write_full_page().
3156 * We'll probably need that anyway for journalling writepage() output.
3158 * We don't honour synchronous mounts for writepage(). That would be
3159 * disastrous. Any write() or metadata operation will sync the fs for
3163 static int __ext4_normal_writepage(struct page *page,
3164 struct writeback_control *wbc)
3166 struct inode *inode = page->mapping->host;
3168 if (test_opt(inode->i_sb, NOBH))
3169 return nobh_writepage(page, noalloc_get_block_write, wbc);
3171 return block_write_full_page(page, noalloc_get_block_write,
3175 static int ext4_normal_writepage(struct page *page,
3176 struct writeback_control *wbc)
3178 struct inode *inode = page->mapping->host;
3179 loff_t size = i_size_read(inode);
3182 trace_mark(ext4_normal_writepage,
3183 "dev %s ino %lu page_index %lu",
3184 inode->i_sb->s_id, inode->i_ino, page->index);
3185 J_ASSERT(PageLocked(page));
3186 if (page->index == size >> PAGE_CACHE_SHIFT)
3187 len = size & ~PAGE_CACHE_MASK;
3189 len = PAGE_CACHE_SIZE;
3191 if (page_has_buffers(page)) {
3192 /* if page has buffers it should all be mapped
3193 * and allocated. If there are not buffers attached
3194 * to the page we know the page is dirty but it lost
3195 * buffers. That means that at some moment in time
3196 * after write_begin() / write_end() has been called
3197 * all buffers have been clean and thus they must have been
3198 * written at least once. So they are all mapped and we can
3199 * happily proceed with mapping them and writing the page.
3201 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3202 ext4_bh_unmapped_or_delay));
3205 if (!ext4_journal_current_handle())
3206 return __ext4_normal_writepage(page, wbc);
3208 redirty_page_for_writepage(wbc, page);
3213 static int __ext4_journalled_writepage(struct page *page,
3214 struct writeback_control *wbc)
3216 struct address_space *mapping = page->mapping;
3217 struct inode *inode = mapping->host;
3218 struct buffer_head *page_bufs;
3219 handle_t *handle = NULL;
3223 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3224 noalloc_get_block_write);
3228 page_bufs = page_buffers(page);
3229 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3231 /* As soon as we unlock the page, it can go away, but we have
3232 * references to buffers so we are safe */
3235 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3236 if (IS_ERR(handle)) {
3237 ret = PTR_ERR(handle);
3241 ret = walk_page_buffers(handle, page_bufs, 0,
3242 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3244 err = walk_page_buffers(handle, page_bufs, 0,
3245 PAGE_CACHE_SIZE, NULL, write_end_fn);
3248 err = ext4_journal_stop(handle);
3252 walk_page_buffers(handle, page_bufs, 0,
3253 PAGE_CACHE_SIZE, NULL, bput_one);
3254 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3263 static int ext4_journalled_writepage(struct page *page,
3264 struct writeback_control *wbc)
3266 struct inode *inode = page->mapping->host;
3267 loff_t size = i_size_read(inode);
3270 trace_mark(ext4_journalled_writepage,
3271 "dev %s ino %lu page_index %lu",
3272 inode->i_sb->s_id, inode->i_ino, page->index);
3273 J_ASSERT(PageLocked(page));
3274 if (page->index == size >> PAGE_CACHE_SHIFT)
3275 len = size & ~PAGE_CACHE_MASK;
3277 len = PAGE_CACHE_SIZE;
3279 if (page_has_buffers(page)) {
3280 /* if page has buffers it should all be mapped
3281 * and allocated. If there are not buffers attached
3282 * to the page we know the page is dirty but it lost
3283 * buffers. That means that at some moment in time
3284 * after write_begin() / write_end() has been called
3285 * all buffers have been clean and thus they must have been
3286 * written at least once. So they are all mapped and we can
3287 * happily proceed with mapping them and writing the page.
3289 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3290 ext4_bh_unmapped_or_delay));
3293 if (ext4_journal_current_handle())
3296 if (PageChecked(page)) {
3298 * It's mmapped pagecache. Add buffers and journal it. There
3299 * doesn't seem much point in redirtying the page here.
3301 ClearPageChecked(page);
3302 return __ext4_journalled_writepage(page, wbc);
3305 * It may be a page full of checkpoint-mode buffers. We don't
3306 * really know unless we go poke around in the buffer_heads.
3307 * But block_write_full_page will do the right thing.
3309 return block_write_full_page(page, noalloc_get_block_write,
3313 redirty_page_for_writepage(wbc, page);
3318 static int ext4_readpage(struct file *file, struct page *page)
3320 return mpage_readpage(page, ext4_get_block);
3324 ext4_readpages(struct file *file, struct address_space *mapping,
3325 struct list_head *pages, unsigned nr_pages)
3327 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3330 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3332 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3335 * If it's a full truncate we just forget about the pending dirtying
3338 ClearPageChecked(page);
3341 jbd2_journal_invalidatepage(journal, page, offset);
3343 block_invalidatepage(page, offset);
3346 static int ext4_releasepage(struct page *page, gfp_t wait)
3348 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3350 WARN_ON(PageChecked(page));
3351 if (!page_has_buffers(page))
3354 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3356 return try_to_free_buffers(page);
3360 * If the O_DIRECT write will extend the file then add this inode to the
3361 * orphan list. So recovery will truncate it back to the original size
3362 * if the machine crashes during the write.
3364 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3365 * crashes then stale disk data _may_ be exposed inside the file. But current
3366 * VFS code falls back into buffered path in that case so we are safe.
3368 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3369 const struct iovec *iov, loff_t offset,
3370 unsigned long nr_segs)
3372 struct file *file = iocb->ki_filp;
3373 struct inode *inode = file->f_mapping->host;
3374 struct ext4_inode_info *ei = EXT4_I(inode);
3378 size_t count = iov_length(iov, nr_segs);
3381 loff_t final_size = offset + count;
3383 if (final_size > inode->i_size) {
3384 /* Credits for sb + inode write */
3385 handle = ext4_journal_start(inode, 2);
3386 if (IS_ERR(handle)) {
3387 ret = PTR_ERR(handle);
3390 ret = ext4_orphan_add(handle, inode);
3392 ext4_journal_stop(handle);
3396 ei->i_disksize = inode->i_size;
3397 ext4_journal_stop(handle);
3401 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3403 ext4_get_block, NULL);
3408 /* Credits for sb + inode write */
3409 handle = ext4_journal_start(inode, 2);
3410 if (IS_ERR(handle)) {
3411 /* This is really bad luck. We've written the data
3412 * but cannot extend i_size. Bail out and pretend
3413 * the write failed... */
3414 ret = PTR_ERR(handle);
3418 ext4_orphan_del(handle, inode);
3420 loff_t end = offset + ret;
3421 if (end > inode->i_size) {
3422 ei->i_disksize = end;
3423 i_size_write(inode, end);
3425 * We're going to return a positive `ret'
3426 * here due to non-zero-length I/O, so there's
3427 * no way of reporting error returns from
3428 * ext4_mark_inode_dirty() to userspace. So
3431 ext4_mark_inode_dirty(handle, inode);
3434 err = ext4_journal_stop(handle);
3443 * Pages can be marked dirty completely asynchronously from ext4's journalling
3444 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3445 * much here because ->set_page_dirty is called under VFS locks. The page is
3446 * not necessarily locked.
3448 * We cannot just dirty the page and leave attached buffers clean, because the
3449 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3450 * or jbddirty because all the journalling code will explode.
3452 * So what we do is to mark the page "pending dirty" and next time writepage
3453 * is called, propagate that into the buffers appropriately.
3455 static int ext4_journalled_set_page_dirty(struct page *page)
3457 SetPageChecked(page);
3458 return __set_page_dirty_nobuffers(page);
3461 static const struct address_space_operations ext4_ordered_aops = {
3462 .readpage = ext4_readpage,
3463 .readpages = ext4_readpages,
3464 .writepage = ext4_normal_writepage,
3465 .sync_page = block_sync_page,
3466 .write_begin = ext4_write_begin,
3467 .write_end = ext4_ordered_write_end,
3469 .invalidatepage = ext4_invalidatepage,
3470 .releasepage = ext4_releasepage,
3471 .direct_IO = ext4_direct_IO,
3472 .migratepage = buffer_migrate_page,
3473 .is_partially_uptodate = block_is_partially_uptodate,
3476 static const struct address_space_operations ext4_writeback_aops = {
3477 .readpage = ext4_readpage,
3478 .readpages = ext4_readpages,
3479 .writepage = ext4_normal_writepage,
3480 .sync_page = block_sync_page,
3481 .write_begin = ext4_write_begin,
3482 .write_end = ext4_writeback_write_end,
3484 .invalidatepage = ext4_invalidatepage,
3485 .releasepage = ext4_releasepage,
3486 .direct_IO = ext4_direct_IO,
3487 .migratepage = buffer_migrate_page,
3488 .is_partially_uptodate = block_is_partially_uptodate,
3491 static const struct address_space_operations ext4_journalled_aops = {
3492 .readpage = ext4_readpage,
3493 .readpages = ext4_readpages,
3494 .writepage = ext4_journalled_writepage,
3495 .sync_page = block_sync_page,
3496 .write_begin = ext4_write_begin,
3497 .write_end = ext4_journalled_write_end,
3498 .set_page_dirty = ext4_journalled_set_page_dirty,
3500 .invalidatepage = ext4_invalidatepage,
3501 .releasepage = ext4_releasepage,
3502 .is_partially_uptodate = block_is_partially_uptodate,
3505 static const struct address_space_operations ext4_da_aops = {
3506 .readpage = ext4_readpage,
3507 .readpages = ext4_readpages,
3508 .writepage = ext4_da_writepage,
3509 .writepages = ext4_da_writepages,
3510 .sync_page = block_sync_page,
3511 .write_begin = ext4_da_write_begin,
3512 .write_end = ext4_da_write_end,
3514 .invalidatepage = ext4_da_invalidatepage,
3515 .releasepage = ext4_releasepage,
3516 .direct_IO = ext4_direct_IO,
3517 .migratepage = buffer_migrate_page,
3518 .is_partially_uptodate = block_is_partially_uptodate,
3521 void ext4_set_aops(struct inode *inode)
3523 if (ext4_should_order_data(inode) &&
3524 test_opt(inode->i_sb, DELALLOC))
3525 inode->i_mapping->a_ops = &ext4_da_aops;
3526 else if (ext4_should_order_data(inode))
3527 inode->i_mapping->a_ops = &ext4_ordered_aops;
3528 else if (ext4_should_writeback_data(inode) &&
3529 test_opt(inode->i_sb, DELALLOC))
3530 inode->i_mapping->a_ops = &ext4_da_aops;
3531 else if (ext4_should_writeback_data(inode))
3532 inode->i_mapping->a_ops = &ext4_writeback_aops;
3534 inode->i_mapping->a_ops = &ext4_journalled_aops;
3538 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3539 * up to the end of the block which corresponds to `from'.
3540 * This required during truncate. We need to physically zero the tail end
3541 * of that block so it doesn't yield old data if the file is later grown.
3543 int ext4_block_truncate_page(handle_t *handle,
3544 struct address_space *mapping, loff_t from)
3546 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3547 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3548 unsigned blocksize, length, pos;
3550 struct inode *inode = mapping->host;
3551 struct buffer_head *bh;
3555 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3559 blocksize = inode->i_sb->s_blocksize;
3560 length = blocksize - (offset & (blocksize - 1));
3561 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3564 * For "nobh" option, we can only work if we don't need to
3565 * read-in the page - otherwise we create buffers to do the IO.
3567 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3568 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3569 zero_user(page, offset, length);
3570 set_page_dirty(page);
3574 if (!page_has_buffers(page))
3575 create_empty_buffers(page, blocksize, 0);
3577 /* Find the buffer that contains "offset" */
3578 bh = page_buffers(page);
3580 while (offset >= pos) {
3581 bh = bh->b_this_page;
3587 if (buffer_freed(bh)) {
3588 BUFFER_TRACE(bh, "freed: skip");
3592 if (!buffer_mapped(bh)) {
3593 BUFFER_TRACE(bh, "unmapped");
3594 ext4_get_block(inode, iblock, bh, 0);
3595 /* unmapped? It's a hole - nothing to do */
3596 if (!buffer_mapped(bh)) {
3597 BUFFER_TRACE(bh, "still unmapped");
3602 /* Ok, it's mapped. Make sure it's up-to-date */
3603 if (PageUptodate(page))
3604 set_buffer_uptodate(bh);
3606 if (!buffer_uptodate(bh)) {
3608 ll_rw_block(READ, 1, &bh);
3610 /* Uhhuh. Read error. Complain and punt. */
3611 if (!buffer_uptodate(bh))
3615 if (ext4_should_journal_data(inode)) {
3616 BUFFER_TRACE(bh, "get write access");
3617 err = ext4_journal_get_write_access(handle, bh);
3622 zero_user(page, offset, length);
3624 BUFFER_TRACE(bh, "zeroed end of block");
3627 if (ext4_should_journal_data(inode)) {
3628 err = ext4_handle_dirty_metadata(handle, inode, bh);
3630 if (ext4_should_order_data(inode))
3631 err = ext4_jbd2_file_inode(handle, inode);
3632 mark_buffer_dirty(bh);
3637 page_cache_release(page);
3642 * Probably it should be a library function... search for first non-zero word
3643 * or memcmp with zero_page, whatever is better for particular architecture.
3646 static inline int all_zeroes(__le32 *p, __le32 *q)
3655 * ext4_find_shared - find the indirect blocks for partial truncation.
3656 * @inode: inode in question
3657 * @depth: depth of the affected branch
3658 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3659 * @chain: place to store the pointers to partial indirect blocks
3660 * @top: place to the (detached) top of branch
3662 * This is a helper function used by ext4_truncate().
3664 * When we do truncate() we may have to clean the ends of several
3665 * indirect blocks but leave the blocks themselves alive. Block is
3666 * partially truncated if some data below the new i_size is refered
3667 * from it (and it is on the path to the first completely truncated
3668 * data block, indeed). We have to free the top of that path along
3669 * with everything to the right of the path. Since no allocation
3670 * past the truncation point is possible until ext4_truncate()
3671 * finishes, we may safely do the latter, but top of branch may
3672 * require special attention - pageout below the truncation point
3673 * might try to populate it.
3675 * We atomically detach the top of branch from the tree, store the
3676 * block number of its root in *@top, pointers to buffer_heads of
3677 * partially truncated blocks - in @chain[].bh and pointers to
3678 * their last elements that should not be removed - in
3679 * @chain[].p. Return value is the pointer to last filled element
3682 * The work left to caller to do the actual freeing of subtrees:
3683 * a) free the subtree starting from *@top
3684 * b) free the subtrees whose roots are stored in
3685 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3686 * c) free the subtrees growing from the inode past the @chain[0].
3687 * (no partially truncated stuff there). */
3689 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3690 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3692 Indirect *partial, *p;
3696 /* Make k index the deepest non-null offest + 1 */
3697 for (k = depth; k > 1 && !offsets[k-1]; k--)
3699 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3700 /* Writer: pointers */
3702 partial = chain + k-1;
3704 * If the branch acquired continuation since we've looked at it -
3705 * fine, it should all survive and (new) top doesn't belong to us.
3707 if (!partial->key && *partial->p)
3710 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3713 * OK, we've found the last block that must survive. The rest of our
3714 * branch should be detached before unlocking. However, if that rest
3715 * of branch is all ours and does not grow immediately from the inode
3716 * it's easier to cheat and just decrement partial->p.
3718 if (p == chain + k - 1 && p > chain) {
3722 /* Nope, don't do this in ext4. Must leave the tree intact */
3729 while (partial > p) {
3730 brelse(partial->bh);
3738 * Zero a number of block pointers in either an inode or an indirect block.
3739 * If we restart the transaction we must again get write access to the
3740 * indirect block for further modification.
3742 * We release `count' blocks on disk, but (last - first) may be greater
3743 * than `count' because there can be holes in there.
3745 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3746 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3747 unsigned long count, __le32 *first, __le32 *last)
3750 if (try_to_extend_transaction(handle, inode)) {
3752 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3753 ext4_handle_dirty_metadata(handle, inode, bh);
3755 ext4_mark_inode_dirty(handle, inode);
3756 ext4_journal_test_restart(handle, inode);
3758 BUFFER_TRACE(bh, "retaking write access");
3759 ext4_journal_get_write_access(handle, bh);
3764 * Any buffers which are on the journal will be in memory. We find
3765 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3766 * on them. We've already detached each block from the file, so
3767 * bforget() in jbd2_journal_forget() should be safe.
3769 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3771 for (p = first; p < last; p++) {
3772 u32 nr = le32_to_cpu(*p);
3774 struct buffer_head *tbh;
3777 tbh = sb_find_get_block(inode->i_sb, nr);
3778 ext4_forget(handle, 0, inode, tbh, nr);
3782 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3786 * ext4_free_data - free a list of data blocks
3787 * @handle: handle for this transaction
3788 * @inode: inode we are dealing with
3789 * @this_bh: indirect buffer_head which contains *@first and *@last
3790 * @first: array of block numbers
3791 * @last: points immediately past the end of array
3793 * We are freeing all blocks refered from that array (numbers are stored as
3794 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3796 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3797 * blocks are contiguous then releasing them at one time will only affect one
3798 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3799 * actually use a lot of journal space.
3801 * @this_bh will be %NULL if @first and @last point into the inode's direct
3804 static void ext4_free_data(handle_t *handle, struct inode *inode,
3805 struct buffer_head *this_bh,
3806 __le32 *first, __le32 *last)
3808 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3809 unsigned long count = 0; /* Number of blocks in the run */
3810 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3813 ext4_fsblk_t nr; /* Current block # */
3814 __le32 *p; /* Pointer into inode/ind
3815 for current block */
3818 if (this_bh) { /* For indirect block */
3819 BUFFER_TRACE(this_bh, "get_write_access");
3820 err = ext4_journal_get_write_access(handle, this_bh);
3821 /* Important: if we can't update the indirect pointers
3822 * to the blocks, we can't free them. */
3827 for (p = first; p < last; p++) {
3828 nr = le32_to_cpu(*p);
3830 /* accumulate blocks to free if they're contiguous */
3833 block_to_free_p = p;
3835 } else if (nr == block_to_free + count) {
3838 ext4_clear_blocks(handle, inode, this_bh,
3840 count, block_to_free_p, p);
3842 block_to_free_p = p;
3849 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3850 count, block_to_free_p, p);
3853 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3856 * The buffer head should have an attached journal head at this
3857 * point. However, if the data is corrupted and an indirect
3858 * block pointed to itself, it would have been detached when
3859 * the block was cleared. Check for this instead of OOPSing.
3861 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3862 ext4_handle_dirty_metadata(handle, inode, this_bh);
3864 ext4_error(inode->i_sb, __func__,
3865 "circular indirect block detected, "
3866 "inode=%lu, block=%llu",
3868 (unsigned long long) this_bh->b_blocknr);
3873 * ext4_free_branches - free an array of branches
3874 * @handle: JBD handle for this transaction
3875 * @inode: inode we are dealing with
3876 * @parent_bh: the buffer_head which contains *@first and *@last
3877 * @first: array of block numbers
3878 * @last: pointer immediately past the end of array
3879 * @depth: depth of the branches to free
3881 * We are freeing all blocks refered from these branches (numbers are
3882 * stored as little-endian 32-bit) and updating @inode->i_blocks
3885 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3886 struct buffer_head *parent_bh,
3887 __le32 *first, __le32 *last, int depth)
3892 if (ext4_handle_is_aborted(handle))
3896 struct buffer_head *bh;
3897 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3899 while (--p >= first) {
3900 nr = le32_to_cpu(*p);
3902 continue; /* A hole */
3904 /* Go read the buffer for the next level down */
3905 bh = sb_bread(inode->i_sb, nr);
3908 * A read failure? Report error and clear slot
3912 ext4_error(inode->i_sb, "ext4_free_branches",
3913 "Read failure, inode=%lu, block=%llu",
3918 /* This zaps the entire block. Bottom up. */
3919 BUFFER_TRACE(bh, "free child branches");
3920 ext4_free_branches(handle, inode, bh,
3921 (__le32 *) bh->b_data,
3922 (__le32 *) bh->b_data + addr_per_block,
3926 * We've probably journalled the indirect block several
3927 * times during the truncate. But it's no longer
3928 * needed and we now drop it from the transaction via
3929 * jbd2_journal_revoke().
3931 * That's easy if it's exclusively part of this
3932 * transaction. But if it's part of the committing
3933 * transaction then jbd2_journal_forget() will simply
3934 * brelse() it. That means that if the underlying
3935 * block is reallocated in ext4_get_block(),
3936 * unmap_underlying_metadata() will find this block
3937 * and will try to get rid of it. damn, damn.
3939 * If this block has already been committed to the
3940 * journal, a revoke record will be written. And
3941 * revoke records must be emitted *before* clearing
3942 * this block's bit in the bitmaps.
3944 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3947 * Everything below this this pointer has been
3948 * released. Now let this top-of-subtree go.
3950 * We want the freeing of this indirect block to be
3951 * atomic in the journal with the updating of the
3952 * bitmap block which owns it. So make some room in
3955 * We zero the parent pointer *after* freeing its
3956 * pointee in the bitmaps, so if extend_transaction()
3957 * for some reason fails to put the bitmap changes and
3958 * the release into the same transaction, recovery
3959 * will merely complain about releasing a free block,
3960 * rather than leaking blocks.
3962 if (ext4_handle_is_aborted(handle))
3964 if (try_to_extend_transaction(handle, inode)) {
3965 ext4_mark_inode_dirty(handle, inode);
3966 ext4_journal_test_restart(handle, inode);
3969 ext4_free_blocks(handle, inode, nr, 1, 1);
3973 * The block which we have just freed is
3974 * pointed to by an indirect block: journal it
3976 BUFFER_TRACE(parent_bh, "get_write_access");
3977 if (!ext4_journal_get_write_access(handle,
3980 BUFFER_TRACE(parent_bh,
3981 "call ext4_handle_dirty_metadata");
3982 ext4_handle_dirty_metadata(handle,
3989 /* We have reached the bottom of the tree. */
3990 BUFFER_TRACE(parent_bh, "free data blocks");
3991 ext4_free_data(handle, inode, parent_bh, first, last);
3995 int ext4_can_truncate(struct inode *inode)
3997 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3999 if (S_ISREG(inode->i_mode))
4001 if (S_ISDIR(inode->i_mode))
4003 if (S_ISLNK(inode->i_mode))
4004 return !ext4_inode_is_fast_symlink(inode);
4011 * We block out ext4_get_block() block instantiations across the entire
4012 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4013 * simultaneously on behalf of the same inode.
4015 * As we work through the truncate and commmit bits of it to the journal there
4016 * is one core, guiding principle: the file's tree must always be consistent on
4017 * disk. We must be able to restart the truncate after a crash.
4019 * The file's tree may be transiently inconsistent in memory (although it
4020 * probably isn't), but whenever we close off and commit a journal transaction,
4021 * the contents of (the filesystem + the journal) must be consistent and
4022 * restartable. It's pretty simple, really: bottom up, right to left (although
4023 * left-to-right works OK too).
4025 * Note that at recovery time, journal replay occurs *before* the restart of
4026 * truncate against the orphan inode list.
4028 * The committed inode has the new, desired i_size (which is the same as
4029 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4030 * that this inode's truncate did not complete and it will again call
4031 * ext4_truncate() to have another go. So there will be instantiated blocks
4032 * to the right of the truncation point in a crashed ext4 filesystem. But
4033 * that's fine - as long as they are linked from the inode, the post-crash
4034 * ext4_truncate() run will find them and release them.
4036 void ext4_truncate(struct inode *inode)
4039 struct ext4_inode_info *ei = EXT4_I(inode);
4040 __le32 *i_data = ei->i_data;
4041 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4042 struct address_space *mapping = inode->i_mapping;
4043 ext4_lblk_t offsets[4];
4048 ext4_lblk_t last_block;
4049 unsigned blocksize = inode->i_sb->s_blocksize;
4051 if (!ext4_can_truncate(inode))
4054 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4055 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4057 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4058 ext4_ext_truncate(inode);
4062 handle = start_transaction(inode);
4064 return; /* AKPM: return what? */
4066 last_block = (inode->i_size + blocksize-1)
4067 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4069 if (inode->i_size & (blocksize - 1))
4070 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4073 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4075 goto out_stop; /* error */
4078 * OK. This truncate is going to happen. We add the inode to the
4079 * orphan list, so that if this truncate spans multiple transactions,
4080 * and we crash, we will resume the truncate when the filesystem
4081 * recovers. It also marks the inode dirty, to catch the new size.
4083 * Implication: the file must always be in a sane, consistent
4084 * truncatable state while each transaction commits.
4086 if (ext4_orphan_add(handle, inode))
4090 * From here we block out all ext4_get_block() callers who want to
4091 * modify the block allocation tree.
4093 down_write(&ei->i_data_sem);
4095 ext4_discard_preallocations(inode);
4098 * The orphan list entry will now protect us from any crash which
4099 * occurs before the truncate completes, so it is now safe to propagate
4100 * the new, shorter inode size (held for now in i_size) into the
4101 * on-disk inode. We do this via i_disksize, which is the value which
4102 * ext4 *really* writes onto the disk inode.
4104 ei->i_disksize = inode->i_size;
4106 if (n == 1) { /* direct blocks */
4107 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4108 i_data + EXT4_NDIR_BLOCKS);
4112 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4113 /* Kill the top of shared branch (not detached) */
4115 if (partial == chain) {
4116 /* Shared branch grows from the inode */
4117 ext4_free_branches(handle, inode, NULL,
4118 &nr, &nr+1, (chain+n-1) - partial);
4121 * We mark the inode dirty prior to restart,
4122 * and prior to stop. No need for it here.
4125 /* Shared branch grows from an indirect block */
4126 BUFFER_TRACE(partial->bh, "get_write_access");
4127 ext4_free_branches(handle, inode, partial->bh,
4129 partial->p+1, (chain+n-1) - partial);
4132 /* Clear the ends of indirect blocks on the shared branch */
4133 while (partial > chain) {
4134 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4135 (__le32*)partial->bh->b_data+addr_per_block,
4136 (chain+n-1) - partial);
4137 BUFFER_TRACE(partial->bh, "call brelse");
4138 brelse (partial->bh);
4142 /* Kill the remaining (whole) subtrees */
4143 switch (offsets[0]) {
4145 nr = i_data[EXT4_IND_BLOCK];
4147 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4148 i_data[EXT4_IND_BLOCK] = 0;
4150 case EXT4_IND_BLOCK:
4151 nr = i_data[EXT4_DIND_BLOCK];
4153 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4154 i_data[EXT4_DIND_BLOCK] = 0;
4156 case EXT4_DIND_BLOCK:
4157 nr = i_data[EXT4_TIND_BLOCK];
4159 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4160 i_data[EXT4_TIND_BLOCK] = 0;
4162 case EXT4_TIND_BLOCK:
4166 up_write(&ei->i_data_sem);
4167 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4168 ext4_mark_inode_dirty(handle, inode);
4171 * In a multi-transaction truncate, we only make the final transaction
4175 ext4_handle_sync(handle);
4178 * If this was a simple ftruncate(), and the file will remain alive
4179 * then we need to clear up the orphan record which we created above.
4180 * However, if this was a real unlink then we were called by
4181 * ext4_delete_inode(), and we allow that function to clean up the
4182 * orphan info for us.
4185 ext4_orphan_del(handle, inode);
4187 ext4_journal_stop(handle);
4191 * ext4_get_inode_loc returns with an extra refcount against the inode's
4192 * underlying buffer_head on success. If 'in_mem' is true, we have all
4193 * data in memory that is needed to recreate the on-disk version of this
4196 static int __ext4_get_inode_loc(struct inode *inode,
4197 struct ext4_iloc *iloc, int in_mem)
4199 struct ext4_group_desc *gdp;
4200 struct buffer_head *bh;
4201 struct super_block *sb = inode->i_sb;
4203 int inodes_per_block, inode_offset;
4206 if (!ext4_valid_inum(sb, inode->i_ino))
4209 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4210 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4215 * Figure out the offset within the block group inode table
4217 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4218 inode_offset = ((inode->i_ino - 1) %
4219 EXT4_INODES_PER_GROUP(sb));
4220 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4221 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4223 bh = sb_getblk(sb, block);
4225 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4226 "inode block - inode=%lu, block=%llu",
4227 inode->i_ino, block);
4230 if (!buffer_uptodate(bh)) {
4234 * If the buffer has the write error flag, we have failed
4235 * to write out another inode in the same block. In this
4236 * case, we don't have to read the block because we may
4237 * read the old inode data successfully.
4239 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4240 set_buffer_uptodate(bh);
4242 if (buffer_uptodate(bh)) {
4243 /* someone brought it uptodate while we waited */
4249 * If we have all information of the inode in memory and this
4250 * is the only valid inode in the block, we need not read the
4254 struct buffer_head *bitmap_bh;
4257 start = inode_offset & ~(inodes_per_block - 1);
4259 /* Is the inode bitmap in cache? */
4260 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4265 * If the inode bitmap isn't in cache then the
4266 * optimisation may end up performing two reads instead
4267 * of one, so skip it.
4269 if (!buffer_uptodate(bitmap_bh)) {
4273 for (i = start; i < start + inodes_per_block; i++) {
4274 if (i == inode_offset)
4276 if (ext4_test_bit(i, bitmap_bh->b_data))
4280 if (i == start + inodes_per_block) {
4281 /* all other inodes are free, so skip I/O */
4282 memset(bh->b_data, 0, bh->b_size);
4283 set_buffer_uptodate(bh);
4291 * If we need to do any I/O, try to pre-readahead extra
4292 * blocks from the inode table.
4294 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4295 ext4_fsblk_t b, end, table;
4298 table = ext4_inode_table(sb, gdp);
4299 /* s_inode_readahead_blks is always a power of 2 */
4300 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4303 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4304 num = EXT4_INODES_PER_GROUP(sb);
4305 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4306 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4307 num -= ext4_itable_unused_count(sb, gdp);
4308 table += num / inodes_per_block;
4312 sb_breadahead(sb, b++);
4316 * There are other valid inodes in the buffer, this inode
4317 * has in-inode xattrs, or we don't have this inode in memory.
4318 * Read the block from disk.
4321 bh->b_end_io = end_buffer_read_sync;
4322 submit_bh(READ_META, bh);
4324 if (!buffer_uptodate(bh)) {
4325 ext4_error(sb, __func__,
4326 "unable to read inode block - inode=%lu, "
4327 "block=%llu", inode->i_ino, block);
4337 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4339 /* We have all inode data except xattrs in memory here. */
4340 return __ext4_get_inode_loc(inode, iloc,
4341 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4344 void ext4_set_inode_flags(struct inode *inode)
4346 unsigned int flags = EXT4_I(inode)->i_flags;
4348 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4349 if (flags & EXT4_SYNC_FL)
4350 inode->i_flags |= S_SYNC;
4351 if (flags & EXT4_APPEND_FL)
4352 inode->i_flags |= S_APPEND;
4353 if (flags & EXT4_IMMUTABLE_FL)
4354 inode->i_flags |= S_IMMUTABLE;
4355 if (flags & EXT4_NOATIME_FL)
4356 inode->i_flags |= S_NOATIME;
4357 if (flags & EXT4_DIRSYNC_FL)
4358 inode->i_flags |= S_DIRSYNC;
4361 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4362 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4364 unsigned int flags = ei->vfs_inode.i_flags;
4366 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4367 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4369 ei->i_flags |= EXT4_SYNC_FL;
4370 if (flags & S_APPEND)
4371 ei->i_flags |= EXT4_APPEND_FL;
4372 if (flags & S_IMMUTABLE)
4373 ei->i_flags |= EXT4_IMMUTABLE_FL;
4374 if (flags & S_NOATIME)
4375 ei->i_flags |= EXT4_NOATIME_FL;
4376 if (flags & S_DIRSYNC)
4377 ei->i_flags |= EXT4_DIRSYNC_FL;
4379 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4380 struct ext4_inode_info *ei)
4383 struct inode *inode = &(ei->vfs_inode);
4384 struct super_block *sb = inode->i_sb;
4386 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4387 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4388 /* we are using combined 48 bit field */
4389 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4390 le32_to_cpu(raw_inode->i_blocks_lo);
4391 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4392 /* i_blocks represent file system block size */
4393 return i_blocks << (inode->i_blkbits - 9);
4398 return le32_to_cpu(raw_inode->i_blocks_lo);
4402 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4404 struct ext4_iloc iloc;
4405 struct ext4_inode *raw_inode;
4406 struct ext4_inode_info *ei;
4407 struct buffer_head *bh;
4408 struct inode *inode;
4412 inode = iget_locked(sb, ino);
4414 return ERR_PTR(-ENOMEM);
4415 if (!(inode->i_state & I_NEW))
4419 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4420 ei->i_acl = EXT4_ACL_NOT_CACHED;
4421 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4424 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4428 raw_inode = ext4_raw_inode(&iloc);
4429 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4430 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4431 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4432 if (!(test_opt(inode->i_sb, NO_UID32))) {
4433 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4434 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4436 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4439 ei->i_dir_start_lookup = 0;
4440 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4441 /* We now have enough fields to check if the inode was active or not.
4442 * This is needed because nfsd might try to access dead inodes
4443 * the test is that same one that e2fsck uses
4444 * NeilBrown 1999oct15
4446 if (inode->i_nlink == 0) {
4447 if (inode->i_mode == 0 ||
4448 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4449 /* this inode is deleted */
4454 /* The only unlinked inodes we let through here have
4455 * valid i_mode and are being read by the orphan
4456 * recovery code: that's fine, we're about to complete
4457 * the process of deleting those. */
4459 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4460 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4461 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4462 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4464 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4465 inode->i_size = ext4_isize(raw_inode);
4466 ei->i_disksize = inode->i_size;
4467 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4468 ei->i_block_group = iloc.block_group;
4469 ei->i_last_alloc_group = ~0;
4471 * NOTE! The in-memory inode i_data array is in little-endian order
4472 * even on big-endian machines: we do NOT byteswap the block numbers!
4474 for (block = 0; block < EXT4_N_BLOCKS; block++)
4475 ei->i_data[block] = raw_inode->i_block[block];
4476 INIT_LIST_HEAD(&ei->i_orphan);
4478 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4479 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4480 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4481 EXT4_INODE_SIZE(inode->i_sb)) {
4486 if (ei->i_extra_isize == 0) {
4487 /* The extra space is currently unused. Use it. */
4488 ei->i_extra_isize = sizeof(struct ext4_inode) -
4489 EXT4_GOOD_OLD_INODE_SIZE;
4491 __le32 *magic = (void *)raw_inode +
4492 EXT4_GOOD_OLD_INODE_SIZE +
4494 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4495 ei->i_state |= EXT4_STATE_XATTR;
4498 ei->i_extra_isize = 0;
4500 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4501 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4502 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4503 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4505 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4506 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4507 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4509 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4513 if (ei->i_file_acl &&
4515 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4516 EXT4_SB(sb)->s_gdb_count)) ||
4517 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4518 ext4_error(sb, __func__,
4519 "bad extended attribute block %llu in inode #%lu",
4520 ei->i_file_acl, inode->i_ino);
4523 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4524 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4525 (S_ISLNK(inode->i_mode) &&
4526 !ext4_inode_is_fast_symlink(inode)))
4527 /* Validate extent which is part of inode */
4528 ret = ext4_ext_check_inode(inode);
4529 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4530 (S_ISLNK(inode->i_mode) &&
4531 !ext4_inode_is_fast_symlink(inode))) {
4532 /* Validate block references which are part of inode */
4533 ret = ext4_check_inode_blockref(inode);
4540 if (S_ISREG(inode->i_mode)) {
4541 inode->i_op = &ext4_file_inode_operations;
4542 inode->i_fop = &ext4_file_operations;
4543 ext4_set_aops(inode);
4544 } else if (S_ISDIR(inode->i_mode)) {
4545 inode->i_op = &ext4_dir_inode_operations;
4546 inode->i_fop = &ext4_dir_operations;
4547 } else if (S_ISLNK(inode->i_mode)) {
4548 if (ext4_inode_is_fast_symlink(inode)) {
4549 inode->i_op = &ext4_fast_symlink_inode_operations;
4550 nd_terminate_link(ei->i_data, inode->i_size,
4551 sizeof(ei->i_data) - 1);
4553 inode->i_op = &ext4_symlink_inode_operations;
4554 ext4_set_aops(inode);
4556 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4557 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4558 inode->i_op = &ext4_special_inode_operations;
4559 if (raw_inode->i_block[0])
4560 init_special_inode(inode, inode->i_mode,
4561 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4563 init_special_inode(inode, inode->i_mode,
4564 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4568 ext4_error(inode->i_sb, __func__,
4569 "bogus i_mode (%o) for inode=%lu",
4570 inode->i_mode, inode->i_ino);
4574 ext4_set_inode_flags(inode);
4575 unlock_new_inode(inode);
4580 return ERR_PTR(ret);
4583 static int ext4_inode_blocks_set(handle_t *handle,
4584 struct ext4_inode *raw_inode,
4585 struct ext4_inode_info *ei)
4587 struct inode *inode = &(ei->vfs_inode);
4588 u64 i_blocks = inode->i_blocks;
4589 struct super_block *sb = inode->i_sb;
4591 if (i_blocks <= ~0U) {
4593 * i_blocks can be represnted in a 32 bit variable
4594 * as multiple of 512 bytes
4596 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4597 raw_inode->i_blocks_high = 0;
4598 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4601 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4604 if (i_blocks <= 0xffffffffffffULL) {
4606 * i_blocks can be represented in a 48 bit variable
4607 * as multiple of 512 bytes
4609 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4610 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4611 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4613 ei->i_flags |= EXT4_HUGE_FILE_FL;
4614 /* i_block is stored in file system block size */
4615 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4616 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4617 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4623 * Post the struct inode info into an on-disk inode location in the
4624 * buffer-cache. This gobbles the caller's reference to the
4625 * buffer_head in the inode location struct.
4627 * The caller must have write access to iloc->bh.
4629 static int ext4_do_update_inode(handle_t *handle,
4630 struct inode *inode,
4631 struct ext4_iloc *iloc)
4633 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4634 struct ext4_inode_info *ei = EXT4_I(inode);
4635 struct buffer_head *bh = iloc->bh;
4636 int err = 0, rc, block;
4638 /* For fields not not tracking in the in-memory inode,
4639 * initialise them to zero for new inodes. */
4640 if (ei->i_state & EXT4_STATE_NEW)
4641 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4643 ext4_get_inode_flags(ei);
4644 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4645 if (!(test_opt(inode->i_sb, NO_UID32))) {
4646 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4647 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4649 * Fix up interoperability with old kernels. Otherwise, old inodes get
4650 * re-used with the upper 16 bits of the uid/gid intact
4653 raw_inode->i_uid_high =
4654 cpu_to_le16(high_16_bits(inode->i_uid));
4655 raw_inode->i_gid_high =
4656 cpu_to_le16(high_16_bits(inode->i_gid));
4658 raw_inode->i_uid_high = 0;
4659 raw_inode->i_gid_high = 0;
4662 raw_inode->i_uid_low =
4663 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4664 raw_inode->i_gid_low =
4665 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4666 raw_inode->i_uid_high = 0;
4667 raw_inode->i_gid_high = 0;
4669 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4671 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4672 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4673 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4674 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4676 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4678 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4679 /* clear the migrate flag in the raw_inode */
4680 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4681 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4682 cpu_to_le32(EXT4_OS_HURD))
4683 raw_inode->i_file_acl_high =
4684 cpu_to_le16(ei->i_file_acl >> 32);
4685 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4686 ext4_isize_set(raw_inode, ei->i_disksize);
4687 if (ei->i_disksize > 0x7fffffffULL) {
4688 struct super_block *sb = inode->i_sb;
4689 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4690 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4691 EXT4_SB(sb)->s_es->s_rev_level ==
4692 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4693 /* If this is the first large file
4694 * created, add a flag to the superblock.
4696 err = ext4_journal_get_write_access(handle,
4697 EXT4_SB(sb)->s_sbh);
4700 ext4_update_dynamic_rev(sb);
4701 EXT4_SET_RO_COMPAT_FEATURE(sb,
4702 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4704 ext4_handle_sync(handle);
4705 err = ext4_handle_dirty_metadata(handle, inode,
4706 EXT4_SB(sb)->s_sbh);
4709 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4710 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4711 if (old_valid_dev(inode->i_rdev)) {
4712 raw_inode->i_block[0] =
4713 cpu_to_le32(old_encode_dev(inode->i_rdev));
4714 raw_inode->i_block[1] = 0;
4716 raw_inode->i_block[0] = 0;
4717 raw_inode->i_block[1] =
4718 cpu_to_le32(new_encode_dev(inode->i_rdev));
4719 raw_inode->i_block[2] = 0;
4721 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4722 raw_inode->i_block[block] = ei->i_data[block];
4724 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4725 if (ei->i_extra_isize) {
4726 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4727 raw_inode->i_version_hi =
4728 cpu_to_le32(inode->i_version >> 32);
4729 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4732 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4733 rc = ext4_handle_dirty_metadata(handle, inode, bh);
4736 ei->i_state &= ~EXT4_STATE_NEW;
4740 ext4_std_error(inode->i_sb, err);
4745 * ext4_write_inode()
4747 * We are called from a few places:
4749 * - Within generic_file_write() for O_SYNC files.
4750 * Here, there will be no transaction running. We wait for any running
4751 * trasnaction to commit.
4753 * - Within sys_sync(), kupdate and such.
4754 * We wait on commit, if tol to.
4756 * - Within prune_icache() (PF_MEMALLOC == true)
4757 * Here we simply return. We can't afford to block kswapd on the
4760 * In all cases it is actually safe for us to return without doing anything,
4761 * because the inode has been copied into a raw inode buffer in
4762 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4765 * Note that we are absolutely dependent upon all inode dirtiers doing the
4766 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4767 * which we are interested.
4769 * It would be a bug for them to not do this. The code:
4771 * mark_inode_dirty(inode)
4773 * inode->i_size = expr;
4775 * is in error because a kswapd-driven write_inode() could occur while
4776 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4777 * will no longer be on the superblock's dirty inode list.
4779 int ext4_write_inode(struct inode *inode, int wait)
4781 if (current->flags & PF_MEMALLOC)
4784 if (ext4_journal_current_handle()) {
4785 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4793 return ext4_force_commit(inode->i_sb);
4799 * Called from notify_change.
4801 * We want to trap VFS attempts to truncate the file as soon as
4802 * possible. In particular, we want to make sure that when the VFS
4803 * shrinks i_size, we put the inode on the orphan list and modify
4804 * i_disksize immediately, so that during the subsequent flushing of
4805 * dirty pages and freeing of disk blocks, we can guarantee that any
4806 * commit will leave the blocks being flushed in an unused state on
4807 * disk. (On recovery, the inode will get truncated and the blocks will
4808 * be freed, so we have a strong guarantee that no future commit will
4809 * leave these blocks visible to the user.)
4811 * Another thing we have to assure is that if we are in ordered mode
4812 * and inode is still attached to the committing transaction, we must
4813 * we start writeout of all the dirty pages which are being truncated.
4814 * This way we are sure that all the data written in the previous
4815 * transaction are already on disk (truncate waits for pages under
4818 * Called with inode->i_mutex down.
4820 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4822 struct inode *inode = dentry->d_inode;
4824 const unsigned int ia_valid = attr->ia_valid;
4826 error = inode_change_ok(inode, attr);
4830 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4831 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4834 /* (user+group)*(old+new) structure, inode write (sb,
4835 * inode block, ? - but truncate inode update has it) */
4836 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4837 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4838 if (IS_ERR(handle)) {
4839 error = PTR_ERR(handle);
4842 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4844 ext4_journal_stop(handle);
4847 /* Update corresponding info in inode so that everything is in
4848 * one transaction */
4849 if (attr->ia_valid & ATTR_UID)
4850 inode->i_uid = attr->ia_uid;
4851 if (attr->ia_valid & ATTR_GID)
4852 inode->i_gid = attr->ia_gid;
4853 error = ext4_mark_inode_dirty(handle, inode);
4854 ext4_journal_stop(handle);
4857 if (attr->ia_valid & ATTR_SIZE) {
4858 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4859 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4861 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4868 if (S_ISREG(inode->i_mode) &&
4869 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4872 handle = ext4_journal_start(inode, 3);
4873 if (IS_ERR(handle)) {
4874 error = PTR_ERR(handle);
4878 error = ext4_orphan_add(handle, inode);
4879 EXT4_I(inode)->i_disksize = attr->ia_size;
4880 rc = ext4_mark_inode_dirty(handle, inode);
4883 ext4_journal_stop(handle);
4885 if (ext4_should_order_data(inode)) {
4886 error = ext4_begin_ordered_truncate(inode,
4889 /* Do as much error cleanup as possible */
4890 handle = ext4_journal_start(inode, 3);
4891 if (IS_ERR(handle)) {
4892 ext4_orphan_del(NULL, inode);
4895 ext4_orphan_del(handle, inode);
4896 ext4_journal_stop(handle);
4902 rc = inode_setattr(inode, attr);
4904 /* If inode_setattr's call to ext4_truncate failed to get a
4905 * transaction handle at all, we need to clean up the in-core
4906 * orphan list manually. */
4908 ext4_orphan_del(NULL, inode);
4910 if (!rc && (ia_valid & ATTR_MODE))
4911 rc = ext4_acl_chmod(inode);
4914 ext4_std_error(inode->i_sb, error);
4920 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4923 struct inode *inode;
4924 unsigned long delalloc_blocks;
4926 inode = dentry->d_inode;
4927 generic_fillattr(inode, stat);
4930 * We can't update i_blocks if the block allocation is delayed
4931 * otherwise in the case of system crash before the real block
4932 * allocation is done, we will have i_blocks inconsistent with
4933 * on-disk file blocks.
4934 * We always keep i_blocks updated together with real
4935 * allocation. But to not confuse with user, stat
4936 * will return the blocks that include the delayed allocation
4937 * blocks for this file.
4939 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4940 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4941 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4943 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4947 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4952 /* if nrblocks are contiguous */
4955 * With N contiguous data blocks, it need at most
4956 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4957 * 2 dindirect blocks
4960 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4961 return indirects + 3;
4964 * if nrblocks are not contiguous, worse case, each block touch
4965 * a indirect block, and each indirect block touch a double indirect
4966 * block, plus a triple indirect block
4968 indirects = nrblocks * 2 + 1;
4972 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4974 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4975 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4976 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4980 * Account for index blocks, block groups bitmaps and block group
4981 * descriptor blocks if modify datablocks and index blocks
4982 * worse case, the indexs blocks spread over different block groups
4984 * If datablocks are discontiguous, they are possible to spread over
4985 * different block groups too. If they are contiugous, with flexbg,
4986 * they could still across block group boundary.
4988 * Also account for superblock, inode, quota and xattr blocks
4990 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4992 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4998 * How many index blocks need to touch to modify nrblocks?
4999 * The "Chunk" flag indicating whether the nrblocks is
5000 * physically contiguous on disk
5002 * For Direct IO and fallocate, they calls get_block to allocate
5003 * one single extent at a time, so they could set the "Chunk" flag
5005 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5010 * Now let's see how many group bitmaps and group descriptors need
5020 if (groups > ngroups)
5022 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5023 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5025 /* bitmaps and block group descriptor blocks */
5026 ret += groups + gdpblocks;
5028 /* Blocks for super block, inode, quota and xattr blocks */
5029 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5035 * Calulate the total number of credits to reserve to fit
5036 * the modification of a single pages into a single transaction,
5037 * which may include multiple chunks of block allocations.
5039 * This could be called via ext4_write_begin()
5041 * We need to consider the worse case, when
5042 * one new block per extent.
5044 int ext4_writepage_trans_blocks(struct inode *inode)
5046 int bpp = ext4_journal_blocks_per_page(inode);
5049 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5051 /* Account for data blocks for journalled mode */
5052 if (ext4_should_journal_data(inode))
5058 * Calculate the journal credits for a chunk of data modification.
5060 * This is called from DIO, fallocate or whoever calling
5061 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5063 * journal buffers for data blocks are not included here, as DIO
5064 * and fallocate do no need to journal data buffers.
5066 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5068 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5072 * The caller must have previously called ext4_reserve_inode_write().
5073 * Give this, we know that the caller already has write access to iloc->bh.
5075 int ext4_mark_iloc_dirty(handle_t *handle,
5076 struct inode *inode, struct ext4_iloc *iloc)
5080 if (test_opt(inode->i_sb, I_VERSION))
5081 inode_inc_iversion(inode);
5083 /* the do_update_inode consumes one bh->b_count */
5086 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5087 err = ext4_do_update_inode(handle, inode, iloc);
5093 * On success, We end up with an outstanding reference count against
5094 * iloc->bh. This _must_ be cleaned up later.
5098 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5099 struct ext4_iloc *iloc)
5103 err = ext4_get_inode_loc(inode, iloc);
5105 BUFFER_TRACE(iloc->bh, "get_write_access");
5106 err = ext4_journal_get_write_access(handle, iloc->bh);
5112 ext4_std_error(inode->i_sb, err);
5117 * Expand an inode by new_extra_isize bytes.
5118 * Returns 0 on success or negative error number on failure.
5120 static int ext4_expand_extra_isize(struct inode *inode,
5121 unsigned int new_extra_isize,
5122 struct ext4_iloc iloc,
5125 struct ext4_inode *raw_inode;
5126 struct ext4_xattr_ibody_header *header;
5127 struct ext4_xattr_entry *entry;
5129 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5132 raw_inode = ext4_raw_inode(&iloc);
5134 header = IHDR(inode, raw_inode);
5135 entry = IFIRST(header);
5137 /* No extended attributes present */
5138 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5139 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5140 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5142 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5146 /* try to expand with EAs present */
5147 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5152 * What we do here is to mark the in-core inode as clean with respect to inode
5153 * dirtiness (it may still be data-dirty).
5154 * This means that the in-core inode may be reaped by prune_icache
5155 * without having to perform any I/O. This is a very good thing,
5156 * because *any* task may call prune_icache - even ones which
5157 * have a transaction open against a different journal.
5159 * Is this cheating? Not really. Sure, we haven't written the
5160 * inode out, but prune_icache isn't a user-visible syncing function.
5161 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5162 * we start and wait on commits.
5164 * Is this efficient/effective? Well, we're being nice to the system
5165 * by cleaning up our inodes proactively so they can be reaped
5166 * without I/O. But we are potentially leaving up to five seconds'
5167 * worth of inodes floating about which prune_icache wants us to
5168 * write out. One way to fix that would be to get prune_icache()
5169 * to do a write_super() to free up some memory. It has the desired
5172 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5174 struct ext4_iloc iloc;
5175 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5176 static unsigned int mnt_count;
5180 err = ext4_reserve_inode_write(handle, inode, &iloc);
5181 if (ext4_handle_valid(handle) &&
5182 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5183 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5185 * We need extra buffer credits since we may write into EA block
5186 * with this same handle. If journal_extend fails, then it will
5187 * only result in a minor loss of functionality for that inode.
5188 * If this is felt to be critical, then e2fsck should be run to
5189 * force a large enough s_min_extra_isize.
5191 if ((jbd2_journal_extend(handle,
5192 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5193 ret = ext4_expand_extra_isize(inode,
5194 sbi->s_want_extra_isize,
5197 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5199 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5200 ext4_warning(inode->i_sb, __func__,
5201 "Unable to expand inode %lu. Delete"
5202 " some EAs or run e2fsck.",
5205 le16_to_cpu(sbi->s_es->s_mnt_count);
5211 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5216 * ext4_dirty_inode() is called from __mark_inode_dirty()
5218 * We're really interested in the case where a file is being extended.
5219 * i_size has been changed by generic_commit_write() and we thus need
5220 * to include the updated inode in the current transaction.
5222 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5223 * are allocated to the file.
5225 * If the inode is marked synchronous, we don't honour that here - doing
5226 * so would cause a commit on atime updates, which we don't bother doing.
5227 * We handle synchronous inodes at the highest possible level.
5229 void ext4_dirty_inode(struct inode *inode)
5231 handle_t *current_handle = ext4_journal_current_handle();
5234 if (!ext4_handle_valid(current_handle)) {
5235 ext4_mark_inode_dirty(current_handle, inode);
5239 handle = ext4_journal_start(inode, 2);
5242 if (current_handle &&
5243 current_handle->h_transaction != handle->h_transaction) {
5244 /* This task has a transaction open against a different fs */
5245 printk(KERN_EMERG "%s: transactions do not match!\n",
5248 jbd_debug(5, "marking dirty. outer handle=%p\n",
5250 ext4_mark_inode_dirty(handle, inode);
5252 ext4_journal_stop(handle);
5259 * Bind an inode's backing buffer_head into this transaction, to prevent
5260 * it from being flushed to disk early. Unlike
5261 * ext4_reserve_inode_write, this leaves behind no bh reference and
5262 * returns no iloc structure, so the caller needs to repeat the iloc
5263 * lookup to mark the inode dirty later.
5265 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5267 struct ext4_iloc iloc;
5271 err = ext4_get_inode_loc(inode, &iloc);
5273 BUFFER_TRACE(iloc.bh, "get_write_access");
5274 err = jbd2_journal_get_write_access(handle, iloc.bh);
5276 err = ext4_handle_dirty_metadata(handle,
5282 ext4_std_error(inode->i_sb, err);
5287 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5294 * We have to be very careful here: changing a data block's
5295 * journaling status dynamically is dangerous. If we write a
5296 * data block to the journal, change the status and then delete
5297 * that block, we risk forgetting to revoke the old log record
5298 * from the journal and so a subsequent replay can corrupt data.
5299 * So, first we make sure that the journal is empty and that
5300 * nobody is changing anything.
5303 journal = EXT4_JOURNAL(inode);
5306 if (is_journal_aborted(journal))
5309 jbd2_journal_lock_updates(journal);
5310 jbd2_journal_flush(journal);
5313 * OK, there are no updates running now, and all cached data is
5314 * synced to disk. We are now in a completely consistent state
5315 * which doesn't have anything in the journal, and we know that
5316 * no filesystem updates are running, so it is safe to modify
5317 * the inode's in-core data-journaling state flag now.
5321 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5323 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5324 ext4_set_aops(inode);
5326 jbd2_journal_unlock_updates(journal);
5328 /* Finally we can mark the inode as dirty. */
5330 handle = ext4_journal_start(inode, 1);
5332 return PTR_ERR(handle);
5334 err = ext4_mark_inode_dirty(handle, inode);
5335 ext4_handle_sync(handle);
5336 ext4_journal_stop(handle);
5337 ext4_std_error(inode->i_sb, err);
5342 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5344 return !buffer_mapped(bh);
5347 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5349 struct page *page = vmf->page;
5354 struct file *file = vma->vm_file;
5355 struct inode *inode = file->f_path.dentry->d_inode;
5356 struct address_space *mapping = inode->i_mapping;
5359 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5360 * get i_mutex because we are already holding mmap_sem.
5362 down_read(&inode->i_alloc_sem);
5363 size = i_size_read(inode);
5364 if (page->mapping != mapping || size <= page_offset(page)
5365 || !PageUptodate(page)) {
5366 /* page got truncated from under us? */
5370 if (PageMappedToDisk(page))
5373 if (page->index == size >> PAGE_CACHE_SHIFT)
5374 len = size & ~PAGE_CACHE_MASK;
5376 len = PAGE_CACHE_SIZE;
5378 if (page_has_buffers(page)) {
5379 /* return if we have all the buffers mapped */
5380 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5385 * OK, we need to fill the hole... Do write_begin write_end
5386 * to do block allocation/reservation.We are not holding
5387 * inode.i__mutex here. That allow * parallel write_begin,
5388 * write_end call. lock_page prevent this from happening
5389 * on the same page though
5391 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5392 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5395 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5396 len, len, page, fsdata);
5402 ret = VM_FAULT_SIGBUS;
5403 up_read(&inode->i_alloc_sem);