Btrfs: ratelimit IO error printks
[linux-2.6] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "ref-cache.h"
52 #include "compression.h"
53 #include "locking.h"
54
55 struct btrfs_iget_args {
56         u64 ino;
57         struct btrfs_root *root;
58 };
59
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_bit_radix_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
79         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
80         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
81         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
82         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
83         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
84         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
85 };
86
87 static void btrfs_truncate(struct inode *inode);
88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
89 static noinline int cow_file_range(struct inode *inode,
90                                    struct page *locked_page,
91                                    u64 start, u64 end, int *page_started,
92                                    unsigned long *nr_written, int unlock);
93
94 static int btrfs_init_inode_security(struct inode *inode,  struct inode *dir)
95 {
96         int err;
97
98         err = btrfs_init_acl(inode, dir);
99         if (!err)
100                 err = btrfs_xattr_security_init(inode, dir);
101         return err;
102 }
103
104 /*
105  * this does all the hard work for inserting an inline extent into
106  * the btree.  The caller should have done a btrfs_drop_extents so that
107  * no overlapping inline items exist in the btree
108  */
109 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
110                                 struct btrfs_root *root, struct inode *inode,
111                                 u64 start, size_t size, size_t compressed_size,
112                                 struct page **compressed_pages)
113 {
114         struct btrfs_key key;
115         struct btrfs_path *path;
116         struct extent_buffer *leaf;
117         struct page *page = NULL;
118         char *kaddr;
119         unsigned long ptr;
120         struct btrfs_file_extent_item *ei;
121         int err = 0;
122         int ret;
123         size_t cur_size = size;
124         size_t datasize;
125         unsigned long offset;
126         int use_compress = 0;
127
128         if (compressed_size && compressed_pages) {
129                 use_compress = 1;
130                 cur_size = compressed_size;
131         }
132
133         path = btrfs_alloc_path();
134         if (!path)
135                 return -ENOMEM;
136
137         path->leave_spinning = 1;
138         btrfs_set_trans_block_group(trans, inode);
139
140         key.objectid = inode->i_ino;
141         key.offset = start;
142         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
143         datasize = btrfs_file_extent_calc_inline_size(cur_size);
144
145         inode_add_bytes(inode, size);
146         ret = btrfs_insert_empty_item(trans, root, path, &key,
147                                       datasize);
148         BUG_ON(ret);
149         if (ret) {
150                 err = ret;
151                 goto fail;
152         }
153         leaf = path->nodes[0];
154         ei = btrfs_item_ptr(leaf, path->slots[0],
155                             struct btrfs_file_extent_item);
156         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
157         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
158         btrfs_set_file_extent_encryption(leaf, ei, 0);
159         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
160         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
161         ptr = btrfs_file_extent_inline_start(ei);
162
163         if (use_compress) {
164                 struct page *cpage;
165                 int i = 0;
166                 while (compressed_size > 0) {
167                         cpage = compressed_pages[i];
168                         cur_size = min_t(unsigned long, compressed_size,
169                                        PAGE_CACHE_SIZE);
170
171                         kaddr = kmap_atomic(cpage, KM_USER0);
172                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
173                         kunmap_atomic(kaddr, KM_USER0);
174
175                         i++;
176                         ptr += cur_size;
177                         compressed_size -= cur_size;
178                 }
179                 btrfs_set_file_extent_compression(leaf, ei,
180                                                   BTRFS_COMPRESS_ZLIB);
181         } else {
182                 page = find_get_page(inode->i_mapping,
183                                      start >> PAGE_CACHE_SHIFT);
184                 btrfs_set_file_extent_compression(leaf, ei, 0);
185                 kaddr = kmap_atomic(page, KM_USER0);
186                 offset = start & (PAGE_CACHE_SIZE - 1);
187                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
188                 kunmap_atomic(kaddr, KM_USER0);
189                 page_cache_release(page);
190         }
191         btrfs_mark_buffer_dirty(leaf);
192         btrfs_free_path(path);
193
194         BTRFS_I(inode)->disk_i_size = inode->i_size;
195         btrfs_update_inode(trans, root, inode);
196         return 0;
197 fail:
198         btrfs_free_path(path);
199         return err;
200 }
201
202
203 /*
204  * conditionally insert an inline extent into the file.  This
205  * does the checks required to make sure the data is small enough
206  * to fit as an inline extent.
207  */
208 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
209                                  struct btrfs_root *root,
210                                  struct inode *inode, u64 start, u64 end,
211                                  size_t compressed_size,
212                                  struct page **compressed_pages)
213 {
214         u64 isize = i_size_read(inode);
215         u64 actual_end = min(end + 1, isize);
216         u64 inline_len = actual_end - start;
217         u64 aligned_end = (end + root->sectorsize - 1) &
218                         ~((u64)root->sectorsize - 1);
219         u64 hint_byte;
220         u64 data_len = inline_len;
221         int ret;
222
223         if (compressed_size)
224                 data_len = compressed_size;
225
226         if (start > 0 ||
227             actual_end >= PAGE_CACHE_SIZE ||
228             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
229             (!compressed_size &&
230             (actual_end & (root->sectorsize - 1)) == 0) ||
231             end + 1 < isize ||
232             data_len > root->fs_info->max_inline) {
233                 return 1;
234         }
235
236         ret = btrfs_drop_extents(trans, root, inode, start,
237                                  aligned_end, aligned_end, start, &hint_byte);
238         BUG_ON(ret);
239
240         if (isize > actual_end)
241                 inline_len = min_t(u64, isize, actual_end);
242         ret = insert_inline_extent(trans, root, inode, start,
243                                    inline_len, compressed_size,
244                                    compressed_pages);
245         BUG_ON(ret);
246         btrfs_drop_extent_cache(inode, start, aligned_end, 0);
247         return 0;
248 }
249
250 struct async_extent {
251         u64 start;
252         u64 ram_size;
253         u64 compressed_size;
254         struct page **pages;
255         unsigned long nr_pages;
256         struct list_head list;
257 };
258
259 struct async_cow {
260         struct inode *inode;
261         struct btrfs_root *root;
262         struct page *locked_page;
263         u64 start;
264         u64 end;
265         struct list_head extents;
266         struct btrfs_work work;
267 };
268
269 static noinline int add_async_extent(struct async_cow *cow,
270                                      u64 start, u64 ram_size,
271                                      u64 compressed_size,
272                                      struct page **pages,
273                                      unsigned long nr_pages)
274 {
275         struct async_extent *async_extent;
276
277         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
278         async_extent->start = start;
279         async_extent->ram_size = ram_size;
280         async_extent->compressed_size = compressed_size;
281         async_extent->pages = pages;
282         async_extent->nr_pages = nr_pages;
283         list_add_tail(&async_extent->list, &cow->extents);
284         return 0;
285 }
286
287 /*
288  * we create compressed extents in two phases.  The first
289  * phase compresses a range of pages that have already been
290  * locked (both pages and state bits are locked).
291  *
292  * This is done inside an ordered work queue, and the compression
293  * is spread across many cpus.  The actual IO submission is step
294  * two, and the ordered work queue takes care of making sure that
295  * happens in the same order things were put onto the queue by
296  * writepages and friends.
297  *
298  * If this code finds it can't get good compression, it puts an
299  * entry onto the work queue to write the uncompressed bytes.  This
300  * makes sure that both compressed inodes and uncompressed inodes
301  * are written in the same order that pdflush sent them down.
302  */
303 static noinline int compress_file_range(struct inode *inode,
304                                         struct page *locked_page,
305                                         u64 start, u64 end,
306                                         struct async_cow *async_cow,
307                                         int *num_added)
308 {
309         struct btrfs_root *root = BTRFS_I(inode)->root;
310         struct btrfs_trans_handle *trans;
311         u64 num_bytes;
312         u64 orig_start;
313         u64 disk_num_bytes;
314         u64 blocksize = root->sectorsize;
315         u64 actual_end;
316         u64 isize = i_size_read(inode);
317         int ret = 0;
318         struct page **pages = NULL;
319         unsigned long nr_pages;
320         unsigned long nr_pages_ret = 0;
321         unsigned long total_compressed = 0;
322         unsigned long total_in = 0;
323         unsigned long max_compressed = 128 * 1024;
324         unsigned long max_uncompressed = 128 * 1024;
325         int i;
326         int will_compress;
327
328         orig_start = start;
329
330         actual_end = min_t(u64, isize, end + 1);
331 again:
332         will_compress = 0;
333         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
334         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
335
336         /*
337          * we don't want to send crud past the end of i_size through
338          * compression, that's just a waste of CPU time.  So, if the
339          * end of the file is before the start of our current
340          * requested range of bytes, we bail out to the uncompressed
341          * cleanup code that can deal with all of this.
342          *
343          * It isn't really the fastest way to fix things, but this is a
344          * very uncommon corner.
345          */
346         if (actual_end <= start)
347                 goto cleanup_and_bail_uncompressed;
348
349         total_compressed = actual_end - start;
350
351         /* we want to make sure that amount of ram required to uncompress
352          * an extent is reasonable, so we limit the total size in ram
353          * of a compressed extent to 128k.  This is a crucial number
354          * because it also controls how easily we can spread reads across
355          * cpus for decompression.
356          *
357          * We also want to make sure the amount of IO required to do
358          * a random read is reasonably small, so we limit the size of
359          * a compressed extent to 128k.
360          */
361         total_compressed = min(total_compressed, max_uncompressed);
362         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
363         num_bytes = max(blocksize,  num_bytes);
364         disk_num_bytes = num_bytes;
365         total_in = 0;
366         ret = 0;
367
368         /*
369          * we do compression for mount -o compress and when the
370          * inode has not been flagged as nocompress.  This flag can
371          * change at any time if we discover bad compression ratios.
372          */
373         if (!btrfs_test_flag(inode, NOCOMPRESS) &&
374             btrfs_test_opt(root, COMPRESS)) {
375                 WARN_ON(pages);
376                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
377
378                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
379                                                 total_compressed, pages,
380                                                 nr_pages, &nr_pages_ret,
381                                                 &total_in,
382                                                 &total_compressed,
383                                                 max_compressed);
384
385                 if (!ret) {
386                         unsigned long offset = total_compressed &
387                                 (PAGE_CACHE_SIZE - 1);
388                         struct page *page = pages[nr_pages_ret - 1];
389                         char *kaddr;
390
391                         /* zero the tail end of the last page, we might be
392                          * sending it down to disk
393                          */
394                         if (offset) {
395                                 kaddr = kmap_atomic(page, KM_USER0);
396                                 memset(kaddr + offset, 0,
397                                        PAGE_CACHE_SIZE - offset);
398                                 kunmap_atomic(kaddr, KM_USER0);
399                         }
400                         will_compress = 1;
401                 }
402         }
403         if (start == 0) {
404                 trans = btrfs_join_transaction(root, 1);
405                 BUG_ON(!trans);
406                 btrfs_set_trans_block_group(trans, inode);
407
408                 /* lets try to make an inline extent */
409                 if (ret || total_in < (actual_end - start)) {
410                         /* we didn't compress the entire range, try
411                          * to make an uncompressed inline extent.
412                          */
413                         ret = cow_file_range_inline(trans, root, inode,
414                                                     start, end, 0, NULL);
415                 } else {
416                         /* try making a compressed inline extent */
417                         ret = cow_file_range_inline(trans, root, inode,
418                                                     start, end,
419                                                     total_compressed, pages);
420                 }
421                 btrfs_end_transaction(trans, root);
422                 if (ret == 0) {
423                         /*
424                          * inline extent creation worked, we don't need
425                          * to create any more async work items.  Unlock
426                          * and free up our temp pages.
427                          */
428                         extent_clear_unlock_delalloc(inode,
429                                                      &BTRFS_I(inode)->io_tree,
430                                                      start, end, NULL, 1, 0,
431                                                      0, 1, 1, 1);
432                         ret = 0;
433                         goto free_pages_out;
434                 }
435         }
436
437         if (will_compress) {
438                 /*
439                  * we aren't doing an inline extent round the compressed size
440                  * up to a block size boundary so the allocator does sane
441                  * things
442                  */
443                 total_compressed = (total_compressed + blocksize - 1) &
444                         ~(blocksize - 1);
445
446                 /*
447                  * one last check to make sure the compression is really a
448                  * win, compare the page count read with the blocks on disk
449                  */
450                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
451                         ~(PAGE_CACHE_SIZE - 1);
452                 if (total_compressed >= total_in) {
453                         will_compress = 0;
454                 } else {
455                         disk_num_bytes = total_compressed;
456                         num_bytes = total_in;
457                 }
458         }
459         if (!will_compress && pages) {
460                 /*
461                  * the compression code ran but failed to make things smaller,
462                  * free any pages it allocated and our page pointer array
463                  */
464                 for (i = 0; i < nr_pages_ret; i++) {
465                         WARN_ON(pages[i]->mapping);
466                         page_cache_release(pages[i]);
467                 }
468                 kfree(pages);
469                 pages = NULL;
470                 total_compressed = 0;
471                 nr_pages_ret = 0;
472
473                 /* flag the file so we don't compress in the future */
474                 btrfs_set_flag(inode, NOCOMPRESS);
475         }
476         if (will_compress) {
477                 *num_added += 1;
478
479                 /* the async work queues will take care of doing actual
480                  * allocation on disk for these compressed pages,
481                  * and will submit them to the elevator.
482                  */
483                 add_async_extent(async_cow, start, num_bytes,
484                                  total_compressed, pages, nr_pages_ret);
485
486                 if (start + num_bytes < end && start + num_bytes < actual_end) {
487                         start += num_bytes;
488                         pages = NULL;
489                         cond_resched();
490                         goto again;
491                 }
492         } else {
493 cleanup_and_bail_uncompressed:
494                 /*
495                  * No compression, but we still need to write the pages in
496                  * the file we've been given so far.  redirty the locked
497                  * page if it corresponds to our extent and set things up
498                  * for the async work queue to run cow_file_range to do
499                  * the normal delalloc dance
500                  */
501                 if (page_offset(locked_page) >= start &&
502                     page_offset(locked_page) <= end) {
503                         __set_page_dirty_nobuffers(locked_page);
504                         /* unlocked later on in the async handlers */
505                 }
506                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
507                 *num_added += 1;
508         }
509
510 out:
511         return 0;
512
513 free_pages_out:
514         for (i = 0; i < nr_pages_ret; i++) {
515                 WARN_ON(pages[i]->mapping);
516                 page_cache_release(pages[i]);
517         }
518         kfree(pages);
519
520         goto out;
521 }
522
523 /*
524  * phase two of compressed writeback.  This is the ordered portion
525  * of the code, which only gets called in the order the work was
526  * queued.  We walk all the async extents created by compress_file_range
527  * and send them down to the disk.
528  */
529 static noinline int submit_compressed_extents(struct inode *inode,
530                                               struct async_cow *async_cow)
531 {
532         struct async_extent *async_extent;
533         u64 alloc_hint = 0;
534         struct btrfs_trans_handle *trans;
535         struct btrfs_key ins;
536         struct extent_map *em;
537         struct btrfs_root *root = BTRFS_I(inode)->root;
538         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
539         struct extent_io_tree *io_tree;
540         int ret;
541
542         if (list_empty(&async_cow->extents))
543                 return 0;
544
545         trans = btrfs_join_transaction(root, 1);
546
547         while (!list_empty(&async_cow->extents)) {
548                 async_extent = list_entry(async_cow->extents.next,
549                                           struct async_extent, list);
550                 list_del(&async_extent->list);
551
552                 io_tree = &BTRFS_I(inode)->io_tree;
553
554                 /* did the compression code fall back to uncompressed IO? */
555                 if (!async_extent->pages) {
556                         int page_started = 0;
557                         unsigned long nr_written = 0;
558
559                         lock_extent(io_tree, async_extent->start,
560                                     async_extent->start +
561                                     async_extent->ram_size - 1, GFP_NOFS);
562
563                         /* allocate blocks */
564                         cow_file_range(inode, async_cow->locked_page,
565                                        async_extent->start,
566                                        async_extent->start +
567                                        async_extent->ram_size - 1,
568                                        &page_started, &nr_written, 0);
569
570                         /*
571                          * if page_started, cow_file_range inserted an
572                          * inline extent and took care of all the unlocking
573                          * and IO for us.  Otherwise, we need to submit
574                          * all those pages down to the drive.
575                          */
576                         if (!page_started)
577                                 extent_write_locked_range(io_tree,
578                                                   inode, async_extent->start,
579                                                   async_extent->start +
580                                                   async_extent->ram_size - 1,
581                                                   btrfs_get_extent,
582                                                   WB_SYNC_ALL);
583                         kfree(async_extent);
584                         cond_resched();
585                         continue;
586                 }
587
588                 lock_extent(io_tree, async_extent->start,
589                             async_extent->start + async_extent->ram_size - 1,
590                             GFP_NOFS);
591                 /*
592                  * here we're doing allocation and writeback of the
593                  * compressed pages
594                  */
595                 btrfs_drop_extent_cache(inode, async_extent->start,
596                                         async_extent->start +
597                                         async_extent->ram_size - 1, 0);
598
599                 ret = btrfs_reserve_extent(trans, root,
600                                            async_extent->compressed_size,
601                                            async_extent->compressed_size,
602                                            0, alloc_hint,
603                                            (u64)-1, &ins, 1);
604                 BUG_ON(ret);
605                 em = alloc_extent_map(GFP_NOFS);
606                 em->start = async_extent->start;
607                 em->len = async_extent->ram_size;
608                 em->orig_start = em->start;
609
610                 em->block_start = ins.objectid;
611                 em->block_len = ins.offset;
612                 em->bdev = root->fs_info->fs_devices->latest_bdev;
613                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
614                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
615
616                 while (1) {
617                         spin_lock(&em_tree->lock);
618                         ret = add_extent_mapping(em_tree, em);
619                         spin_unlock(&em_tree->lock);
620                         if (ret != -EEXIST) {
621                                 free_extent_map(em);
622                                 break;
623                         }
624                         btrfs_drop_extent_cache(inode, async_extent->start,
625                                                 async_extent->start +
626                                                 async_extent->ram_size - 1, 0);
627                 }
628
629                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
630                                                ins.objectid,
631                                                async_extent->ram_size,
632                                                ins.offset,
633                                                BTRFS_ORDERED_COMPRESSED);
634                 BUG_ON(ret);
635
636                 btrfs_end_transaction(trans, root);
637
638                 /*
639                  * clear dirty, set writeback and unlock the pages.
640                  */
641                 extent_clear_unlock_delalloc(inode,
642                                              &BTRFS_I(inode)->io_tree,
643                                              async_extent->start,
644                                              async_extent->start +
645                                              async_extent->ram_size - 1,
646                                              NULL, 1, 1, 0, 1, 1, 0);
647
648                 ret = btrfs_submit_compressed_write(inode,
649                                     async_extent->start,
650                                     async_extent->ram_size,
651                                     ins.objectid,
652                                     ins.offset, async_extent->pages,
653                                     async_extent->nr_pages);
654
655                 BUG_ON(ret);
656                 trans = btrfs_join_transaction(root, 1);
657                 alloc_hint = ins.objectid + ins.offset;
658                 kfree(async_extent);
659                 cond_resched();
660         }
661
662         btrfs_end_transaction(trans, root);
663         return 0;
664 }
665
666 /*
667  * when extent_io.c finds a delayed allocation range in the file,
668  * the call backs end up in this code.  The basic idea is to
669  * allocate extents on disk for the range, and create ordered data structs
670  * in ram to track those extents.
671  *
672  * locked_page is the page that writepage had locked already.  We use
673  * it to make sure we don't do extra locks or unlocks.
674  *
675  * *page_started is set to one if we unlock locked_page and do everything
676  * required to start IO on it.  It may be clean and already done with
677  * IO when we return.
678  */
679 static noinline int cow_file_range(struct inode *inode,
680                                    struct page *locked_page,
681                                    u64 start, u64 end, int *page_started,
682                                    unsigned long *nr_written,
683                                    int unlock)
684 {
685         struct btrfs_root *root = BTRFS_I(inode)->root;
686         struct btrfs_trans_handle *trans;
687         u64 alloc_hint = 0;
688         u64 num_bytes;
689         unsigned long ram_size;
690         u64 disk_num_bytes;
691         u64 cur_alloc_size;
692         u64 blocksize = root->sectorsize;
693         u64 actual_end;
694         u64 isize = i_size_read(inode);
695         struct btrfs_key ins;
696         struct extent_map *em;
697         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
698         int ret = 0;
699
700         trans = btrfs_join_transaction(root, 1);
701         BUG_ON(!trans);
702         btrfs_set_trans_block_group(trans, inode);
703
704         actual_end = min_t(u64, isize, end + 1);
705
706         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
707         num_bytes = max(blocksize,  num_bytes);
708         disk_num_bytes = num_bytes;
709         ret = 0;
710
711         if (start == 0) {
712                 /* lets try to make an inline extent */
713                 ret = cow_file_range_inline(trans, root, inode,
714                                             start, end, 0, NULL);
715                 if (ret == 0) {
716                         extent_clear_unlock_delalloc(inode,
717                                                      &BTRFS_I(inode)->io_tree,
718                                                      start, end, NULL, 1, 1,
719                                                      1, 1, 1, 1);
720                         *nr_written = *nr_written +
721                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
722                         *page_started = 1;
723                         ret = 0;
724                         goto out;
725                 }
726         }
727
728         BUG_ON(disk_num_bytes >
729                btrfs_super_total_bytes(&root->fs_info->super_copy));
730
731         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
732
733         while (disk_num_bytes > 0) {
734                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
735                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
736                                            root->sectorsize, 0, alloc_hint,
737                                            (u64)-1, &ins, 1);
738                 BUG_ON(ret);
739
740                 em = alloc_extent_map(GFP_NOFS);
741                 em->start = start;
742                 em->orig_start = em->start;
743
744                 ram_size = ins.offset;
745                 em->len = ins.offset;
746
747                 em->block_start = ins.objectid;
748                 em->block_len = ins.offset;
749                 em->bdev = root->fs_info->fs_devices->latest_bdev;
750                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
751
752                 while (1) {
753                         spin_lock(&em_tree->lock);
754                         ret = add_extent_mapping(em_tree, em);
755                         spin_unlock(&em_tree->lock);
756                         if (ret != -EEXIST) {
757                                 free_extent_map(em);
758                                 break;
759                         }
760                         btrfs_drop_extent_cache(inode, start,
761                                                 start + ram_size - 1, 0);
762                 }
763
764                 cur_alloc_size = ins.offset;
765                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
766                                                ram_size, cur_alloc_size, 0);
767                 BUG_ON(ret);
768
769                 if (root->root_key.objectid ==
770                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
771                         ret = btrfs_reloc_clone_csums(inode, start,
772                                                       cur_alloc_size);
773                         BUG_ON(ret);
774                 }
775
776                 if (disk_num_bytes < cur_alloc_size)
777                         break;
778
779                 /* we're not doing compressed IO, don't unlock the first
780                  * page (which the caller expects to stay locked), don't
781                  * clear any dirty bits and don't set any writeback bits
782                  */
783                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
784                                              start, start + ram_size - 1,
785                                              locked_page, unlock, 1,
786                                              1, 0, 0, 0);
787                 disk_num_bytes -= cur_alloc_size;
788                 num_bytes -= cur_alloc_size;
789                 alloc_hint = ins.objectid + ins.offset;
790                 start += cur_alloc_size;
791         }
792 out:
793         ret = 0;
794         btrfs_end_transaction(trans, root);
795
796         return ret;
797 }
798
799 /*
800  * work queue call back to started compression on a file and pages
801  */
802 static noinline void async_cow_start(struct btrfs_work *work)
803 {
804         struct async_cow *async_cow;
805         int num_added = 0;
806         async_cow = container_of(work, struct async_cow, work);
807
808         compress_file_range(async_cow->inode, async_cow->locked_page,
809                             async_cow->start, async_cow->end, async_cow,
810                             &num_added);
811         if (num_added == 0)
812                 async_cow->inode = NULL;
813 }
814
815 /*
816  * work queue call back to submit previously compressed pages
817  */
818 static noinline void async_cow_submit(struct btrfs_work *work)
819 {
820         struct async_cow *async_cow;
821         struct btrfs_root *root;
822         unsigned long nr_pages;
823
824         async_cow = container_of(work, struct async_cow, work);
825
826         root = async_cow->root;
827         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
828                 PAGE_CACHE_SHIFT;
829
830         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
831
832         if (atomic_read(&root->fs_info->async_delalloc_pages) <
833             5 * 1042 * 1024 &&
834             waitqueue_active(&root->fs_info->async_submit_wait))
835                 wake_up(&root->fs_info->async_submit_wait);
836
837         if (async_cow->inode)
838                 submit_compressed_extents(async_cow->inode, async_cow);
839 }
840
841 static noinline void async_cow_free(struct btrfs_work *work)
842 {
843         struct async_cow *async_cow;
844         async_cow = container_of(work, struct async_cow, work);
845         kfree(async_cow);
846 }
847
848 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
849                                 u64 start, u64 end, int *page_started,
850                                 unsigned long *nr_written)
851 {
852         struct async_cow *async_cow;
853         struct btrfs_root *root = BTRFS_I(inode)->root;
854         unsigned long nr_pages;
855         u64 cur_end;
856         int limit = 10 * 1024 * 1042;
857
858         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
859                          EXTENT_DELALLOC, 1, 0, GFP_NOFS);
860         while (start < end) {
861                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
862                 async_cow->inode = inode;
863                 async_cow->root = root;
864                 async_cow->locked_page = locked_page;
865                 async_cow->start = start;
866
867                 if (btrfs_test_flag(inode, NOCOMPRESS))
868                         cur_end = end;
869                 else
870                         cur_end = min(end, start + 512 * 1024 - 1);
871
872                 async_cow->end = cur_end;
873                 INIT_LIST_HEAD(&async_cow->extents);
874
875                 async_cow->work.func = async_cow_start;
876                 async_cow->work.ordered_func = async_cow_submit;
877                 async_cow->work.ordered_free = async_cow_free;
878                 async_cow->work.flags = 0;
879
880                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
881                         PAGE_CACHE_SHIFT;
882                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
883
884                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
885                                    &async_cow->work);
886
887                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
888                         wait_event(root->fs_info->async_submit_wait,
889                            (atomic_read(&root->fs_info->async_delalloc_pages) <
890                             limit));
891                 }
892
893                 while (atomic_read(&root->fs_info->async_submit_draining) &&
894                       atomic_read(&root->fs_info->async_delalloc_pages)) {
895                         wait_event(root->fs_info->async_submit_wait,
896                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
897                            0));
898                 }
899
900                 *nr_written += nr_pages;
901                 start = cur_end + 1;
902         }
903         *page_started = 1;
904         return 0;
905 }
906
907 static noinline int csum_exist_in_range(struct btrfs_root *root,
908                                         u64 bytenr, u64 num_bytes)
909 {
910         int ret;
911         struct btrfs_ordered_sum *sums;
912         LIST_HEAD(list);
913
914         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
915                                        bytenr + num_bytes - 1, &list);
916         if (ret == 0 && list_empty(&list))
917                 return 0;
918
919         while (!list_empty(&list)) {
920                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
921                 list_del(&sums->list);
922                 kfree(sums);
923         }
924         return 1;
925 }
926
927 /*
928  * when nowcow writeback call back.  This checks for snapshots or COW copies
929  * of the extents that exist in the file, and COWs the file as required.
930  *
931  * If no cow copies or snapshots exist, we write directly to the existing
932  * blocks on disk
933  */
934 static noinline int run_delalloc_nocow(struct inode *inode,
935                                        struct page *locked_page,
936                               u64 start, u64 end, int *page_started, int force,
937                               unsigned long *nr_written)
938 {
939         struct btrfs_root *root = BTRFS_I(inode)->root;
940         struct btrfs_trans_handle *trans;
941         struct extent_buffer *leaf;
942         struct btrfs_path *path;
943         struct btrfs_file_extent_item *fi;
944         struct btrfs_key found_key;
945         u64 cow_start;
946         u64 cur_offset;
947         u64 extent_end;
948         u64 disk_bytenr;
949         u64 num_bytes;
950         int extent_type;
951         int ret;
952         int type;
953         int nocow;
954         int check_prev = 1;
955
956         path = btrfs_alloc_path();
957         BUG_ON(!path);
958         trans = btrfs_join_transaction(root, 1);
959         BUG_ON(!trans);
960
961         cow_start = (u64)-1;
962         cur_offset = start;
963         while (1) {
964                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
965                                                cur_offset, 0);
966                 BUG_ON(ret < 0);
967                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
968                         leaf = path->nodes[0];
969                         btrfs_item_key_to_cpu(leaf, &found_key,
970                                               path->slots[0] - 1);
971                         if (found_key.objectid == inode->i_ino &&
972                             found_key.type == BTRFS_EXTENT_DATA_KEY)
973                                 path->slots[0]--;
974                 }
975                 check_prev = 0;
976 next_slot:
977                 leaf = path->nodes[0];
978                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
979                         ret = btrfs_next_leaf(root, path);
980                         if (ret < 0)
981                                 BUG_ON(1);
982                         if (ret > 0)
983                                 break;
984                         leaf = path->nodes[0];
985                 }
986
987                 nocow = 0;
988                 disk_bytenr = 0;
989                 num_bytes = 0;
990                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
991
992                 if (found_key.objectid > inode->i_ino ||
993                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
994                     found_key.offset > end)
995                         break;
996
997                 if (found_key.offset > cur_offset) {
998                         extent_end = found_key.offset;
999                         goto out_check;
1000                 }
1001
1002                 fi = btrfs_item_ptr(leaf, path->slots[0],
1003                                     struct btrfs_file_extent_item);
1004                 extent_type = btrfs_file_extent_type(leaf, fi);
1005
1006                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1007                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1008                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1009                         extent_end = found_key.offset +
1010                                 btrfs_file_extent_num_bytes(leaf, fi);
1011                         if (extent_end <= start) {
1012                                 path->slots[0]++;
1013                                 goto next_slot;
1014                         }
1015                         if (disk_bytenr == 0)
1016                                 goto out_check;
1017                         if (btrfs_file_extent_compression(leaf, fi) ||
1018                             btrfs_file_extent_encryption(leaf, fi) ||
1019                             btrfs_file_extent_other_encoding(leaf, fi))
1020                                 goto out_check;
1021                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1022                                 goto out_check;
1023                         if (btrfs_extent_readonly(root, disk_bytenr))
1024                                 goto out_check;
1025                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1026                                                   disk_bytenr))
1027                                 goto out_check;
1028                         disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1029                         disk_bytenr += cur_offset - found_key.offset;
1030                         num_bytes = min(end + 1, extent_end) - cur_offset;
1031                         /*
1032                          * force cow if csum exists in the range.
1033                          * this ensure that csum for a given extent are
1034                          * either valid or do not exist.
1035                          */
1036                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1037                                 goto out_check;
1038                         nocow = 1;
1039                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1040                         extent_end = found_key.offset +
1041                                 btrfs_file_extent_inline_len(leaf, fi);
1042                         extent_end = ALIGN(extent_end, root->sectorsize);
1043                 } else {
1044                         BUG_ON(1);
1045                 }
1046 out_check:
1047                 if (extent_end <= start) {
1048                         path->slots[0]++;
1049                         goto next_slot;
1050                 }
1051                 if (!nocow) {
1052                         if (cow_start == (u64)-1)
1053                                 cow_start = cur_offset;
1054                         cur_offset = extent_end;
1055                         if (cur_offset > end)
1056                                 break;
1057                         path->slots[0]++;
1058                         goto next_slot;
1059                 }
1060
1061                 btrfs_release_path(root, path);
1062                 if (cow_start != (u64)-1) {
1063                         ret = cow_file_range(inode, locked_page, cow_start,
1064                                         found_key.offset - 1, page_started,
1065                                         nr_written, 1);
1066                         BUG_ON(ret);
1067                         cow_start = (u64)-1;
1068                 }
1069
1070                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1071                         struct extent_map *em;
1072                         struct extent_map_tree *em_tree;
1073                         em_tree = &BTRFS_I(inode)->extent_tree;
1074                         em = alloc_extent_map(GFP_NOFS);
1075                         em->start = cur_offset;
1076                         em->orig_start = em->start;
1077                         em->len = num_bytes;
1078                         em->block_len = num_bytes;
1079                         em->block_start = disk_bytenr;
1080                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1081                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1082                         while (1) {
1083                                 spin_lock(&em_tree->lock);
1084                                 ret = add_extent_mapping(em_tree, em);
1085                                 spin_unlock(&em_tree->lock);
1086                                 if (ret != -EEXIST) {
1087                                         free_extent_map(em);
1088                                         break;
1089                                 }
1090                                 btrfs_drop_extent_cache(inode, em->start,
1091                                                 em->start + em->len - 1, 0);
1092                         }
1093                         type = BTRFS_ORDERED_PREALLOC;
1094                 } else {
1095                         type = BTRFS_ORDERED_NOCOW;
1096                 }
1097
1098                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1099                                                num_bytes, num_bytes, type);
1100                 BUG_ON(ret);
1101
1102                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1103                                         cur_offset, cur_offset + num_bytes - 1,
1104                                         locked_page, 1, 1, 1, 0, 0, 0);
1105                 cur_offset = extent_end;
1106                 if (cur_offset > end)
1107                         break;
1108         }
1109         btrfs_release_path(root, path);
1110
1111         if (cur_offset <= end && cow_start == (u64)-1)
1112                 cow_start = cur_offset;
1113         if (cow_start != (u64)-1) {
1114                 ret = cow_file_range(inode, locked_page, cow_start, end,
1115                                      page_started, nr_written, 1);
1116                 BUG_ON(ret);
1117         }
1118
1119         ret = btrfs_end_transaction(trans, root);
1120         BUG_ON(ret);
1121         btrfs_free_path(path);
1122         return 0;
1123 }
1124
1125 /*
1126  * extent_io.c call back to do delayed allocation processing
1127  */
1128 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1129                               u64 start, u64 end, int *page_started,
1130                               unsigned long *nr_written)
1131 {
1132         int ret;
1133         struct btrfs_root *root = BTRFS_I(inode)->root;
1134
1135         if (btrfs_test_flag(inode, NODATACOW))
1136                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1137                                          page_started, 1, nr_written);
1138         else if (btrfs_test_flag(inode, PREALLOC))
1139                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1140                                          page_started, 0, nr_written);
1141         else if (!btrfs_test_opt(root, COMPRESS))
1142                 ret = cow_file_range(inode, locked_page, start, end,
1143                                       page_started, nr_written, 1);
1144         else
1145                 ret = cow_file_range_async(inode, locked_page, start, end,
1146                                            page_started, nr_written);
1147         return ret;
1148 }
1149
1150 /*
1151  * extent_io.c set_bit_hook, used to track delayed allocation
1152  * bytes in this file, and to maintain the list of inodes that
1153  * have pending delalloc work to be done.
1154  */
1155 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1156                        unsigned long old, unsigned long bits)
1157 {
1158         /*
1159          * set_bit and clear bit hooks normally require _irqsave/restore
1160          * but in this case, we are only testeing for the DELALLOC
1161          * bit, which is only set or cleared with irqs on
1162          */
1163         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1164                 struct btrfs_root *root = BTRFS_I(inode)->root;
1165                 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1166                 spin_lock(&root->fs_info->delalloc_lock);
1167                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1168                 root->fs_info->delalloc_bytes += end - start + 1;
1169                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1170                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1171                                       &root->fs_info->delalloc_inodes);
1172                 }
1173                 spin_unlock(&root->fs_info->delalloc_lock);
1174         }
1175         return 0;
1176 }
1177
1178 /*
1179  * extent_io.c clear_bit_hook, see set_bit_hook for why
1180  */
1181 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1182                          unsigned long old, unsigned long bits)
1183 {
1184         /*
1185          * set_bit and clear bit hooks normally require _irqsave/restore
1186          * but in this case, we are only testeing for the DELALLOC
1187          * bit, which is only set or cleared with irqs on
1188          */
1189         if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1190                 struct btrfs_root *root = BTRFS_I(inode)->root;
1191
1192                 spin_lock(&root->fs_info->delalloc_lock);
1193                 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1194                         printk(KERN_INFO "btrfs warning: delalloc account "
1195                                "%llu %llu\n",
1196                                (unsigned long long)end - start + 1,
1197                                (unsigned long long)
1198                                root->fs_info->delalloc_bytes);
1199                         btrfs_delalloc_free_space(root, inode, (u64)-1);
1200                         root->fs_info->delalloc_bytes = 0;
1201                         BTRFS_I(inode)->delalloc_bytes = 0;
1202                 } else {
1203                         btrfs_delalloc_free_space(root, inode,
1204                                                   end - start + 1);
1205                         root->fs_info->delalloc_bytes -= end - start + 1;
1206                         BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1207                 }
1208                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1209                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1210                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1211                 }
1212                 spin_unlock(&root->fs_info->delalloc_lock);
1213         }
1214         return 0;
1215 }
1216
1217 /*
1218  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1219  * we don't create bios that span stripes or chunks
1220  */
1221 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1222                          size_t size, struct bio *bio,
1223                          unsigned long bio_flags)
1224 {
1225         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1226         struct btrfs_mapping_tree *map_tree;
1227         u64 logical = (u64)bio->bi_sector << 9;
1228         u64 length = 0;
1229         u64 map_length;
1230         int ret;
1231
1232         if (bio_flags & EXTENT_BIO_COMPRESSED)
1233                 return 0;
1234
1235         length = bio->bi_size;
1236         map_tree = &root->fs_info->mapping_tree;
1237         map_length = length;
1238         ret = btrfs_map_block(map_tree, READ, logical,
1239                               &map_length, NULL, 0);
1240
1241         if (map_length < length + size)
1242                 return 1;
1243         return 0;
1244 }
1245
1246 /*
1247  * in order to insert checksums into the metadata in large chunks,
1248  * we wait until bio submission time.   All the pages in the bio are
1249  * checksummed and sums are attached onto the ordered extent record.
1250  *
1251  * At IO completion time the cums attached on the ordered extent record
1252  * are inserted into the btree
1253  */
1254 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1255                                     struct bio *bio, int mirror_num,
1256                                     unsigned long bio_flags)
1257 {
1258         struct btrfs_root *root = BTRFS_I(inode)->root;
1259         int ret = 0;
1260
1261         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1262         BUG_ON(ret);
1263         return 0;
1264 }
1265
1266 /*
1267  * in order to insert checksums into the metadata in large chunks,
1268  * we wait until bio submission time.   All the pages in the bio are
1269  * checksummed and sums are attached onto the ordered extent record.
1270  *
1271  * At IO completion time the cums attached on the ordered extent record
1272  * are inserted into the btree
1273  */
1274 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1275                           int mirror_num, unsigned long bio_flags)
1276 {
1277         struct btrfs_root *root = BTRFS_I(inode)->root;
1278         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1279 }
1280
1281 /*
1282  * extent_io.c submission hook. This does the right thing for csum calculation
1283  * on write, or reading the csums from the tree before a read
1284  */
1285 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1286                           int mirror_num, unsigned long bio_flags)
1287 {
1288         struct btrfs_root *root = BTRFS_I(inode)->root;
1289         int ret = 0;
1290         int skip_sum;
1291
1292         skip_sum = btrfs_test_flag(inode, NODATASUM);
1293
1294         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1295         BUG_ON(ret);
1296
1297         if (!(rw & (1 << BIO_RW))) {
1298                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1299                         return btrfs_submit_compressed_read(inode, bio,
1300                                                     mirror_num, bio_flags);
1301                 } else if (!skip_sum)
1302                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1303                 goto mapit;
1304         } else if (!skip_sum) {
1305                 /* csum items have already been cloned */
1306                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1307                         goto mapit;
1308                 /* we're doing a write, do the async checksumming */
1309                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1310                                    inode, rw, bio, mirror_num,
1311                                    bio_flags, __btrfs_submit_bio_start,
1312                                    __btrfs_submit_bio_done);
1313         }
1314
1315 mapit:
1316         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1317 }
1318
1319 /*
1320  * given a list of ordered sums record them in the inode.  This happens
1321  * at IO completion time based on sums calculated at bio submission time.
1322  */
1323 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1324                              struct inode *inode, u64 file_offset,
1325                              struct list_head *list)
1326 {
1327         struct btrfs_ordered_sum *sum;
1328
1329         btrfs_set_trans_block_group(trans, inode);
1330
1331         list_for_each_entry(sum, list, list) {
1332                 btrfs_csum_file_blocks(trans,
1333                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1334         }
1335         return 0;
1336 }
1337
1338 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1339 {
1340         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1341                 WARN_ON(1);
1342         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1343                                    GFP_NOFS);
1344 }
1345
1346 /* see btrfs_writepage_start_hook for details on why this is required */
1347 struct btrfs_writepage_fixup {
1348         struct page *page;
1349         struct btrfs_work work;
1350 };
1351
1352 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1353 {
1354         struct btrfs_writepage_fixup *fixup;
1355         struct btrfs_ordered_extent *ordered;
1356         struct page *page;
1357         struct inode *inode;
1358         u64 page_start;
1359         u64 page_end;
1360
1361         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1362         page = fixup->page;
1363 again:
1364         lock_page(page);
1365         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1366                 ClearPageChecked(page);
1367                 goto out_page;
1368         }
1369
1370         inode = page->mapping->host;
1371         page_start = page_offset(page);
1372         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1373
1374         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1375
1376         /* already ordered? We're done */
1377         if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1378                              EXTENT_ORDERED, 0)) {
1379                 goto out;
1380         }
1381
1382         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1383         if (ordered) {
1384                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1385                               page_end, GFP_NOFS);
1386                 unlock_page(page);
1387                 btrfs_start_ordered_extent(inode, ordered, 1);
1388                 goto again;
1389         }
1390
1391         btrfs_set_extent_delalloc(inode, page_start, page_end);
1392         ClearPageChecked(page);
1393 out:
1394         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1395 out_page:
1396         unlock_page(page);
1397         page_cache_release(page);
1398 }
1399
1400 /*
1401  * There are a few paths in the higher layers of the kernel that directly
1402  * set the page dirty bit without asking the filesystem if it is a
1403  * good idea.  This causes problems because we want to make sure COW
1404  * properly happens and the data=ordered rules are followed.
1405  *
1406  * In our case any range that doesn't have the ORDERED bit set
1407  * hasn't been properly setup for IO.  We kick off an async process
1408  * to fix it up.  The async helper will wait for ordered extents, set
1409  * the delalloc bit and make it safe to write the page.
1410  */
1411 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1412 {
1413         struct inode *inode = page->mapping->host;
1414         struct btrfs_writepage_fixup *fixup;
1415         struct btrfs_root *root = BTRFS_I(inode)->root;
1416         int ret;
1417
1418         ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1419                              EXTENT_ORDERED, 0);
1420         if (ret)
1421                 return 0;
1422
1423         if (PageChecked(page))
1424                 return -EAGAIN;
1425
1426         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1427         if (!fixup)
1428                 return -EAGAIN;
1429
1430         SetPageChecked(page);
1431         page_cache_get(page);
1432         fixup->work.func = btrfs_writepage_fixup_worker;
1433         fixup->page = page;
1434         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1435         return -EAGAIN;
1436 }
1437
1438 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1439                                        struct inode *inode, u64 file_pos,
1440                                        u64 disk_bytenr, u64 disk_num_bytes,
1441                                        u64 num_bytes, u64 ram_bytes,
1442                                        u64 locked_end,
1443                                        u8 compression, u8 encryption,
1444                                        u16 other_encoding, int extent_type)
1445 {
1446         struct btrfs_root *root = BTRFS_I(inode)->root;
1447         struct btrfs_file_extent_item *fi;
1448         struct btrfs_path *path;
1449         struct extent_buffer *leaf;
1450         struct btrfs_key ins;
1451         u64 hint;
1452         int ret;
1453
1454         path = btrfs_alloc_path();
1455         BUG_ON(!path);
1456
1457         path->leave_spinning = 1;
1458         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1459                                  file_pos + num_bytes, locked_end,
1460                                  file_pos, &hint);
1461         BUG_ON(ret);
1462
1463         ins.objectid = inode->i_ino;
1464         ins.offset = file_pos;
1465         ins.type = BTRFS_EXTENT_DATA_KEY;
1466         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1467         BUG_ON(ret);
1468         leaf = path->nodes[0];
1469         fi = btrfs_item_ptr(leaf, path->slots[0],
1470                             struct btrfs_file_extent_item);
1471         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1472         btrfs_set_file_extent_type(leaf, fi, extent_type);
1473         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1474         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1475         btrfs_set_file_extent_offset(leaf, fi, 0);
1476         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1477         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1478         btrfs_set_file_extent_compression(leaf, fi, compression);
1479         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1480         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1481
1482         btrfs_unlock_up_safe(path, 1);
1483         btrfs_set_lock_blocking(leaf);
1484
1485         btrfs_mark_buffer_dirty(leaf);
1486
1487         inode_add_bytes(inode, num_bytes);
1488         btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1489
1490         ins.objectid = disk_bytenr;
1491         ins.offset = disk_num_bytes;
1492         ins.type = BTRFS_EXTENT_ITEM_KEY;
1493         ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1494                                           root->root_key.objectid,
1495                                           trans->transid, inode->i_ino, &ins);
1496         BUG_ON(ret);
1497         btrfs_free_path(path);
1498
1499         return 0;
1500 }
1501
1502 /*
1503  * helper function for btrfs_finish_ordered_io, this
1504  * just reads in some of the csum leaves to prime them into ram
1505  * before we start the transaction.  It limits the amount of btree
1506  * reads required while inside the transaction.
1507  */
1508 static noinline void reada_csum(struct btrfs_root *root,
1509                                 struct btrfs_path *path,
1510                                 struct btrfs_ordered_extent *ordered_extent)
1511 {
1512         struct btrfs_ordered_sum *sum;
1513         u64 bytenr;
1514
1515         sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1516                          list);
1517         bytenr = sum->sums[0].bytenr;
1518
1519         /*
1520          * we don't care about the results, the point of this search is
1521          * just to get the btree leaves into ram
1522          */
1523         btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1524 }
1525
1526 /* as ordered data IO finishes, this gets called so we can finish
1527  * an ordered extent if the range of bytes in the file it covers are
1528  * fully written.
1529  */
1530 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1531 {
1532         struct btrfs_root *root = BTRFS_I(inode)->root;
1533         struct btrfs_trans_handle *trans;
1534         struct btrfs_ordered_extent *ordered_extent = NULL;
1535         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1536         struct btrfs_path *path;
1537         int compressed = 0;
1538         int ret;
1539
1540         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1541         if (!ret)
1542                 return 0;
1543
1544         /*
1545          * before we join the transaction, try to do some of our IO.
1546          * This will limit the amount of IO that we have to do with
1547          * the transaction running.  We're unlikely to need to do any
1548          * IO if the file extents are new, the disk_i_size checks
1549          * covers the most common case.
1550          */
1551         if (start < BTRFS_I(inode)->disk_i_size) {
1552                 path = btrfs_alloc_path();
1553                 if (path) {
1554                         ret = btrfs_lookup_file_extent(NULL, root, path,
1555                                                        inode->i_ino,
1556                                                        start, 0);
1557                         ordered_extent = btrfs_lookup_ordered_extent(inode,
1558                                                                      start);
1559                         if (!list_empty(&ordered_extent->list)) {
1560                                 btrfs_release_path(root, path);
1561                                 reada_csum(root, path, ordered_extent);
1562                         }
1563                         btrfs_free_path(path);
1564                 }
1565         }
1566
1567         trans = btrfs_join_transaction(root, 1);
1568
1569         if (!ordered_extent)
1570                 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1571         BUG_ON(!ordered_extent);
1572         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1573                 goto nocow;
1574
1575         lock_extent(io_tree, ordered_extent->file_offset,
1576                     ordered_extent->file_offset + ordered_extent->len - 1,
1577                     GFP_NOFS);
1578
1579         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1580                 compressed = 1;
1581         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1582                 BUG_ON(compressed);
1583                 ret = btrfs_mark_extent_written(trans, root, inode,
1584                                                 ordered_extent->file_offset,
1585                                                 ordered_extent->file_offset +
1586                                                 ordered_extent->len);
1587                 BUG_ON(ret);
1588         } else {
1589                 ret = insert_reserved_file_extent(trans, inode,
1590                                                 ordered_extent->file_offset,
1591                                                 ordered_extent->start,
1592                                                 ordered_extent->disk_len,
1593                                                 ordered_extent->len,
1594                                                 ordered_extent->len,
1595                                                 ordered_extent->file_offset +
1596                                                 ordered_extent->len,
1597                                                 compressed, 0, 0,
1598                                                 BTRFS_FILE_EXTENT_REG);
1599                 BUG_ON(ret);
1600         }
1601         unlock_extent(io_tree, ordered_extent->file_offset,
1602                     ordered_extent->file_offset + ordered_extent->len - 1,
1603                     GFP_NOFS);
1604 nocow:
1605         add_pending_csums(trans, inode, ordered_extent->file_offset,
1606                           &ordered_extent->list);
1607
1608         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1609         btrfs_ordered_update_i_size(inode, ordered_extent);
1610         btrfs_update_inode(trans, root, inode);
1611         btrfs_remove_ordered_extent(inode, ordered_extent);
1612         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1613
1614         /* once for us */
1615         btrfs_put_ordered_extent(ordered_extent);
1616         /* once for the tree */
1617         btrfs_put_ordered_extent(ordered_extent);
1618
1619         btrfs_end_transaction(trans, root);
1620         return 0;
1621 }
1622
1623 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1624                                 struct extent_state *state, int uptodate)
1625 {
1626         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1627 }
1628
1629 /*
1630  * When IO fails, either with EIO or csum verification fails, we
1631  * try other mirrors that might have a good copy of the data.  This
1632  * io_failure_record is used to record state as we go through all the
1633  * mirrors.  If another mirror has good data, the page is set up to date
1634  * and things continue.  If a good mirror can't be found, the original
1635  * bio end_io callback is called to indicate things have failed.
1636  */
1637 struct io_failure_record {
1638         struct page *page;
1639         u64 start;
1640         u64 len;
1641         u64 logical;
1642         unsigned long bio_flags;
1643         int last_mirror;
1644 };
1645
1646 static int btrfs_io_failed_hook(struct bio *failed_bio,
1647                          struct page *page, u64 start, u64 end,
1648                          struct extent_state *state)
1649 {
1650         struct io_failure_record *failrec = NULL;
1651         u64 private;
1652         struct extent_map *em;
1653         struct inode *inode = page->mapping->host;
1654         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1655         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1656         struct bio *bio;
1657         int num_copies;
1658         int ret;
1659         int rw;
1660         u64 logical;
1661
1662         ret = get_state_private(failure_tree, start, &private);
1663         if (ret) {
1664                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1665                 if (!failrec)
1666                         return -ENOMEM;
1667                 failrec->start = start;
1668                 failrec->len = end - start + 1;
1669                 failrec->last_mirror = 0;
1670                 failrec->bio_flags = 0;
1671
1672                 spin_lock(&em_tree->lock);
1673                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1674                 if (em->start > start || em->start + em->len < start) {
1675                         free_extent_map(em);
1676                         em = NULL;
1677                 }
1678                 spin_unlock(&em_tree->lock);
1679
1680                 if (!em || IS_ERR(em)) {
1681                         kfree(failrec);
1682                         return -EIO;
1683                 }
1684                 logical = start - em->start;
1685                 logical = em->block_start + logical;
1686                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1687                         logical = em->block_start;
1688                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1689                 }
1690                 failrec->logical = logical;
1691                 free_extent_map(em);
1692                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1693                                 EXTENT_DIRTY, GFP_NOFS);
1694                 set_state_private(failure_tree, start,
1695                                  (u64)(unsigned long)failrec);
1696         } else {
1697                 failrec = (struct io_failure_record *)(unsigned long)private;
1698         }
1699         num_copies = btrfs_num_copies(
1700                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1701                               failrec->logical, failrec->len);
1702         failrec->last_mirror++;
1703         if (!state) {
1704                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1705                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1706                                                     failrec->start,
1707                                                     EXTENT_LOCKED);
1708                 if (state && state->start != failrec->start)
1709                         state = NULL;
1710                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1711         }
1712         if (!state || failrec->last_mirror > num_copies) {
1713                 set_state_private(failure_tree, failrec->start, 0);
1714                 clear_extent_bits(failure_tree, failrec->start,
1715                                   failrec->start + failrec->len - 1,
1716                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1717                 kfree(failrec);
1718                 return -EIO;
1719         }
1720         bio = bio_alloc(GFP_NOFS, 1);
1721         bio->bi_private = state;
1722         bio->bi_end_io = failed_bio->bi_end_io;
1723         bio->bi_sector = failrec->logical >> 9;
1724         bio->bi_bdev = failed_bio->bi_bdev;
1725         bio->bi_size = 0;
1726
1727         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1728         if (failed_bio->bi_rw & (1 << BIO_RW))
1729                 rw = WRITE;
1730         else
1731                 rw = READ;
1732
1733         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1734                                                       failrec->last_mirror,
1735                                                       failrec->bio_flags);
1736         return 0;
1737 }
1738
1739 /*
1740  * each time an IO finishes, we do a fast check in the IO failure tree
1741  * to see if we need to process or clean up an io_failure_record
1742  */
1743 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1744 {
1745         u64 private;
1746         u64 private_failure;
1747         struct io_failure_record *failure;
1748         int ret;
1749
1750         private = 0;
1751         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1752                              (u64)-1, 1, EXTENT_DIRTY)) {
1753                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1754                                         start, &private_failure);
1755                 if (ret == 0) {
1756                         failure = (struct io_failure_record *)(unsigned long)
1757                                    private_failure;
1758                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1759                                           failure->start, 0);
1760                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1761                                           failure->start,
1762                                           failure->start + failure->len - 1,
1763                                           EXTENT_DIRTY | EXTENT_LOCKED,
1764                                           GFP_NOFS);
1765                         kfree(failure);
1766                 }
1767         }
1768         return 0;
1769 }
1770
1771 /*
1772  * when reads are done, we need to check csums to verify the data is correct
1773  * if there's a match, we allow the bio to finish.  If not, we go through
1774  * the io_failure_record routines to find good copies
1775  */
1776 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1777                                struct extent_state *state)
1778 {
1779         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1780         struct inode *inode = page->mapping->host;
1781         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1782         char *kaddr;
1783         u64 private = ~(u32)0;
1784         int ret;
1785         struct btrfs_root *root = BTRFS_I(inode)->root;
1786         u32 csum = ~(u32)0;
1787
1788         if (PageChecked(page)) {
1789                 ClearPageChecked(page);
1790                 goto good;
1791         }
1792         if (btrfs_test_flag(inode, NODATASUM))
1793                 return 0;
1794
1795         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1796             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1797                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1798                                   GFP_NOFS);
1799                 return 0;
1800         }
1801
1802         if (state && state->start == start) {
1803                 private = state->private;
1804                 ret = 0;
1805         } else {
1806                 ret = get_state_private(io_tree, start, &private);
1807         }
1808         kaddr = kmap_atomic(page, KM_USER0);
1809         if (ret)
1810                 goto zeroit;
1811
1812         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1813         btrfs_csum_final(csum, (char *)&csum);
1814         if (csum != private)
1815                 goto zeroit;
1816
1817         kunmap_atomic(kaddr, KM_USER0);
1818 good:
1819         /* if the io failure tree for this inode is non-empty,
1820          * check to see if we've recovered from a failed IO
1821          */
1822         btrfs_clean_io_failures(inode, start);
1823         return 0;
1824
1825 zeroit:
1826         if (printk_ratelimit()) {
1827                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1828                        "private %llu\n", page->mapping->host->i_ino,
1829                        (unsigned long long)start, csum,
1830                        (unsigned long long)private);
1831         }
1832         memset(kaddr + offset, 1, end - start + 1);
1833         flush_dcache_page(page);
1834         kunmap_atomic(kaddr, KM_USER0);
1835         if (private == 0)
1836                 return 0;
1837         return -EIO;
1838 }
1839
1840 /*
1841  * This creates an orphan entry for the given inode in case something goes
1842  * wrong in the middle of an unlink/truncate.
1843  */
1844 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1845 {
1846         struct btrfs_root *root = BTRFS_I(inode)->root;
1847         int ret = 0;
1848
1849         spin_lock(&root->list_lock);
1850
1851         /* already on the orphan list, we're good */
1852         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1853                 spin_unlock(&root->list_lock);
1854                 return 0;
1855         }
1856
1857         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1858
1859         spin_unlock(&root->list_lock);
1860
1861         /*
1862          * insert an orphan item to track this unlinked/truncated file
1863          */
1864         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1865
1866         return ret;
1867 }
1868
1869 /*
1870  * We have done the truncate/delete so we can go ahead and remove the orphan
1871  * item for this particular inode.
1872  */
1873 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1874 {
1875         struct btrfs_root *root = BTRFS_I(inode)->root;
1876         int ret = 0;
1877
1878         spin_lock(&root->list_lock);
1879
1880         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1881                 spin_unlock(&root->list_lock);
1882                 return 0;
1883         }
1884
1885         list_del_init(&BTRFS_I(inode)->i_orphan);
1886         if (!trans) {
1887                 spin_unlock(&root->list_lock);
1888                 return 0;
1889         }
1890
1891         spin_unlock(&root->list_lock);
1892
1893         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1894
1895         return ret;
1896 }
1897
1898 /*
1899  * this cleans up any orphans that may be left on the list from the last use
1900  * of this root.
1901  */
1902 void btrfs_orphan_cleanup(struct btrfs_root *root)
1903 {
1904         struct btrfs_path *path;
1905         struct extent_buffer *leaf;
1906         struct btrfs_item *item;
1907         struct btrfs_key key, found_key;
1908         struct btrfs_trans_handle *trans;
1909         struct inode *inode;
1910         int ret = 0, nr_unlink = 0, nr_truncate = 0;
1911
1912         path = btrfs_alloc_path();
1913         if (!path)
1914                 return;
1915         path->reada = -1;
1916
1917         key.objectid = BTRFS_ORPHAN_OBJECTID;
1918         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1919         key.offset = (u64)-1;
1920
1921
1922         while (1) {
1923                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1924                 if (ret < 0) {
1925                         printk(KERN_ERR "Error searching slot for orphan: %d"
1926                                "\n", ret);
1927                         break;
1928                 }
1929
1930                 /*
1931                  * if ret == 0 means we found what we were searching for, which
1932                  * is weird, but possible, so only screw with path if we didnt
1933                  * find the key and see if we have stuff that matches
1934                  */
1935                 if (ret > 0) {
1936                         if (path->slots[0] == 0)
1937                                 break;
1938                         path->slots[0]--;
1939                 }
1940
1941                 /* pull out the item */
1942                 leaf = path->nodes[0];
1943                 item = btrfs_item_nr(leaf, path->slots[0]);
1944                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1945
1946                 /* make sure the item matches what we want */
1947                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1948                         break;
1949                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1950                         break;
1951
1952                 /* release the path since we're done with it */
1953                 btrfs_release_path(root, path);
1954
1955                 /*
1956                  * this is where we are basically btrfs_lookup, without the
1957                  * crossing root thing.  we store the inode number in the
1958                  * offset of the orphan item.
1959                  */
1960                 inode = btrfs_iget_locked(root->fs_info->sb,
1961                                           found_key.offset, root);
1962                 if (!inode)
1963                         break;
1964
1965                 if (inode->i_state & I_NEW) {
1966                         BTRFS_I(inode)->root = root;
1967
1968                         /* have to set the location manually */
1969                         BTRFS_I(inode)->location.objectid = inode->i_ino;
1970                         BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1971                         BTRFS_I(inode)->location.offset = 0;
1972
1973                         btrfs_read_locked_inode(inode);
1974                         unlock_new_inode(inode);
1975                 }
1976
1977                 /*
1978                  * add this inode to the orphan list so btrfs_orphan_del does
1979                  * the proper thing when we hit it
1980                  */
1981                 spin_lock(&root->list_lock);
1982                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1983                 spin_unlock(&root->list_lock);
1984
1985                 /*
1986                  * if this is a bad inode, means we actually succeeded in
1987                  * removing the inode, but not the orphan record, which means
1988                  * we need to manually delete the orphan since iput will just
1989                  * do a destroy_inode
1990                  */
1991                 if (is_bad_inode(inode)) {
1992                         trans = btrfs_start_transaction(root, 1);
1993                         btrfs_orphan_del(trans, inode);
1994                         btrfs_end_transaction(trans, root);
1995                         iput(inode);
1996                         continue;
1997                 }
1998
1999                 /* if we have links, this was a truncate, lets do that */
2000                 if (inode->i_nlink) {
2001                         nr_truncate++;
2002                         btrfs_truncate(inode);
2003                 } else {
2004                         nr_unlink++;
2005                 }
2006
2007                 /* this will do delete_inode and everything for us */
2008                 iput(inode);
2009         }
2010
2011         if (nr_unlink)
2012                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2013         if (nr_truncate)
2014                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2015
2016         btrfs_free_path(path);
2017 }
2018
2019 /*
2020  * read an inode from the btree into the in-memory inode
2021  */
2022 void btrfs_read_locked_inode(struct inode *inode)
2023 {
2024         struct btrfs_path *path;
2025         struct extent_buffer *leaf;
2026         struct btrfs_inode_item *inode_item;
2027         struct btrfs_timespec *tspec;
2028         struct btrfs_root *root = BTRFS_I(inode)->root;
2029         struct btrfs_key location;
2030         u64 alloc_group_block;
2031         u32 rdev;
2032         int ret;
2033
2034         path = btrfs_alloc_path();
2035         BUG_ON(!path);
2036         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2037
2038         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2039         if (ret)
2040                 goto make_bad;
2041
2042         leaf = path->nodes[0];
2043         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2044                                     struct btrfs_inode_item);
2045
2046         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2047         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2048         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2049         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2050         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2051
2052         tspec = btrfs_inode_atime(inode_item);
2053         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2054         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2055
2056         tspec = btrfs_inode_mtime(inode_item);
2057         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2058         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2059
2060         tspec = btrfs_inode_ctime(inode_item);
2061         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2062         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2063
2064         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2065         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2066         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2067         inode->i_generation = BTRFS_I(inode)->generation;
2068         inode->i_rdev = 0;
2069         rdev = btrfs_inode_rdev(leaf, inode_item);
2070
2071         BTRFS_I(inode)->index_cnt = (u64)-1;
2072         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2073
2074         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2075
2076         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2077                                                 alloc_group_block, 0);
2078         btrfs_free_path(path);
2079         inode_item = NULL;
2080
2081         switch (inode->i_mode & S_IFMT) {
2082         case S_IFREG:
2083                 inode->i_mapping->a_ops = &btrfs_aops;
2084                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2085                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2086                 inode->i_fop = &btrfs_file_operations;
2087                 inode->i_op = &btrfs_file_inode_operations;
2088                 break;
2089         case S_IFDIR:
2090                 inode->i_fop = &btrfs_dir_file_operations;
2091                 if (root == root->fs_info->tree_root)
2092                         inode->i_op = &btrfs_dir_ro_inode_operations;
2093                 else
2094                         inode->i_op = &btrfs_dir_inode_operations;
2095                 break;
2096         case S_IFLNK:
2097                 inode->i_op = &btrfs_symlink_inode_operations;
2098                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2099                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2100                 break;
2101         default:
2102                 inode->i_op = &btrfs_special_inode_operations;
2103                 init_special_inode(inode, inode->i_mode, rdev);
2104                 break;
2105         }
2106         return;
2107
2108 make_bad:
2109         btrfs_free_path(path);
2110         make_bad_inode(inode);
2111 }
2112
2113 /*
2114  * given a leaf and an inode, copy the inode fields into the leaf
2115  */
2116 static void fill_inode_item(struct btrfs_trans_handle *trans,
2117                             struct extent_buffer *leaf,
2118                             struct btrfs_inode_item *item,
2119                             struct inode *inode)
2120 {
2121         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2122         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2123         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2124         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2125         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2126
2127         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2128                                inode->i_atime.tv_sec);
2129         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2130                                 inode->i_atime.tv_nsec);
2131
2132         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2133                                inode->i_mtime.tv_sec);
2134         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2135                                 inode->i_mtime.tv_nsec);
2136
2137         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2138                                inode->i_ctime.tv_sec);
2139         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2140                                 inode->i_ctime.tv_nsec);
2141
2142         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2143         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2144         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2145         btrfs_set_inode_transid(leaf, item, trans->transid);
2146         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2147         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2148         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2149 }
2150
2151 /*
2152  * copy everything in the in-memory inode into the btree.
2153  */
2154 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2155                                 struct btrfs_root *root, struct inode *inode)
2156 {
2157         struct btrfs_inode_item *inode_item;
2158         struct btrfs_path *path;
2159         struct extent_buffer *leaf;
2160         int ret;
2161
2162         path = btrfs_alloc_path();
2163         BUG_ON(!path);
2164         path->leave_spinning = 1;
2165         ret = btrfs_lookup_inode(trans, root, path,
2166                                  &BTRFS_I(inode)->location, 1);
2167         if (ret) {
2168                 if (ret > 0)
2169                         ret = -ENOENT;
2170                 goto failed;
2171         }
2172
2173         btrfs_unlock_up_safe(path, 1);
2174         leaf = path->nodes[0];
2175         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2176                                   struct btrfs_inode_item);
2177
2178         fill_inode_item(trans, leaf, inode_item, inode);
2179         btrfs_mark_buffer_dirty(leaf);
2180         btrfs_set_inode_last_trans(trans, inode);
2181         ret = 0;
2182 failed:
2183         btrfs_free_path(path);
2184         return ret;
2185 }
2186
2187
2188 /*
2189  * unlink helper that gets used here in inode.c and in the tree logging
2190  * recovery code.  It remove a link in a directory with a given name, and
2191  * also drops the back refs in the inode to the directory
2192  */
2193 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2194                        struct btrfs_root *root,
2195                        struct inode *dir, struct inode *inode,
2196                        const char *name, int name_len)
2197 {
2198         struct btrfs_path *path;
2199         int ret = 0;
2200         struct extent_buffer *leaf;
2201         struct btrfs_dir_item *di;
2202         struct btrfs_key key;
2203         u64 index;
2204
2205         path = btrfs_alloc_path();
2206         if (!path) {
2207                 ret = -ENOMEM;
2208                 goto err;
2209         }
2210
2211         path->leave_spinning = 1;
2212         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2213                                     name, name_len, -1);
2214         if (IS_ERR(di)) {
2215                 ret = PTR_ERR(di);
2216                 goto err;
2217         }
2218         if (!di) {
2219                 ret = -ENOENT;
2220                 goto err;
2221         }
2222         leaf = path->nodes[0];
2223         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2224         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2225         if (ret)
2226                 goto err;
2227         btrfs_release_path(root, path);
2228
2229         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2230                                   inode->i_ino,
2231                                   dir->i_ino, &index);
2232         if (ret) {
2233                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2234                        "inode %lu parent %lu\n", name_len, name,
2235                        inode->i_ino, dir->i_ino);
2236                 goto err;
2237         }
2238
2239         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2240                                          index, name, name_len, -1);
2241         if (IS_ERR(di)) {
2242                 ret = PTR_ERR(di);
2243                 goto err;
2244         }
2245         if (!di) {
2246                 ret = -ENOENT;
2247                 goto err;
2248         }
2249         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2250         btrfs_release_path(root, path);
2251
2252         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2253                                          inode, dir->i_ino);
2254         BUG_ON(ret != 0 && ret != -ENOENT);
2255
2256         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2257                                            dir, index);
2258         BUG_ON(ret);
2259 err:
2260         btrfs_free_path(path);
2261         if (ret)
2262                 goto out;
2263
2264         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2265         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2266         btrfs_update_inode(trans, root, dir);
2267         btrfs_drop_nlink(inode);
2268         ret = btrfs_update_inode(trans, root, inode);
2269         dir->i_sb->s_dirt = 1;
2270 out:
2271         return ret;
2272 }
2273
2274 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2275 {
2276         struct btrfs_root *root;
2277         struct btrfs_trans_handle *trans;
2278         struct inode *inode = dentry->d_inode;
2279         int ret;
2280         unsigned long nr = 0;
2281
2282         root = BTRFS_I(dir)->root;
2283
2284         trans = btrfs_start_transaction(root, 1);
2285
2286         btrfs_set_trans_block_group(trans, dir);
2287
2288         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2289
2290         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2291                                  dentry->d_name.name, dentry->d_name.len);
2292
2293         if (inode->i_nlink == 0)
2294                 ret = btrfs_orphan_add(trans, inode);
2295
2296         nr = trans->blocks_used;
2297
2298         btrfs_end_transaction_throttle(trans, root);
2299         btrfs_btree_balance_dirty(root, nr);
2300         return ret;
2301 }
2302
2303 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2304 {
2305         struct inode *inode = dentry->d_inode;
2306         int err = 0;
2307         int ret;
2308         struct btrfs_root *root = BTRFS_I(dir)->root;
2309         struct btrfs_trans_handle *trans;
2310         unsigned long nr = 0;
2311
2312         /*
2313          * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2314          * the root of a subvolume or snapshot
2315          */
2316         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2317             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2318                 return -ENOTEMPTY;
2319         }
2320
2321         trans = btrfs_start_transaction(root, 1);
2322         btrfs_set_trans_block_group(trans, dir);
2323
2324         err = btrfs_orphan_add(trans, inode);
2325         if (err)
2326                 goto fail_trans;
2327
2328         /* now the directory is empty */
2329         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2330                                  dentry->d_name.name, dentry->d_name.len);
2331         if (!err)
2332                 btrfs_i_size_write(inode, 0);
2333
2334 fail_trans:
2335         nr = trans->blocks_used;
2336         ret = btrfs_end_transaction_throttle(trans, root);
2337         btrfs_btree_balance_dirty(root, nr);
2338
2339         if (ret && !err)
2340                 err = ret;
2341         return err;
2342 }
2343
2344 #if 0
2345 /*
2346  * when truncating bytes in a file, it is possible to avoid reading
2347  * the leaves that contain only checksum items.  This can be the
2348  * majority of the IO required to delete a large file, but it must
2349  * be done carefully.
2350  *
2351  * The keys in the level just above the leaves are checked to make sure
2352  * the lowest key in a given leaf is a csum key, and starts at an offset
2353  * after the new  size.
2354  *
2355  * Then the key for the next leaf is checked to make sure it also has
2356  * a checksum item for the same file.  If it does, we know our target leaf
2357  * contains only checksum items, and it can be safely freed without reading
2358  * it.
2359  *
2360  * This is just an optimization targeted at large files.  It may do
2361  * nothing.  It will return 0 unless things went badly.
2362  */
2363 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2364                                      struct btrfs_root *root,
2365                                      struct btrfs_path *path,
2366                                      struct inode *inode, u64 new_size)
2367 {
2368         struct btrfs_key key;
2369         int ret;
2370         int nritems;
2371         struct btrfs_key found_key;
2372         struct btrfs_key other_key;
2373         struct btrfs_leaf_ref *ref;
2374         u64 leaf_gen;
2375         u64 leaf_start;
2376
2377         path->lowest_level = 1;
2378         key.objectid = inode->i_ino;
2379         key.type = BTRFS_CSUM_ITEM_KEY;
2380         key.offset = new_size;
2381 again:
2382         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2383         if (ret < 0)
2384                 goto out;
2385
2386         if (path->nodes[1] == NULL) {
2387                 ret = 0;
2388                 goto out;
2389         }
2390         ret = 0;
2391         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2392         nritems = btrfs_header_nritems(path->nodes[1]);
2393
2394         if (!nritems)
2395                 goto out;
2396
2397         if (path->slots[1] >= nritems)
2398                 goto next_node;
2399
2400         /* did we find a key greater than anything we want to delete? */
2401         if (found_key.objectid > inode->i_ino ||
2402            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2403                 goto out;
2404
2405         /* we check the next key in the node to make sure the leave contains
2406          * only checksum items.  This comparison doesn't work if our
2407          * leaf is the last one in the node
2408          */
2409         if (path->slots[1] + 1 >= nritems) {
2410 next_node:
2411                 /* search forward from the last key in the node, this
2412                  * will bring us into the next node in the tree
2413                  */
2414                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2415
2416                 /* unlikely, but we inc below, so check to be safe */
2417                 if (found_key.offset == (u64)-1)
2418                         goto out;
2419
2420                 /* search_forward needs a path with locks held, do the
2421                  * search again for the original key.  It is possible
2422                  * this will race with a balance and return a path that
2423                  * we could modify, but this drop is just an optimization
2424                  * and is allowed to miss some leaves.
2425                  */
2426                 btrfs_release_path(root, path);
2427                 found_key.offset++;
2428
2429                 /* setup a max key for search_forward */
2430                 other_key.offset = (u64)-1;
2431                 other_key.type = key.type;
2432                 other_key.objectid = key.objectid;
2433
2434                 path->keep_locks = 1;
2435                 ret = btrfs_search_forward(root, &found_key, &other_key,
2436                                            path, 0, 0);
2437                 path->keep_locks = 0;
2438                 if (ret || found_key.objectid != key.objectid ||
2439                     found_key.type != key.type) {
2440                         ret = 0;
2441                         goto out;
2442                 }
2443
2444                 key.offset = found_key.offset;
2445                 btrfs_release_path(root, path);
2446                 cond_resched();
2447                 goto again;
2448         }
2449
2450         /* we know there's one more slot after us in the tree,
2451          * read that key so we can verify it is also a checksum item
2452          */
2453         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2454
2455         if (found_key.objectid < inode->i_ino)
2456                 goto next_key;
2457
2458         if (found_key.type != key.type || found_key.offset < new_size)
2459                 goto next_key;
2460
2461         /*
2462          * if the key for the next leaf isn't a csum key from this objectid,
2463          * we can't be sure there aren't good items inside this leaf.
2464          * Bail out
2465          */
2466         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2467                 goto out;
2468
2469         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2470         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2471         /*
2472          * it is safe to delete this leaf, it contains only
2473          * csum items from this inode at an offset >= new_size
2474          */
2475         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2476         BUG_ON(ret);
2477
2478         if (root->ref_cows && leaf_gen < trans->transid) {
2479                 ref = btrfs_alloc_leaf_ref(root, 0);
2480                 if (ref) {
2481                         ref->root_gen = root->root_key.offset;
2482                         ref->bytenr = leaf_start;
2483                         ref->owner = 0;
2484                         ref->generation = leaf_gen;
2485                         ref->nritems = 0;
2486
2487                         btrfs_sort_leaf_ref(ref);
2488
2489                         ret = btrfs_add_leaf_ref(root, ref, 0);
2490                         WARN_ON(ret);
2491                         btrfs_free_leaf_ref(root, ref);
2492                 } else {
2493                         WARN_ON(1);
2494                 }
2495         }
2496 next_key:
2497         btrfs_release_path(root, path);
2498
2499         if (other_key.objectid == inode->i_ino &&
2500             other_key.type == key.type && other_key.offset > key.offset) {
2501                 key.offset = other_key.offset;
2502                 cond_resched();
2503                 goto again;
2504         }
2505         ret = 0;
2506 out:
2507         /* fixup any changes we've made to the path */
2508         path->lowest_level = 0;
2509         path->keep_locks = 0;
2510         btrfs_release_path(root, path);
2511         return ret;
2512 }
2513
2514 #endif
2515
2516 /*
2517  * this can truncate away extent items, csum items and directory items.
2518  * It starts at a high offset and removes keys until it can't find
2519  * any higher than new_size
2520  *
2521  * csum items that cross the new i_size are truncated to the new size
2522  * as well.
2523  *
2524  * min_type is the minimum key type to truncate down to.  If set to 0, this
2525  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2526  */
2527 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2528                                         struct btrfs_root *root,
2529                                         struct inode *inode,
2530                                         u64 new_size, u32 min_type)
2531 {
2532         int ret;
2533         struct btrfs_path *path;
2534         struct btrfs_key key;
2535         struct btrfs_key found_key;
2536         u32 found_type = (u8)-1;
2537         struct extent_buffer *leaf;
2538         struct btrfs_file_extent_item *fi;
2539         u64 extent_start = 0;
2540         u64 extent_num_bytes = 0;
2541         u64 item_end = 0;
2542         u64 root_gen = 0;
2543         u64 root_owner = 0;
2544         int found_extent;
2545         int del_item;
2546         int pending_del_nr = 0;
2547         int pending_del_slot = 0;
2548         int extent_type = -1;
2549         int encoding;
2550         u64 mask = root->sectorsize - 1;
2551
2552         if (root->ref_cows)
2553                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2554         path = btrfs_alloc_path();
2555         path->reada = -1;
2556         BUG_ON(!path);
2557
2558         /* FIXME, add redo link to tree so we don't leak on crash */
2559         key.objectid = inode->i_ino;
2560         key.offset = (u64)-1;
2561         key.type = (u8)-1;
2562
2563 search_again:
2564         path->leave_spinning = 1;
2565         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2566         if (ret < 0)
2567                 goto error;
2568
2569         if (ret > 0) {
2570                 /* there are no items in the tree for us to truncate, we're
2571                  * done
2572                  */
2573                 if (path->slots[0] == 0) {
2574                         ret = 0;
2575                         goto error;
2576                 }
2577                 path->slots[0]--;
2578         }
2579
2580         while (1) {
2581                 fi = NULL;
2582                 leaf = path->nodes[0];
2583                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2584                 found_type = btrfs_key_type(&found_key);
2585                 encoding = 0;
2586
2587                 if (found_key.objectid != inode->i_ino)
2588                         break;
2589
2590                 if (found_type < min_type)
2591                         break;
2592
2593                 item_end = found_key.offset;
2594                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2595                         fi = btrfs_item_ptr(leaf, path->slots[0],
2596                                             struct btrfs_file_extent_item);
2597                         extent_type = btrfs_file_extent_type(leaf, fi);
2598                         encoding = btrfs_file_extent_compression(leaf, fi);
2599                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2600                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2601
2602                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2603                                 item_end +=
2604                                     btrfs_file_extent_num_bytes(leaf, fi);
2605                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2606                                 item_end += btrfs_file_extent_inline_len(leaf,
2607                                                                          fi);
2608                         }
2609                         item_end--;
2610                 }
2611                 if (item_end < new_size) {
2612                         if (found_type == BTRFS_DIR_ITEM_KEY)
2613                                 found_type = BTRFS_INODE_ITEM_KEY;
2614                         else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2615                                 found_type = BTRFS_EXTENT_DATA_KEY;
2616                         else if (found_type == BTRFS_EXTENT_DATA_KEY)
2617                                 found_type = BTRFS_XATTR_ITEM_KEY;
2618                         else if (found_type == BTRFS_XATTR_ITEM_KEY)
2619                                 found_type = BTRFS_INODE_REF_KEY;
2620                         else if (found_type)
2621                                 found_type--;
2622                         else
2623                                 break;
2624                         btrfs_set_key_type(&key, found_type);
2625                         goto next;
2626                 }
2627                 if (found_key.offset >= new_size)
2628                         del_item = 1;
2629                 else
2630                         del_item = 0;
2631                 found_extent = 0;
2632
2633                 /* FIXME, shrink the extent if the ref count is only 1 */
2634                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2635                         goto delete;
2636
2637                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2638                         u64 num_dec;
2639                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2640                         if (!del_item && !encoding) {
2641                                 u64 orig_num_bytes =
2642                                         btrfs_file_extent_num_bytes(leaf, fi);
2643                                 extent_num_bytes = new_size -
2644                                         found_key.offset + root->sectorsize - 1;
2645                                 extent_num_bytes = extent_num_bytes &
2646                                         ~((u64)root->sectorsize - 1);
2647                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2648                                                          extent_num_bytes);
2649                                 num_dec = (orig_num_bytes -
2650                                            extent_num_bytes);
2651                                 if (root->ref_cows && extent_start != 0)
2652                                         inode_sub_bytes(inode, num_dec);
2653                                 btrfs_mark_buffer_dirty(leaf);
2654                         } else {
2655                                 extent_num_bytes =
2656                                         btrfs_file_extent_disk_num_bytes(leaf,
2657                                                                          fi);
2658                                 /* FIXME blocksize != 4096 */
2659                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2660                                 if (extent_start != 0) {
2661                                         found_extent = 1;
2662                                         if (root->ref_cows)
2663                                                 inode_sub_bytes(inode, num_dec);
2664                                 }
2665                                 root_gen = btrfs_header_generation(leaf);
2666                                 root_owner = btrfs_header_owner(leaf);
2667                         }
2668                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2669                         /*
2670                          * we can't truncate inline items that have had
2671                          * special encodings
2672                          */
2673                         if (!del_item &&
2674                             btrfs_file_extent_compression(leaf, fi) == 0 &&
2675                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
2676                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2677                                 u32 size = new_size - found_key.offset;
2678
2679                                 if (root->ref_cows) {
2680                                         inode_sub_bytes(inode, item_end + 1 -
2681                                                         new_size);
2682                                 }
2683                                 size =
2684                                     btrfs_file_extent_calc_inline_size(size);
2685                                 ret = btrfs_truncate_item(trans, root, path,
2686                                                           size, 1);
2687                                 BUG_ON(ret);
2688                         } else if (root->ref_cows) {
2689                                 inode_sub_bytes(inode, item_end + 1 -
2690                                                 found_key.offset);
2691                         }
2692                 }
2693 delete:
2694                 if (del_item) {
2695                         if (!pending_del_nr) {
2696                                 /* no pending yet, add ourselves */
2697                                 pending_del_slot = path->slots[0];
2698                                 pending_del_nr = 1;
2699                         } else if (pending_del_nr &&
2700                                    path->slots[0] + 1 == pending_del_slot) {
2701                                 /* hop on the pending chunk */
2702                                 pending_del_nr++;
2703                                 pending_del_slot = path->slots[0];
2704                         } else {
2705                                 BUG();
2706                         }
2707                 } else {
2708                         break;
2709                 }
2710                 if (found_extent) {
2711                         btrfs_set_path_blocking(path);
2712                         ret = btrfs_free_extent(trans, root, extent_start,
2713                                                 extent_num_bytes,
2714                                                 leaf->start, root_owner,
2715                                                 root_gen, inode->i_ino, 0);
2716                         BUG_ON(ret);
2717                 }
2718 next:
2719                 if (path->slots[0] == 0) {
2720                         if (pending_del_nr)
2721                                 goto del_pending;
2722                         btrfs_release_path(root, path);
2723                         if (found_type == BTRFS_INODE_ITEM_KEY)
2724                                 break;
2725                         goto search_again;
2726                 }
2727
2728                 path->slots[0]--;
2729                 if (pending_del_nr &&
2730                     path->slots[0] + 1 != pending_del_slot) {
2731                         struct btrfs_key debug;
2732 del_pending:
2733                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
2734                                               pending_del_slot);
2735                         ret = btrfs_del_items(trans, root, path,
2736                                               pending_del_slot,
2737                                               pending_del_nr);
2738                         BUG_ON(ret);
2739                         pending_del_nr = 0;
2740                         btrfs_release_path(root, path);
2741                         if (found_type == BTRFS_INODE_ITEM_KEY)
2742                                 break;
2743                         goto search_again;
2744                 }
2745         }
2746         ret = 0;
2747 error:
2748         if (pending_del_nr) {
2749                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2750                                       pending_del_nr);
2751         }
2752         btrfs_free_path(path);
2753         inode->i_sb->s_dirt = 1;
2754         return ret;
2755 }
2756
2757 /*
2758  * taken from block_truncate_page, but does cow as it zeros out
2759  * any bytes left in the last page in the file.
2760  */
2761 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2762 {
2763         struct inode *inode = mapping->host;
2764         struct btrfs_root *root = BTRFS_I(inode)->root;
2765         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2766         struct btrfs_ordered_extent *ordered;
2767         char *kaddr;
2768         u32 blocksize = root->sectorsize;
2769         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2770         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2771         struct page *page;
2772         int ret = 0;
2773         u64 page_start;
2774         u64 page_end;
2775
2776         if ((offset & (blocksize - 1)) == 0)
2777                 goto out;
2778
2779         ret = -ENOMEM;
2780 again:
2781         page = grab_cache_page(mapping, index);
2782         if (!page)
2783                 goto out;
2784
2785         page_start = page_offset(page);
2786         page_end = page_start + PAGE_CACHE_SIZE - 1;
2787
2788         if (!PageUptodate(page)) {
2789                 ret = btrfs_readpage(NULL, page);
2790                 lock_page(page);
2791                 if (page->mapping != mapping) {
2792                         unlock_page(page);
2793                         page_cache_release(page);
2794                         goto again;
2795                 }
2796                 if (!PageUptodate(page)) {
2797                         ret = -EIO;
2798                         goto out_unlock;
2799                 }
2800         }
2801         wait_on_page_writeback(page);
2802
2803         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2804         set_page_extent_mapped(page);
2805
2806         ordered = btrfs_lookup_ordered_extent(inode, page_start);
2807         if (ordered) {
2808                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2809                 unlock_page(page);
2810                 page_cache_release(page);
2811                 btrfs_start_ordered_extent(inode, ordered, 1);
2812                 btrfs_put_ordered_extent(ordered);
2813                 goto again;
2814         }
2815
2816         btrfs_set_extent_delalloc(inode, page_start, page_end);
2817         ret = 0;
2818         if (offset != PAGE_CACHE_SIZE) {
2819                 kaddr = kmap(page);
2820                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2821                 flush_dcache_page(page);
2822                 kunmap(page);
2823         }
2824         ClearPageChecked(page);
2825         set_page_dirty(page);
2826         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2827
2828 out_unlock:
2829         unlock_page(page);
2830         page_cache_release(page);
2831 out:
2832         return ret;
2833 }
2834
2835 int btrfs_cont_expand(struct inode *inode, loff_t size)
2836 {
2837         struct btrfs_trans_handle *trans;
2838         struct btrfs_root *root = BTRFS_I(inode)->root;
2839         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2840         struct extent_map *em;
2841         u64 mask = root->sectorsize - 1;
2842         u64 hole_start = (inode->i_size + mask) & ~mask;
2843         u64 block_end = (size + mask) & ~mask;
2844         u64 last_byte;
2845         u64 cur_offset;
2846         u64 hole_size;
2847         int err;
2848
2849         if (size <= hole_start)
2850                 return 0;
2851
2852         err = btrfs_check_metadata_free_space(root);
2853         if (err)
2854                 return err;
2855
2856         btrfs_truncate_page(inode->i_mapping, inode->i_size);
2857
2858         while (1) {
2859                 struct btrfs_ordered_extent *ordered;
2860                 btrfs_wait_ordered_range(inode, hole_start,
2861                                          block_end - hole_start);
2862                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2863                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2864                 if (!ordered)
2865                         break;
2866                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2867                 btrfs_put_ordered_extent(ordered);
2868         }
2869
2870         trans = btrfs_start_transaction(root, 1);
2871         btrfs_set_trans_block_group(trans, inode);
2872
2873         cur_offset = hole_start;
2874         while (1) {
2875                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2876                                 block_end - cur_offset, 0);
2877                 BUG_ON(IS_ERR(em) || !em);
2878                 last_byte = min(extent_map_end(em), block_end);
2879                 last_byte = (last_byte + mask) & ~mask;
2880                 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2881                         u64 hint_byte = 0;
2882                         hole_size = last_byte - cur_offset;
2883                         err = btrfs_drop_extents(trans, root, inode,
2884                                                  cur_offset,
2885                                                  cur_offset + hole_size,
2886                                                  block_end,
2887                                                  cur_offset, &hint_byte);
2888                         if (err)
2889                                 break;
2890                         err = btrfs_insert_file_extent(trans, root,
2891                                         inode->i_ino, cur_offset, 0,
2892                                         0, hole_size, 0, hole_size,
2893                                         0, 0, 0);
2894                         btrfs_drop_extent_cache(inode, hole_start,
2895                                         last_byte - 1, 0);
2896                 }
2897                 free_extent_map(em);
2898                 cur_offset = last_byte;
2899                 if (err || cur_offset >= block_end)
2900                         break;
2901         }
2902
2903         btrfs_end_transaction(trans, root);
2904         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2905         return err;
2906 }
2907
2908 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2909 {
2910         struct inode *inode = dentry->d_inode;
2911         int err;
2912
2913         err = inode_change_ok(inode, attr);
2914         if (err)
2915                 return err;
2916
2917         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
2918                 if (attr->ia_size > inode->i_size) {
2919                         err = btrfs_cont_expand(inode, attr->ia_size);
2920                         if (err)
2921                                 return err;
2922                 } else if (inode->i_size > 0 &&
2923                            attr->ia_size == 0) {
2924
2925                         /* we're truncating a file that used to have good
2926                          * data down to zero.  Make sure it gets into
2927                          * the ordered flush list so that any new writes
2928                          * get down to disk quickly.
2929                          */
2930                         BTRFS_I(inode)->ordered_data_close = 1;
2931                 }
2932         }
2933
2934         err = inode_setattr(inode, attr);
2935
2936         if (!err && ((attr->ia_valid & ATTR_MODE)))
2937                 err = btrfs_acl_chmod(inode);
2938         return err;
2939 }
2940
2941 void btrfs_delete_inode(struct inode *inode)
2942 {
2943         struct btrfs_trans_handle *trans;
2944         struct btrfs_root *root = BTRFS_I(inode)->root;
2945         unsigned long nr;
2946         int ret;
2947
2948         truncate_inode_pages(&inode->i_data, 0);
2949         if (is_bad_inode(inode)) {
2950                 btrfs_orphan_del(NULL, inode);
2951                 goto no_delete;
2952         }
2953         btrfs_wait_ordered_range(inode, 0, (u64)-1);
2954
2955         btrfs_i_size_write(inode, 0);
2956         trans = btrfs_join_transaction(root, 1);
2957
2958         btrfs_set_trans_block_group(trans, inode);
2959         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2960         if (ret) {
2961                 btrfs_orphan_del(NULL, inode);
2962                 goto no_delete_lock;
2963         }
2964
2965         btrfs_orphan_del(trans, inode);
2966
2967         nr = trans->blocks_used;
2968         clear_inode(inode);
2969
2970         btrfs_end_transaction(trans, root);
2971         btrfs_btree_balance_dirty(root, nr);
2972         return;
2973
2974 no_delete_lock:
2975         nr = trans->blocks_used;
2976         btrfs_end_transaction(trans, root);
2977         btrfs_btree_balance_dirty(root, nr);
2978 no_delete:
2979         clear_inode(inode);
2980 }
2981
2982 /*
2983  * this returns the key found in the dir entry in the location pointer.
2984  * If no dir entries were found, location->objectid is 0.
2985  */
2986 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2987                                struct btrfs_key *location)
2988 {
2989         const char *name = dentry->d_name.name;
2990         int namelen = dentry->d_name.len;
2991         struct btrfs_dir_item *di;
2992         struct btrfs_path *path;
2993         struct btrfs_root *root = BTRFS_I(dir)->root;
2994         int ret = 0;
2995
2996         path = btrfs_alloc_path();
2997         BUG_ON(!path);
2998
2999         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3000                                     namelen, 0);
3001         if (IS_ERR(di))
3002                 ret = PTR_ERR(di);
3003
3004         if (!di || IS_ERR(di))
3005                 goto out_err;
3006
3007         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3008 out:
3009         btrfs_free_path(path);
3010         return ret;
3011 out_err:
3012         location->objectid = 0;
3013         goto out;
3014 }
3015
3016 /*
3017  * when we hit a tree root in a directory, the btrfs part of the inode
3018  * needs to be changed to reflect the root directory of the tree root.  This
3019  * is kind of like crossing a mount point.
3020  */
3021 static int fixup_tree_root_location(struct btrfs_root *root,
3022                              struct btrfs_key *location,
3023                              struct btrfs_root **sub_root,
3024                              struct dentry *dentry)
3025 {
3026         struct btrfs_root_item *ri;
3027
3028         if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
3029                 return 0;
3030         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
3031                 return 0;
3032
3033         *sub_root = btrfs_read_fs_root(root->fs_info, location,
3034                                         dentry->d_name.name,
3035                                         dentry->d_name.len);
3036         if (IS_ERR(*sub_root))
3037                 return PTR_ERR(*sub_root);
3038
3039         ri = &(*sub_root)->root_item;
3040         location->objectid = btrfs_root_dirid(ri);
3041         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3042         location->offset = 0;
3043
3044         return 0;
3045 }
3046
3047 static noinline void init_btrfs_i(struct inode *inode)
3048 {
3049         struct btrfs_inode *bi = BTRFS_I(inode);
3050
3051         bi->i_acl = NULL;
3052         bi->i_default_acl = NULL;
3053
3054         bi->generation = 0;
3055         bi->sequence = 0;
3056         bi->last_trans = 0;
3057         bi->logged_trans = 0;
3058         bi->delalloc_bytes = 0;
3059         bi->reserved_bytes = 0;
3060         bi->disk_i_size = 0;
3061         bi->flags = 0;
3062         bi->index_cnt = (u64)-1;
3063         bi->last_unlink_trans = 0;
3064         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3065         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3066                              inode->i_mapping, GFP_NOFS);
3067         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3068                              inode->i_mapping, GFP_NOFS);
3069         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3070         INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3071         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3072         mutex_init(&BTRFS_I(inode)->extent_mutex);
3073         mutex_init(&BTRFS_I(inode)->log_mutex);
3074 }
3075
3076 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3077 {
3078         struct btrfs_iget_args *args = p;
3079         inode->i_ino = args->ino;
3080         init_btrfs_i(inode);
3081         BTRFS_I(inode)->root = args->root;
3082         btrfs_set_inode_space_info(args->root, inode);
3083         return 0;
3084 }
3085
3086 static int btrfs_find_actor(struct inode *inode, void *opaque)
3087 {
3088         struct btrfs_iget_args *args = opaque;
3089         return args->ino == inode->i_ino &&
3090                 args->root == BTRFS_I(inode)->root;
3091 }
3092
3093 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
3094                             struct btrfs_root *root, int wait)
3095 {
3096         struct inode *inode;
3097         struct btrfs_iget_args args;
3098         args.ino = objectid;
3099         args.root = root;
3100
3101         if (wait) {
3102                 inode = ilookup5(s, objectid, btrfs_find_actor,
3103                                  (void *)&args);
3104         } else {
3105                 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
3106                                         (void *)&args);
3107         }
3108         return inode;
3109 }
3110
3111 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3112                                 struct btrfs_root *root)
3113 {
3114         struct inode *inode;
3115         struct btrfs_iget_args args;
3116         args.ino = objectid;
3117         args.root = root;
3118
3119         inode = iget5_locked(s, objectid, btrfs_find_actor,
3120                              btrfs_init_locked_inode,
3121                              (void *)&args);
3122         return inode;
3123 }
3124
3125 /* Get an inode object given its location and corresponding root.
3126  * Returns in *is_new if the inode was read from disk
3127  */
3128 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3129                          struct btrfs_root *root, int *is_new)
3130 {
3131         struct inode *inode;
3132
3133         inode = btrfs_iget_locked(s, location->objectid, root);
3134         if (!inode)
3135                 return ERR_PTR(-EACCES);
3136
3137         if (inode->i_state & I_NEW) {
3138                 BTRFS_I(inode)->root = root;
3139                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3140                 btrfs_read_locked_inode(inode);
3141                 unlock_new_inode(inode);
3142                 if (is_new)
3143                         *is_new = 1;
3144         } else {
3145                 if (is_new)
3146                         *is_new = 0;
3147         }
3148
3149         return inode;
3150 }
3151
3152 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3153 {
3154         struct inode *inode;
3155         struct btrfs_inode *bi = BTRFS_I(dir);
3156         struct btrfs_root *root = bi->root;
3157         struct btrfs_root *sub_root = root;
3158         struct btrfs_key location;
3159         int ret, new;
3160
3161         if (dentry->d_name.len > BTRFS_NAME_LEN)
3162                 return ERR_PTR(-ENAMETOOLONG);
3163
3164         ret = btrfs_inode_by_name(dir, dentry, &location);
3165
3166         if (ret < 0)
3167                 return ERR_PTR(ret);
3168
3169         inode = NULL;
3170         if (location.objectid) {
3171                 ret = fixup_tree_root_location(root, &location, &sub_root,
3172                                                 dentry);
3173                 if (ret < 0)
3174                         return ERR_PTR(ret);
3175                 if (ret > 0)
3176                         return ERR_PTR(-ENOENT);
3177                 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3178                 if (IS_ERR(inode))
3179                         return ERR_CAST(inode);
3180         }
3181         return inode;
3182 }
3183
3184 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3185                                    struct nameidata *nd)
3186 {
3187         struct inode *inode;
3188
3189         if (dentry->d_name.len > BTRFS_NAME_LEN)
3190                 return ERR_PTR(-ENAMETOOLONG);
3191
3192         inode = btrfs_lookup_dentry(dir, dentry);
3193         if (IS_ERR(inode))
3194                 return ERR_CAST(inode);
3195
3196         return d_splice_alias(inode, dentry);
3197 }
3198
3199 static unsigned char btrfs_filetype_table[] = {
3200         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3201 };
3202
3203 static int btrfs_real_readdir(struct file *filp, void *dirent,
3204                               filldir_t filldir)
3205 {
3206         struct inode *inode = filp->f_dentry->d_inode;
3207         struct btrfs_root *root = BTRFS_I(inode)->root;
3208         struct btrfs_item *item;
3209         struct btrfs_dir_item *di;
3210         struct btrfs_key key;
3211         struct btrfs_key found_key;
3212         struct btrfs_path *path;
3213         int ret;
3214         u32 nritems;
3215         struct extent_buffer *leaf;
3216         int slot;
3217         int advance;
3218         unsigned char d_type;
3219         int over = 0;
3220         u32 di_cur;
3221         u32 di_total;
3222         u32 di_len;
3223         int key_type = BTRFS_DIR_INDEX_KEY;
3224         char tmp_name[32];
3225         char *name_ptr;
3226         int name_len;
3227
3228         /* FIXME, use a real flag for deciding about the key type */
3229         if (root->fs_info->tree_root == root)
3230                 key_type = BTRFS_DIR_ITEM_KEY;
3231
3232         /* special case for "." */
3233         if (filp->f_pos == 0) {
3234                 over = filldir(dirent, ".", 1,
3235                                1, inode->i_ino,
3236                                DT_DIR);
3237                 if (over)
3238                         return 0;
3239                 filp->f_pos = 1;
3240         }
3241         /* special case for .., just use the back ref */
3242         if (filp->f_pos == 1) {
3243                 u64 pino = parent_ino(filp->f_path.dentry);
3244                 over = filldir(dirent, "..", 2,
3245                                2, pino, DT_DIR);
3246                 if (over)
3247                         return 0;
3248                 filp->f_pos = 2;
3249         }
3250         path = btrfs_alloc_path();
3251         path->reada = 2;
3252
3253         btrfs_set_key_type(&key, key_type);
3254         key.offset = filp->f_pos;
3255         key.objectid = inode->i_ino;
3256
3257         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3258         if (ret < 0)
3259                 goto err;
3260         advance = 0;
3261
3262         while (1) {
3263                 leaf = path->nodes[0];
3264                 nritems = btrfs_header_nritems(leaf);
3265                 slot = path->slots[0];
3266                 if (advance || slot >= nritems) {
3267                         if (slot >= nritems - 1) {
3268                                 ret = btrfs_next_leaf(root, path);
3269                                 if (ret)
3270                                         break;
3271                                 leaf = path->nodes[0];
3272                                 nritems = btrfs_header_nritems(leaf);
3273                                 slot = path->slots[0];
3274                         } else {
3275                                 slot++;
3276                                 path->slots[0]++;
3277                         }
3278                 }
3279
3280                 advance = 1;
3281                 item = btrfs_item_nr(leaf, slot);
3282                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3283
3284                 if (found_key.objectid != key.objectid)
3285                         break;
3286                 if (btrfs_key_type(&found_key) != key_type)
3287                         break;
3288                 if (found_key.offset < filp->f_pos)
3289                         continue;
3290
3291                 filp->f_pos = found_key.offset;
3292
3293                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3294                 di_cur = 0;
3295                 di_total = btrfs_item_size(leaf, item);
3296
3297                 while (di_cur < di_total) {
3298                         struct btrfs_key location;
3299
3300                         name_len = btrfs_dir_name_len(leaf, di);
3301                         if (name_len <= sizeof(tmp_name)) {
3302                                 name_ptr = tmp_name;
3303                         } else {
3304                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3305                                 if (!name_ptr) {
3306                                         ret = -ENOMEM;
3307                                         goto err;
3308                                 }
3309                         }
3310                         read_extent_buffer(leaf, name_ptr,
3311                                            (unsigned long)(di + 1), name_len);
3312
3313                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3314                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3315
3316                         /* is this a reference to our own snapshot? If so
3317                          * skip it
3318                          */
3319                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
3320                             location.objectid == root->root_key.objectid) {
3321                                 over = 0;
3322                                 goto skip;
3323                         }
3324                         over = filldir(dirent, name_ptr, name_len,
3325                                        found_key.offset, location.objectid,
3326                                        d_type);
3327
3328 skip:
3329                         if (name_ptr != tmp_name)
3330                                 kfree(name_ptr);
3331
3332                         if (over)
3333                                 goto nopos;
3334                         di_len = btrfs_dir_name_len(leaf, di) +
3335                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3336                         di_cur += di_len;
3337                         di = (struct btrfs_dir_item *)((char *)di + di_len);
3338                 }
3339         }
3340
3341         /* Reached end of directory/root. Bump pos past the last item. */
3342         if (key_type == BTRFS_DIR_INDEX_KEY)
3343                 filp->f_pos = INT_LIMIT(off_t);
3344         else
3345                 filp->f_pos++;
3346 nopos:
3347         ret = 0;
3348 err:
3349         btrfs_free_path(path);
3350         return ret;
3351 }
3352
3353 int btrfs_write_inode(struct inode *inode, int wait)
3354 {
3355         struct btrfs_root *root = BTRFS_I(inode)->root;
3356         struct btrfs_trans_handle *trans;
3357         int ret = 0;
3358
3359         if (root->fs_info->btree_inode == inode)
3360                 return 0;
3361
3362         if (wait) {
3363                 trans = btrfs_join_transaction(root, 1);
3364                 btrfs_set_trans_block_group(trans, inode);
3365                 ret = btrfs_commit_transaction(trans, root);
3366         }
3367         return ret;
3368 }
3369
3370 /*
3371  * This is somewhat expensive, updating the tree every time the
3372  * inode changes.  But, it is most likely to find the inode in cache.
3373  * FIXME, needs more benchmarking...there are no reasons other than performance
3374  * to keep or drop this code.
3375  */
3376 void btrfs_dirty_inode(struct inode *inode)
3377 {
3378         struct btrfs_root *root = BTRFS_I(inode)->root;
3379         struct btrfs_trans_handle *trans;
3380
3381         trans = btrfs_join_transaction(root, 1);
3382         btrfs_set_trans_block_group(trans, inode);
3383         btrfs_update_inode(trans, root, inode);
3384         btrfs_end_transaction(trans, root);
3385 }
3386
3387 /*
3388  * find the highest existing sequence number in a directory
3389  * and then set the in-memory index_cnt variable to reflect
3390  * free sequence numbers
3391  */
3392 static int btrfs_set_inode_index_count(struct inode *inode)
3393 {
3394         struct btrfs_root *root = BTRFS_I(inode)->root;
3395         struct btrfs_key key, found_key;
3396         struct btrfs_path *path;
3397         struct extent_buffer *leaf;
3398         int ret;
3399
3400         key.objectid = inode->i_ino;
3401         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3402         key.offset = (u64)-1;
3403
3404         path = btrfs_alloc_path();
3405         if (!path)
3406                 return -ENOMEM;
3407
3408         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3409         if (ret < 0)
3410                 goto out;
3411         /* FIXME: we should be able to handle this */
3412         if (ret == 0)
3413                 goto out;
3414         ret = 0;
3415
3416         /*
3417          * MAGIC NUMBER EXPLANATION:
3418          * since we search a directory based on f_pos we have to start at 2
3419          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3420          * else has to start at 2
3421          */
3422         if (path->slots[0] == 0) {
3423                 BTRFS_I(inode)->index_cnt = 2;
3424                 goto out;
3425         }
3426
3427         path->slots[0]--;
3428
3429         leaf = path->nodes[0];
3430         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3431
3432         if (found_key.objectid != inode->i_ino ||
3433             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3434                 BTRFS_I(inode)->index_cnt = 2;
3435                 goto out;
3436         }
3437
3438         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3439 out:
3440         btrfs_free_path(path);
3441         return ret;
3442 }
3443
3444 /*
3445  * helper to find a free sequence number in a given directory.  This current
3446  * code is very simple, later versions will do smarter things in the btree
3447  */
3448 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3449 {
3450         int ret = 0;
3451
3452         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3453                 ret = btrfs_set_inode_index_count(dir);
3454                 if (ret)
3455                         return ret;
3456         }
3457
3458         *index = BTRFS_I(dir)->index_cnt;
3459         BTRFS_I(dir)->index_cnt++;
3460
3461         return ret;
3462 }
3463
3464 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3465                                      struct btrfs_root *root,
3466                                      struct inode *dir,
3467                                      const char *name, int name_len,
3468                                      u64 ref_objectid, u64 objectid,
3469                                      u64 alloc_hint, int mode, u64 *index)
3470 {
3471         struct inode *inode;
3472         struct btrfs_inode_item *inode_item;
3473         struct btrfs_key *location;
3474         struct btrfs_path *path;
3475         struct btrfs_inode_ref *ref;
3476         struct btrfs_key key[2];
3477         u32 sizes[2];
3478         unsigned long ptr;
3479         int ret;
3480         int owner;
3481
3482         path = btrfs_alloc_path();
3483         BUG_ON(!path);
3484
3485         inode = new_inode(root->fs_info->sb);
3486         if (!inode)
3487                 return ERR_PTR(-ENOMEM);
3488
3489         if (dir) {
3490                 ret = btrfs_set_inode_index(dir, index);
3491                 if (ret) {
3492                         iput(inode);
3493                         return ERR_PTR(ret);
3494                 }
3495         }
3496         /*
3497          * index_cnt is ignored for everything but a dir,
3498          * btrfs_get_inode_index_count has an explanation for the magic
3499          * number
3500          */
3501         init_btrfs_i(inode);
3502         BTRFS_I(inode)->index_cnt = 2;
3503         BTRFS_I(inode)->root = root;
3504         BTRFS_I(inode)->generation = trans->transid;
3505         btrfs_set_inode_space_info(root, inode);
3506
3507         if (mode & S_IFDIR)
3508                 owner = 0;
3509         else
3510                 owner = 1;
3511         BTRFS_I(inode)->block_group =
3512                         btrfs_find_block_group(root, 0, alloc_hint, owner);
3513         if ((mode & S_IFREG)) {
3514                 if (btrfs_test_opt(root, NODATASUM))
3515                         btrfs_set_flag(inode, NODATASUM);
3516                 if (btrfs_test_opt(root, NODATACOW))
3517                         btrfs_set_flag(inode, NODATACOW);
3518         }
3519
3520         key[0].objectid = objectid;
3521         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3522         key[0].offset = 0;
3523
3524         key[1].objectid = objectid;
3525         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3526         key[1].offset = ref_objectid;
3527
3528         sizes[0] = sizeof(struct btrfs_inode_item);
3529         sizes[1] = name_len + sizeof(*ref);
3530
3531         path->leave_spinning = 1;
3532         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3533         if (ret != 0)
3534                 goto fail;
3535
3536         if (objectid > root->highest_inode)
3537                 root->highest_inode = objectid;
3538
3539         inode->i_uid = current_fsuid();
3540
3541         if (dir && (dir->i_mode & S_ISGID)) {
3542                 inode->i_gid = dir->i_gid;
3543                 if (S_ISDIR(mode))
3544                         mode |= S_ISGID;
3545         } else
3546                 inode->i_gid = current_fsgid();
3547
3548         inode->i_mode = mode;
3549         inode->i_ino = objectid;
3550         inode_set_bytes(inode, 0);
3551         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3552         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3553                                   struct btrfs_inode_item);
3554         fill_inode_item(trans, path->nodes[0], inode_item, inode);
3555
3556         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3557                              struct btrfs_inode_ref);
3558         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3559         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3560         ptr = (unsigned long)(ref + 1);
3561         write_extent_buffer(path->nodes[0], name, ptr, name_len);
3562
3563         btrfs_mark_buffer_dirty(path->nodes[0]);
3564         btrfs_free_path(path);
3565
3566         location = &BTRFS_I(inode)->location;
3567         location->objectid = objectid;
3568         location->offset = 0;
3569         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3570
3571         insert_inode_hash(inode);
3572         return inode;
3573 fail:
3574         if (dir)
3575                 BTRFS_I(dir)->index_cnt--;
3576         btrfs_free_path(path);
3577         iput(inode);
3578         return ERR_PTR(ret);
3579 }
3580
3581 static inline u8 btrfs_inode_type(struct inode *inode)
3582 {
3583         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3584 }
3585
3586 /*
3587  * utility function to add 'inode' into 'parent_inode' with
3588  * a give name and a given sequence number.
3589  * if 'add_backref' is true, also insert a backref from the
3590  * inode to the parent directory.
3591  */
3592 int btrfs_add_link(struct btrfs_trans_handle *trans,
3593                    struct inode *parent_inode, struct inode *inode,
3594                    const char *name, int name_len, int add_backref, u64 index)
3595 {
3596         int ret;
3597         struct btrfs_key key;
3598         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3599
3600         key.objectid = inode->i_ino;
3601         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3602         key.offset = 0;
3603
3604         ret = btrfs_insert_dir_item(trans, root, name, name_len,
3605                                     parent_inode->i_ino,
3606                                     &key, btrfs_inode_type(inode),
3607                                     index);
3608         if (ret == 0) {
3609                 if (add_backref) {
3610                         ret = btrfs_insert_inode_ref(trans, root,
3611                                                      name, name_len,
3612                                                      inode->i_ino,
3613                                                      parent_inode->i_ino,
3614                                                      index);
3615                 }
3616                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3617                                    name_len * 2);
3618                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3619                 ret = btrfs_update_inode(trans, root, parent_inode);
3620         }
3621         return ret;
3622 }
3623
3624 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3625                             struct dentry *dentry, struct inode *inode,
3626                             int backref, u64 index)
3627 {
3628         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3629                                  inode, dentry->d_name.name,
3630                                  dentry->d_name.len, backref, index);
3631         if (!err) {
3632                 d_instantiate(dentry, inode);
3633                 return 0;
3634         }
3635         if (err > 0)
3636                 err = -EEXIST;
3637         return err;
3638 }
3639
3640 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3641                         int mode, dev_t rdev)
3642 {
3643         struct btrfs_trans_handle *trans;
3644         struct btrfs_root *root = BTRFS_I(dir)->root;
3645         struct inode *inode = NULL;
3646         int err;
3647         int drop_inode = 0;
3648         u64 objectid;
3649         unsigned long nr = 0;
3650         u64 index = 0;
3651
3652         if (!new_valid_dev(rdev))
3653                 return -EINVAL;
3654
3655         err = btrfs_check_metadata_free_space(root);
3656         if (err)
3657                 goto fail;
3658
3659         trans = btrfs_start_transaction(root, 1);
3660         btrfs_set_trans_block_group(trans, dir);
3661
3662         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3663         if (err) {
3664                 err = -ENOSPC;
3665                 goto out_unlock;
3666         }
3667
3668         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3669                                 dentry->d_name.len,
3670                                 dentry->d_parent->d_inode->i_ino, objectid,
3671                                 BTRFS_I(dir)->block_group, mode, &index);
3672         err = PTR_ERR(inode);
3673         if (IS_ERR(inode))
3674                 goto out_unlock;
3675
3676         err = btrfs_init_inode_security(inode, dir);
3677         if (err) {
3678                 drop_inode = 1;
3679                 goto out_unlock;
3680         }
3681
3682         btrfs_set_trans_block_group(trans, inode);
3683         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3684         if (err)
3685                 drop_inode = 1;
3686         else {
3687                 inode->i_op = &btrfs_special_inode_operations;
3688                 init_special_inode(inode, inode->i_mode, rdev);
3689                 btrfs_update_inode(trans, root, inode);
3690         }
3691         dir->i_sb->s_dirt = 1;
3692         btrfs_update_inode_block_group(trans, inode);
3693         btrfs_update_inode_block_group(trans, dir);
3694 out_unlock:
3695         nr = trans->blocks_used;
3696         btrfs_end_transaction_throttle(trans, root);
3697 fail:
3698         if (drop_inode) {
3699                 inode_dec_link_count(inode);
3700                 iput(inode);
3701         }
3702         btrfs_btree_balance_dirty(root, nr);
3703         return err;
3704 }
3705
3706 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3707                         int mode, struct nameidata *nd)
3708 {
3709         struct btrfs_trans_handle *trans;
3710         struct btrfs_root *root = BTRFS_I(dir)->root;
3711         struct inode *inode = NULL;
3712         int err;
3713         int drop_inode = 0;
3714         unsigned long nr = 0;
3715         u64 objectid;
3716         u64 index = 0;
3717
3718         err = btrfs_check_metadata_free_space(root);
3719         if (err)
3720                 goto fail;
3721         trans = btrfs_start_transaction(root, 1);
3722         btrfs_set_trans_block_group(trans, dir);
3723
3724         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3725         if (err) {
3726                 err = -ENOSPC;
3727                 goto out_unlock;
3728         }
3729
3730         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3731                                 dentry->d_name.len,
3732                                 dentry->d_parent->d_inode->i_ino,
3733                                 objectid, BTRFS_I(dir)->block_group, mode,
3734                                 &index);
3735         err = PTR_ERR(inode);
3736         if (IS_ERR(inode))
3737                 goto out_unlock;
3738
3739         err = btrfs_init_inode_security(inode, dir);
3740         if (err) {
3741                 drop_inode = 1;
3742                 goto out_unlock;
3743         }
3744
3745         btrfs_set_trans_block_group(trans, inode);
3746         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3747         if (err)
3748                 drop_inode = 1;
3749         else {
3750                 inode->i_mapping->a_ops = &btrfs_aops;
3751                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3752                 inode->i_fop = &btrfs_file_operations;
3753                 inode->i_op = &btrfs_file_inode_operations;
3754                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3755         }
3756         dir->i_sb->s_dirt = 1;
3757         btrfs_update_inode_block_group(trans, inode);
3758         btrfs_update_inode_block_group(trans, dir);
3759 out_unlock:
3760         nr = trans->blocks_used;
3761         btrfs_end_transaction_throttle(trans, root);
3762 fail:
3763         if (drop_inode) {
3764                 inode_dec_link_count(inode);
3765                 iput(inode);
3766         }
3767         btrfs_btree_balance_dirty(root, nr);
3768         return err;
3769 }
3770
3771 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3772                       struct dentry *dentry)
3773 {
3774         struct btrfs_trans_handle *trans;
3775         struct btrfs_root *root = BTRFS_I(dir)->root;
3776         struct inode *inode = old_dentry->d_inode;
3777         u64 index;
3778         unsigned long nr = 0;
3779         int err;
3780         int drop_inode = 0;
3781
3782         if (inode->i_nlink == 0)
3783                 return -ENOENT;
3784
3785         btrfs_inc_nlink(inode);
3786         err = btrfs_check_metadata_free_space(root);
3787         if (err)
3788                 goto fail;
3789         err = btrfs_set_inode_index(dir, &index);
3790         if (err)
3791                 goto fail;
3792
3793         trans = btrfs_start_transaction(root, 1);
3794
3795         btrfs_set_trans_block_group(trans, dir);
3796         atomic_inc(&inode->i_count);
3797
3798         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3799
3800         if (err)
3801                 drop_inode = 1;
3802
3803         dir->i_sb->s_dirt = 1;
3804         btrfs_update_inode_block_group(trans, dir);
3805         err = btrfs_update_inode(trans, root, inode);
3806
3807         if (err)
3808                 drop_inode = 1;
3809
3810         nr = trans->blocks_used;
3811
3812         btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
3813         btrfs_end_transaction_throttle(trans, root);
3814 fail:
3815         if (drop_inode) {
3816                 inode_dec_link_count(inode);
3817                 iput(inode);
3818         }
3819         btrfs_btree_balance_dirty(root, nr);
3820         return err;
3821 }
3822
3823 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3824 {
3825         struct inode *inode = NULL;
3826         struct btrfs_trans_handle *trans;
3827         struct btrfs_root *root = BTRFS_I(dir)->root;
3828         int err = 0;
3829         int drop_on_err = 0;
3830         u64 objectid = 0;
3831         u64 index = 0;
3832         unsigned long nr = 1;
3833
3834         err = btrfs_check_metadata_free_space(root);
3835         if (err)
3836                 goto out_unlock;
3837
3838         trans = btrfs_start_transaction(root, 1);
3839         btrfs_set_trans_block_group(trans, dir);
3840
3841         if (IS_ERR(trans)) {
3842                 err = PTR_ERR(trans);
3843                 goto out_unlock;
3844         }
3845
3846         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3847         if (err) {
3848                 err = -ENOSPC;
3849                 goto out_unlock;
3850         }
3851
3852         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3853                                 dentry->d_name.len,
3854                                 dentry->d_parent->d_inode->i_ino, objectid,
3855                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3856                                 &index);
3857         if (IS_ERR(inode)) {
3858                 err = PTR_ERR(inode);
3859                 goto out_fail;
3860         }
3861
3862         drop_on_err = 1;
3863
3864         err = btrfs_init_inode_security(inode, dir);
3865         if (err)
3866                 goto out_fail;
3867
3868         inode->i_op = &btrfs_dir_inode_operations;
3869         inode->i_fop = &btrfs_dir_file_operations;
3870         btrfs_set_trans_block_group(trans, inode);
3871
3872         btrfs_i_size_write(inode, 0);
3873         err = btrfs_update_inode(trans, root, inode);
3874         if (err)
3875                 goto out_fail;
3876
3877         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3878                                  inode, dentry->d_name.name,
3879                                  dentry->d_name.len, 0, index);
3880         if (err)
3881                 goto out_fail;
3882
3883         d_instantiate(dentry, inode);
3884         drop_on_err = 0;
3885         dir->i_sb->s_dirt = 1;
3886         btrfs_update_inode_block_group(trans, inode);
3887         btrfs_update_inode_block_group(trans, dir);
3888
3889 out_fail:
3890         nr = trans->blocks_used;
3891         btrfs_end_transaction_throttle(trans, root);
3892
3893 out_unlock:
3894         if (drop_on_err)
3895                 iput(inode);
3896         btrfs_btree_balance_dirty(root, nr);
3897         return err;
3898 }
3899
3900 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3901  * and an extent that you want to insert, deal with overlap and insert
3902  * the new extent into the tree.
3903  */
3904 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3905                                 struct extent_map *existing,
3906                                 struct extent_map *em,
3907                                 u64 map_start, u64 map_len)
3908 {
3909         u64 start_diff;
3910
3911         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3912         start_diff = map_start - em->start;
3913         em->start = map_start;
3914         em->len = map_len;
3915         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3916             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3917                 em->block_start += start_diff;
3918                 em->block_len -= start_diff;
3919         }
3920         return add_extent_mapping(em_tree, em);
3921 }
3922
3923 static noinline int uncompress_inline(struct btrfs_path *path,
3924                                       struct inode *inode, struct page *page,
3925                                       size_t pg_offset, u64 extent_offset,
3926                                       struct btrfs_file_extent_item *item)
3927 {
3928         int ret;
3929         struct extent_buffer *leaf = path->nodes[0];
3930         char *tmp;
3931         size_t max_size;
3932         unsigned long inline_size;
3933         unsigned long ptr;
3934
3935         WARN_ON(pg_offset != 0);
3936         max_size = btrfs_file_extent_ram_bytes(leaf, item);
3937         inline_size = btrfs_file_extent_inline_item_len(leaf,
3938                                         btrfs_item_nr(leaf, path->slots[0]));
3939         tmp = kmalloc(inline_size, GFP_NOFS);
3940         ptr = btrfs_file_extent_inline_start(item);
3941
3942         read_extent_buffer(leaf, tmp, ptr, inline_size);
3943
3944         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3945         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3946                                     inline_size, max_size);
3947         if (ret) {
3948                 char *kaddr = kmap_atomic(page, KM_USER0);
3949                 unsigned long copy_size = min_t(u64,
3950                                   PAGE_CACHE_SIZE - pg_offset,
3951                                   max_size - extent_offset);
3952                 memset(kaddr + pg_offset, 0, copy_size);
3953                 kunmap_atomic(kaddr, KM_USER0);
3954         }
3955         kfree(tmp);
3956         return 0;
3957 }
3958
3959 /*
3960  * a bit scary, this does extent mapping from logical file offset to the disk.
3961  * the ugly parts come from merging extents from the disk with the in-ram
3962  * representation.  This gets more complex because of the data=ordered code,
3963  * where the in-ram extents might be locked pending data=ordered completion.
3964  *
3965  * This also copies inline extents directly into the page.
3966  */
3967
3968 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3969                                     size_t pg_offset, u64 start, u64 len,
3970                                     int create)
3971 {
3972         int ret;
3973         int err = 0;
3974         u64 bytenr;
3975         u64 extent_start = 0;
3976         u64 extent_end = 0;
3977         u64 objectid = inode->i_ino;
3978         u32 found_type;
3979         struct btrfs_path *path = NULL;
3980         struct btrfs_root *root = BTRFS_I(inode)->root;
3981         struct btrfs_file_extent_item *item;
3982         struct extent_buffer *leaf;
3983         struct btrfs_key found_key;
3984         struct extent_map *em = NULL;
3985         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3986         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3987         struct btrfs_trans_handle *trans = NULL;
3988         int compressed;
3989
3990 again:
3991         spin_lock(&em_tree->lock);
3992         em = lookup_extent_mapping(em_tree, start, len);
3993         if (em)
3994                 em->bdev = root->fs_info->fs_devices->latest_bdev;
3995         spin_unlock(&em_tree->lock);
3996
3997         if (em) {
3998                 if (em->start > start || em->start + em->len <= start)
3999                         free_extent_map(em);
4000                 else if (em->block_start == EXTENT_MAP_INLINE && page)
4001                         free_extent_map(em);
4002                 else
4003                         goto out;
4004         }
4005         em = alloc_extent_map(GFP_NOFS);
4006         if (!em) {
4007                 err = -ENOMEM;
4008                 goto out;
4009         }
4010         em->bdev = root->fs_info->fs_devices->latest_bdev;
4011         em->start = EXTENT_MAP_HOLE;
4012         em->orig_start = EXTENT_MAP_HOLE;
4013         em->len = (u64)-1;
4014         em->block_len = (u64)-1;
4015
4016         if (!path) {
4017                 path = btrfs_alloc_path();
4018                 BUG_ON(!path);
4019         }
4020
4021         ret = btrfs_lookup_file_extent(trans, root, path,
4022                                        objectid, start, trans != NULL);
4023         if (ret < 0) {
4024                 err = ret;
4025                 goto out;
4026         }
4027
4028         if (ret != 0) {
4029                 if (path->slots[0] == 0)
4030                         goto not_found;
4031                 path->slots[0]--;
4032         }
4033
4034         leaf = path->nodes[0];
4035         item = btrfs_item_ptr(leaf, path->slots[0],
4036                               struct btrfs_file_extent_item);
4037         /* are we inside the extent that was found? */
4038         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4039         found_type = btrfs_key_type(&found_key);
4040         if (found_key.objectid != objectid ||
4041             found_type != BTRFS_EXTENT_DATA_KEY) {
4042                 goto not_found;
4043         }
4044
4045         found_type = btrfs_file_extent_type(leaf, item);
4046         extent_start = found_key.offset;
4047         compressed = btrfs_file_extent_compression(leaf, item);
4048         if (found_type == BTRFS_FILE_EXTENT_REG ||
4049             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4050                 extent_end = extent_start +
4051                        btrfs_file_extent_num_bytes(leaf, item);
4052         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4053                 size_t size;
4054                 size = btrfs_file_extent_inline_len(leaf, item);
4055                 extent_end = (extent_start + size + root->sectorsize - 1) &
4056                         ~((u64)root->sectorsize - 1);
4057         }
4058
4059         if (start >= extent_end) {
4060                 path->slots[0]++;
4061                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4062                         ret = btrfs_next_leaf(root, path);
4063                         if (ret < 0) {
4064                                 err = ret;
4065                                 goto out;
4066                         }
4067                         if (ret > 0)
4068                                 goto not_found;
4069                         leaf = path->nodes[0];
4070                 }
4071                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4072                 if (found_key.objectid != objectid ||
4073                     found_key.type != BTRFS_EXTENT_DATA_KEY)
4074                         goto not_found;
4075                 if (start + len <= found_key.offset)
4076                         goto not_found;
4077                 em->start = start;
4078                 em->len = found_key.offset - start;
4079                 goto not_found_em;
4080         }
4081
4082         if (found_type == BTRFS_FILE_EXTENT_REG ||
4083             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4084                 em->start = extent_start;
4085                 em->len = extent_end - extent_start;
4086                 em->orig_start = extent_start -
4087                                  btrfs_file_extent_offset(leaf, item);
4088                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4089                 if (bytenr == 0) {
4090                         em->block_start = EXTENT_MAP_HOLE;
4091                         goto insert;
4092                 }
4093                 if (compressed) {
4094                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4095                         em->block_start = bytenr;
4096                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4097                                                                          item);
4098                 } else {
4099                         bytenr += btrfs_file_extent_offset(leaf, item);
4100                         em->block_start = bytenr;
4101                         em->block_len = em->len;
4102                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4103                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4104                 }
4105                 goto insert;
4106         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4107                 unsigned long ptr;
4108                 char *map;
4109                 size_t size;
4110                 size_t extent_offset;
4111                 size_t copy_size;
4112
4113                 em->block_start = EXTENT_MAP_INLINE;
4114                 if (!page || create) {
4115                         em->start = extent_start;
4116                         em->len = extent_end - extent_start;
4117                         goto out;
4118                 }
4119
4120                 size = btrfs_file_extent_inline_len(leaf, item);
4121                 extent_offset = page_offset(page) + pg_offset - extent_start;
4122                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4123                                 size - extent_offset);
4124                 em->start = extent_start + extent_offset;
4125                 em->len = (copy_size + root->sectorsize - 1) &
4126                         ~((u64)root->sectorsize - 1);
4127                 em->orig_start = EXTENT_MAP_INLINE;
4128                 if (compressed)
4129                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4130                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4131                 if (create == 0 && !PageUptodate(page)) {
4132                         if (btrfs_file_extent_compression(leaf, item) ==
4133                             BTRFS_COMPRESS_ZLIB) {
4134                                 ret = uncompress_inline(path, inode, page,
4135                                                         pg_offset,
4136                                                         extent_offset, item);
4137                                 BUG_ON(ret);
4138                         } else {
4139                                 map = kmap(page);
4140                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4141                                                    copy_size);
4142                                 kunmap(page);
4143                         }
4144                         flush_dcache_page(page);
4145                 } else if (create && PageUptodate(page)) {
4146                         if (!trans) {
4147                                 kunmap(page);
4148                                 free_extent_map(em);
4149                                 em = NULL;
4150                                 btrfs_release_path(root, path);
4151                                 trans = btrfs_join_transaction(root, 1);
4152                                 goto again;
4153                         }
4154                         map = kmap(page);
4155                         write_extent_buffer(leaf, map + pg_offset, ptr,
4156                                             copy_size);
4157                         kunmap(page);
4158                         btrfs_mark_buffer_dirty(leaf);
4159                 }
4160                 set_extent_uptodate(io_tree, em->start,
4161                                     extent_map_end(em) - 1, GFP_NOFS);
4162                 goto insert;
4163         } else {
4164                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4165                 WARN_ON(1);
4166         }
4167 not_found:
4168         em->start = start;
4169         em->len = len;
4170 not_found_em:
4171         em->block_start = EXTENT_MAP_HOLE;
4172         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4173 insert:
4174         btrfs_release_path(root, path);
4175         if (em->start > start || extent_map_end(em) <= start) {
4176                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4177                        "[%llu %llu]\n", (unsigned long long)em->start,
4178                        (unsigned long long)em->len,
4179                        (unsigned long long)start,
4180                        (unsigned long long)len);
4181                 err = -EIO;
4182                 goto out;
4183         }
4184
4185         err = 0;
4186         spin_lock(&em_tree->lock);
4187         ret = add_extent_mapping(em_tree, em);
4188         /* it is possible that someone inserted the extent into the tree
4189          * while we had the lock dropped.  It is also possible that
4190          * an overlapping map exists in the tree
4191          */
4192         if (ret == -EEXIST) {
4193                 struct extent_map *existing;
4194
4195                 ret = 0;
4196
4197                 existing = lookup_extent_mapping(em_tree, start, len);
4198                 if (existing && (existing->start > start ||
4199                     existing->start + existing->len <= start)) {
4200                         free_extent_map(existing);
4201                         existing = NULL;
4202                 }
4203                 if (!existing) {
4204                         existing = lookup_extent_mapping(em_tree, em->start,
4205                                                          em->len);
4206                         if (existing) {
4207                                 err = merge_extent_mapping(em_tree, existing,
4208                                                            em, start,
4209                                                            root->sectorsize);
4210                                 free_extent_map(existing);
4211                                 if (err) {
4212                                         free_extent_map(em);
4213                                         em = NULL;
4214                                 }
4215                         } else {
4216                                 err = -EIO;
4217                                 free_extent_map(em);
4218                                 em = NULL;
4219                         }
4220                 } else {
4221                         free_extent_map(em);
4222                         em = existing;
4223                         err = 0;
4224                 }
4225         }
4226         spin_unlock(&em_tree->lock);
4227 out:
4228         if (path)
4229                 btrfs_free_path(path);
4230         if (trans) {
4231                 ret = btrfs_end_transaction(trans, root);
4232                 if (!err)
4233                         err = ret;
4234         }
4235         if (err) {
4236                 free_extent_map(em);
4237                 WARN_ON(1);
4238                 return ERR_PTR(err);
4239         }
4240         return em;
4241 }
4242
4243 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4244                         const struct iovec *iov, loff_t offset,
4245                         unsigned long nr_segs)
4246 {
4247         return -EINVAL;
4248 }
4249
4250 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4251                 __u64 start, __u64 len)
4252 {
4253         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4254 }
4255
4256 int btrfs_readpage(struct file *file, struct page *page)
4257 {
4258         struct extent_io_tree *tree;
4259         tree = &BTRFS_I(page->mapping->host)->io_tree;
4260         return extent_read_full_page(tree, page, btrfs_get_extent);
4261 }
4262
4263 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4264 {
4265         struct extent_io_tree *tree;
4266
4267
4268         if (current->flags & PF_MEMALLOC) {
4269                 redirty_page_for_writepage(wbc, page);
4270                 unlock_page(page);
4271                 return 0;
4272         }
4273         tree = &BTRFS_I(page->mapping->host)->io_tree;
4274         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4275 }
4276
4277 int btrfs_writepages(struct address_space *mapping,
4278                      struct writeback_control *wbc)
4279 {
4280         struct extent_io_tree *tree;
4281
4282         tree = &BTRFS_I(mapping->host)->io_tree;
4283         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4284 }
4285
4286 static int
4287 btrfs_readpages(struct file *file, struct address_space *mapping,
4288                 struct list_head *pages, unsigned nr_pages)
4289 {
4290         struct extent_io_tree *tree;
4291         tree = &BTRFS_I(mapping->host)->io_tree;
4292         return extent_readpages(tree, mapping, pages, nr_pages,
4293                                 btrfs_get_extent);
4294 }
4295 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4296 {
4297         struct extent_io_tree *tree;
4298         struct extent_map_tree *map;
4299         int ret;
4300
4301         tree = &BTRFS_I(page->mapping->host)->io_tree;
4302         map = &BTRFS_I(page->mapping->host)->extent_tree;
4303         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4304         if (ret == 1) {
4305                 ClearPagePrivate(page);
4306                 set_page_private(page, 0);
4307                 page_cache_release(page);
4308         }
4309         return ret;
4310 }
4311
4312 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4313 {
4314         if (PageWriteback(page) || PageDirty(page))
4315                 return 0;
4316         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4317 }
4318
4319 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4320 {
4321         struct extent_io_tree *tree;
4322         struct btrfs_ordered_extent *ordered;
4323         u64 page_start = page_offset(page);
4324         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4325
4326         wait_on_page_writeback(page);
4327         tree = &BTRFS_I(page->mapping->host)->io_tree;
4328         if (offset) {
4329                 btrfs_releasepage(page, GFP_NOFS);
4330                 return;
4331         }
4332
4333         lock_extent(tree, page_start, page_end, GFP_NOFS);
4334         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4335                                            page_offset(page));
4336         if (ordered) {
4337                 /*
4338                  * IO on this page will never be started, so we need
4339                  * to account for any ordered extents now
4340                  */
4341                 clear_extent_bit(tree, page_start, page_end,
4342                                  EXTENT_DIRTY | EXTENT_DELALLOC |
4343                                  EXTENT_LOCKED, 1, 0, GFP_NOFS);
4344                 btrfs_finish_ordered_io(page->mapping->host,
4345                                         page_start, page_end);
4346                 btrfs_put_ordered_extent(ordered);
4347                 lock_extent(tree, page_start, page_end, GFP_NOFS);
4348         }
4349         clear_extent_bit(tree, page_start, page_end,
4350                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4351                  EXTENT_ORDERED,
4352                  1, 1, GFP_NOFS);
4353         __btrfs_releasepage(page, GFP_NOFS);
4354
4355         ClearPageChecked(page);
4356         if (PagePrivate(page)) {
4357                 ClearPagePrivate(page);
4358                 set_page_private(page, 0);
4359                 page_cache_release(page);
4360         }
4361 }
4362
4363 /*
4364  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4365  * called from a page fault handler when a page is first dirtied. Hence we must
4366  * be careful to check for EOF conditions here. We set the page up correctly
4367  * for a written page which means we get ENOSPC checking when writing into
4368  * holes and correct delalloc and unwritten extent mapping on filesystems that
4369  * support these features.
4370  *
4371  * We are not allowed to take the i_mutex here so we have to play games to
4372  * protect against truncate races as the page could now be beyond EOF.  Because
4373  * vmtruncate() writes the inode size before removing pages, once we have the
4374  * page lock we can determine safely if the page is beyond EOF. If it is not
4375  * beyond EOF, then the page is guaranteed safe against truncation until we
4376  * unlock the page.
4377  */
4378 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4379 {
4380         struct page *page = vmf->page;
4381         struct inode *inode = fdentry(vma->vm_file)->d_inode;
4382         struct btrfs_root *root = BTRFS_I(inode)->root;
4383         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4384         struct btrfs_ordered_extent *ordered;
4385         char *kaddr;
4386         unsigned long zero_start;
4387         loff_t size;
4388         int ret;
4389         u64 page_start;
4390         u64 page_end;
4391
4392         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4393         if (ret) {
4394                 if (ret == -ENOMEM)
4395                         ret = VM_FAULT_OOM;
4396                 else /* -ENOSPC, -EIO, etc */
4397                         ret = VM_FAULT_SIGBUS;
4398                 goto out;
4399         }
4400
4401         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4402 again:
4403         lock_page(page);
4404         size = i_size_read(inode);
4405         page_start = page_offset(page);
4406         page_end = page_start + PAGE_CACHE_SIZE - 1;
4407
4408         if ((page->mapping != inode->i_mapping) ||
4409             (page_start >= size)) {
4410                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4411                 /* page got truncated out from underneath us */
4412                 goto out_unlock;
4413         }
4414         wait_on_page_writeback(page);
4415
4416         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4417         set_page_extent_mapped(page);
4418
4419         /*
4420          * we can't set the delalloc bits if there are pending ordered
4421          * extents.  Drop our locks and wait for them to finish
4422          */
4423         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4424         if (ordered) {
4425                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4426                 unlock_page(page);
4427                 btrfs_start_ordered_extent(inode, ordered, 1);
4428                 btrfs_put_ordered_extent(ordered);
4429                 goto again;
4430         }
4431
4432         btrfs_set_extent_delalloc(inode, page_start, page_end);
4433         ret = 0;
4434
4435         /* page is wholly or partially inside EOF */
4436         if (page_start + PAGE_CACHE_SIZE > size)
4437                 zero_start = size & ~PAGE_CACHE_MASK;
4438         else
4439                 zero_start = PAGE_CACHE_SIZE;
4440
4441         if (zero_start != PAGE_CACHE_SIZE) {
4442                 kaddr = kmap(page);
4443                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4444                 flush_dcache_page(page);
4445                 kunmap(page);
4446         }
4447         ClearPageChecked(page);
4448         set_page_dirty(page);
4449
4450         BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
4451         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4452
4453 out_unlock:
4454         unlock_page(page);
4455 out:
4456         return ret;
4457 }
4458
4459 static void btrfs_truncate(struct inode *inode)
4460 {
4461         struct btrfs_root *root = BTRFS_I(inode)->root;
4462         int ret;
4463         struct btrfs_trans_handle *trans;
4464         unsigned long nr;
4465         u64 mask = root->sectorsize - 1;
4466
4467         if (!S_ISREG(inode->i_mode))
4468                 return;
4469         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4470                 return;
4471
4472         btrfs_truncate_page(inode->i_mapping, inode->i_size);
4473         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4474
4475         trans = btrfs_start_transaction(root, 1);
4476
4477         /*
4478          * setattr is responsible for setting the ordered_data_close flag,
4479          * but that is only tested during the last file release.  That
4480          * could happen well after the next commit, leaving a great big
4481          * window where new writes may get lost if someone chooses to write
4482          * to this file after truncating to zero
4483          *
4484          * The inode doesn't have any dirty data here, and so if we commit
4485          * this is a noop.  If someone immediately starts writing to the inode
4486          * it is very likely we'll catch some of their writes in this
4487          * transaction, and the commit will find this file on the ordered
4488          * data list with good things to send down.
4489          *
4490          * This is a best effort solution, there is still a window where
4491          * using truncate to replace the contents of the file will
4492          * end up with a zero length file after a crash.
4493          */
4494         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
4495                 btrfs_add_ordered_operation(trans, root, inode);
4496
4497         btrfs_set_trans_block_group(trans, inode);
4498         btrfs_i_size_write(inode, inode->i_size);
4499
4500         ret = btrfs_orphan_add(trans, inode);
4501         if (ret)
4502                 goto out;
4503         /* FIXME, add redo link to tree so we don't leak on crash */
4504         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4505                                       BTRFS_EXTENT_DATA_KEY);
4506         btrfs_update_inode(trans, root, inode);
4507
4508         ret = btrfs_orphan_del(trans, inode);
4509         BUG_ON(ret);
4510
4511 out:
4512         nr = trans->blocks_used;
4513         ret = btrfs_end_transaction_throttle(trans, root);
4514         BUG_ON(ret);
4515         btrfs_btree_balance_dirty(root, nr);
4516 }
4517
4518 /*
4519  * create a new subvolume directory/inode (helper for the ioctl).
4520  */
4521 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4522                              struct btrfs_root *new_root, struct dentry *dentry,
4523                              u64 new_dirid, u64 alloc_hint)
4524 {
4525         struct inode *inode;
4526         int error;
4527         u64 index = 0;
4528
4529         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4530                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4531         if (IS_ERR(inode))
4532                 return PTR_ERR(inode);
4533         inode->i_op = &btrfs_dir_inode_operations;
4534         inode->i_fop = &btrfs_dir_file_operations;
4535
4536         inode->i_nlink = 1;
4537         btrfs_i_size_write(inode, 0);
4538
4539         error = btrfs_update_inode(trans, new_root, inode);
4540         if (error)
4541                 return error;
4542
4543         d_instantiate(dentry, inode);
4544         return 0;
4545 }
4546
4547 /* helper function for file defrag and space balancing.  This
4548  * forces readahead on a given range of bytes in an inode
4549  */
4550 unsigned long btrfs_force_ra(struct address_space *mapping,
4551                               struct file_ra_state *ra, struct file *file,
4552                               pgoff_t offset, pgoff_t last_index)
4553 {
4554         pgoff_t req_size = last_index - offset + 1;
4555
4556         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4557         return offset + req_size;
4558 }
4559
4560 struct inode *btrfs_alloc_inode(struct super_block *sb)
4561 {
4562         struct btrfs_inode *ei;
4563
4564         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4565         if (!ei)
4566                 return NULL;
4567         ei->last_trans = 0;
4568         ei->logged_trans = 0;
4569         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4570         ei->i_acl = BTRFS_ACL_NOT_CACHED;
4571         ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4572         INIT_LIST_HEAD(&ei->i_orphan);
4573         INIT_LIST_HEAD(&ei->ordered_operations);
4574         return &ei->vfs_inode;
4575 }
4576
4577 void btrfs_destroy_inode(struct inode *inode)
4578 {
4579         struct btrfs_ordered_extent *ordered;
4580         struct btrfs_root *root = BTRFS_I(inode)->root;
4581
4582         WARN_ON(!list_empty(&inode->i_dentry));
4583         WARN_ON(inode->i_data.nrpages);
4584
4585         if (BTRFS_I(inode)->i_acl &&
4586             BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4587                 posix_acl_release(BTRFS_I(inode)->i_acl);
4588         if (BTRFS_I(inode)->i_default_acl &&
4589             BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4590                 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4591
4592         /*
4593          * Make sure we're properly removed from the ordered operation
4594          * lists.
4595          */
4596         smp_mb();
4597         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
4598                 spin_lock(&root->fs_info->ordered_extent_lock);
4599                 list_del_init(&BTRFS_I(inode)->ordered_operations);
4600                 spin_unlock(&root->fs_info->ordered_extent_lock);
4601         }
4602
4603         spin_lock(&root->list_lock);
4604         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4605                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4606                        " list\n", inode->i_ino);
4607                 dump_stack();
4608         }
4609         spin_unlock(&root->list_lock);
4610
4611         while (1) {
4612                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4613                 if (!ordered)
4614                         break;
4615                 else {
4616                         printk(KERN_ERR "btrfs found ordered "
4617                                "extent %llu %llu on inode cleanup\n",
4618                                (unsigned long long)ordered->file_offset,
4619                                (unsigned long long)ordered->len);
4620                         btrfs_remove_ordered_extent(inode, ordered);
4621                         btrfs_put_ordered_extent(ordered);
4622                         btrfs_put_ordered_extent(ordered);
4623                 }
4624         }
4625         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4626         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4627 }
4628
4629 static void init_once(void *foo)
4630 {
4631         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4632
4633         inode_init_once(&ei->vfs_inode);
4634 }
4635
4636 void btrfs_destroy_cachep(void)
4637 {
4638         if (btrfs_inode_cachep)
4639                 kmem_cache_destroy(btrfs_inode_cachep);
4640         if (btrfs_trans_handle_cachep)
4641                 kmem_cache_destroy(btrfs_trans_handle_cachep);
4642         if (btrfs_transaction_cachep)
4643                 kmem_cache_destroy(btrfs_transaction_cachep);
4644         if (btrfs_bit_radix_cachep)
4645                 kmem_cache_destroy(btrfs_bit_radix_cachep);
4646         if (btrfs_path_cachep)
4647                 kmem_cache_destroy(btrfs_path_cachep);
4648 }
4649
4650 int btrfs_init_cachep(void)
4651 {
4652         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
4653                         sizeof(struct btrfs_inode), 0,
4654                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
4655         if (!btrfs_inode_cachep)
4656                 goto fail;
4657
4658         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
4659                         sizeof(struct btrfs_trans_handle), 0,
4660                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4661         if (!btrfs_trans_handle_cachep)
4662                 goto fail;
4663
4664         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
4665                         sizeof(struct btrfs_transaction), 0,
4666                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4667         if (!btrfs_transaction_cachep)
4668                 goto fail;
4669
4670         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
4671                         sizeof(struct btrfs_path), 0,
4672                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4673         if (!btrfs_path_cachep)
4674                 goto fail;
4675
4676         btrfs_bit_radix_cachep = kmem_cache_create("btrfs_radix", 256, 0,
4677                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD |
4678                         SLAB_DESTROY_BY_RCU, NULL);
4679         if (!btrfs_bit_radix_cachep)
4680                 goto fail;
4681         return 0;
4682 fail:
4683         btrfs_destroy_cachep();
4684         return -ENOMEM;
4685 }
4686
4687 static int btrfs_getattr(struct vfsmount *mnt,
4688                          struct dentry *dentry, struct kstat *stat)
4689 {
4690         struct inode *inode = dentry->d_inode;
4691         generic_fillattr(inode, stat);
4692         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4693         stat->blksize = PAGE_CACHE_SIZE;
4694         stat->blocks = (inode_get_bytes(inode) +
4695                         BTRFS_I(inode)->delalloc_bytes) >> 9;
4696         return 0;
4697 }
4698
4699 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4700                            struct inode *new_dir, struct dentry *new_dentry)
4701 {
4702         struct btrfs_trans_handle *trans;
4703         struct btrfs_root *root = BTRFS_I(old_dir)->root;
4704         struct inode *new_inode = new_dentry->d_inode;
4705         struct inode *old_inode = old_dentry->d_inode;
4706         struct timespec ctime = CURRENT_TIME;
4707         u64 index = 0;
4708         int ret;
4709
4710         /* we're not allowed to rename between subvolumes */
4711         if (BTRFS_I(old_inode)->root->root_key.objectid !=
4712             BTRFS_I(new_dir)->root->root_key.objectid)
4713                 return -EXDEV;
4714
4715         if (S_ISDIR(old_inode->i_mode) && new_inode &&
4716             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4717                 return -ENOTEMPTY;
4718         }
4719
4720         /* to rename a snapshot or subvolume, we need to juggle the
4721          * backrefs.  This isn't coded yet
4722          */
4723         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4724                 return -EXDEV;
4725
4726         ret = btrfs_check_metadata_free_space(root);
4727         if (ret)
4728                 goto out_unlock;
4729
4730         /*
4731          * we're using rename to replace one file with another.
4732          * and the replacement file is large.  Start IO on it now so
4733          * we don't add too much work to the end of the transaction
4734          */
4735         if (new_inode && old_inode && S_ISREG(old_inode->i_mode) &&
4736             new_inode->i_size &&
4737             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
4738                 filemap_flush(old_inode->i_mapping);
4739
4740         trans = btrfs_start_transaction(root, 1);
4741
4742         /*
4743          * make sure the inode gets flushed if it is replacing
4744          * something.
4745          */
4746         if (new_inode && new_inode->i_size &&
4747             old_inode && S_ISREG(old_inode->i_mode)) {
4748                 btrfs_add_ordered_operation(trans, root, old_inode);
4749         }
4750
4751         /*
4752          * this is an ugly little race, but the rename is required to make
4753          * sure that if we crash, the inode is either at the old name
4754          * or the new one.  pinning the log transaction lets us make sure
4755          * we don't allow a log commit to come in after we unlink the
4756          * name but before we add the new name back in.
4757          */
4758         btrfs_pin_log_trans(root);
4759
4760         btrfs_set_trans_block_group(trans, new_dir);
4761
4762         btrfs_inc_nlink(old_dentry->d_inode);
4763         old_dir->i_ctime = old_dir->i_mtime = ctime;
4764         new_dir->i_ctime = new_dir->i_mtime = ctime;
4765         old_inode->i_ctime = ctime;
4766
4767         if (old_dentry->d_parent != new_dentry->d_parent)
4768                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
4769
4770         ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4771                                  old_dentry->d_name.name,
4772                                  old_dentry->d_name.len);
4773         if (ret)
4774                 goto out_fail;
4775
4776         if (new_inode) {
4777                 new_inode->i_ctime = CURRENT_TIME;
4778                 ret = btrfs_unlink_inode(trans, root, new_dir,
4779                                          new_dentry->d_inode,
4780                                          new_dentry->d_name.name,
4781                                          new_dentry->d_name.len);
4782                 if (ret)
4783                         goto out_fail;
4784                 if (new_inode->i_nlink == 0) {
4785                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4786                         if (ret)
4787                                 goto out_fail;
4788                 }
4789
4790         }
4791         ret = btrfs_set_inode_index(new_dir, &index);
4792         if (ret)
4793                 goto out_fail;
4794
4795         ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4796                              old_inode, new_dentry->d_name.name,
4797                              new_dentry->d_name.len, 1, index);
4798         if (ret)
4799                 goto out_fail;
4800
4801         btrfs_log_new_name(trans, old_inode, old_dir,
4802                                        new_dentry->d_parent);
4803 out_fail:
4804
4805         /* this btrfs_end_log_trans just allows the current
4806          * log-sub transaction to complete
4807          */
4808         btrfs_end_log_trans(root);
4809         btrfs_end_transaction_throttle(trans, root);
4810 out_unlock:
4811         return ret;
4812 }
4813
4814 /*
4815  * some fairly slow code that needs optimization. This walks the list
4816  * of all the inodes with pending delalloc and forces them to disk.
4817  */
4818 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4819 {
4820         struct list_head *head = &root->fs_info->delalloc_inodes;
4821         struct btrfs_inode *binode;
4822         struct inode *inode;
4823
4824         if (root->fs_info->sb->s_flags & MS_RDONLY)
4825                 return -EROFS;
4826
4827         spin_lock(&root->fs_info->delalloc_lock);
4828         while (!list_empty(head)) {
4829                 binode = list_entry(head->next, struct btrfs_inode,
4830                                     delalloc_inodes);
4831                 inode = igrab(&binode->vfs_inode);
4832                 if (!inode)
4833                         list_del_init(&binode->delalloc_inodes);
4834                 spin_unlock(&root->fs_info->delalloc_lock);
4835                 if (inode) {
4836                         filemap_flush(inode->i_mapping);
4837                         iput(inode);
4838                 }
4839                 cond_resched();
4840                 spin_lock(&root->fs_info->delalloc_lock);
4841         }
4842         spin_unlock(&root->fs_info->delalloc_lock);
4843
4844         /* the filemap_flush will queue IO into the worker threads, but
4845          * we have to make sure the IO is actually started and that
4846          * ordered extents get created before we return
4847          */
4848         atomic_inc(&root->fs_info->async_submit_draining);
4849         while (atomic_read(&root->fs_info->nr_async_submits) ||
4850               atomic_read(&root->fs_info->async_delalloc_pages)) {
4851                 wait_event(root->fs_info->async_submit_wait,
4852                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4853                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4854         }
4855         atomic_dec(&root->fs_info->async_submit_draining);
4856         return 0;
4857 }
4858
4859 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4860                          const char *symname)
4861 {
4862         struct btrfs_trans_handle *trans;
4863         struct btrfs_root *root = BTRFS_I(dir)->root;
4864         struct btrfs_path *path;
4865         struct btrfs_key key;
4866         struct inode *inode = NULL;
4867         int err;
4868         int drop_inode = 0;
4869         u64 objectid;
4870         u64 index = 0 ;
4871         int name_len;
4872         int datasize;
4873         unsigned long ptr;
4874         struct btrfs_file_extent_item *ei;
4875         struct extent_buffer *leaf;
4876         unsigned long nr = 0;
4877
4878         name_len = strlen(symname) + 1;
4879         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4880                 return -ENAMETOOLONG;
4881
4882         err = btrfs_check_metadata_free_space(root);
4883         if (err)
4884                 goto out_fail;
4885
4886         trans = btrfs_start_transaction(root, 1);
4887         btrfs_set_trans_block_group(trans, dir);
4888
4889         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4890         if (err) {
4891                 err = -ENOSPC;
4892                 goto out_unlock;
4893         }
4894
4895         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4896                                 dentry->d_name.len,
4897                                 dentry->d_parent->d_inode->i_ino, objectid,
4898                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4899                                 &index);
4900         err = PTR_ERR(inode);
4901         if (IS_ERR(inode))
4902                 goto out_unlock;
4903
4904         err = btrfs_init_inode_security(inode, dir);
4905         if (err) {
4906                 drop_inode = 1;
4907                 goto out_unlock;
4908         }
4909
4910         btrfs_set_trans_block_group(trans, inode);
4911         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4912         if (err)
4913                 drop_inode = 1;
4914         else {
4915                 inode->i_mapping->a_ops = &btrfs_aops;
4916                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4917                 inode->i_fop = &btrfs_file_operations;
4918                 inode->i_op = &btrfs_file_inode_operations;
4919                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4920         }
4921         dir->i_sb->s_dirt = 1;
4922         btrfs_update_inode_block_group(trans, inode);
4923         btrfs_update_inode_block_group(trans, dir);
4924         if (drop_inode)
4925                 goto out_unlock;
4926
4927         path = btrfs_alloc_path();
4928         BUG_ON(!path);
4929         key.objectid = inode->i_ino;
4930         key.offset = 0;
4931         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4932         datasize = btrfs_file_extent_calc_inline_size(name_len);
4933         err = btrfs_insert_empty_item(trans, root, path, &key,
4934                                       datasize);
4935         if (err) {
4936                 drop_inode = 1;
4937                 goto out_unlock;
4938         }
4939         leaf = path->nodes[0];
4940         ei = btrfs_item_ptr(leaf, path->slots[0],
4941                             struct btrfs_file_extent_item);
4942         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4943         btrfs_set_file_extent_type(leaf, ei,
4944                                    BTRFS_FILE_EXTENT_INLINE);
4945         btrfs_set_file_extent_encryption(leaf, ei, 0);
4946         btrfs_set_file_extent_compression(leaf, ei, 0);
4947         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4948         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4949
4950         ptr = btrfs_file_extent_inline_start(ei);
4951         write_extent_buffer(leaf, symname, ptr, name_len);
4952         btrfs_mark_buffer_dirty(leaf);
4953         btrfs_free_path(path);
4954
4955         inode->i_op = &btrfs_symlink_inode_operations;
4956         inode->i_mapping->a_ops = &btrfs_symlink_aops;
4957         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4958         inode_set_bytes(inode, name_len);
4959         btrfs_i_size_write(inode, name_len - 1);
4960         err = btrfs_update_inode(trans, root, inode);
4961         if (err)
4962                 drop_inode = 1;
4963
4964 out_unlock:
4965         nr = trans->blocks_used;
4966         btrfs_end_transaction_throttle(trans, root);
4967 out_fail:
4968         if (drop_inode) {
4969                 inode_dec_link_count(inode);
4970                 iput(inode);
4971         }
4972         btrfs_btree_balance_dirty(root, nr);
4973         return err;
4974 }
4975
4976 static int prealloc_file_range(struct btrfs_trans_handle *trans,
4977                                struct inode *inode, u64 start, u64 end,
4978                                u64 locked_end, u64 alloc_hint, int mode)
4979 {
4980         struct btrfs_root *root = BTRFS_I(inode)->root;
4981         struct btrfs_key ins;
4982         u64 alloc_size;
4983         u64 cur_offset = start;
4984         u64 num_bytes = end - start;
4985         int ret = 0;
4986
4987         while (num_bytes > 0) {
4988                 alloc_size = min(num_bytes, root->fs_info->max_extent);
4989                 ret = btrfs_reserve_extent(trans, root, alloc_size,
4990                                            root->sectorsize, 0, alloc_hint,
4991                                            (u64)-1, &ins, 1);
4992                 if (ret) {
4993                         WARN_ON(1);
4994                         goto out;
4995                 }
4996                 ret = insert_reserved_file_extent(trans, inode,
4997                                                   cur_offset, ins.objectid,
4998                                                   ins.offset, ins.offset,
4999                                                   ins.offset, locked_end,
5000                                                   0, 0, 0,
5001                                                   BTRFS_FILE_EXTENT_PREALLOC);
5002                 BUG_ON(ret);
5003                 num_bytes -= ins.offset;
5004                 cur_offset += ins.offset;
5005                 alloc_hint = ins.objectid + ins.offset;
5006         }
5007 out:
5008         if (cur_offset > start) {
5009                 inode->i_ctime = CURRENT_TIME;
5010                 btrfs_set_flag(inode, PREALLOC);
5011                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5012                     cur_offset > i_size_read(inode))
5013                         btrfs_i_size_write(inode, cur_offset);
5014                 ret = btrfs_update_inode(trans, root, inode);
5015                 BUG_ON(ret);
5016         }
5017
5018         return ret;
5019 }
5020
5021 static long btrfs_fallocate(struct inode *inode, int mode,
5022                             loff_t offset, loff_t len)
5023 {
5024         u64 cur_offset;
5025         u64 last_byte;
5026         u64 alloc_start;
5027         u64 alloc_end;
5028         u64 alloc_hint = 0;
5029         u64 locked_end;
5030         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5031         struct extent_map *em;
5032         struct btrfs_trans_handle *trans;
5033         int ret;
5034
5035         alloc_start = offset & ~mask;
5036         alloc_end =  (offset + len + mask) & ~mask;
5037
5038         /*
5039          * wait for ordered IO before we have any locks.  We'll loop again
5040          * below with the locks held.
5041          */
5042         btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5043
5044         mutex_lock(&inode->i_mutex);
5045         if (alloc_start > inode->i_size) {
5046                 ret = btrfs_cont_expand(inode, alloc_start);
5047                 if (ret)
5048                         goto out;
5049         }
5050
5051         locked_end = alloc_end - 1;
5052         while (1) {
5053                 struct btrfs_ordered_extent *ordered;
5054
5055                 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5056                 if (!trans) {
5057                         ret = -EIO;
5058                         goto out;
5059                 }
5060
5061                 /* the extent lock is ordered inside the running
5062                  * transaction
5063                  */
5064                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5065                             GFP_NOFS);
5066                 ordered = btrfs_lookup_first_ordered_extent(inode,
5067                                                             alloc_end - 1);
5068                 if (ordered &&
5069                     ordered->file_offset + ordered->len > alloc_start &&
5070                     ordered->file_offset < alloc_end) {
5071                         btrfs_put_ordered_extent(ordered);
5072                         unlock_extent(&BTRFS_I(inode)->io_tree,
5073                                       alloc_start, locked_end, GFP_NOFS);
5074                         btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5075
5076                         /*
5077                          * we can't wait on the range with the transaction
5078                          * running or with the extent lock held
5079                          */
5080                         btrfs_wait_ordered_range(inode, alloc_start,
5081                                                  alloc_end - alloc_start);
5082                 } else {
5083                         if (ordered)
5084                                 btrfs_put_ordered_extent(ordered);
5085                         break;
5086                 }
5087         }
5088
5089         cur_offset = alloc_start;
5090         while (1) {
5091                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5092                                       alloc_end - cur_offset, 0);
5093                 BUG_ON(IS_ERR(em) || !em);
5094                 last_byte = min(extent_map_end(em), alloc_end);
5095                 last_byte = (last_byte + mask) & ~mask;
5096                 if (em->block_start == EXTENT_MAP_HOLE) {
5097                         ret = prealloc_file_range(trans, inode, cur_offset,
5098                                         last_byte, locked_end + 1,
5099                                         alloc_hint, mode);
5100                         if (ret < 0) {
5101                                 free_extent_map(em);
5102                                 break;
5103                         }
5104                 }
5105                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5106                         alloc_hint = em->block_start;
5107                 free_extent_map(em);
5108
5109                 cur_offset = last_byte;
5110                 if (cur_offset >= alloc_end) {
5111                         ret = 0;
5112                         break;
5113                 }
5114         }
5115         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5116                       GFP_NOFS);
5117
5118         btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5119 out:
5120         mutex_unlock(&inode->i_mutex);
5121         return ret;
5122 }
5123
5124 static int btrfs_set_page_dirty(struct page *page)
5125 {
5126         return __set_page_dirty_nobuffers(page);
5127 }
5128
5129 static int btrfs_permission(struct inode *inode, int mask)
5130 {
5131         if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
5132                 return -EACCES;
5133         return generic_permission(inode, mask, btrfs_check_acl);
5134 }
5135
5136 static struct inode_operations btrfs_dir_inode_operations = {
5137         .getattr        = btrfs_getattr,
5138         .lookup         = btrfs_lookup,
5139         .create         = btrfs_create,
5140         .unlink         = btrfs_unlink,
5141         .link           = btrfs_link,
5142         .mkdir          = btrfs_mkdir,
5143         .rmdir          = btrfs_rmdir,
5144         .rename         = btrfs_rename,
5145         .symlink        = btrfs_symlink,
5146         .setattr        = btrfs_setattr,
5147         .mknod          = btrfs_mknod,
5148         .setxattr       = btrfs_setxattr,
5149         .getxattr       = btrfs_getxattr,
5150         .listxattr      = btrfs_listxattr,
5151         .removexattr    = btrfs_removexattr,
5152         .permission     = btrfs_permission,
5153 };
5154 static struct inode_operations btrfs_dir_ro_inode_operations = {
5155         .lookup         = btrfs_lookup,
5156         .permission     = btrfs_permission,
5157 };
5158 static struct file_operations btrfs_dir_file_operations = {
5159         .llseek         = generic_file_llseek,
5160         .read           = generic_read_dir,
5161         .readdir        = btrfs_real_readdir,
5162         .unlocked_ioctl = btrfs_ioctl,
5163 #ifdef CONFIG_COMPAT
5164         .compat_ioctl   = btrfs_ioctl,
5165 #endif
5166         .release        = btrfs_release_file,
5167         .fsync          = btrfs_sync_file,
5168 };
5169
5170 static struct extent_io_ops btrfs_extent_io_ops = {
5171         .fill_delalloc = run_delalloc_range,
5172         .submit_bio_hook = btrfs_submit_bio_hook,
5173         .merge_bio_hook = btrfs_merge_bio_hook,
5174         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5175         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5176         .writepage_start_hook = btrfs_writepage_start_hook,
5177         .readpage_io_failed_hook = btrfs_io_failed_hook,
5178         .set_bit_hook = btrfs_set_bit_hook,
5179         .clear_bit_hook = btrfs_clear_bit_hook,
5180 };
5181
5182 /*
5183  * btrfs doesn't support the bmap operation because swapfiles
5184  * use bmap to make a mapping of extents in the file.  They assume
5185  * these extents won't change over the life of the file and they
5186  * use the bmap result to do IO directly to the drive.
5187  *
5188  * the btrfs bmap call would return logical addresses that aren't
5189  * suitable for IO and they also will change frequently as COW
5190  * operations happen.  So, swapfile + btrfs == corruption.
5191  *
5192  * For now we're avoiding this by dropping bmap.
5193  */
5194 static struct address_space_operations btrfs_aops = {
5195         .readpage       = btrfs_readpage,
5196         .writepage      = btrfs_writepage,
5197         .writepages     = btrfs_writepages,
5198         .readpages      = btrfs_readpages,
5199         .sync_page      = block_sync_page,
5200         .direct_IO      = btrfs_direct_IO,
5201         .invalidatepage = btrfs_invalidatepage,
5202         .releasepage    = btrfs_releasepage,
5203         .set_page_dirty = btrfs_set_page_dirty,
5204 };
5205
5206 static struct address_space_operations btrfs_symlink_aops = {
5207         .readpage       = btrfs_readpage,
5208         .writepage      = btrfs_writepage,
5209         .invalidatepage = btrfs_invalidatepage,
5210         .releasepage    = btrfs_releasepage,
5211 };
5212
5213 static struct inode_operations btrfs_file_inode_operations = {
5214         .truncate       = btrfs_truncate,
5215         .getattr        = btrfs_getattr,
5216         .setattr        = btrfs_setattr,
5217         .setxattr       = btrfs_setxattr,
5218         .getxattr       = btrfs_getxattr,
5219         .listxattr      = btrfs_listxattr,
5220         .removexattr    = btrfs_removexattr,
5221         .permission     = btrfs_permission,
5222         .fallocate      = btrfs_fallocate,
5223         .fiemap         = btrfs_fiemap,
5224 };
5225 static struct inode_operations btrfs_special_inode_operations = {
5226         .getattr        = btrfs_getattr,
5227         .setattr        = btrfs_setattr,
5228         .permission     = btrfs_permission,
5229         .setxattr       = btrfs_setxattr,
5230         .getxattr       = btrfs_getxattr,
5231         .listxattr      = btrfs_listxattr,
5232         .removexattr    = btrfs_removexattr,
5233 };
5234 static struct inode_operations btrfs_symlink_inode_operations = {
5235         .readlink       = generic_readlink,
5236         .follow_link    = page_follow_link_light,
5237         .put_link       = page_put_link,
5238         .permission     = btrfs_permission,
5239         .setxattr       = btrfs_setxattr,
5240         .getxattr       = btrfs_getxattr,
5241         .listxattr      = btrfs_listxattr,
5242         .removexattr    = btrfs_removexattr,
5243 };