2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include <scsi/scsi_cmnd.h>
55 #include <scsi/scsi_host.h>
56 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
63 /* debounce timing parameters in msecs { interval, duration, timeout } */
64 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
68 static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
71 static unsigned int ata_dev_set_feature(struct ata_device *dev,
72 u8 enable, u8 feature);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
76 unsigned int ata_print_id = 1;
77 static struct workqueue_struct *ata_wq;
79 struct workqueue_struct *ata_aux_wq;
81 int atapi_enabled = 1;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
86 module_param(atapi_dmadir, int, 0444);
87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
89 int atapi_passthru16 = 1;
90 module_param(atapi_passthru16, int, 0444);
91 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
94 module_param_named(fua, libata_fua, int, 0444);
95 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
97 static int ata_ignore_hpa;
98 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
99 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
101 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
102 module_param_named(dma, libata_dma_mask, int, 0444);
103 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
105 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
106 module_param(ata_probe_timeout, int, 0444);
107 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
109 int libata_noacpi = 0;
110 module_param_named(noacpi, libata_noacpi, int, 0444);
111 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
113 MODULE_AUTHOR("Jeff Garzik");
114 MODULE_DESCRIPTION("Library module for ATA devices");
115 MODULE_LICENSE("GPL");
116 MODULE_VERSION(DRV_VERSION);
120 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
121 * @tf: Taskfile to convert
122 * @pmp: Port multiplier port
123 * @is_cmd: This FIS is for command
124 * @fis: Buffer into which data will output
126 * Converts a standard ATA taskfile to a Serial ATA
127 * FIS structure (Register - Host to Device).
130 * Inherited from caller.
132 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
134 fis[0] = 0x27; /* Register - Host to Device FIS */
135 fis[1] = pmp & 0xf; /* Port multiplier number*/
137 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
139 fis[2] = tf->command;
140 fis[3] = tf->feature;
147 fis[8] = tf->hob_lbal;
148 fis[9] = tf->hob_lbam;
149 fis[10] = tf->hob_lbah;
150 fis[11] = tf->hob_feature;
153 fis[13] = tf->hob_nsect;
164 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
165 * @fis: Buffer from which data will be input
166 * @tf: Taskfile to output
168 * Converts a serial ATA FIS structure to a standard ATA taskfile.
171 * Inherited from caller.
174 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
176 tf->command = fis[2]; /* status */
177 tf->feature = fis[3]; /* error */
184 tf->hob_lbal = fis[8];
185 tf->hob_lbam = fis[9];
186 tf->hob_lbah = fis[10];
189 tf->hob_nsect = fis[13];
192 static const u8 ata_rw_cmds[] = {
196 ATA_CMD_READ_MULTI_EXT,
197 ATA_CMD_WRITE_MULTI_EXT,
201 ATA_CMD_WRITE_MULTI_FUA_EXT,
205 ATA_CMD_PIO_READ_EXT,
206 ATA_CMD_PIO_WRITE_EXT,
219 ATA_CMD_WRITE_FUA_EXT
223 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
224 * @tf: command to examine and configure
225 * @dev: device tf belongs to
227 * Examine the device configuration and tf->flags to calculate
228 * the proper read/write commands and protocol to use.
233 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
237 int index, fua, lba48, write;
239 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
240 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
241 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
243 if (dev->flags & ATA_DFLAG_PIO) {
244 tf->protocol = ATA_PROT_PIO;
245 index = dev->multi_count ? 0 : 8;
246 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
247 /* Unable to use DMA due to host limitation */
248 tf->protocol = ATA_PROT_PIO;
249 index = dev->multi_count ? 0 : 8;
251 tf->protocol = ATA_PROT_DMA;
255 cmd = ata_rw_cmds[index + fua + lba48 + write];
264 * ata_tf_read_block - Read block address from ATA taskfile
265 * @tf: ATA taskfile of interest
266 * @dev: ATA device @tf belongs to
271 * Read block address from @tf. This function can handle all
272 * three address formats - LBA, LBA48 and CHS. tf->protocol and
273 * flags select the address format to use.
276 * Block address read from @tf.
278 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
282 if (tf->flags & ATA_TFLAG_LBA) {
283 if (tf->flags & ATA_TFLAG_LBA48) {
284 block |= (u64)tf->hob_lbah << 40;
285 block |= (u64)tf->hob_lbam << 32;
286 block |= tf->hob_lbal << 24;
288 block |= (tf->device & 0xf) << 24;
290 block |= tf->lbah << 16;
291 block |= tf->lbam << 8;
296 cyl = tf->lbam | (tf->lbah << 8);
297 head = tf->device & 0xf;
300 block = (cyl * dev->heads + head) * dev->sectors + sect;
307 * ata_build_rw_tf - Build ATA taskfile for given read/write request
308 * @tf: Target ATA taskfile
309 * @dev: ATA device @tf belongs to
310 * @block: Block address
311 * @n_block: Number of blocks
312 * @tf_flags: RW/FUA etc...
318 * Build ATA taskfile @tf for read/write request described by
319 * @block, @n_block, @tf_flags and @tag on @dev.
323 * 0 on success, -ERANGE if the request is too large for @dev,
324 * -EINVAL if the request is invalid.
326 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
327 u64 block, u32 n_block, unsigned int tf_flags,
330 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
331 tf->flags |= tf_flags;
333 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
335 if (!lba_48_ok(block, n_block))
338 tf->protocol = ATA_PROT_NCQ;
339 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
341 if (tf->flags & ATA_TFLAG_WRITE)
342 tf->command = ATA_CMD_FPDMA_WRITE;
344 tf->command = ATA_CMD_FPDMA_READ;
346 tf->nsect = tag << 3;
347 tf->hob_feature = (n_block >> 8) & 0xff;
348 tf->feature = n_block & 0xff;
350 tf->hob_lbah = (block >> 40) & 0xff;
351 tf->hob_lbam = (block >> 32) & 0xff;
352 tf->hob_lbal = (block >> 24) & 0xff;
353 tf->lbah = (block >> 16) & 0xff;
354 tf->lbam = (block >> 8) & 0xff;
355 tf->lbal = block & 0xff;
358 if (tf->flags & ATA_TFLAG_FUA)
359 tf->device |= 1 << 7;
360 } else if (dev->flags & ATA_DFLAG_LBA) {
361 tf->flags |= ATA_TFLAG_LBA;
363 if (lba_28_ok(block, n_block)) {
365 tf->device |= (block >> 24) & 0xf;
366 } else if (lba_48_ok(block, n_block)) {
367 if (!(dev->flags & ATA_DFLAG_LBA48))
371 tf->flags |= ATA_TFLAG_LBA48;
373 tf->hob_nsect = (n_block >> 8) & 0xff;
375 tf->hob_lbah = (block >> 40) & 0xff;
376 tf->hob_lbam = (block >> 32) & 0xff;
377 tf->hob_lbal = (block >> 24) & 0xff;
379 /* request too large even for LBA48 */
382 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
385 tf->nsect = n_block & 0xff;
387 tf->lbah = (block >> 16) & 0xff;
388 tf->lbam = (block >> 8) & 0xff;
389 tf->lbal = block & 0xff;
391 tf->device |= ATA_LBA;
394 u32 sect, head, cyl, track;
396 /* The request -may- be too large for CHS addressing. */
397 if (!lba_28_ok(block, n_block))
400 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
403 /* Convert LBA to CHS */
404 track = (u32)block / dev->sectors;
405 cyl = track / dev->heads;
406 head = track % dev->heads;
407 sect = (u32)block % dev->sectors + 1;
409 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
410 (u32)block, track, cyl, head, sect);
412 /* Check whether the converted CHS can fit.
416 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
419 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
430 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
431 * @pio_mask: pio_mask
432 * @mwdma_mask: mwdma_mask
433 * @udma_mask: udma_mask
435 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
436 * unsigned int xfer_mask.
444 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
445 unsigned int mwdma_mask,
446 unsigned int udma_mask)
448 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
449 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
450 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
454 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
455 * @xfer_mask: xfer_mask to unpack
456 * @pio_mask: resulting pio_mask
457 * @mwdma_mask: resulting mwdma_mask
458 * @udma_mask: resulting udma_mask
460 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
461 * Any NULL distination masks will be ignored.
463 static void ata_unpack_xfermask(unsigned int xfer_mask,
464 unsigned int *pio_mask,
465 unsigned int *mwdma_mask,
466 unsigned int *udma_mask)
469 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
471 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
473 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
476 static const struct ata_xfer_ent {
480 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
481 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
482 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
487 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
488 * @xfer_mask: xfer_mask of interest
490 * Return matching XFER_* value for @xfer_mask. Only the highest
491 * bit of @xfer_mask is considered.
497 * Matching XFER_* value, 0 if no match found.
499 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
501 int highbit = fls(xfer_mask) - 1;
502 const struct ata_xfer_ent *ent;
504 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
505 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
506 return ent->base + highbit - ent->shift;
511 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
512 * @xfer_mode: XFER_* of interest
514 * Return matching xfer_mask for @xfer_mode.
520 * Matching xfer_mask, 0 if no match found.
522 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
524 const struct ata_xfer_ent *ent;
526 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
527 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
528 return 1 << (ent->shift + xfer_mode - ent->base);
533 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
534 * @xfer_mode: XFER_* of interest
536 * Return matching xfer_shift for @xfer_mode.
542 * Matching xfer_shift, -1 if no match found.
544 static int ata_xfer_mode2shift(unsigned int xfer_mode)
546 const struct ata_xfer_ent *ent;
548 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
549 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
555 * ata_mode_string - convert xfer_mask to string
556 * @xfer_mask: mask of bits supported; only highest bit counts.
558 * Determine string which represents the highest speed
559 * (highest bit in @modemask).
565 * Constant C string representing highest speed listed in
566 * @mode_mask, or the constant C string "<n/a>".
568 static const char *ata_mode_string(unsigned int xfer_mask)
570 static const char * const xfer_mode_str[] = {
594 highbit = fls(xfer_mask) - 1;
595 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
596 return xfer_mode_str[highbit];
600 static const char *sata_spd_string(unsigned int spd)
602 static const char * const spd_str[] = {
607 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
609 return spd_str[spd - 1];
612 void ata_dev_disable(struct ata_device *dev)
614 if (ata_dev_enabled(dev)) {
615 if (ata_msg_drv(dev->link->ap))
616 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
617 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
623 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
625 struct ata_link *link = dev->link;
626 struct ata_port *ap = link->ap;
628 unsigned int err_mask;
632 * disallow DIPM for drivers which haven't set
633 * ATA_FLAG_IPM. This is because when DIPM is enabled,
634 * phy ready will be set in the interrupt status on
635 * state changes, which will cause some drivers to
636 * think there are errors - additionally drivers will
637 * need to disable hot plug.
639 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
640 ap->pm_policy = NOT_AVAILABLE;
645 * For DIPM, we will only enable it for the
648 * Why? Because Disks are too stupid to know that
649 * If the host rejects a request to go to SLUMBER
650 * they should retry at PARTIAL, and instead it
651 * just would give up. So, for medium_power to
652 * work at all, we need to only allow HIPM.
654 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
660 /* no restrictions on IPM transitions */
661 scontrol &= ~(0x3 << 8);
662 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
667 if (dev->flags & ATA_DFLAG_DIPM)
668 err_mask = ata_dev_set_feature(dev,
669 SETFEATURES_SATA_ENABLE, SATA_DIPM);
672 /* allow IPM to PARTIAL */
673 scontrol &= ~(0x1 << 8);
674 scontrol |= (0x2 << 8);
675 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
680 if (ata_dev_enabled(dev) && (dev->flags & ATA_DFLAG_DIPM))
681 err_mask = ata_dev_set_feature(dev,
682 SETFEATURES_SATA_DISABLE, SATA_DIPM);
685 case MAX_PERFORMANCE:
686 /* disable all IPM transitions */
687 scontrol |= (0x3 << 8);
688 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
693 if (ata_dev_enabled(dev) && (dev->flags & ATA_DFLAG_DIPM))
694 err_mask = ata_dev_set_feature(dev,
695 SETFEATURES_SATA_DISABLE, SATA_DIPM);
699 /* FIXME: handle SET FEATURES failure */
706 * ata_dev_enable_pm - enable SATA interface power management
707 * @device - device to enable ipm for
708 * @policy - the link power management policy
710 * Enable SATA Interface power management. This will enable
711 * Device Interface Power Management (DIPM) for min_power
712 * policy, and then call driver specific callbacks for
713 * enabling Host Initiated Power management.
716 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
718 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
721 struct ata_port *ap = dev->link->ap;
723 /* set HIPM first, then DIPM */
724 if (ap->ops->enable_pm)
725 rc = ap->ops->enable_pm(ap, policy);
728 rc = ata_dev_set_dipm(dev, policy);
732 ap->pm_policy = MAX_PERFORMANCE;
734 ap->pm_policy = policy;
735 return /* rc */; /* hopefully we can use 'rc' eventually */
740 * ata_dev_disable_pm - disable SATA interface power management
741 * @device - device to enable ipm for
743 * Disable SATA Interface power management. This will disable
744 * Device Interface Power Management (DIPM) without changing
745 * policy, call driver specific callbacks for disabling Host
746 * Initiated Power management.
751 static void ata_dev_disable_pm(struct ata_device *dev)
753 struct ata_port *ap = dev->link->ap;
755 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
756 if (ap->ops->disable_pm)
757 ap->ops->disable_pm(ap);
759 #endif /* CONFIG_PM */
761 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
763 ap->pm_policy = policy;
764 ap->link.eh_info.action |= ATA_EHI_LPM;
765 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
766 ata_port_schedule_eh(ap);
770 static void ata_lpm_enable(struct ata_host *host)
772 struct ata_link *link;
774 struct ata_device *dev;
777 for (i = 0; i < host->n_ports; i++) {
779 ata_port_for_each_link(link, ap) {
780 ata_link_for_each_dev(dev, link)
781 ata_dev_disable_pm(dev);
786 static void ata_lpm_disable(struct ata_host *host)
790 for (i = 0; i < host->n_ports; i++) {
791 struct ata_port *ap = host->ports[i];
792 ata_lpm_schedule(ap, ap->pm_policy);
795 #endif /* CONFIG_PM */
799 * ata_devchk - PATA device presence detection
800 * @ap: ATA channel to examine
801 * @device: Device to examine (starting at zero)
803 * This technique was originally described in
804 * Hale Landis's ATADRVR (www.ata-atapi.com), and
805 * later found its way into the ATA/ATAPI spec.
807 * Write a pattern to the ATA shadow registers,
808 * and if a device is present, it will respond by
809 * correctly storing and echoing back the
810 * ATA shadow register contents.
816 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
818 struct ata_ioports *ioaddr = &ap->ioaddr;
821 ap->ops->dev_select(ap, device);
823 iowrite8(0x55, ioaddr->nsect_addr);
824 iowrite8(0xaa, ioaddr->lbal_addr);
826 iowrite8(0xaa, ioaddr->nsect_addr);
827 iowrite8(0x55, ioaddr->lbal_addr);
829 iowrite8(0x55, ioaddr->nsect_addr);
830 iowrite8(0xaa, ioaddr->lbal_addr);
832 nsect = ioread8(ioaddr->nsect_addr);
833 lbal = ioread8(ioaddr->lbal_addr);
835 if ((nsect == 0x55) && (lbal == 0xaa))
836 return 1; /* we found a device */
838 return 0; /* nothing found */
842 * ata_dev_classify - determine device type based on ATA-spec signature
843 * @tf: ATA taskfile register set for device to be identified
845 * Determine from taskfile register contents whether a device is
846 * ATA or ATAPI, as per "Signature and persistence" section
847 * of ATA/PI spec (volume 1, sect 5.14).
853 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
854 * %ATA_DEV_UNKNOWN the event of failure.
856 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
858 /* Apple's open source Darwin code hints that some devices only
859 * put a proper signature into the LBA mid/high registers,
860 * So, we only check those. It's sufficient for uniqueness.
862 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
863 * signatures for ATA and ATAPI devices attached on SerialATA,
864 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
865 * spec has never mentioned about using different signatures
866 * for ATA/ATAPI devices. Then, Serial ATA II: Port
867 * Multiplier specification began to use 0x69/0x96 to identify
868 * port multpliers and 0x3c/0xc3 to identify SEMB device.
869 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
870 * 0x69/0x96 shortly and described them as reserved for
873 * We follow the current spec and consider that 0x69/0x96
874 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
876 if ((tf->lbam == 0) && (tf->lbah == 0)) {
877 DPRINTK("found ATA device by sig\n");
881 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
882 DPRINTK("found ATAPI device by sig\n");
883 return ATA_DEV_ATAPI;
886 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
887 DPRINTK("found PMP device by sig\n");
891 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
892 printk(KERN_INFO "ata: SEMB device ignored\n");
893 return ATA_DEV_SEMB_UNSUP; /* not yet */
896 DPRINTK("unknown device\n");
897 return ATA_DEV_UNKNOWN;
901 * ata_dev_try_classify - Parse returned ATA device signature
902 * @dev: ATA device to classify (starting at zero)
903 * @present: device seems present
904 * @r_err: Value of error register on completion
906 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
907 * an ATA/ATAPI-defined set of values is placed in the ATA
908 * shadow registers, indicating the results of device detection
911 * Select the ATA device, and read the values from the ATA shadow
912 * registers. Then parse according to the Error register value,
913 * and the spec-defined values examined by ata_dev_classify().
919 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
921 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
924 struct ata_port *ap = dev->link->ap;
925 struct ata_taskfile tf;
929 ap->ops->dev_select(ap, dev->devno);
931 memset(&tf, 0, sizeof(tf));
933 ap->ops->tf_read(ap, &tf);
938 /* see if device passed diags: if master then continue and warn later */
939 if (err == 0 && dev->devno == 0)
940 /* diagnostic fail : do nothing _YET_ */
941 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
944 else if ((dev->devno == 0) && (err == 0x81))
949 /* determine if device is ATA or ATAPI */
950 class = ata_dev_classify(&tf);
952 if (class == ATA_DEV_UNKNOWN) {
953 /* If the device failed diagnostic, it's likely to
954 * have reported incorrect device signature too.
955 * Assume ATA device if the device seems present but
956 * device signature is invalid with diagnostic
959 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
962 class = ATA_DEV_NONE;
963 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
964 class = ATA_DEV_NONE;
970 * ata_id_string - Convert IDENTIFY DEVICE page into string
971 * @id: IDENTIFY DEVICE results we will examine
972 * @s: string into which data is output
973 * @ofs: offset into identify device page
974 * @len: length of string to return. must be an even number.
976 * The strings in the IDENTIFY DEVICE page are broken up into
977 * 16-bit chunks. Run through the string, and output each
978 * 8-bit chunk linearly, regardless of platform.
984 void ata_id_string(const u16 *id, unsigned char *s,
985 unsigned int ofs, unsigned int len)
1004 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1005 * @id: IDENTIFY DEVICE results we will examine
1006 * @s: string into which data is output
1007 * @ofs: offset into identify device page
1008 * @len: length of string to return. must be an odd number.
1010 * This function is identical to ata_id_string except that it
1011 * trims trailing spaces and terminates the resulting string with
1012 * null. @len must be actual maximum length (even number) + 1.
1017 void ata_id_c_string(const u16 *id, unsigned char *s,
1018 unsigned int ofs, unsigned int len)
1022 WARN_ON(!(len & 1));
1024 ata_id_string(id, s, ofs, len - 1);
1026 p = s + strnlen(s, len - 1);
1027 while (p > s && p[-1] == ' ')
1032 static u64 ata_id_n_sectors(const u16 *id)
1034 if (ata_id_has_lba(id)) {
1035 if (ata_id_has_lba48(id))
1036 return ata_id_u64(id, 100);
1038 return ata_id_u32(id, 60);
1040 if (ata_id_current_chs_valid(id))
1041 return ata_id_u32(id, 57);
1043 return id[1] * id[3] * id[6];
1047 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1051 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1052 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1053 sectors |= (tf->hob_lbal & 0xff) << 24;
1054 sectors |= (tf->lbah & 0xff) << 16;
1055 sectors |= (tf->lbam & 0xff) << 8;
1056 sectors |= (tf->lbal & 0xff);
1061 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1065 sectors |= (tf->device & 0x0f) << 24;
1066 sectors |= (tf->lbah & 0xff) << 16;
1067 sectors |= (tf->lbam & 0xff) << 8;
1068 sectors |= (tf->lbal & 0xff);
1074 * ata_read_native_max_address - Read native max address
1075 * @dev: target device
1076 * @max_sectors: out parameter for the result native max address
1078 * Perform an LBA48 or LBA28 native size query upon the device in
1082 * 0 on success, -EACCES if command is aborted by the drive.
1083 * -EIO on other errors.
1085 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1087 unsigned int err_mask;
1088 struct ata_taskfile tf;
1089 int lba48 = ata_id_has_lba48(dev->id);
1091 ata_tf_init(dev, &tf);
1093 /* always clear all address registers */
1094 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1097 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1098 tf.flags |= ATA_TFLAG_LBA48;
1100 tf.command = ATA_CMD_READ_NATIVE_MAX;
1102 tf.protocol |= ATA_PROT_NODATA;
1103 tf.device |= ATA_LBA;
1105 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1107 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1108 "max address (err_mask=0x%x)\n", err_mask);
1109 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1115 *max_sectors = ata_tf_to_lba48(&tf);
1117 *max_sectors = ata_tf_to_lba(&tf);
1118 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1124 * ata_set_max_sectors - Set max sectors
1125 * @dev: target device
1126 * @new_sectors: new max sectors value to set for the device
1128 * Set max sectors of @dev to @new_sectors.
1131 * 0 on success, -EACCES if command is aborted or denied (due to
1132 * previous non-volatile SET_MAX) by the drive. -EIO on other
1135 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1137 unsigned int err_mask;
1138 struct ata_taskfile tf;
1139 int lba48 = ata_id_has_lba48(dev->id);
1143 ata_tf_init(dev, &tf);
1145 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1148 tf.command = ATA_CMD_SET_MAX_EXT;
1149 tf.flags |= ATA_TFLAG_LBA48;
1151 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1152 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1153 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1155 tf.command = ATA_CMD_SET_MAX;
1157 tf.device |= (new_sectors >> 24) & 0xf;
1160 tf.protocol |= ATA_PROT_NODATA;
1161 tf.device |= ATA_LBA;
1163 tf.lbal = (new_sectors >> 0) & 0xff;
1164 tf.lbam = (new_sectors >> 8) & 0xff;
1165 tf.lbah = (new_sectors >> 16) & 0xff;
1167 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1169 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1170 "max address (err_mask=0x%x)\n", err_mask);
1171 if (err_mask == AC_ERR_DEV &&
1172 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1181 * ata_hpa_resize - Resize a device with an HPA set
1182 * @dev: Device to resize
1184 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1185 * it if required to the full size of the media. The caller must check
1186 * the drive has the HPA feature set enabled.
1189 * 0 on success, -errno on failure.
1191 static int ata_hpa_resize(struct ata_device *dev)
1193 struct ata_eh_context *ehc = &dev->link->eh_context;
1194 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1195 u64 sectors = ata_id_n_sectors(dev->id);
1199 /* do we need to do it? */
1200 if (dev->class != ATA_DEV_ATA ||
1201 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1202 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1205 /* read native max address */
1206 rc = ata_read_native_max_address(dev, &native_sectors);
1208 /* If HPA isn't going to be unlocked, skip HPA
1209 * resizing from the next try.
1211 if (!ata_ignore_hpa) {
1212 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1213 "broken, will skip HPA handling\n");
1214 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1216 /* we can continue if device aborted the command */
1224 /* nothing to do? */
1225 if (native_sectors <= sectors || !ata_ignore_hpa) {
1226 if (!print_info || native_sectors == sectors)
1229 if (native_sectors > sectors)
1230 ata_dev_printk(dev, KERN_INFO,
1231 "HPA detected: current %llu, native %llu\n",
1232 (unsigned long long)sectors,
1233 (unsigned long long)native_sectors);
1234 else if (native_sectors < sectors)
1235 ata_dev_printk(dev, KERN_WARNING,
1236 "native sectors (%llu) is smaller than "
1238 (unsigned long long)native_sectors,
1239 (unsigned long long)sectors);
1243 /* let's unlock HPA */
1244 rc = ata_set_max_sectors(dev, native_sectors);
1245 if (rc == -EACCES) {
1246 /* if device aborted the command, skip HPA resizing */
1247 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1248 "(%llu -> %llu), skipping HPA handling\n",
1249 (unsigned long long)sectors,
1250 (unsigned long long)native_sectors);
1251 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1256 /* re-read IDENTIFY data */
1257 rc = ata_dev_reread_id(dev, 0);
1259 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1260 "data after HPA resizing\n");
1265 u64 new_sectors = ata_id_n_sectors(dev->id);
1266 ata_dev_printk(dev, KERN_INFO,
1267 "HPA unlocked: %llu -> %llu, native %llu\n",
1268 (unsigned long long)sectors,
1269 (unsigned long long)new_sectors,
1270 (unsigned long long)native_sectors);
1277 * ata_id_to_dma_mode - Identify DMA mode from id block
1278 * @dev: device to identify
1279 * @unknown: mode to assume if we cannot tell
1281 * Set up the timing values for the device based upon the identify
1282 * reported values for the DMA mode. This function is used by drivers
1283 * which rely upon firmware configured modes, but wish to report the
1284 * mode correctly when possible.
1286 * In addition we emit similarly formatted messages to the default
1287 * ata_dev_set_mode handler, in order to provide consistency of
1291 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1296 /* Pack the DMA modes */
1297 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1298 if (dev->id[53] & 0x04)
1299 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1301 /* Select the mode in use */
1302 mode = ata_xfer_mask2mode(mask);
1305 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1306 ata_mode_string(mask));
1308 /* SWDMA perhaps ? */
1310 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1313 /* Configure the device reporting */
1314 dev->xfer_mode = mode;
1315 dev->xfer_shift = ata_xfer_mode2shift(mode);
1319 * ata_noop_dev_select - Select device 0/1 on ATA bus
1320 * @ap: ATA channel to manipulate
1321 * @device: ATA device (numbered from zero) to select
1323 * This function performs no actual function.
1325 * May be used as the dev_select() entry in ata_port_operations.
1330 void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1336 * ata_std_dev_select - Select device 0/1 on ATA bus
1337 * @ap: ATA channel to manipulate
1338 * @device: ATA device (numbered from zero) to select
1340 * Use the method defined in the ATA specification to
1341 * make either device 0, or device 1, active on the
1342 * ATA channel. Works with both PIO and MMIO.
1344 * May be used as the dev_select() entry in ata_port_operations.
1350 void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1355 tmp = ATA_DEVICE_OBS;
1357 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1359 iowrite8(tmp, ap->ioaddr.device_addr);
1360 ata_pause(ap); /* needed; also flushes, for mmio */
1364 * ata_dev_select - Select device 0/1 on ATA bus
1365 * @ap: ATA channel to manipulate
1366 * @device: ATA device (numbered from zero) to select
1367 * @wait: non-zero to wait for Status register BSY bit to clear
1368 * @can_sleep: non-zero if context allows sleeping
1370 * Use the method defined in the ATA specification to
1371 * make either device 0, or device 1, active on the
1374 * This is a high-level version of ata_std_dev_select(),
1375 * which additionally provides the services of inserting
1376 * the proper pauses and status polling, where needed.
1382 void ata_dev_select(struct ata_port *ap, unsigned int device,
1383 unsigned int wait, unsigned int can_sleep)
1385 if (ata_msg_probe(ap))
1386 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1387 "device %u, wait %u\n", device, wait);
1392 ap->ops->dev_select(ap, device);
1395 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1402 * ata_dump_id - IDENTIFY DEVICE info debugging output
1403 * @id: IDENTIFY DEVICE page to dump
1405 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1412 static inline void ata_dump_id(const u16 *id)
1414 DPRINTK("49==0x%04x "
1424 DPRINTK("80==0x%04x "
1434 DPRINTK("88==0x%04x "
1441 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1442 * @id: IDENTIFY data to compute xfer mask from
1444 * Compute the xfermask for this device. This is not as trivial
1445 * as it seems if we must consider early devices correctly.
1447 * FIXME: pre IDE drive timing (do we care ?).
1455 static unsigned int ata_id_xfermask(const u16 *id)
1457 unsigned int pio_mask, mwdma_mask, udma_mask;
1459 /* Usual case. Word 53 indicates word 64 is valid */
1460 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1461 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1465 /* If word 64 isn't valid then Word 51 high byte holds
1466 * the PIO timing number for the maximum. Turn it into
1469 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1470 if (mode < 5) /* Valid PIO range */
1471 pio_mask = (2 << mode) - 1;
1475 /* But wait.. there's more. Design your standards by
1476 * committee and you too can get a free iordy field to
1477 * process. However its the speeds not the modes that
1478 * are supported... Note drivers using the timing API
1479 * will get this right anyway
1483 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1485 if (ata_id_is_cfa(id)) {
1487 * Process compact flash extended modes
1489 int pio = id[163] & 0x7;
1490 int dma = (id[163] >> 3) & 7;
1493 pio_mask |= (1 << 5);
1495 pio_mask |= (1 << 6);
1497 mwdma_mask |= (1 << 3);
1499 mwdma_mask |= (1 << 4);
1503 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1504 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1506 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1510 * ata_port_queue_task - Queue port_task
1511 * @ap: The ata_port to queue port_task for
1512 * @fn: workqueue function to be scheduled
1513 * @data: data for @fn to use
1514 * @delay: delay time for workqueue function
1516 * Schedule @fn(@data) for execution after @delay jiffies using
1517 * port_task. There is one port_task per port and it's the
1518 * user(low level driver)'s responsibility to make sure that only
1519 * one task is active at any given time.
1521 * libata core layer takes care of synchronization between
1522 * port_task and EH. ata_port_queue_task() may be ignored for EH
1526 * Inherited from caller.
1528 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1529 unsigned long delay)
1531 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1532 ap->port_task_data = data;
1534 /* may fail if ata_port_flush_task() in progress */
1535 queue_delayed_work(ata_wq, &ap->port_task, delay);
1539 * ata_port_flush_task - Flush port_task
1540 * @ap: The ata_port to flush port_task for
1542 * After this function completes, port_task is guranteed not to
1543 * be running or scheduled.
1546 * Kernel thread context (may sleep)
1548 void ata_port_flush_task(struct ata_port *ap)
1552 cancel_rearming_delayed_work(&ap->port_task);
1554 if (ata_msg_ctl(ap))
1555 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1558 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1560 struct completion *waiting = qc->private_data;
1566 * ata_exec_internal_sg - execute libata internal command
1567 * @dev: Device to which the command is sent
1568 * @tf: Taskfile registers for the command and the result
1569 * @cdb: CDB for packet command
1570 * @dma_dir: Data tranfer direction of the command
1571 * @sgl: sg list for the data buffer of the command
1572 * @n_elem: Number of sg entries
1573 * @timeout: Timeout in msecs (0 for default)
1575 * Executes libata internal command with timeout. @tf contains
1576 * command on entry and result on return. Timeout and error
1577 * conditions are reported via return value. No recovery action
1578 * is taken after a command times out. It's caller's duty to
1579 * clean up after timeout.
1582 * None. Should be called with kernel context, might sleep.
1585 * Zero on success, AC_ERR_* mask on failure
1587 unsigned ata_exec_internal_sg(struct ata_device *dev,
1588 struct ata_taskfile *tf, const u8 *cdb,
1589 int dma_dir, struct scatterlist *sgl,
1590 unsigned int n_elem, unsigned long timeout)
1592 struct ata_link *link = dev->link;
1593 struct ata_port *ap = link->ap;
1594 u8 command = tf->command;
1595 struct ata_queued_cmd *qc;
1596 unsigned int tag, preempted_tag;
1597 u32 preempted_sactive, preempted_qc_active;
1598 int preempted_nr_active_links;
1599 DECLARE_COMPLETION_ONSTACK(wait);
1600 unsigned long flags;
1601 unsigned int err_mask;
1604 spin_lock_irqsave(ap->lock, flags);
1606 /* no internal command while frozen */
1607 if (ap->pflags & ATA_PFLAG_FROZEN) {
1608 spin_unlock_irqrestore(ap->lock, flags);
1609 return AC_ERR_SYSTEM;
1612 /* initialize internal qc */
1614 /* XXX: Tag 0 is used for drivers with legacy EH as some
1615 * drivers choke if any other tag is given. This breaks
1616 * ata_tag_internal() test for those drivers. Don't use new
1617 * EH stuff without converting to it.
1619 if (ap->ops->error_handler)
1620 tag = ATA_TAG_INTERNAL;
1624 if (test_and_set_bit(tag, &ap->qc_allocated))
1626 qc = __ata_qc_from_tag(ap, tag);
1634 preempted_tag = link->active_tag;
1635 preempted_sactive = link->sactive;
1636 preempted_qc_active = ap->qc_active;
1637 preempted_nr_active_links = ap->nr_active_links;
1638 link->active_tag = ATA_TAG_POISON;
1641 ap->nr_active_links = 0;
1643 /* prepare & issue qc */
1646 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1647 qc->flags |= ATA_QCFLAG_RESULT_TF;
1648 qc->dma_dir = dma_dir;
1649 if (dma_dir != DMA_NONE) {
1650 unsigned int i, buflen = 0;
1651 struct scatterlist *sg;
1653 for_each_sg(sgl, sg, n_elem, i)
1654 buflen += sg->length;
1656 ata_sg_init(qc, sgl, n_elem);
1657 qc->nbytes = buflen;
1660 qc->private_data = &wait;
1661 qc->complete_fn = ata_qc_complete_internal;
1665 spin_unlock_irqrestore(ap->lock, flags);
1668 timeout = ata_probe_timeout * 1000 / HZ;
1670 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1672 ata_port_flush_task(ap);
1675 spin_lock_irqsave(ap->lock, flags);
1677 /* We're racing with irq here. If we lose, the
1678 * following test prevents us from completing the qc
1679 * twice. If we win, the port is frozen and will be
1680 * cleaned up by ->post_internal_cmd().
1682 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1683 qc->err_mask |= AC_ERR_TIMEOUT;
1685 if (ap->ops->error_handler)
1686 ata_port_freeze(ap);
1688 ata_qc_complete(qc);
1690 if (ata_msg_warn(ap))
1691 ata_dev_printk(dev, KERN_WARNING,
1692 "qc timeout (cmd 0x%x)\n", command);
1695 spin_unlock_irqrestore(ap->lock, flags);
1698 /* do post_internal_cmd */
1699 if (ap->ops->post_internal_cmd)
1700 ap->ops->post_internal_cmd(qc);
1702 /* perform minimal error analysis */
1703 if (qc->flags & ATA_QCFLAG_FAILED) {
1704 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1705 qc->err_mask |= AC_ERR_DEV;
1708 qc->err_mask |= AC_ERR_OTHER;
1710 if (qc->err_mask & ~AC_ERR_OTHER)
1711 qc->err_mask &= ~AC_ERR_OTHER;
1715 spin_lock_irqsave(ap->lock, flags);
1717 *tf = qc->result_tf;
1718 err_mask = qc->err_mask;
1721 link->active_tag = preempted_tag;
1722 link->sactive = preempted_sactive;
1723 ap->qc_active = preempted_qc_active;
1724 ap->nr_active_links = preempted_nr_active_links;
1726 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1727 * Until those drivers are fixed, we detect the condition
1728 * here, fail the command with AC_ERR_SYSTEM and reenable the
1731 * Note that this doesn't change any behavior as internal
1732 * command failure results in disabling the device in the
1733 * higher layer for LLDDs without new reset/EH callbacks.
1735 * Kill the following code as soon as those drivers are fixed.
1737 if (ap->flags & ATA_FLAG_DISABLED) {
1738 err_mask |= AC_ERR_SYSTEM;
1742 spin_unlock_irqrestore(ap->lock, flags);
1748 * ata_exec_internal - execute libata internal command
1749 * @dev: Device to which the command is sent
1750 * @tf: Taskfile registers for the command and the result
1751 * @cdb: CDB for packet command
1752 * @dma_dir: Data tranfer direction of the command
1753 * @buf: Data buffer of the command
1754 * @buflen: Length of data buffer
1755 * @timeout: Timeout in msecs (0 for default)
1757 * Wrapper around ata_exec_internal_sg() which takes simple
1758 * buffer instead of sg list.
1761 * None. Should be called with kernel context, might sleep.
1764 * Zero on success, AC_ERR_* mask on failure
1766 unsigned ata_exec_internal(struct ata_device *dev,
1767 struct ata_taskfile *tf, const u8 *cdb,
1768 int dma_dir, void *buf, unsigned int buflen,
1769 unsigned long timeout)
1771 struct scatterlist *psg = NULL, sg;
1772 unsigned int n_elem = 0;
1774 if (dma_dir != DMA_NONE) {
1776 sg_init_one(&sg, buf, buflen);
1781 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1786 * ata_do_simple_cmd - execute simple internal command
1787 * @dev: Device to which the command is sent
1788 * @cmd: Opcode to execute
1790 * Execute a 'simple' command, that only consists of the opcode
1791 * 'cmd' itself, without filling any other registers
1794 * Kernel thread context (may sleep).
1797 * Zero on success, AC_ERR_* mask on failure
1799 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1801 struct ata_taskfile tf;
1803 ata_tf_init(dev, &tf);
1806 tf.flags |= ATA_TFLAG_DEVICE;
1807 tf.protocol = ATA_PROT_NODATA;
1809 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1813 * ata_pio_need_iordy - check if iordy needed
1816 * Check if the current speed of the device requires IORDY. Used
1817 * by various controllers for chip configuration.
1820 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1822 /* Controller doesn't support IORDY. Probably a pointless check
1823 as the caller should know this */
1824 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1826 /* PIO3 and higher it is mandatory */
1827 if (adev->pio_mode > XFER_PIO_2)
1829 /* We turn it on when possible */
1830 if (ata_id_has_iordy(adev->id))
1836 * ata_pio_mask_no_iordy - Return the non IORDY mask
1839 * Compute the highest mode possible if we are not using iordy. Return
1840 * -1 if no iordy mode is available.
1843 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1845 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1846 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1847 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1848 /* Is the speed faster than the drive allows non IORDY ? */
1850 /* This is cycle times not frequency - watch the logic! */
1851 if (pio > 240) /* PIO2 is 240nS per cycle */
1852 return 3 << ATA_SHIFT_PIO;
1853 return 7 << ATA_SHIFT_PIO;
1856 return 3 << ATA_SHIFT_PIO;
1860 * ata_dev_read_id - Read ID data from the specified device
1861 * @dev: target device
1862 * @p_class: pointer to class of the target device (may be changed)
1863 * @flags: ATA_READID_* flags
1864 * @id: buffer to read IDENTIFY data into
1866 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1867 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1868 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1869 * for pre-ATA4 drives.
1871 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1872 * now we abort if we hit that case.
1875 * Kernel thread context (may sleep)
1878 * 0 on success, -errno otherwise.
1880 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1881 unsigned int flags, u16 *id)
1883 struct ata_port *ap = dev->link->ap;
1884 unsigned int class = *p_class;
1885 struct ata_taskfile tf;
1886 unsigned int err_mask = 0;
1888 int may_fallback = 1, tried_spinup = 0;
1891 if (ata_msg_ctl(ap))
1892 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1894 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1896 ata_tf_init(dev, &tf);
1900 tf.command = ATA_CMD_ID_ATA;
1903 tf.command = ATA_CMD_ID_ATAPI;
1907 reason = "unsupported class";
1911 tf.protocol = ATA_PROT_PIO;
1913 /* Some devices choke if TF registers contain garbage. Make
1914 * sure those are properly initialized.
1916 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1918 /* Device presence detection is unreliable on some
1919 * controllers. Always poll IDENTIFY if available.
1921 tf.flags |= ATA_TFLAG_POLLING;
1923 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1924 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1926 if (err_mask & AC_ERR_NODEV_HINT) {
1927 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1928 ap->print_id, dev->devno);
1932 /* Device or controller might have reported the wrong
1933 * device class. Give a shot at the other IDENTIFY if
1934 * the current one is aborted by the device.
1937 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1940 if (class == ATA_DEV_ATA)
1941 class = ATA_DEV_ATAPI;
1943 class = ATA_DEV_ATA;
1948 reason = "I/O error";
1952 /* Falling back doesn't make sense if ID data was read
1953 * successfully at least once.
1957 swap_buf_le16(id, ATA_ID_WORDS);
1961 reason = "device reports invalid type";
1963 if (class == ATA_DEV_ATA) {
1964 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1967 if (ata_id_is_ata(id))
1971 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1974 * Drive powered-up in standby mode, and requires a specific
1975 * SET_FEATURES spin-up subcommand before it will accept
1976 * anything other than the original IDENTIFY command.
1978 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1979 if (err_mask && id[2] != 0x738c) {
1981 reason = "SPINUP failed";
1985 * If the drive initially returned incomplete IDENTIFY info,
1986 * we now must reissue the IDENTIFY command.
1988 if (id[2] == 0x37c8)
1992 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1994 * The exact sequence expected by certain pre-ATA4 drives is:
1996 * IDENTIFY (optional in early ATA)
1997 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1999 * Some drives were very specific about that exact sequence.
2001 * Note that ATA4 says lba is mandatory so the second check
2002 * shoud never trigger.
2004 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2005 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2008 reason = "INIT_DEV_PARAMS failed";
2012 /* current CHS translation info (id[53-58]) might be
2013 * changed. reread the identify device info.
2015 flags &= ~ATA_READID_POSTRESET;
2025 if (ata_msg_warn(ap))
2026 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2027 "(%s, err_mask=0x%x)\n", reason, err_mask);
2031 static inline u8 ata_dev_knobble(struct ata_device *dev)
2033 struct ata_port *ap = dev->link->ap;
2034 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2037 static void ata_dev_config_ncq(struct ata_device *dev,
2038 char *desc, size_t desc_sz)
2040 struct ata_port *ap = dev->link->ap;
2041 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2043 if (!ata_id_has_ncq(dev->id)) {
2047 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2048 snprintf(desc, desc_sz, "NCQ (not used)");
2051 if (ap->flags & ATA_FLAG_NCQ) {
2052 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2053 dev->flags |= ATA_DFLAG_NCQ;
2056 if (hdepth >= ddepth)
2057 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2059 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2063 * ata_dev_configure - Configure the specified ATA/ATAPI device
2064 * @dev: Target device to configure
2066 * Configure @dev according to @dev->id. Generic and low-level
2067 * driver specific fixups are also applied.
2070 * Kernel thread context (may sleep)
2073 * 0 on success, -errno otherwise
2075 int ata_dev_configure(struct ata_device *dev)
2077 struct ata_port *ap = dev->link->ap;
2078 struct ata_eh_context *ehc = &dev->link->eh_context;
2079 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2080 const u16 *id = dev->id;
2081 unsigned int xfer_mask;
2082 char revbuf[7]; /* XYZ-99\0 */
2083 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2084 char modelbuf[ATA_ID_PROD_LEN+1];
2087 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2088 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2093 if (ata_msg_probe(ap))
2094 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
2097 dev->horkage |= ata_dev_blacklisted(dev);
2099 /* let ACPI work its magic */
2100 rc = ata_acpi_on_devcfg(dev);
2104 /* massage HPA, do it early as it might change IDENTIFY data */
2105 rc = ata_hpa_resize(dev);
2109 /* print device capabilities */
2110 if (ata_msg_probe(ap))
2111 ata_dev_printk(dev, KERN_DEBUG,
2112 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2113 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2115 id[49], id[82], id[83], id[84],
2116 id[85], id[86], id[87], id[88]);
2118 /* initialize to-be-configured parameters */
2119 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2120 dev->max_sectors = 0;
2128 * common ATA, ATAPI feature tests
2131 /* find max transfer mode; for printk only */
2132 xfer_mask = ata_id_xfermask(id);
2134 if (ata_msg_probe(ap))
2137 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2138 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2141 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2144 /* ATA-specific feature tests */
2145 if (dev->class == ATA_DEV_ATA) {
2146 if (ata_id_is_cfa(id)) {
2147 if (id[162] & 1) /* CPRM may make this media unusable */
2148 ata_dev_printk(dev, KERN_WARNING,
2149 "supports DRM functions and may "
2150 "not be fully accessable.\n");
2151 snprintf(revbuf, 7, "CFA");
2153 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2155 dev->n_sectors = ata_id_n_sectors(id);
2157 if (dev->id[59] & 0x100)
2158 dev->multi_count = dev->id[59] & 0xff;
2160 if (ata_id_has_lba(id)) {
2161 const char *lba_desc;
2165 dev->flags |= ATA_DFLAG_LBA;
2166 if (ata_id_has_lba48(id)) {
2167 dev->flags |= ATA_DFLAG_LBA48;
2170 if (dev->n_sectors >= (1UL << 28) &&
2171 ata_id_has_flush_ext(id))
2172 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2176 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2178 /* print device info to dmesg */
2179 if (ata_msg_drv(ap) && print_info) {
2180 ata_dev_printk(dev, KERN_INFO,
2181 "%s: %s, %s, max %s\n",
2182 revbuf, modelbuf, fwrevbuf,
2183 ata_mode_string(xfer_mask));
2184 ata_dev_printk(dev, KERN_INFO,
2185 "%Lu sectors, multi %u: %s %s\n",
2186 (unsigned long long)dev->n_sectors,
2187 dev->multi_count, lba_desc, ncq_desc);
2192 /* Default translation */
2193 dev->cylinders = id[1];
2195 dev->sectors = id[6];
2197 if (ata_id_current_chs_valid(id)) {
2198 /* Current CHS translation is valid. */
2199 dev->cylinders = id[54];
2200 dev->heads = id[55];
2201 dev->sectors = id[56];
2204 /* print device info to dmesg */
2205 if (ata_msg_drv(ap) && print_info) {
2206 ata_dev_printk(dev, KERN_INFO,
2207 "%s: %s, %s, max %s\n",
2208 revbuf, modelbuf, fwrevbuf,
2209 ata_mode_string(xfer_mask));
2210 ata_dev_printk(dev, KERN_INFO,
2211 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2212 (unsigned long long)dev->n_sectors,
2213 dev->multi_count, dev->cylinders,
2214 dev->heads, dev->sectors);
2221 /* ATAPI-specific feature tests */
2222 else if (dev->class == ATA_DEV_ATAPI) {
2223 const char *cdb_intr_string = "";
2224 const char *atapi_an_string = "";
2227 rc = atapi_cdb_len(id);
2228 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2229 if (ata_msg_warn(ap))
2230 ata_dev_printk(dev, KERN_WARNING,
2231 "unsupported CDB len\n");
2235 dev->cdb_len = (unsigned int) rc;
2237 /* Enable ATAPI AN if both the host and device have
2238 * the support. If PMP is attached, SNTF is required
2239 * to enable ATAPI AN to discern between PHY status
2240 * changed notifications and ATAPI ANs.
2242 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2243 (!ap->nr_pmp_links ||
2244 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2245 unsigned int err_mask;
2247 /* issue SET feature command to turn this on */
2248 err_mask = ata_dev_set_feature(dev,
2249 SETFEATURES_SATA_ENABLE, SATA_AN);
2251 ata_dev_printk(dev, KERN_ERR,
2252 "failed to enable ATAPI AN "
2253 "(err_mask=0x%x)\n", err_mask);
2255 dev->flags |= ATA_DFLAG_AN;
2256 atapi_an_string = ", ATAPI AN";
2260 if (ata_id_cdb_intr(dev->id)) {
2261 dev->flags |= ATA_DFLAG_CDB_INTR;
2262 cdb_intr_string = ", CDB intr";
2265 /* print device info to dmesg */
2266 if (ata_msg_drv(ap) && print_info)
2267 ata_dev_printk(dev, KERN_INFO,
2268 "ATAPI: %s, %s, max %s%s%s\n",
2270 ata_mode_string(xfer_mask),
2271 cdb_intr_string, atapi_an_string);
2274 /* determine max_sectors */
2275 dev->max_sectors = ATA_MAX_SECTORS;
2276 if (dev->flags & ATA_DFLAG_LBA48)
2277 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2279 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2280 if (ata_id_has_hipm(dev->id))
2281 dev->flags |= ATA_DFLAG_HIPM;
2282 if (ata_id_has_dipm(dev->id))
2283 dev->flags |= ATA_DFLAG_DIPM;
2286 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2287 /* Let the user know. We don't want to disallow opens for
2288 rescue purposes, or in case the vendor is just a blithering
2291 ata_dev_printk(dev, KERN_WARNING,
2292 "Drive reports diagnostics failure. This may indicate a drive\n");
2293 ata_dev_printk(dev, KERN_WARNING,
2294 "fault or invalid emulation. Contact drive vendor for information.\n");
2298 /* limit bridge transfers to udma5, 200 sectors */
2299 if (ata_dev_knobble(dev)) {
2300 if (ata_msg_drv(ap) && print_info)
2301 ata_dev_printk(dev, KERN_INFO,
2302 "applying bridge limits\n");
2303 dev->udma_mask &= ATA_UDMA5;
2304 dev->max_sectors = ATA_MAX_SECTORS;
2307 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2308 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2311 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2312 dev->horkage |= ATA_HORKAGE_IPM;
2314 /* reset link pm_policy for this port to no pm */
2315 ap->pm_policy = MAX_PERFORMANCE;
2318 if (ap->ops->dev_config)
2319 ap->ops->dev_config(dev);
2321 if (ata_msg_probe(ap))
2322 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2323 __FUNCTION__, ata_chk_status(ap));
2327 if (ata_msg_probe(ap))
2328 ata_dev_printk(dev, KERN_DEBUG,
2329 "%s: EXIT, err\n", __FUNCTION__);
2334 * ata_cable_40wire - return 40 wire cable type
2337 * Helper method for drivers which want to hardwire 40 wire cable
2341 int ata_cable_40wire(struct ata_port *ap)
2343 return ATA_CBL_PATA40;
2347 * ata_cable_80wire - return 80 wire cable type
2350 * Helper method for drivers which want to hardwire 80 wire cable
2354 int ata_cable_80wire(struct ata_port *ap)
2356 return ATA_CBL_PATA80;
2360 * ata_cable_unknown - return unknown PATA cable.
2363 * Helper method for drivers which have no PATA cable detection.
2366 int ata_cable_unknown(struct ata_port *ap)
2368 return ATA_CBL_PATA_UNK;
2372 * ata_cable_sata - return SATA cable type
2375 * Helper method for drivers which have SATA cables
2378 int ata_cable_sata(struct ata_port *ap)
2380 return ATA_CBL_SATA;
2384 * ata_bus_probe - Reset and probe ATA bus
2387 * Master ATA bus probing function. Initiates a hardware-dependent
2388 * bus reset, then attempts to identify any devices found on
2392 * PCI/etc. bus probe sem.
2395 * Zero on success, negative errno otherwise.
2398 int ata_bus_probe(struct ata_port *ap)
2400 unsigned int classes[ATA_MAX_DEVICES];
2401 int tries[ATA_MAX_DEVICES];
2403 struct ata_device *dev;
2407 ata_link_for_each_dev(dev, &ap->link)
2408 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2411 ata_link_for_each_dev(dev, &ap->link) {
2412 /* If we issue an SRST then an ATA drive (not ATAPI)
2413 * may change configuration and be in PIO0 timing. If
2414 * we do a hard reset (or are coming from power on)
2415 * this is true for ATA or ATAPI. Until we've set a
2416 * suitable controller mode we should not touch the
2417 * bus as we may be talking too fast.
2419 dev->pio_mode = XFER_PIO_0;
2421 /* If the controller has a pio mode setup function
2422 * then use it to set the chipset to rights. Don't
2423 * touch the DMA setup as that will be dealt with when
2424 * configuring devices.
2426 if (ap->ops->set_piomode)
2427 ap->ops->set_piomode(ap, dev);
2430 /* reset and determine device classes */
2431 ap->ops->phy_reset(ap);
2433 ata_link_for_each_dev(dev, &ap->link) {
2434 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2435 dev->class != ATA_DEV_UNKNOWN)
2436 classes[dev->devno] = dev->class;
2438 classes[dev->devno] = ATA_DEV_NONE;
2440 dev->class = ATA_DEV_UNKNOWN;
2445 /* read IDENTIFY page and configure devices. We have to do the identify
2446 specific sequence bass-ackwards so that PDIAG- is released by
2449 ata_link_for_each_dev(dev, &ap->link) {
2450 if (tries[dev->devno])
2451 dev->class = classes[dev->devno];
2453 if (!ata_dev_enabled(dev))
2456 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2462 /* Now ask for the cable type as PDIAG- should have been released */
2463 if (ap->ops->cable_detect)
2464 ap->cbl = ap->ops->cable_detect(ap);
2466 /* We may have SATA bridge glue hiding here irrespective of the
2467 reported cable types and sensed types */
2468 ata_link_for_each_dev(dev, &ap->link) {
2469 if (!ata_dev_enabled(dev))
2471 /* SATA drives indicate we have a bridge. We don't know which
2472 end of the link the bridge is which is a problem */
2473 if (ata_id_is_sata(dev->id))
2474 ap->cbl = ATA_CBL_SATA;
2477 /* After the identify sequence we can now set up the devices. We do
2478 this in the normal order so that the user doesn't get confused */
2480 ata_link_for_each_dev(dev, &ap->link) {
2481 if (!ata_dev_enabled(dev))
2484 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2485 rc = ata_dev_configure(dev);
2486 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2491 /* configure transfer mode */
2492 rc = ata_set_mode(&ap->link, &dev);
2496 ata_link_for_each_dev(dev, &ap->link)
2497 if (ata_dev_enabled(dev))
2500 /* no device present, disable port */
2501 ata_port_disable(ap);
2505 tries[dev->devno]--;
2509 /* eeek, something went very wrong, give up */
2510 tries[dev->devno] = 0;
2514 /* give it just one more chance */
2515 tries[dev->devno] = min(tries[dev->devno], 1);
2517 if (tries[dev->devno] == 1) {
2518 /* This is the last chance, better to slow
2519 * down than lose it.
2521 sata_down_spd_limit(&ap->link);
2522 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2526 if (!tries[dev->devno])
2527 ata_dev_disable(dev);
2533 * ata_port_probe - Mark port as enabled
2534 * @ap: Port for which we indicate enablement
2536 * Modify @ap data structure such that the system
2537 * thinks that the entire port is enabled.
2539 * LOCKING: host lock, or some other form of
2543 void ata_port_probe(struct ata_port *ap)
2545 ap->flags &= ~ATA_FLAG_DISABLED;
2549 * sata_print_link_status - Print SATA link status
2550 * @link: SATA link to printk link status about
2552 * This function prints link speed and status of a SATA link.
2557 void sata_print_link_status(struct ata_link *link)
2559 u32 sstatus, scontrol, tmp;
2561 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2563 sata_scr_read(link, SCR_CONTROL, &scontrol);
2565 if (ata_link_online(link)) {
2566 tmp = (sstatus >> 4) & 0xf;
2567 ata_link_printk(link, KERN_INFO,
2568 "SATA link up %s (SStatus %X SControl %X)\n",
2569 sata_spd_string(tmp), sstatus, scontrol);
2571 ata_link_printk(link, KERN_INFO,
2572 "SATA link down (SStatus %X SControl %X)\n",
2578 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2579 * @ap: SATA port associated with target SATA PHY.
2581 * This function issues commands to standard SATA Sxxx
2582 * PHY registers, to wake up the phy (and device), and
2583 * clear any reset condition.
2586 * PCI/etc. bus probe sem.
2589 void __sata_phy_reset(struct ata_port *ap)
2591 struct ata_link *link = &ap->link;
2592 unsigned long timeout = jiffies + (HZ * 5);
2595 if (ap->flags & ATA_FLAG_SATA_RESET) {
2596 /* issue phy wake/reset */
2597 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
2598 /* Couldn't find anything in SATA I/II specs, but
2599 * AHCI-1.1 10.4.2 says at least 1 ms. */
2602 /* phy wake/clear reset */
2603 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
2605 /* wait for phy to become ready, if necessary */
2608 sata_scr_read(link, SCR_STATUS, &sstatus);
2609 if ((sstatus & 0xf) != 1)
2611 } while (time_before(jiffies, timeout));
2613 /* print link status */
2614 sata_print_link_status(link);
2616 /* TODO: phy layer with polling, timeouts, etc. */
2617 if (!ata_link_offline(link))
2620 ata_port_disable(ap);
2622 if (ap->flags & ATA_FLAG_DISABLED)
2625 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2626 ata_port_disable(ap);
2630 ap->cbl = ATA_CBL_SATA;
2634 * sata_phy_reset - Reset SATA bus.
2635 * @ap: SATA port associated with target SATA PHY.
2637 * This function resets the SATA bus, and then probes
2638 * the bus for devices.
2641 * PCI/etc. bus probe sem.
2644 void sata_phy_reset(struct ata_port *ap)
2646 __sata_phy_reset(ap);
2647 if (ap->flags & ATA_FLAG_DISABLED)
2653 * ata_dev_pair - return other device on cable
2656 * Obtain the other device on the same cable, or if none is
2657 * present NULL is returned
2660 struct ata_device *ata_dev_pair(struct ata_device *adev)
2662 struct ata_link *link = adev->link;
2663 struct ata_device *pair = &link->device[1 - adev->devno];
2664 if (!ata_dev_enabled(pair))
2670 * ata_port_disable - Disable port.
2671 * @ap: Port to be disabled.
2673 * Modify @ap data structure such that the system
2674 * thinks that the entire port is disabled, and should
2675 * never attempt to probe or communicate with devices
2678 * LOCKING: host lock, or some other form of
2682 void ata_port_disable(struct ata_port *ap)
2684 ap->link.device[0].class = ATA_DEV_NONE;
2685 ap->link.device[1].class = ATA_DEV_NONE;
2686 ap->flags |= ATA_FLAG_DISABLED;
2690 * sata_down_spd_limit - adjust SATA spd limit downward
2691 * @link: Link to adjust SATA spd limit for
2693 * Adjust SATA spd limit of @link downward. Note that this
2694 * function only adjusts the limit. The change must be applied
2695 * using sata_set_spd().
2698 * Inherited from caller.
2701 * 0 on success, negative errno on failure
2703 int sata_down_spd_limit(struct ata_link *link)
2705 u32 sstatus, spd, mask;
2708 if (!sata_scr_valid(link))
2711 /* If SCR can be read, use it to determine the current SPD.
2712 * If not, use cached value in link->sata_spd.
2714 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2716 spd = (sstatus >> 4) & 0xf;
2718 spd = link->sata_spd;
2720 mask = link->sata_spd_limit;
2724 /* unconditionally mask off the highest bit */
2725 highbit = fls(mask) - 1;
2726 mask &= ~(1 << highbit);
2728 /* Mask off all speeds higher than or equal to the current
2729 * one. Force 1.5Gbps if current SPD is not available.
2732 mask &= (1 << (spd - 1)) - 1;
2736 /* were we already at the bottom? */
2740 link->sata_spd_limit = mask;
2742 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2743 sata_spd_string(fls(mask)));
2748 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2752 if (link->sata_spd_limit == UINT_MAX)
2755 limit = fls(link->sata_spd_limit);
2757 spd = (*scontrol >> 4) & 0xf;
2758 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2760 return spd != limit;
2764 * sata_set_spd_needed - is SATA spd configuration needed
2765 * @link: Link in question
2767 * Test whether the spd limit in SControl matches
2768 * @link->sata_spd_limit. This function is used to determine
2769 * whether hardreset is necessary to apply SATA spd
2773 * Inherited from caller.
2776 * 1 if SATA spd configuration is needed, 0 otherwise.
2778 int sata_set_spd_needed(struct ata_link *link)
2782 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2785 return __sata_set_spd_needed(link, &scontrol);
2789 * sata_set_spd - set SATA spd according to spd limit
2790 * @link: Link to set SATA spd for
2792 * Set SATA spd of @link according to sata_spd_limit.
2795 * Inherited from caller.
2798 * 0 if spd doesn't need to be changed, 1 if spd has been
2799 * changed. Negative errno if SCR registers are inaccessible.
2801 int sata_set_spd(struct ata_link *link)
2806 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2809 if (!__sata_set_spd_needed(link, &scontrol))
2812 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2819 * This mode timing computation functionality is ported over from
2820 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2823 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2824 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2825 * for UDMA6, which is currently supported only by Maxtor drives.
2827 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2830 static const struct ata_timing ata_timing[] = {
2832 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2833 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2834 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2835 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2837 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2838 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2839 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2840 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2841 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2843 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2845 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2846 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2847 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2849 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2850 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2851 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2853 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2854 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2855 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2856 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2858 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2859 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2860 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2862 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2867 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2868 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2870 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2872 q->setup = EZ(t->setup * 1000, T);
2873 q->act8b = EZ(t->act8b * 1000, T);
2874 q->rec8b = EZ(t->rec8b * 1000, T);
2875 q->cyc8b = EZ(t->cyc8b * 1000, T);
2876 q->active = EZ(t->active * 1000, T);
2877 q->recover = EZ(t->recover * 1000, T);
2878 q->cycle = EZ(t->cycle * 1000, T);
2879 q->udma = EZ(t->udma * 1000, UT);
2882 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2883 struct ata_timing *m, unsigned int what)
2885 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2886 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2887 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2888 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2889 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2890 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2891 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2892 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2895 static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
2897 const struct ata_timing *t;
2899 for (t = ata_timing; t->mode != speed; t++)
2900 if (t->mode == 0xFF)
2905 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2906 struct ata_timing *t, int T, int UT)
2908 const struct ata_timing *s;
2909 struct ata_timing p;
2915 if (!(s = ata_timing_find_mode(speed)))
2918 memcpy(t, s, sizeof(*s));
2921 * If the drive is an EIDE drive, it can tell us it needs extended
2922 * PIO/MW_DMA cycle timing.
2925 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2926 memset(&p, 0, sizeof(p));
2927 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2928 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2929 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2930 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2931 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2933 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2937 * Convert the timing to bus clock counts.
2940 ata_timing_quantize(t, t, T, UT);
2943 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2944 * S.M.A.R.T * and some other commands. We have to ensure that the
2945 * DMA cycle timing is slower/equal than the fastest PIO timing.
2948 if (speed > XFER_PIO_6) {
2949 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2950 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2954 * Lengthen active & recovery time so that cycle time is correct.
2957 if (t->act8b + t->rec8b < t->cyc8b) {
2958 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2959 t->rec8b = t->cyc8b - t->act8b;
2962 if (t->active + t->recover < t->cycle) {
2963 t->active += (t->cycle - (t->active + t->recover)) / 2;
2964 t->recover = t->cycle - t->active;
2967 /* In a few cases quantisation may produce enough errors to
2968 leave t->cycle too low for the sum of active and recovery
2969 if so we must correct this */
2970 if (t->active + t->recover > t->cycle)
2971 t->cycle = t->active + t->recover;
2977 * ata_down_xfermask_limit - adjust dev xfer masks downward
2978 * @dev: Device to adjust xfer masks
2979 * @sel: ATA_DNXFER_* selector
2981 * Adjust xfer masks of @dev downward. Note that this function
2982 * does not apply the change. Invoking ata_set_mode() afterwards
2983 * will apply the limit.
2986 * Inherited from caller.
2989 * 0 on success, negative errno on failure
2991 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2994 unsigned int orig_mask, xfer_mask;
2995 unsigned int pio_mask, mwdma_mask, udma_mask;
2998 quiet = !!(sel & ATA_DNXFER_QUIET);
2999 sel &= ~ATA_DNXFER_QUIET;
3001 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3004 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3007 case ATA_DNXFER_PIO:
3008 highbit = fls(pio_mask) - 1;
3009 pio_mask &= ~(1 << highbit);
3012 case ATA_DNXFER_DMA:
3014 highbit = fls(udma_mask) - 1;
3015 udma_mask &= ~(1 << highbit);
3018 } else if (mwdma_mask) {
3019 highbit = fls(mwdma_mask) - 1;
3020 mwdma_mask &= ~(1 << highbit);
3026 case ATA_DNXFER_40C:
3027 udma_mask &= ATA_UDMA_MASK_40C;
3030 case ATA_DNXFER_FORCE_PIO0:
3032 case ATA_DNXFER_FORCE_PIO:
3041 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3043 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3047 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3048 snprintf(buf, sizeof(buf), "%s:%s",
3049 ata_mode_string(xfer_mask),
3050 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3052 snprintf(buf, sizeof(buf), "%s",
3053 ata_mode_string(xfer_mask));
3055 ata_dev_printk(dev, KERN_WARNING,
3056 "limiting speed to %s\n", buf);
3059 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3065 static int ata_dev_set_mode(struct ata_device *dev)
3067 struct ata_eh_context *ehc = &dev->link->eh_context;
3068 unsigned int err_mask;
3071 dev->flags &= ~ATA_DFLAG_PIO;
3072 if (dev->xfer_shift == ATA_SHIFT_PIO)
3073 dev->flags |= ATA_DFLAG_PIO;
3075 err_mask = ata_dev_set_xfermode(dev);
3077 /* Old CFA may refuse this command, which is just fine */
3078 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
3079 err_mask &= ~AC_ERR_DEV;
3081 /* Some very old devices and some bad newer ones fail any kind of
3082 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3083 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3084 dev->pio_mode <= XFER_PIO_2)
3085 err_mask &= ~AC_ERR_DEV;
3087 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3088 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3089 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3090 dev->dma_mode == XFER_MW_DMA_0 &&
3091 (dev->id[63] >> 8) & 1)
3092 err_mask &= ~AC_ERR_DEV;
3095 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3096 "(err_mask=0x%x)\n", err_mask);
3100 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3101 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3102 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3106 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3107 dev->xfer_shift, (int)dev->xfer_mode);
3109 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3110 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
3115 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3116 * @link: link on which timings will be programmed
3117 * @r_failed_dev: out paramter for failed device
3119 * Standard implementation of the function used to tune and set
3120 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3121 * ata_dev_set_mode() fails, pointer to the failing device is
3122 * returned in @r_failed_dev.
3125 * PCI/etc. bus probe sem.
3128 * 0 on success, negative errno otherwise
3131 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3133 struct ata_port *ap = link->ap;
3134 struct ata_device *dev;
3135 int rc = 0, used_dma = 0, found = 0;
3137 /* step 1: calculate xfer_mask */
3138 ata_link_for_each_dev(dev, link) {
3139 unsigned int pio_mask, dma_mask;
3140 unsigned int mode_mask;
3142 if (!ata_dev_enabled(dev))
3145 mode_mask = ATA_DMA_MASK_ATA;
3146 if (dev->class == ATA_DEV_ATAPI)
3147 mode_mask = ATA_DMA_MASK_ATAPI;
3148 else if (ata_id_is_cfa(dev->id))
3149 mode_mask = ATA_DMA_MASK_CFA;
3151 ata_dev_xfermask(dev);
3153 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3154 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3156 if (libata_dma_mask & mode_mask)
3157 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3161 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3162 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3171 /* step 2: always set host PIO timings */
3172 ata_link_for_each_dev(dev, link) {
3173 if (!ata_dev_enabled(dev))
3176 if (!dev->pio_mode) {
3177 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3182 dev->xfer_mode = dev->pio_mode;
3183 dev->xfer_shift = ATA_SHIFT_PIO;
3184 if (ap->ops->set_piomode)
3185 ap->ops->set_piomode(ap, dev);
3188 /* step 3: set host DMA timings */
3189 ata_link_for_each_dev(dev, link) {
3190 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3193 dev->xfer_mode = dev->dma_mode;
3194 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3195 if (ap->ops->set_dmamode)
3196 ap->ops->set_dmamode(ap, dev);
3199 /* step 4: update devices' xfer mode */
3200 ata_link_for_each_dev(dev, link) {
3201 /* don't update suspended devices' xfer mode */
3202 if (!ata_dev_enabled(dev))
3205 rc = ata_dev_set_mode(dev);
3210 /* Record simplex status. If we selected DMA then the other
3211 * host channels are not permitted to do so.
3213 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3214 ap->host->simplex_claimed = ap;
3218 *r_failed_dev = dev;
3223 * ata_set_mode - Program timings and issue SET FEATURES - XFER
3224 * @link: link on which timings will be programmed
3225 * @r_failed_dev: out paramter for failed device
3227 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3228 * ata_set_mode() fails, pointer to the failing device is
3229 * returned in @r_failed_dev.
3232 * PCI/etc. bus probe sem.
3235 * 0 on success, negative errno otherwise
3237 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3239 struct ata_port *ap = link->ap;
3241 /* has private set_mode? */
3242 if (ap->ops->set_mode)
3243 return ap->ops->set_mode(link, r_failed_dev);
3244 return ata_do_set_mode(link, r_failed_dev);
3248 * ata_tf_to_host - issue ATA taskfile to host controller
3249 * @ap: port to which command is being issued
3250 * @tf: ATA taskfile register set
3252 * Issues ATA taskfile register set to ATA host controller,
3253 * with proper synchronization with interrupt handler and
3257 * spin_lock_irqsave(host lock)
3260 static inline void ata_tf_to_host(struct ata_port *ap,
3261 const struct ata_taskfile *tf)
3263 ap->ops->tf_load(ap, tf);
3264 ap->ops->exec_command(ap, tf);
3268 * ata_busy_sleep - sleep until BSY clears, or timeout
3269 * @ap: port containing status register to be polled
3270 * @tmout_pat: impatience timeout
3271 * @tmout: overall timeout
3273 * Sleep until ATA Status register bit BSY clears,
3274 * or a timeout occurs.
3277 * Kernel thread context (may sleep).
3280 * 0 on success, -errno otherwise.
3282 int ata_busy_sleep(struct ata_port *ap,
3283 unsigned long tmout_pat, unsigned long tmout)
3285 unsigned long timer_start, timeout;
3288 status = ata_busy_wait(ap, ATA_BUSY, 300);
3289 timer_start = jiffies;
3290 timeout = timer_start + tmout_pat;
3291 while (status != 0xff && (status & ATA_BUSY) &&
3292 time_before(jiffies, timeout)) {
3294 status = ata_busy_wait(ap, ATA_BUSY, 3);
3297 if (status != 0xff && (status & ATA_BUSY))
3298 ata_port_printk(ap, KERN_WARNING,
3299 "port is slow to respond, please be patient "
3300 "(Status 0x%x)\n", status);
3302 timeout = timer_start + tmout;
3303 while (status != 0xff && (status & ATA_BUSY) &&
3304 time_before(jiffies, timeout)) {
3306 status = ata_chk_status(ap);
3312 if (status & ATA_BUSY) {
3313 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3314 "(%lu secs, Status 0x%x)\n",
3315 tmout / HZ, status);
3323 * ata_wait_after_reset - wait before checking status after reset
3324 * @ap: port containing status register to be polled
3325 * @deadline: deadline jiffies for the operation
3327 * After reset, we need to pause a while before reading status.
3328 * Also, certain combination of controller and device report 0xff
3329 * for some duration (e.g. until SATA PHY is up and running)
3330 * which is interpreted as empty port in ATA world. This
3331 * function also waits for such devices to get out of 0xff
3335 * Kernel thread context (may sleep).
3337 void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3339 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3341 if (time_before(until, deadline))
3344 /* Spec mandates ">= 2ms" before checking status. We wait
3345 * 150ms, because that was the magic delay used for ATAPI
3346 * devices in Hale Landis's ATADRVR, for the period of time
3347 * between when the ATA command register is written, and then
3348 * status is checked. Because waiting for "a while" before
3349 * checking status is fine, post SRST, we perform this magic
3350 * delay here as well.
3352 * Old drivers/ide uses the 2mS rule and then waits for ready.
3356 /* Wait for 0xff to clear. Some SATA devices take a long time
3357 * to clear 0xff after reset. For example, HHD424020F7SV00
3358 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3362 u8 status = ata_chk_status(ap);
3364 if (status != 0xff || time_after(jiffies, deadline))
3372 * ata_wait_ready - sleep until BSY clears, or timeout
3373 * @ap: port containing status register to be polled
3374 * @deadline: deadline jiffies for the operation
3376 * Sleep until ATA Status register bit BSY clears, or timeout
3380 * Kernel thread context (may sleep).
3383 * 0 on success, -errno otherwise.
3385 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3387 unsigned long start = jiffies;
3391 u8 status = ata_chk_status(ap);
3392 unsigned long now = jiffies;
3394 if (!(status & ATA_BUSY))
3396 if (!ata_link_online(&ap->link) && status == 0xff)
3398 if (time_after(now, deadline))
3401 if (!warned && time_after(now, start + 5 * HZ) &&
3402 (deadline - now > 3 * HZ)) {
3403 ata_port_printk(ap, KERN_WARNING,
3404 "port is slow to respond, please be patient "
3405 "(Status 0x%x)\n", status);
3413 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3414 unsigned long deadline)
3416 struct ata_ioports *ioaddr = &ap->ioaddr;
3417 unsigned int dev0 = devmask & (1 << 0);
3418 unsigned int dev1 = devmask & (1 << 1);
3421 /* if device 0 was found in ata_devchk, wait for its
3425 rc = ata_wait_ready(ap, deadline);
3433 /* if device 1 was found in ata_devchk, wait for register
3434 * access briefly, then wait for BSY to clear.
3439 ap->ops->dev_select(ap, 1);
3441 /* Wait for register access. Some ATAPI devices fail
3442 * to set nsect/lbal after reset, so don't waste too
3443 * much time on it. We're gonna wait for !BSY anyway.
3445 for (i = 0; i < 2; i++) {
3448 nsect = ioread8(ioaddr->nsect_addr);
3449 lbal = ioread8(ioaddr->lbal_addr);
3450 if ((nsect == 1) && (lbal == 1))
3452 msleep(50); /* give drive a breather */
3455 rc = ata_wait_ready(ap, deadline);
3463 /* is all this really necessary? */
3464 ap->ops->dev_select(ap, 0);
3466 ap->ops->dev_select(ap, 1);
3468 ap->ops->dev_select(ap, 0);
3473 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3474 unsigned long deadline)
3476 struct ata_ioports *ioaddr = &ap->ioaddr;
3478 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3480 /* software reset. causes dev0 to be selected */
3481 iowrite8(ap->ctl, ioaddr->ctl_addr);
3482 udelay(20); /* FIXME: flush */
3483 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3484 udelay(20); /* FIXME: flush */
3485 iowrite8(ap->ctl, ioaddr->ctl_addr);
3487 /* wait a while before checking status */
3488 ata_wait_after_reset(ap, deadline);
3490 /* Before we perform post reset processing we want to see if
3491 * the bus shows 0xFF because the odd clown forgets the D7
3492 * pulldown resistor.
3494 if (ata_chk_status(ap) == 0xFF)
3497 return ata_bus_post_reset(ap, devmask, deadline);
3501 * ata_bus_reset - reset host port and associated ATA channel
3502 * @ap: port to reset
3504 * This is typically the first time we actually start issuing
3505 * commands to the ATA channel. We wait for BSY to clear, then
3506 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3507 * result. Determine what devices, if any, are on the channel
3508 * by looking at the device 0/1 error register. Look at the signature
3509 * stored in each device's taskfile registers, to determine if
3510 * the device is ATA or ATAPI.
3513 * PCI/etc. bus probe sem.
3514 * Obtains host lock.
3517 * Sets ATA_FLAG_DISABLED if bus reset fails.
3520 void ata_bus_reset(struct ata_port *ap)
3522 struct ata_device *device = ap->link.device;
3523 struct ata_ioports *ioaddr = &ap->ioaddr;
3524 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3526 unsigned int dev0, dev1 = 0, devmask = 0;
3529 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3531 /* determine if device 0/1 are present */
3532 if (ap->flags & ATA_FLAG_SATA_RESET)
3535 dev0 = ata_devchk(ap, 0);
3537 dev1 = ata_devchk(ap, 1);
3541 devmask |= (1 << 0);
3543 devmask |= (1 << 1);
3545 /* select device 0 again */
3546 ap->ops->dev_select(ap, 0);
3548 /* issue bus reset */
3549 if (ap->flags & ATA_FLAG_SRST) {
3550 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3551 if (rc && rc != -ENODEV)
3556 * determine by signature whether we have ATA or ATAPI devices
3558 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3559 if ((slave_possible) && (err != 0x81))
3560 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3562 /* is double-select really necessary? */
3563 if (device[1].class != ATA_DEV_NONE)
3564 ap->ops->dev_select(ap, 1);
3565 if (device[0].class != ATA_DEV_NONE)
3566 ap->ops->dev_select(ap, 0);
3568 /* if no devices were detected, disable this port */
3569 if ((device[0].class == ATA_DEV_NONE) &&
3570 (device[1].class == ATA_DEV_NONE))
3573 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3574 /* set up device control for ATA_FLAG_SATA_RESET */
3575 iowrite8(ap->ctl, ioaddr->ctl_addr);
3582 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3583 ata_port_disable(ap);
3589 * sata_link_debounce - debounce SATA phy status
3590 * @link: ATA link to debounce SATA phy status for
3591 * @params: timing parameters { interval, duratinon, timeout } in msec
3592 * @deadline: deadline jiffies for the operation
3594 * Make sure SStatus of @link reaches stable state, determined by
3595 * holding the same value where DET is not 1 for @duration polled
3596 * every @interval, before @timeout. Timeout constraints the
3597 * beginning of the stable state. Because DET gets stuck at 1 on
3598 * some controllers after hot unplugging, this functions waits
3599 * until timeout then returns 0 if DET is stable at 1.
3601 * @timeout is further limited by @deadline. The sooner of the
3605 * Kernel thread context (may sleep)
3608 * 0 on success, -errno on failure.
3610 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3611 unsigned long deadline)
3613 unsigned long interval_msec = params[0];
3614 unsigned long duration = msecs_to_jiffies(params[1]);
3615 unsigned long last_jiffies, t;
3619 t = jiffies + msecs_to_jiffies(params[2]);
3620 if (time_before(t, deadline))
3623 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3628 last_jiffies = jiffies;
3631 msleep(interval_msec);
3632 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3638 if (cur == 1 && time_before(jiffies, deadline))
3640 if (time_after(jiffies, last_jiffies + duration))
3645 /* unstable, start over */
3647 last_jiffies = jiffies;
3649 /* Check deadline. If debouncing failed, return
3650 * -EPIPE to tell upper layer to lower link speed.
3652 if (time_after(jiffies, deadline))
3658 * sata_link_resume - resume SATA link
3659 * @link: ATA link to resume SATA
3660 * @params: timing parameters { interval, duratinon, timeout } in msec
3661 * @deadline: deadline jiffies for the operation
3663 * Resume SATA phy @link and debounce it.
3666 * Kernel thread context (may sleep)
3669 * 0 on success, -errno on failure.
3671 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3672 unsigned long deadline)
3677 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3680 scontrol = (scontrol & 0x0f0) | 0x300;
3682 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3685 /* Some PHYs react badly if SStatus is pounded immediately
3686 * after resuming. Delay 200ms before debouncing.
3690 return sata_link_debounce(link, params, deadline);
3694 * ata_std_prereset - prepare for reset
3695 * @link: ATA link to be reset
3696 * @deadline: deadline jiffies for the operation
3698 * @link is about to be reset. Initialize it. Failure from
3699 * prereset makes libata abort whole reset sequence and give up
3700 * that port, so prereset should be best-effort. It does its
3701 * best to prepare for reset sequence but if things go wrong, it
3702 * should just whine, not fail.
3705 * Kernel thread context (may sleep)
3708 * 0 on success, -errno otherwise.
3710 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3712 struct ata_port *ap = link->ap;
3713 struct ata_eh_context *ehc = &link->eh_context;
3714 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3717 /* handle link resume */
3718 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3719 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3720 ehc->i.action |= ATA_EH_HARDRESET;
3722 /* Some PMPs don't work with only SRST, force hardreset if PMP
3725 if (ap->flags & ATA_FLAG_PMP)
3726 ehc->i.action |= ATA_EH_HARDRESET;
3728 /* if we're about to do hardreset, nothing more to do */
3729 if (ehc->i.action & ATA_EH_HARDRESET)
3732 /* if SATA, resume link */
3733 if (ap->flags & ATA_FLAG_SATA) {
3734 rc = sata_link_resume(link, timing, deadline);
3735 /* whine about phy resume failure but proceed */
3736 if (rc && rc != -EOPNOTSUPP)
3737 ata_link_printk(link, KERN_WARNING, "failed to resume "
3738 "link for reset (errno=%d)\n", rc);
3741 /* Wait for !BSY if the controller can wait for the first D2H
3742 * Reg FIS and we don't know that no device is attached.
3744 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3745 rc = ata_wait_ready(ap, deadline);
3746 if (rc && rc != -ENODEV) {
3747 ata_link_printk(link, KERN_WARNING, "device not ready "
3748 "(errno=%d), forcing hardreset\n", rc);
3749 ehc->i.action |= ATA_EH_HARDRESET;
3757 * ata_std_softreset - reset host port via ATA SRST
3758 * @link: ATA link to reset
3759 * @classes: resulting classes of attached devices
3760 * @deadline: deadline jiffies for the operation
3762 * Reset host port using ATA SRST.
3765 * Kernel thread context (may sleep)
3768 * 0 on success, -errno otherwise.
3770 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3771 unsigned long deadline)
3773 struct ata_port *ap = link->ap;
3774 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3775 unsigned int devmask = 0;
3781 if (ata_link_offline(link)) {
3782 classes[0] = ATA_DEV_NONE;
3786 /* determine if device 0/1 are present */
3787 if (ata_devchk(ap, 0))
3788 devmask |= (1 << 0);
3789 if (slave_possible && ata_devchk(ap, 1))
3790 devmask |= (1 << 1);
3792 /* select device 0 again */
3793 ap->ops->dev_select(ap, 0);
3795 /* issue bus reset */
3796 DPRINTK("about to softreset, devmask=%x\n", devmask);
3797 rc = ata_bus_softreset(ap, devmask, deadline);
3798 /* if link is occupied, -ENODEV too is an error */
3799 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3800 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3804 /* determine by signature whether we have ATA or ATAPI devices */
3805 classes[0] = ata_dev_try_classify(&link->device[0],
3806 devmask & (1 << 0), &err);
3807 if (slave_possible && err != 0x81)
3808 classes[1] = ata_dev_try_classify(&link->device[1],
3809 devmask & (1 << 1), &err);
3812 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3817 * sata_link_hardreset - reset link via SATA phy reset
3818 * @link: link to reset
3819 * @timing: timing parameters { interval, duratinon, timeout } in msec
3820 * @deadline: deadline jiffies for the operation
3822 * SATA phy-reset @link using DET bits of SControl register.
3825 * Kernel thread context (may sleep)
3828 * 0 on success, -errno otherwise.
3830 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3831 unsigned long deadline)
3838 if (sata_set_spd_needed(link)) {
3839 /* SATA spec says nothing about how to reconfigure
3840 * spd. To be on the safe side, turn off phy during
3841 * reconfiguration. This works for at least ICH7 AHCI
3844 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3847 scontrol = (scontrol & 0x0f0) | 0x304;
3849 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3855 /* issue phy wake/reset */
3856 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3859 scontrol = (scontrol & 0x0f0) | 0x301;
3861 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3864 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3865 * 10.4.2 says at least 1 ms.
3869 /* bring link back */
3870 rc = sata_link_resume(link, timing, deadline);
3872 DPRINTK("EXIT, rc=%d\n", rc);
3877 * sata_std_hardreset - reset host port via SATA phy reset
3878 * @link: link to reset
3879 * @class: resulting class of attached device
3880 * @deadline: deadline jiffies for the operation
3882 * SATA phy-reset host port using DET bits of SControl register,
3883 * wait for !BSY and classify the attached device.
3886 * Kernel thread context (may sleep)
3889 * 0 on success, -errno otherwise.
3891 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3892 unsigned long deadline)
3894 struct ata_port *ap = link->ap;
3895 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3901 rc = sata_link_hardreset(link, timing, deadline);
3903 ata_link_printk(link, KERN_ERR,
3904 "COMRESET failed (errno=%d)\n", rc);
3908 /* TODO: phy layer with polling, timeouts, etc. */
3909 if (ata_link_offline(link)) {
3910 *class = ATA_DEV_NONE;
3911 DPRINTK("EXIT, link offline\n");
3915 /* wait a while before checking status */
3916 ata_wait_after_reset(ap, deadline);
3918 /* If PMP is supported, we have to do follow-up SRST. Note
3919 * that some PMPs don't send D2H Reg FIS after hardreset at
3920 * all if the first port is empty. Wait for it just for a
3921 * second and request follow-up SRST.
3923 if (ap->flags & ATA_FLAG_PMP) {
3924 ata_wait_ready(ap, jiffies + HZ);
3928 rc = ata_wait_ready(ap, deadline);
3929 /* link occupied, -ENODEV too is an error */
3931 ata_link_printk(link, KERN_ERR,
3932 "COMRESET failed (errno=%d)\n", rc);
3936 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3938 *class = ata_dev_try_classify(link->device, 1, NULL);
3940 DPRINTK("EXIT, class=%u\n", *class);
3945 * ata_std_postreset - standard postreset callback
3946 * @link: the target ata_link
3947 * @classes: classes of attached devices
3949 * This function is invoked after a successful reset. Note that
3950 * the device might have been reset more than once using
3951 * different reset methods before postreset is invoked.
3954 * Kernel thread context (may sleep)
3956 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3958 struct ata_port *ap = link->ap;
3963 /* print link status */
3964 sata_print_link_status(link);
3967 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3968 sata_scr_write(link, SCR_ERROR, serror);
3970 /* is double-select really necessary? */
3971 if (classes[0] != ATA_DEV_NONE)
3972 ap->ops->dev_select(ap, 1);
3973 if (classes[1] != ATA_DEV_NONE)
3974 ap->ops->dev_select(ap, 0);
3976 /* bail out if no device is present */
3977 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3978 DPRINTK("EXIT, no device\n");
3982 /* set up device control */
3983 if (ap->ioaddr.ctl_addr)
3984 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3990 * ata_dev_same_device - Determine whether new ID matches configured device
3991 * @dev: device to compare against
3992 * @new_class: class of the new device
3993 * @new_id: IDENTIFY page of the new device
3995 * Compare @new_class and @new_id against @dev and determine
3996 * whether @dev is the device indicated by @new_class and
4003 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4005 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4008 const u16 *old_id = dev->id;
4009 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4010 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4012 if (dev->class != new_class) {
4013 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4014 dev->class, new_class);
4018 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4019 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4020 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4021 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4023 if (strcmp(model[0], model[1])) {
4024 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4025 "'%s' != '%s'\n", model[0], model[1]);
4029 if (strcmp(serial[0], serial[1])) {
4030 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4031 "'%s' != '%s'\n", serial[0], serial[1]);
4039 * ata_dev_reread_id - Re-read IDENTIFY data
4040 * @dev: target ATA device
4041 * @readid_flags: read ID flags
4043 * Re-read IDENTIFY page and make sure @dev is still attached to
4047 * Kernel thread context (may sleep)
4050 * 0 on success, negative errno otherwise
4052 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4054 unsigned int class = dev->class;
4055 u16 *id = (void *)dev->link->ap->sector_buf;
4059 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4063 /* is the device still there? */
4064 if (!ata_dev_same_device(dev, class, id))
4067 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4072 * ata_dev_revalidate - Revalidate ATA device
4073 * @dev: device to revalidate
4074 * @new_class: new class code
4075 * @readid_flags: read ID flags
4077 * Re-read IDENTIFY page, make sure @dev is still attached to the
4078 * port and reconfigure it according to the new IDENTIFY page.
4081 * Kernel thread context (may sleep)
4084 * 0 on success, negative errno otherwise
4086 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4087 unsigned int readid_flags)
4089 u64 n_sectors = dev->n_sectors;
4092 if (!ata_dev_enabled(dev))
4095 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4096 if (ata_class_enabled(new_class) &&
4097 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4098 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4099 dev->class, new_class);
4105 rc = ata_dev_reread_id(dev, readid_flags);
4109 /* configure device according to the new ID */
4110 rc = ata_dev_configure(dev);
4114 /* verify n_sectors hasn't changed */
4115 if (dev->class == ATA_DEV_ATA && n_sectors &&
4116 dev->n_sectors != n_sectors) {
4117 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4119 (unsigned long long)n_sectors,
4120 (unsigned long long)dev->n_sectors);
4122 /* restore original n_sectors */
4123 dev->n_sectors = n_sectors;
4132 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4136 struct ata_blacklist_entry {
4137 const char *model_num;
4138 const char *model_rev;
4139 unsigned long horkage;
4142 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4143 /* Devices with DMA related problems under Linux */
4144 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4145 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4146 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4147 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4148 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4149 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4150 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4151 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4152 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4153 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4154 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4155 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4156 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4157 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4158 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4159 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4160 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4161 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4162 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4163 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4164 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4165 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4166 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4167 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4168 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4169 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4170 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4171 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4172 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4173 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4174 /* Odd clown on sil3726/4726 PMPs */
4175 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4176 ATA_HORKAGE_SKIP_PM },
4178 /* Weird ATAPI devices */
4179 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4181 /* Devices we expect to fail diagnostics */
4183 /* Devices where NCQ should be avoided */
4185 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4186 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4187 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4189 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4190 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4191 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4192 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
4193 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4195 /* Blacklist entries taken from Silicon Image 3124/3132
4196 Windows driver .inf file - also several Linux problem reports */
4197 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4198 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4199 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4200 /* Drives which do spurious command completion */
4201 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
4202 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
4203 { "HDT722516DLA380", "V43OA96A", ATA_HORKAGE_NONCQ, },
4204 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
4205 { "Hitachi HTS542525K9SA00", "BBFOC31P", ATA_HORKAGE_NONCQ, },
4206 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4207 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
4208 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
4209 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
4210 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
4211 { "ST9160821AS", "3.ALD", ATA_HORKAGE_NONCQ, },
4212 { "ST9160821AS", "3.CCD", ATA_HORKAGE_NONCQ, },
4213 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
4214 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
4215 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
4216 { "Maxtor 7V300F0", "VA111900", ATA_HORKAGE_NONCQ, },
4218 /* devices which puke on READ_NATIVE_MAX */
4219 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4220 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4221 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4222 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4224 /* Devices which report 1 sector over size HPA */
4225 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4226 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4232 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4238 * check for trailing wildcard: *\0
4240 p = strchr(patt, wildchar);
4241 if (p && ((*(p + 1)) == 0))
4252 return strncmp(patt, name, len);
4255 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4257 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4258 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4259 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4261 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4262 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4264 while (ad->model_num) {
4265 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4266 if (ad->model_rev == NULL)
4268 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4276 static int ata_dma_blacklisted(const struct ata_device *dev)
4278 /* We don't support polling DMA.
4279 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4280 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4282 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4283 (dev->flags & ATA_DFLAG_CDB_INTR))
4285 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4289 * ata_dev_xfermask - Compute supported xfermask of the given device
4290 * @dev: Device to compute xfermask for
4292 * Compute supported xfermask of @dev and store it in
4293 * dev->*_mask. This function is responsible for applying all
4294 * known limits including host controller limits, device
4300 static void ata_dev_xfermask(struct ata_device *dev)
4302 struct ata_link *link = dev->link;
4303 struct ata_port *ap = link->ap;
4304 struct ata_host *host = ap->host;
4305 unsigned long xfer_mask;
4307 /* controller modes available */
4308 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4309 ap->mwdma_mask, ap->udma_mask);
4311 /* drive modes available */
4312 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4313 dev->mwdma_mask, dev->udma_mask);
4314 xfer_mask &= ata_id_xfermask(dev->id);
4317 * CFA Advanced TrueIDE timings are not allowed on a shared
4320 if (ata_dev_pair(dev)) {
4321 /* No PIO5 or PIO6 */
4322 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4323 /* No MWDMA3 or MWDMA 4 */
4324 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4327 if (ata_dma_blacklisted(dev)) {
4328 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4329 ata_dev_printk(dev, KERN_WARNING,
4330 "device is on DMA blacklist, disabling DMA\n");
4333 if ((host->flags & ATA_HOST_SIMPLEX) &&
4334 host->simplex_claimed && host->simplex_claimed != ap) {
4335 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4336 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4337 "other device, disabling DMA\n");
4340 if (ap->flags & ATA_FLAG_NO_IORDY)
4341 xfer_mask &= ata_pio_mask_no_iordy(dev);
4343 if (ap->ops->mode_filter)
4344 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4346 /* Apply cable rule here. Don't apply it early because when
4347 * we handle hot plug the cable type can itself change.
4348 * Check this last so that we know if the transfer rate was
4349 * solely limited by the cable.
4350 * Unknown or 80 wire cables reported host side are checked
4351 * drive side as well. Cases where we know a 40wire cable
4352 * is used safely for 80 are not checked here.
4354 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4355 /* UDMA/44 or higher would be available */
4356 if ((ap->cbl == ATA_CBL_PATA40) ||
4357 (ata_drive_40wire(dev->id) &&
4358 (ap->cbl == ATA_CBL_PATA_UNK ||
4359 ap->cbl == ATA_CBL_PATA80))) {
4360 ata_dev_printk(dev, KERN_WARNING,
4361 "limited to UDMA/33 due to 40-wire cable\n");
4362 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4365 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4366 &dev->mwdma_mask, &dev->udma_mask);
4370 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4371 * @dev: Device to which command will be sent
4373 * Issue SET FEATURES - XFER MODE command to device @dev
4377 * PCI/etc. bus probe sem.
4380 * 0 on success, AC_ERR_* mask otherwise.
4383 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4385 struct ata_taskfile tf;
4386 unsigned int err_mask;
4388 /* set up set-features taskfile */
4389 DPRINTK("set features - xfer mode\n");
4391 /* Some controllers and ATAPI devices show flaky interrupt
4392 * behavior after setting xfer mode. Use polling instead.
4394 ata_tf_init(dev, &tf);
4395 tf.command = ATA_CMD_SET_FEATURES;
4396 tf.feature = SETFEATURES_XFER;
4397 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4398 tf.protocol = ATA_PROT_NODATA;
4399 tf.nsect = dev->xfer_mode;
4401 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4403 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4407 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4408 * @dev: Device to which command will be sent
4409 * @enable: Whether to enable or disable the feature
4410 * @feature: The sector count represents the feature to set
4412 * Issue SET FEATURES - SATA FEATURES command to device @dev
4413 * on port @ap with sector count
4416 * PCI/etc. bus probe sem.
4419 * 0 on success, AC_ERR_* mask otherwise.
4421 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4424 struct ata_taskfile tf;
4425 unsigned int err_mask;
4427 /* set up set-features taskfile */
4428 DPRINTK("set features - SATA features\n");
4430 ata_tf_init(dev, &tf);
4431 tf.command = ATA_CMD_SET_FEATURES;
4432 tf.feature = enable;
4433 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4434 tf.protocol = ATA_PROT_NODATA;
4437 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4439 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4444 * ata_dev_init_params - Issue INIT DEV PARAMS command
4445 * @dev: Device to which command will be sent
4446 * @heads: Number of heads (taskfile parameter)
4447 * @sectors: Number of sectors (taskfile parameter)
4450 * Kernel thread context (may sleep)
4453 * 0 on success, AC_ERR_* mask otherwise.
4455 static unsigned int ata_dev_init_params(struct ata_device *dev,
4456 u16 heads, u16 sectors)
4458 struct ata_taskfile tf;
4459 unsigned int err_mask;
4461 /* Number of sectors per track 1-255. Number of heads 1-16 */
4462 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4463 return AC_ERR_INVALID;
4465 /* set up init dev params taskfile */
4466 DPRINTK("init dev params \n");
4468 ata_tf_init(dev, &tf);
4469 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4470 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4471 tf.protocol = ATA_PROT_NODATA;
4473 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4475 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4476 /* A clean abort indicates an original or just out of spec drive
4477 and we should continue as we issue the setup based on the
4478 drive reported working geometry */
4479 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4482 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4487 * ata_sg_clean - Unmap DMA memory associated with command
4488 * @qc: Command containing DMA memory to be released
4490 * Unmap all mapped DMA memory associated with this command.
4493 * spin_lock_irqsave(host lock)
4495 void ata_sg_clean(struct ata_queued_cmd *qc)
4497 struct ata_port *ap = qc->ap;
4498 struct scatterlist *sg = qc->__sg;
4499 int dir = qc->dma_dir;
4500 void *pad_buf = NULL;
4502 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4503 WARN_ON(sg == NULL);
4505 if (qc->flags & ATA_QCFLAG_SINGLE)
4506 WARN_ON(qc->n_elem > 1);
4508 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4510 /* if we padded the buffer out to 32-bit bound, and data
4511 * xfer direction is from-device, we must copy from the
4512 * pad buffer back into the supplied buffer
4514 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4515 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4517 if (qc->flags & ATA_QCFLAG_SG) {
4519 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4520 /* restore last sg */
4521 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
4523 struct scatterlist *psg = &qc->pad_sgent;
4524 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4525 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4526 kunmap_atomic(addr, KM_IRQ0);
4530 dma_unmap_single(ap->dev,
4531 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4534 sg->length += qc->pad_len;
4536 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4537 pad_buf, qc->pad_len);
4540 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4545 * ata_fill_sg - Fill PCI IDE PRD table
4546 * @qc: Metadata associated with taskfile to be transferred
4548 * Fill PCI IDE PRD (scatter-gather) table with segments
4549 * associated with the current disk command.
4552 * spin_lock_irqsave(host lock)
4555 static void ata_fill_sg(struct ata_queued_cmd *qc)
4557 struct ata_port *ap = qc->ap;
4558 struct scatterlist *sg;
4561 WARN_ON(qc->__sg == NULL);
4562 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4565 ata_for_each_sg(sg, qc) {
4569 /* determine if physical DMA addr spans 64K boundary.
4570 * Note h/w doesn't support 64-bit, so we unconditionally
4571 * truncate dma_addr_t to u32.
4573 addr = (u32) sg_dma_address(sg);
4574 sg_len = sg_dma_len(sg);
4577 offset = addr & 0xffff;
4579 if ((offset + sg_len) > 0x10000)
4580 len = 0x10000 - offset;
4582 ap->prd[idx].addr = cpu_to_le32(addr);
4583 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4584 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4593 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4597 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4598 * @qc: Metadata associated with taskfile to be transferred
4600 * Fill PCI IDE PRD (scatter-gather) table with segments
4601 * associated with the current disk command. Perform the fill
4602 * so that we avoid writing any length 64K records for
4603 * controllers that don't follow the spec.
4606 * spin_lock_irqsave(host lock)
4609 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4611 struct ata_port *ap = qc->ap;
4612 struct scatterlist *sg;
4615 WARN_ON(qc->__sg == NULL);
4616 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4619 ata_for_each_sg(sg, qc) {
4621 u32 sg_len, len, blen;
4623 /* determine if physical DMA addr spans 64K boundary.
4624 * Note h/w doesn't support 64-bit, so we unconditionally
4625 * truncate dma_addr_t to u32.
4627 addr = (u32) sg_dma_address(sg);
4628 sg_len = sg_dma_len(sg);
4631 offset = addr & 0xffff;
4633 if ((offset + sg_len) > 0x10000)
4634 len = 0x10000 - offset;
4636 blen = len & 0xffff;
4637 ap->prd[idx].addr = cpu_to_le32(addr);
4639 /* Some PATA chipsets like the CS5530 can't
4640 cope with 0x0000 meaning 64K as the spec says */
4641 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4643 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4645 ap->prd[idx].flags_len = cpu_to_le32(blen);
4646 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4655 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4659 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4660 * @qc: Metadata associated with taskfile to check
4662 * Allow low-level driver to filter ATA PACKET commands, returning
4663 * a status indicating whether or not it is OK to use DMA for the
4664 * supplied PACKET command.
4667 * spin_lock_irqsave(host lock)
4669 * RETURNS: 0 when ATAPI DMA can be used
4672 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4674 struct ata_port *ap = qc->ap;
4676 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4677 * few ATAPI devices choke on such DMA requests.
4679 if (unlikely(qc->nbytes & 15))
4682 if (ap->ops->check_atapi_dma)
4683 return ap->ops->check_atapi_dma(qc);
4689 * ata_std_qc_defer - Check whether a qc needs to be deferred
4690 * @qc: ATA command in question
4692 * Non-NCQ commands cannot run with any other command, NCQ or
4693 * not. As upper layer only knows the queue depth, we are
4694 * responsible for maintaining exclusion. This function checks
4695 * whether a new command @qc can be issued.
4698 * spin_lock_irqsave(host lock)
4701 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4703 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4705 struct ata_link *link = qc->dev->link;
4707 if (qc->tf.protocol == ATA_PROT_NCQ) {
4708 if (!ata_tag_valid(link->active_tag))
4711 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4715 return ATA_DEFER_LINK;
4719 * ata_qc_prep - Prepare taskfile for submission
4720 * @qc: Metadata associated with taskfile to be prepared
4722 * Prepare ATA taskfile for submission.
4725 * spin_lock_irqsave(host lock)
4727 void ata_qc_prep(struct ata_queued_cmd *qc)
4729 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4736 * ata_dumb_qc_prep - Prepare taskfile for submission
4737 * @qc: Metadata associated with taskfile to be prepared
4739 * Prepare ATA taskfile for submission.
4742 * spin_lock_irqsave(host lock)
4744 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4746 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4749 ata_fill_sg_dumb(qc);
4752 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4755 * ata_sg_init_one - Associate command with memory buffer
4756 * @qc: Command to be associated
4757 * @buf: Memory buffer
4758 * @buflen: Length of memory buffer, in bytes.
4760 * Initialize the data-related elements of queued_cmd @qc
4761 * to point to a single memory buffer, @buf of byte length @buflen.
4764 * spin_lock_irqsave(host lock)
4767 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4769 qc->flags |= ATA_QCFLAG_SINGLE;
4771 qc->__sg = &qc->sgent;
4773 qc->orig_n_elem = 1;
4775 qc->nbytes = buflen;
4776 qc->cursg = qc->__sg;
4778 sg_init_one(&qc->sgent, buf, buflen);
4782 * ata_sg_init - Associate command with scatter-gather table.
4783 * @qc: Command to be associated
4784 * @sg: Scatter-gather table.
4785 * @n_elem: Number of elements in s/g table.
4787 * Initialize the data-related elements of queued_cmd @qc
4788 * to point to a scatter-gather table @sg, containing @n_elem
4792 * spin_lock_irqsave(host lock)
4795 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4796 unsigned int n_elem)
4798 qc->flags |= ATA_QCFLAG_SG;
4800 qc->n_elem = n_elem;
4801 qc->orig_n_elem = n_elem;
4802 qc->cursg = qc->__sg;
4806 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4807 * @qc: Command with memory buffer to be mapped.
4809 * DMA-map the memory buffer associated with queued_cmd @qc.
4812 * spin_lock_irqsave(host lock)
4815 * Zero on success, negative on error.
4818 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4820 struct ata_port *ap = qc->ap;
4821 int dir = qc->dma_dir;
4822 struct scatterlist *sg = qc->__sg;
4823 dma_addr_t dma_address;
4826 /* we must lengthen transfers to end on a 32-bit boundary */
4827 qc->pad_len = sg->length & 3;
4829 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4830 struct scatterlist *psg = &qc->pad_sgent;
4832 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4834 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4836 if (qc->tf.flags & ATA_TFLAG_WRITE)
4837 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4840 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4841 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4843 sg->length -= qc->pad_len;
4844 if (sg->length == 0)
4847 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4848 sg->length, qc->pad_len);
4856 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4858 if (dma_mapping_error(dma_address)) {
4860 sg->length += qc->pad_len;
4864 sg_dma_address(sg) = dma_address;
4865 sg_dma_len(sg) = sg->length;
4868 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4869 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4875 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4876 * @qc: Command with scatter-gather table to be mapped.
4878 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4881 * spin_lock_irqsave(host lock)
4884 * Zero on success, negative on error.
4888 static int ata_sg_setup(struct ata_queued_cmd *qc)
4890 struct ata_port *ap = qc->ap;
4891 struct scatterlist *sg = qc->__sg;
4892 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
4893 int n_elem, pre_n_elem, dir, trim_sg = 0;
4895 VPRINTK("ENTER, ata%u\n", ap->print_id);
4896 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4898 /* we must lengthen transfers to end on a 32-bit boundary */
4899 qc->pad_len = lsg->length & 3;
4901 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4902 struct scatterlist *psg = &qc->pad_sgent;
4903 unsigned int offset;
4905 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4907 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4910 * psg->page/offset are used to copy to-be-written
4911 * data in this function or read data in ata_sg_clean.
4913 offset = lsg->offset + lsg->length - qc->pad_len;
4914 sg_init_table(psg, 1);
4915 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4916 qc->pad_len, offset_in_page(offset));
4918 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4919 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4920 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4921 kunmap_atomic(addr, KM_IRQ0);
4924 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4925 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4927 lsg->length -= qc->pad_len;
4928 if (lsg->length == 0)
4931 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4932 qc->n_elem - 1, lsg->length, qc->pad_len);
4935 pre_n_elem = qc->n_elem;
4936 if (trim_sg && pre_n_elem)
4945 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4947 /* restore last sg */
4948 lsg->length += qc->pad_len;
4952 DPRINTK("%d sg elements mapped\n", n_elem);
4955 qc->n_elem = n_elem;
4961 * swap_buf_le16 - swap halves of 16-bit words in place
4962 * @buf: Buffer to swap
4963 * @buf_words: Number of 16-bit words in buffer.
4965 * Swap halves of 16-bit words if needed to convert from
4966 * little-endian byte order to native cpu byte order, or
4970 * Inherited from caller.
4972 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4977 for (i = 0; i < buf_words; i++)
4978 buf[i] = le16_to_cpu(buf[i]);
4979 #endif /* __BIG_ENDIAN */
4983 * ata_data_xfer - Transfer data by PIO
4984 * @adev: device to target
4986 * @buflen: buffer length
4987 * @write_data: read/write
4989 * Transfer data from/to the device data register by PIO.
4992 * Inherited from caller.
4994 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4995 unsigned int buflen, int write_data)
4997 struct ata_port *ap = adev->link->ap;
4998 unsigned int words = buflen >> 1;
5000 /* Transfer multiple of 2 bytes */
5002 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
5004 ioread16_rep(ap->ioaddr.data_addr, buf, words);
5006 /* Transfer trailing 1 byte, if any. */
5007 if (unlikely(buflen & 0x01)) {
5008 u16 align_buf[1] = { 0 };
5009 unsigned char *trailing_buf = buf + buflen - 1;
5012 memcpy(align_buf, trailing_buf, 1);
5013 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
5015 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
5016 memcpy(trailing_buf, align_buf, 1);
5022 * ata_data_xfer_noirq - Transfer data by PIO
5023 * @adev: device to target
5025 * @buflen: buffer length
5026 * @write_data: read/write
5028 * Transfer data from/to the device data register by PIO. Do the
5029 * transfer with interrupts disabled.
5032 * Inherited from caller.
5034 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
5035 unsigned int buflen, int write_data)
5037 unsigned long flags;
5038 local_irq_save(flags);
5039 ata_data_xfer(adev, buf, buflen, write_data);
5040 local_irq_restore(flags);
5045 * ata_pio_sector - Transfer a sector of data.
5046 * @qc: Command on going
5048 * Transfer qc->sect_size bytes of data from/to the ATA device.
5051 * Inherited from caller.
5054 static void ata_pio_sector(struct ata_queued_cmd *qc)
5056 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5057 struct ata_port *ap = qc->ap;
5059 unsigned int offset;
5062 if (qc->curbytes == qc->nbytes - qc->sect_size)
5063 ap->hsm_task_state = HSM_ST_LAST;
5065 page = sg_page(qc->cursg);
5066 offset = qc->cursg->offset + qc->cursg_ofs;
5068 /* get the current page and offset */
5069 page = nth_page(page, (offset >> PAGE_SHIFT));
5070 offset %= PAGE_SIZE;
5072 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5074 if (PageHighMem(page)) {
5075 unsigned long flags;
5077 /* FIXME: use a bounce buffer */
5078 local_irq_save(flags);
5079 buf = kmap_atomic(page, KM_IRQ0);
5081 /* do the actual data transfer */
5082 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5084 kunmap_atomic(buf, KM_IRQ0);
5085 local_irq_restore(flags);
5087 buf = page_address(page);
5088 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5091 qc->curbytes += qc->sect_size;
5092 qc->cursg_ofs += qc->sect_size;
5094 if (qc->cursg_ofs == qc->cursg->length) {
5095 qc->cursg = sg_next(qc->cursg);
5101 * ata_pio_sectors - Transfer one or many sectors.
5102 * @qc: Command on going
5104 * Transfer one or many sectors of data from/to the
5105 * ATA device for the DRQ request.
5108 * Inherited from caller.
5111 static void ata_pio_sectors(struct ata_queued_cmd *qc)
5113 if (is_multi_taskfile(&qc->tf)) {
5114 /* READ/WRITE MULTIPLE */
5117 WARN_ON(qc->dev->multi_count == 0);
5119 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
5120 qc->dev->multi_count);
5126 ata_altstatus(qc->ap); /* flush */
5130 * atapi_send_cdb - Write CDB bytes to hardware
5131 * @ap: Port to which ATAPI device is attached.
5132 * @qc: Taskfile currently active
5134 * When device has indicated its readiness to accept
5135 * a CDB, this function is called. Send the CDB.
5141 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5144 DPRINTK("send cdb\n");
5145 WARN_ON(qc->dev->cdb_len < 12);
5147 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
5148 ata_altstatus(ap); /* flush */
5150 switch (qc->tf.protocol) {
5151 case ATA_PROT_ATAPI:
5152 ap->hsm_task_state = HSM_ST;
5154 case ATA_PROT_ATAPI_NODATA:
5155 ap->hsm_task_state = HSM_ST_LAST;
5157 case ATA_PROT_ATAPI_DMA:
5158 ap->hsm_task_state = HSM_ST_LAST;
5159 /* initiate bmdma */
5160 ap->ops->bmdma_start(qc);
5166 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5167 * @qc: Command on going
5168 * @bytes: number of bytes
5170 * Transfer Transfer data from/to the ATAPI device.
5173 * Inherited from caller.
5177 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5179 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5180 struct scatterlist *sg = qc->__sg;
5181 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
5182 struct ata_port *ap = qc->ap;
5185 unsigned int offset, count;
5188 if (qc->curbytes + bytes >= qc->nbytes)
5189 ap->hsm_task_state = HSM_ST_LAST;
5192 if (unlikely(no_more_sg)) {
5194 * The end of qc->sg is reached and the device expects
5195 * more data to transfer. In order not to overrun qc->sg
5196 * and fulfill length specified in the byte count register,
5197 * - for read case, discard trailing data from the device
5198 * - for write case, padding zero data to the device
5200 u16 pad_buf[1] = { 0 };
5201 unsigned int words = bytes >> 1;
5204 if (words) /* warning if bytes > 1 */
5205 ata_dev_printk(qc->dev, KERN_WARNING,
5206 "%u bytes trailing data\n", bytes);
5208 for (i = 0; i < words; i++)
5209 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
5211 ap->hsm_task_state = HSM_ST_LAST;
5218 offset = sg->offset + qc->cursg_ofs;
5220 /* get the current page and offset */
5221 page = nth_page(page, (offset >> PAGE_SHIFT));
5222 offset %= PAGE_SIZE;
5224 /* don't overrun current sg */
5225 count = min(sg->length - qc->cursg_ofs, bytes);
5227 /* don't cross page boundaries */
5228 count = min(count, (unsigned int)PAGE_SIZE - offset);
5230 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5232 if (PageHighMem(page)) {
5233 unsigned long flags;
5235 /* FIXME: use bounce buffer */
5236 local_irq_save(flags);
5237 buf = kmap_atomic(page, KM_IRQ0);
5239 /* do the actual data transfer */
5240 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5242 kunmap_atomic(buf, KM_IRQ0);
5243 local_irq_restore(flags);
5245 buf = page_address(page);
5246 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5250 qc->curbytes += count;
5251 qc->cursg_ofs += count;
5253 if (qc->cursg_ofs == sg->length) {
5254 if (qc->cursg == lsg)
5257 qc->cursg = sg_next(qc->cursg);
5266 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5267 * @qc: Command on going
5269 * Transfer Transfer data from/to the ATAPI device.
5272 * Inherited from caller.
5275 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5277 struct ata_port *ap = qc->ap;
5278 struct ata_device *dev = qc->dev;
5279 unsigned int ireason, bc_lo, bc_hi, bytes;
5280 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5282 /* Abuse qc->result_tf for temp storage of intermediate TF
5283 * here to save some kernel stack usage.
5284 * For normal completion, qc->result_tf is not relevant. For
5285 * error, qc->result_tf is later overwritten by ata_qc_complete().
5286 * So, the correctness of qc->result_tf is not affected.
5288 ap->ops->tf_read(ap, &qc->result_tf);
5289 ireason = qc->result_tf.nsect;
5290 bc_lo = qc->result_tf.lbam;
5291 bc_hi = qc->result_tf.lbah;
5292 bytes = (bc_hi << 8) | bc_lo;
5294 /* shall be cleared to zero, indicating xfer of data */
5295 if (ireason & (1 << 0))
5298 /* make sure transfer direction matches expected */
5299 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5300 if (do_write != i_write)
5303 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
5305 __atapi_pio_bytes(qc, bytes);
5306 ata_altstatus(ap); /* flush */
5311 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
5312 qc->err_mask |= AC_ERR_HSM;
5313 ap->hsm_task_state = HSM_ST_ERR;
5317 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5318 * @ap: the target ata_port
5322 * 1 if ok in workqueue, 0 otherwise.
5325 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
5327 if (qc->tf.flags & ATA_TFLAG_POLLING)
5330 if (ap->hsm_task_state == HSM_ST_FIRST) {
5331 if (qc->tf.protocol == ATA_PROT_PIO &&
5332 (qc->tf.flags & ATA_TFLAG_WRITE))
5335 if (is_atapi_taskfile(&qc->tf) &&
5336 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5344 * ata_hsm_qc_complete - finish a qc running on standard HSM
5345 * @qc: Command to complete
5346 * @in_wq: 1 if called from workqueue, 0 otherwise
5348 * Finish @qc which is running on standard HSM.
5351 * If @in_wq is zero, spin_lock_irqsave(host lock).
5352 * Otherwise, none on entry and grabs host lock.
5354 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5356 struct ata_port *ap = qc->ap;
5357 unsigned long flags;
5359 if (ap->ops->error_handler) {
5361 spin_lock_irqsave(ap->lock, flags);
5363 /* EH might have kicked in while host lock is
5366 qc = ata_qc_from_tag(ap, qc->tag);
5368 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5369 ap->ops->irq_on(ap);
5370 ata_qc_complete(qc);
5372 ata_port_freeze(ap);
5375 spin_unlock_irqrestore(ap->lock, flags);
5377 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5378 ata_qc_complete(qc);
5380 ata_port_freeze(ap);
5384 spin_lock_irqsave(ap->lock, flags);
5385 ap->ops->irq_on(ap);
5386 ata_qc_complete(qc);
5387 spin_unlock_irqrestore(ap->lock, flags);
5389 ata_qc_complete(qc);
5394 * ata_hsm_move - move the HSM to the next state.
5395 * @ap: the target ata_port
5397 * @status: current device status
5398 * @in_wq: 1 if called from workqueue, 0 otherwise
5401 * 1 when poll next status needed, 0 otherwise.
5403 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5404 u8 status, int in_wq)
5406 unsigned long flags = 0;
5409 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5411 /* Make sure ata_qc_issue_prot() does not throw things
5412 * like DMA polling into the workqueue. Notice that
5413 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5415 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5418 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5419 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5421 switch (ap->hsm_task_state) {
5423 /* Send first data block or PACKET CDB */
5425 /* If polling, we will stay in the work queue after
5426 * sending the data. Otherwise, interrupt handler
5427 * takes over after sending the data.
5429 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5431 /* check device status */
5432 if (unlikely((status & ATA_DRQ) == 0)) {
5433 /* handle BSY=0, DRQ=0 as error */
5434 if (likely(status & (ATA_ERR | ATA_DF)))
5435 /* device stops HSM for abort/error */
5436 qc->err_mask |= AC_ERR_DEV;
5438 /* HSM violation. Let EH handle this */
5439 qc->err_mask |= AC_ERR_HSM;
5441 ap->hsm_task_state = HSM_ST_ERR;
5445 /* Device should not ask for data transfer (DRQ=1)
5446 * when it finds something wrong.
5447 * We ignore DRQ here and stop the HSM by
5448 * changing hsm_task_state to HSM_ST_ERR and
5449 * let the EH abort the command or reset the device.
5451 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5452 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5453 "error, dev_stat 0x%X\n", status);
5454 qc->err_mask |= AC_ERR_HSM;
5455 ap->hsm_task_state = HSM_ST_ERR;
5459 /* Send the CDB (atapi) or the first data block (ata pio out).
5460 * During the state transition, interrupt handler shouldn't
5461 * be invoked before the data transfer is complete and
5462 * hsm_task_state is changed. Hence, the following locking.
5465 spin_lock_irqsave(ap->lock, flags);
5467 if (qc->tf.protocol == ATA_PROT_PIO) {
5468 /* PIO data out protocol.
5469 * send first data block.
5472 /* ata_pio_sectors() might change the state
5473 * to HSM_ST_LAST. so, the state is changed here
5474 * before ata_pio_sectors().
5476 ap->hsm_task_state = HSM_ST;
5477 ata_pio_sectors(qc);
5480 atapi_send_cdb(ap, qc);
5483 spin_unlock_irqrestore(ap->lock, flags);
5485 /* if polling, ata_pio_task() handles the rest.
5486 * otherwise, interrupt handler takes over from here.
5491 /* complete command or read/write the data register */
5492 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5493 /* ATAPI PIO protocol */
5494 if ((status & ATA_DRQ) == 0) {
5495 /* No more data to transfer or device error.
5496 * Device error will be tagged in HSM_ST_LAST.
5498 ap->hsm_task_state = HSM_ST_LAST;
5502 /* Device should not ask for data transfer (DRQ=1)
5503 * when it finds something wrong.
5504 * We ignore DRQ here and stop the HSM by
5505 * changing hsm_task_state to HSM_ST_ERR and
5506 * let the EH abort the command or reset the device.
5508 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5509 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5510 "device error, dev_stat 0x%X\n",
5512 qc->err_mask |= AC_ERR_HSM;
5513 ap->hsm_task_state = HSM_ST_ERR;
5517 atapi_pio_bytes(qc);
5519 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5520 /* bad ireason reported by device */
5524 /* ATA PIO protocol */
5525 if (unlikely((status & ATA_DRQ) == 0)) {
5526 /* handle BSY=0, DRQ=0 as error */
5527 if (likely(status & (ATA_ERR | ATA_DF)))
5528 /* device stops HSM for abort/error */
5529 qc->err_mask |= AC_ERR_DEV;
5531 /* HSM violation. Let EH handle this.
5532 * Phantom devices also trigger this
5533 * condition. Mark hint.
5535 qc->err_mask |= AC_ERR_HSM |
5538 ap->hsm_task_state = HSM_ST_ERR;
5542 /* For PIO reads, some devices may ask for
5543 * data transfer (DRQ=1) alone with ERR=1.
5544 * We respect DRQ here and transfer one
5545 * block of junk data before changing the
5546 * hsm_task_state to HSM_ST_ERR.
5548 * For PIO writes, ERR=1 DRQ=1 doesn't make
5549 * sense since the data block has been
5550 * transferred to the device.
5552 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5553 /* data might be corrputed */
5554 qc->err_mask |= AC_ERR_DEV;
5556 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5557 ata_pio_sectors(qc);
5558 status = ata_wait_idle(ap);
5561 if (status & (ATA_BUSY | ATA_DRQ))
5562 qc->err_mask |= AC_ERR_HSM;
5564 /* ata_pio_sectors() might change the
5565 * state to HSM_ST_LAST. so, the state
5566 * is changed after ata_pio_sectors().
5568 ap->hsm_task_state = HSM_ST_ERR;
5572 ata_pio_sectors(qc);
5574 if (ap->hsm_task_state == HSM_ST_LAST &&
5575 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5577 status = ata_wait_idle(ap);
5586 if (unlikely(!ata_ok(status))) {
5587 qc->err_mask |= __ac_err_mask(status);
5588 ap->hsm_task_state = HSM_ST_ERR;
5592 /* no more data to transfer */
5593 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5594 ap->print_id, qc->dev->devno, status);
5596 WARN_ON(qc->err_mask);
5598 ap->hsm_task_state = HSM_ST_IDLE;
5600 /* complete taskfile transaction */
5601 ata_hsm_qc_complete(qc, in_wq);
5607 /* make sure qc->err_mask is available to
5608 * know what's wrong and recover
5610 WARN_ON(qc->err_mask == 0);
5612 ap->hsm_task_state = HSM_ST_IDLE;
5614 /* complete taskfile transaction */
5615 ata_hsm_qc_complete(qc, in_wq);
5627 static void ata_pio_task(struct work_struct *work)
5629 struct ata_port *ap =
5630 container_of(work, struct ata_port, port_task.work);
5631 struct ata_queued_cmd *qc = ap->port_task_data;
5636 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5639 * This is purely heuristic. This is a fast path.
5640 * Sometimes when we enter, BSY will be cleared in
5641 * a chk-status or two. If not, the drive is probably seeking
5642 * or something. Snooze for a couple msecs, then
5643 * chk-status again. If still busy, queue delayed work.
5645 status = ata_busy_wait(ap, ATA_BUSY, 5);
5646 if (status & ATA_BUSY) {
5648 status = ata_busy_wait(ap, ATA_BUSY, 10);
5649 if (status & ATA_BUSY) {
5650 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5656 poll_next = ata_hsm_move(ap, qc, status, 1);
5658 /* another command or interrupt handler
5659 * may be running at this point.
5666 * ata_qc_new - Request an available ATA command, for queueing
5667 * @ap: Port associated with device @dev
5668 * @dev: Device from whom we request an available command structure
5674 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5676 struct ata_queued_cmd *qc = NULL;
5679 /* no command while frozen */
5680 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5683 /* the last tag is reserved for internal command. */
5684 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5685 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5686 qc = __ata_qc_from_tag(ap, i);
5697 * ata_qc_new_init - Request an available ATA command, and initialize it
5698 * @dev: Device from whom we request an available command structure
5704 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5706 struct ata_port *ap = dev->link->ap;
5707 struct ata_queued_cmd *qc;
5709 qc = ata_qc_new(ap);
5722 * ata_qc_free - free unused ata_queued_cmd
5723 * @qc: Command to complete
5725 * Designed to free unused ata_queued_cmd object
5726 * in case something prevents using it.
5729 * spin_lock_irqsave(host lock)
5731 void ata_qc_free(struct ata_queued_cmd *qc)
5733 struct ata_port *ap = qc->ap;
5736 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5740 if (likely(ata_tag_valid(tag))) {
5741 qc->tag = ATA_TAG_POISON;
5742 clear_bit(tag, &ap->qc_allocated);
5746 void __ata_qc_complete(struct ata_queued_cmd *qc)
5748 struct ata_port *ap = qc->ap;
5749 struct ata_link *link = qc->dev->link;
5751 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5752 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5754 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5757 /* command should be marked inactive atomically with qc completion */
5758 if (qc->tf.protocol == ATA_PROT_NCQ) {
5759 link->sactive &= ~(1 << qc->tag);
5761 ap->nr_active_links--;
5763 link->active_tag = ATA_TAG_POISON;
5764 ap->nr_active_links--;
5767 /* clear exclusive status */
5768 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5769 ap->excl_link == link))
5770 ap->excl_link = NULL;
5772 /* atapi: mark qc as inactive to prevent the interrupt handler
5773 * from completing the command twice later, before the error handler
5774 * is called. (when rc != 0 and atapi request sense is needed)
5776 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5777 ap->qc_active &= ~(1 << qc->tag);
5779 /* call completion callback */
5780 qc->complete_fn(qc);
5783 static void fill_result_tf(struct ata_queued_cmd *qc)
5785 struct ata_port *ap = qc->ap;
5787 qc->result_tf.flags = qc->tf.flags;
5788 ap->ops->tf_read(ap, &qc->result_tf);
5792 * ata_qc_complete - Complete an active ATA command
5793 * @qc: Command to complete
5794 * @err_mask: ATA Status register contents
5796 * Indicate to the mid and upper layers that an ATA
5797 * command has completed, with either an ok or not-ok status.
5800 * spin_lock_irqsave(host lock)
5802 void ata_qc_complete(struct ata_queued_cmd *qc)
5804 struct ata_port *ap = qc->ap;
5806 /* XXX: New EH and old EH use different mechanisms to
5807 * synchronize EH with regular execution path.
5809 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5810 * Normal execution path is responsible for not accessing a
5811 * failed qc. libata core enforces the rule by returning NULL
5812 * from ata_qc_from_tag() for failed qcs.
5814 * Old EH depends on ata_qc_complete() nullifying completion
5815 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5816 * not synchronize with interrupt handler. Only PIO task is
5819 if (ap->ops->error_handler) {
5820 struct ata_device *dev = qc->dev;
5821 struct ata_eh_info *ehi = &dev->link->eh_info;
5823 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5825 if (unlikely(qc->err_mask))
5826 qc->flags |= ATA_QCFLAG_FAILED;
5828 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5829 if (!ata_tag_internal(qc->tag)) {
5830 /* always fill result TF for failed qc */
5832 ata_qc_schedule_eh(qc);
5837 /* read result TF if requested */
5838 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5841 /* Some commands need post-processing after successful
5844 switch (qc->tf.command) {
5845 case ATA_CMD_SET_FEATURES:
5846 if (qc->tf.feature != SETFEATURES_WC_ON &&
5847 qc->tf.feature != SETFEATURES_WC_OFF)
5850 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5851 case ATA_CMD_SET_MULTI: /* multi_count changed */
5852 /* revalidate device */
5853 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5854 ata_port_schedule_eh(ap);
5858 dev->flags |= ATA_DFLAG_SLEEPING;
5862 __ata_qc_complete(qc);
5864 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5867 /* read result TF if failed or requested */
5868 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5871 __ata_qc_complete(qc);
5876 * ata_qc_complete_multiple - Complete multiple qcs successfully
5877 * @ap: port in question
5878 * @qc_active: new qc_active mask
5879 * @finish_qc: LLDD callback invoked before completing a qc
5881 * Complete in-flight commands. This functions is meant to be
5882 * called from low-level driver's interrupt routine to complete
5883 * requests normally. ap->qc_active and @qc_active is compared
5884 * and commands are completed accordingly.
5887 * spin_lock_irqsave(host lock)
5890 * Number of completed commands on success, -errno otherwise.
5892 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5893 void (*finish_qc)(struct ata_queued_cmd *))
5899 done_mask = ap->qc_active ^ qc_active;
5901 if (unlikely(done_mask & qc_active)) {
5902 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5903 "(%08x->%08x)\n", ap->qc_active, qc_active);
5907 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5908 struct ata_queued_cmd *qc;
5910 if (!(done_mask & (1 << i)))
5913 if ((qc = ata_qc_from_tag(ap, i))) {
5916 ata_qc_complete(qc);
5924 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5926 struct ata_port *ap = qc->ap;
5928 switch (qc->tf.protocol) {
5931 case ATA_PROT_ATAPI_DMA:
5934 case ATA_PROT_ATAPI:
5936 if (ap->flags & ATA_FLAG_PIO_DMA)
5949 * ata_qc_issue - issue taskfile to device
5950 * @qc: command to issue to device
5952 * Prepare an ATA command to submission to device.
5953 * This includes mapping the data into a DMA-able
5954 * area, filling in the S/G table, and finally
5955 * writing the taskfile to hardware, starting the command.
5958 * spin_lock_irqsave(host lock)
5960 void ata_qc_issue(struct ata_queued_cmd *qc)
5962 struct ata_port *ap = qc->ap;
5963 struct ata_link *link = qc->dev->link;
5965 /* Make sure only one non-NCQ command is outstanding. The
5966 * check is skipped for old EH because it reuses active qc to
5967 * request ATAPI sense.
5969 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5971 if (qc->tf.protocol == ATA_PROT_NCQ) {
5972 WARN_ON(link->sactive & (1 << qc->tag));
5975 ap->nr_active_links++;
5976 link->sactive |= 1 << qc->tag;
5978 WARN_ON(link->sactive);
5980 ap->nr_active_links++;
5981 link->active_tag = qc->tag;
5984 qc->flags |= ATA_QCFLAG_ACTIVE;
5985 ap->qc_active |= 1 << qc->tag;
5987 if (ata_should_dma_map(qc)) {
5988 if (qc->flags & ATA_QCFLAG_SG) {
5989 if (ata_sg_setup(qc))
5991 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5992 if (ata_sg_setup_one(qc))
5996 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5999 /* if device is sleeping, schedule softreset and abort the link */
6000 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
6001 link->eh_info.action |= ATA_EH_SOFTRESET;
6002 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
6003 ata_link_abort(link);
6007 ap->ops->qc_prep(qc);
6009 qc->err_mask |= ap->ops->qc_issue(qc);
6010 if (unlikely(qc->err_mask))
6015 qc->flags &= ~ATA_QCFLAG_DMAMAP;
6016 qc->err_mask |= AC_ERR_SYSTEM;
6018 ata_qc_complete(qc);
6022 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6023 * @qc: command to issue to device
6025 * Using various libata functions and hooks, this function
6026 * starts an ATA command. ATA commands are grouped into
6027 * classes called "protocols", and issuing each type of protocol
6028 * is slightly different.
6030 * May be used as the qc_issue() entry in ata_port_operations.
6033 * spin_lock_irqsave(host lock)
6036 * Zero on success, AC_ERR_* mask on failure
6039 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
6041 struct ata_port *ap = qc->ap;
6043 /* Use polling pio if the LLD doesn't handle
6044 * interrupt driven pio and atapi CDB interrupt.
6046 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6047 switch (qc->tf.protocol) {
6049 case ATA_PROT_NODATA:
6050 case ATA_PROT_ATAPI:
6051 case ATA_PROT_ATAPI_NODATA:
6052 qc->tf.flags |= ATA_TFLAG_POLLING;
6054 case ATA_PROT_ATAPI_DMA:
6055 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
6056 /* see ata_dma_blacklisted() */
6064 /* select the device */
6065 ata_dev_select(ap, qc->dev->devno, 1, 0);
6067 /* start the command */
6068 switch (qc->tf.protocol) {
6069 case ATA_PROT_NODATA:
6070 if (qc->tf.flags & ATA_TFLAG_POLLING)
6071 ata_qc_set_polling(qc);
6073 ata_tf_to_host(ap, &qc->tf);
6074 ap->hsm_task_state = HSM_ST_LAST;
6076 if (qc->tf.flags & ATA_TFLAG_POLLING)
6077 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6082 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6084 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6085 ap->ops->bmdma_setup(qc); /* set up bmdma */
6086 ap->ops->bmdma_start(qc); /* initiate bmdma */
6087 ap->hsm_task_state = HSM_ST_LAST;
6091 if (qc->tf.flags & ATA_TFLAG_POLLING)
6092 ata_qc_set_polling(qc);
6094 ata_tf_to_host(ap, &qc->tf);
6096 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6097 /* PIO data out protocol */
6098 ap->hsm_task_state = HSM_ST_FIRST;
6099 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6101 /* always send first data block using
6102 * the ata_pio_task() codepath.
6105 /* PIO data in protocol */
6106 ap->hsm_task_state = HSM_ST;
6108 if (qc->tf.flags & ATA_TFLAG_POLLING)
6109 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6111 /* if polling, ata_pio_task() handles the rest.
6112 * otherwise, interrupt handler takes over from here.
6118 case ATA_PROT_ATAPI:
6119 case ATA_PROT_ATAPI_NODATA:
6120 if (qc->tf.flags & ATA_TFLAG_POLLING)
6121 ata_qc_set_polling(qc);
6123 ata_tf_to_host(ap, &qc->tf);
6125 ap->hsm_task_state = HSM_ST_FIRST;
6127 /* send cdb by polling if no cdb interrupt */
6128 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6129 (qc->tf.flags & ATA_TFLAG_POLLING))
6130 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6133 case ATA_PROT_ATAPI_DMA:
6134 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6136 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6137 ap->ops->bmdma_setup(qc); /* set up bmdma */
6138 ap->hsm_task_state = HSM_ST_FIRST;
6140 /* send cdb by polling if no cdb interrupt */
6141 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6142 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6147 return AC_ERR_SYSTEM;
6154 * ata_host_intr - Handle host interrupt for given (port, task)
6155 * @ap: Port on which interrupt arrived (possibly...)
6156 * @qc: Taskfile currently active in engine
6158 * Handle host interrupt for given queued command. Currently,
6159 * only DMA interrupts are handled. All other commands are
6160 * handled via polling with interrupts disabled (nIEN bit).
6163 * spin_lock_irqsave(host lock)
6166 * One if interrupt was handled, zero if not (shared irq).
6169 inline unsigned int ata_host_intr(struct ata_port *ap,
6170 struct ata_queued_cmd *qc)
6172 struct ata_eh_info *ehi = &ap->link.eh_info;
6173 u8 status, host_stat = 0;
6175 VPRINTK("ata%u: protocol %d task_state %d\n",
6176 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
6178 /* Check whether we are expecting interrupt in this state */
6179 switch (ap->hsm_task_state) {
6181 /* Some pre-ATAPI-4 devices assert INTRQ
6182 * at this state when ready to receive CDB.
6185 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6186 * The flag was turned on only for atapi devices.
6187 * No need to check is_atapi_taskfile(&qc->tf) again.
6189 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6193 if (qc->tf.protocol == ATA_PROT_DMA ||
6194 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6195 /* check status of DMA engine */
6196 host_stat = ap->ops->bmdma_status(ap);
6197 VPRINTK("ata%u: host_stat 0x%X\n",
6198 ap->print_id, host_stat);
6200 /* if it's not our irq... */
6201 if (!(host_stat & ATA_DMA_INTR))
6204 /* before we do anything else, clear DMA-Start bit */
6205 ap->ops->bmdma_stop(qc);
6207 if (unlikely(host_stat & ATA_DMA_ERR)) {
6208 /* error when transfering data to/from memory */
6209 qc->err_mask |= AC_ERR_HOST_BUS;
6210 ap->hsm_task_state = HSM_ST_ERR;
6220 /* check altstatus */
6221 status = ata_altstatus(ap);
6222 if (status & ATA_BUSY)
6225 /* check main status, clearing INTRQ */
6226 status = ata_chk_status(ap);
6227 if (unlikely(status & ATA_BUSY))
6230 /* ack bmdma irq events */
6231 ap->ops->irq_clear(ap);
6233 ata_hsm_move(ap, qc, status, 0);
6235 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6236 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6237 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6239 return 1; /* irq handled */
6242 ap->stats.idle_irq++;
6245 if ((ap->stats.idle_irq % 1000) == 0) {
6247 ap->ops->irq_clear(ap);
6248 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
6252 return 0; /* irq not handled */
6256 * ata_interrupt - Default ATA host interrupt handler
6257 * @irq: irq line (unused)
6258 * @dev_instance: pointer to our ata_host information structure
6260 * Default interrupt handler for PCI IDE devices. Calls
6261 * ata_host_intr() for each port that is not disabled.
6264 * Obtains host lock during operation.
6267 * IRQ_NONE or IRQ_HANDLED.
6270 irqreturn_t ata_interrupt(int irq, void *dev_instance)
6272 struct ata_host *host = dev_instance;
6274 unsigned int handled = 0;
6275 unsigned long flags;
6277 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6278 spin_lock_irqsave(&host->lock, flags);
6280 for (i = 0; i < host->n_ports; i++) {
6281 struct ata_port *ap;
6283 ap = host->ports[i];
6285 !(ap->flags & ATA_FLAG_DISABLED)) {
6286 struct ata_queued_cmd *qc;
6288 qc = ata_qc_from_tag(ap, ap->link.active_tag);
6289 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
6290 (qc->flags & ATA_QCFLAG_ACTIVE))
6291 handled |= ata_host_intr(ap, qc);
6295 spin_unlock_irqrestore(&host->lock, flags);
6297 return IRQ_RETVAL(handled);
6301 * sata_scr_valid - test whether SCRs are accessible
6302 * @link: ATA link to test SCR accessibility for
6304 * Test whether SCRs are accessible for @link.
6310 * 1 if SCRs are accessible, 0 otherwise.
6312 int sata_scr_valid(struct ata_link *link)
6314 struct ata_port *ap = link->ap;
6316 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
6320 * sata_scr_read - read SCR register of the specified port
6321 * @link: ATA link to read SCR for
6323 * @val: Place to store read value
6325 * Read SCR register @reg of @link into *@val. This function is
6326 * guaranteed to succeed if @link is ap->link, the cable type of
6327 * the port is SATA and the port implements ->scr_read.
6330 * None if @link is ap->link. Kernel thread context otherwise.
6333 * 0 on success, negative errno on failure.
6335 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
6337 if (ata_is_host_link(link)) {
6338 struct ata_port *ap = link->ap;
6340 if (sata_scr_valid(link))
6341 return ap->ops->scr_read(ap, reg, val);
6345 return sata_pmp_scr_read(link, reg, val);
6349 * sata_scr_write - write SCR register of the specified port
6350 * @link: ATA link to write SCR for
6351 * @reg: SCR to write
6352 * @val: value to write
6354 * Write @val to SCR register @reg of @link. This function is
6355 * guaranteed to succeed if @link is ap->link, the cable type of
6356 * the port is SATA and the port implements ->scr_read.
6359 * None if @link is ap->link. Kernel thread context otherwise.
6362 * 0 on success, negative errno on failure.
6364 int sata_scr_write(struct ata_link *link, int reg, u32 val)
6366 if (ata_is_host_link(link)) {
6367 struct ata_port *ap = link->ap;
6369 if (sata_scr_valid(link))
6370 return ap->ops->scr_write(ap, reg, val);
6374 return sata_pmp_scr_write(link, reg, val);
6378 * sata_scr_write_flush - write SCR register of the specified port and flush
6379 * @link: ATA link to write SCR for
6380 * @reg: SCR to write
6381 * @val: value to write
6383 * This function is identical to sata_scr_write() except that this
6384 * function performs flush after writing to the register.
6387 * None if @link is ap->link. Kernel thread context otherwise.
6390 * 0 on success, negative errno on failure.
6392 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6394 if (ata_is_host_link(link)) {
6395 struct ata_port *ap = link->ap;
6398 if (sata_scr_valid(link)) {
6399 rc = ap->ops->scr_write(ap, reg, val);
6401 rc = ap->ops->scr_read(ap, reg, &val);
6407 return sata_pmp_scr_write(link, reg, val);
6411 * ata_link_online - test whether the given link is online
6412 * @link: ATA link to test
6414 * Test whether @link is online. Note that this function returns
6415 * 0 if online status of @link cannot be obtained, so
6416 * ata_link_online(link) != !ata_link_offline(link).
6422 * 1 if the port online status is available and online.
6424 int ata_link_online(struct ata_link *link)
6428 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6429 (sstatus & 0xf) == 0x3)
6435 * ata_link_offline - test whether the given link is offline
6436 * @link: ATA link to test
6438 * Test whether @link is offline. Note that this function
6439 * returns 0 if offline status of @link cannot be obtained, so
6440 * ata_link_online(link) != !ata_link_offline(link).
6446 * 1 if the port offline status is available and offline.
6448 int ata_link_offline(struct ata_link *link)
6452 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6453 (sstatus & 0xf) != 0x3)
6458 int ata_flush_cache(struct ata_device *dev)
6460 unsigned int err_mask;
6463 if (!ata_try_flush_cache(dev))
6466 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6467 cmd = ATA_CMD_FLUSH_EXT;
6469 cmd = ATA_CMD_FLUSH;
6471 /* This is wrong. On a failed flush we get back the LBA of the lost
6472 sector and we should (assuming it wasn't aborted as unknown) issue
6473 a further flush command to continue the writeback until it
6475 err_mask = ata_do_simple_cmd(dev, cmd);
6477 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6485 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6486 unsigned int action, unsigned int ehi_flags,
6489 unsigned long flags;
6492 for (i = 0; i < host->n_ports; i++) {
6493 struct ata_port *ap = host->ports[i];
6494 struct ata_link *link;
6496 /* Previous resume operation might still be in
6497 * progress. Wait for PM_PENDING to clear.
6499 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6500 ata_port_wait_eh(ap);
6501 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6504 /* request PM ops to EH */
6505 spin_lock_irqsave(ap->lock, flags);
6510 ap->pm_result = &rc;
6513 ap->pflags |= ATA_PFLAG_PM_PENDING;
6514 __ata_port_for_each_link(link, ap) {
6515 link->eh_info.action |= action;
6516 link->eh_info.flags |= ehi_flags;
6519 ata_port_schedule_eh(ap);
6521 spin_unlock_irqrestore(ap->lock, flags);
6523 /* wait and check result */
6525 ata_port_wait_eh(ap);
6526 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6536 * ata_host_suspend - suspend host
6537 * @host: host to suspend
6540 * Suspend @host. Actual operation is performed by EH. This
6541 * function requests EH to perform PM operations and waits for EH
6545 * Kernel thread context (may sleep).
6548 * 0 on success, -errno on failure.
6550 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6555 * disable link pm on all ports before requesting
6558 ata_lpm_enable(host);
6560 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6562 host->dev->power.power_state = mesg;
6567 * ata_host_resume - resume host
6568 * @host: host to resume
6570 * Resume @host. Actual operation is performed by EH. This
6571 * function requests EH to perform PM operations and returns.
6572 * Note that all resume operations are performed parallely.
6575 * Kernel thread context (may sleep).
6577 void ata_host_resume(struct ata_host *host)
6579 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6580 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6581 host->dev->power.power_state = PMSG_ON;
6583 /* reenable link pm */
6584 ata_lpm_disable(host);
6589 * ata_port_start - Set port up for dma.
6590 * @ap: Port to initialize
6592 * Called just after data structures for each port are
6593 * initialized. Allocates space for PRD table.
6595 * May be used as the port_start() entry in ata_port_operations.
6598 * Inherited from caller.
6600 int ata_port_start(struct ata_port *ap)
6602 struct device *dev = ap->dev;
6605 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6610 rc = ata_pad_alloc(ap, dev);
6614 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6615 (unsigned long long)ap->prd_dma);
6620 * ata_dev_init - Initialize an ata_device structure
6621 * @dev: Device structure to initialize
6623 * Initialize @dev in preparation for probing.
6626 * Inherited from caller.
6628 void ata_dev_init(struct ata_device *dev)
6630 struct ata_link *link = dev->link;
6631 struct ata_port *ap = link->ap;
6632 unsigned long flags;
6634 /* SATA spd limit is bound to the first device */
6635 link->sata_spd_limit = link->hw_sata_spd_limit;
6638 /* High bits of dev->flags are used to record warm plug
6639 * requests which occur asynchronously. Synchronize using
6642 spin_lock_irqsave(ap->lock, flags);
6643 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6645 spin_unlock_irqrestore(ap->lock, flags);
6647 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6648 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6649 dev->pio_mask = UINT_MAX;
6650 dev->mwdma_mask = UINT_MAX;
6651 dev->udma_mask = UINT_MAX;
6655 * ata_link_init - Initialize an ata_link structure
6656 * @ap: ATA port link is attached to
6657 * @link: Link structure to initialize
6658 * @pmp: Port multiplier port number
6663 * Kernel thread context (may sleep)
6665 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6669 /* clear everything except for devices */
6670 memset(link, 0, offsetof(struct ata_link, device[0]));
6674 link->active_tag = ATA_TAG_POISON;
6675 link->hw_sata_spd_limit = UINT_MAX;
6677 /* can't use iterator, ap isn't initialized yet */
6678 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6679 struct ata_device *dev = &link->device[i];
6682 dev->devno = dev - link->device;
6688 * sata_link_init_spd - Initialize link->sata_spd_limit
6689 * @link: Link to configure sata_spd_limit for
6691 * Initialize @link->[hw_]sata_spd_limit to the currently
6695 * Kernel thread context (may sleep).
6698 * 0 on success, -errno on failure.
6700 int sata_link_init_spd(struct ata_link *link)
6705 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6709 spd = (scontrol >> 4) & 0xf;
6711 link->hw_sata_spd_limit &= (1 << spd) - 1;
6713 link->sata_spd_limit = link->hw_sata_spd_limit;
6719 * ata_port_alloc - allocate and initialize basic ATA port resources
6720 * @host: ATA host this allocated port belongs to
6722 * Allocate and initialize basic ATA port resources.
6725 * Allocate ATA port on success, NULL on failure.
6728 * Inherited from calling layer (may sleep).
6730 struct ata_port *ata_port_alloc(struct ata_host *host)
6732 struct ata_port *ap;
6736 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6740 ap->pflags |= ATA_PFLAG_INITIALIZING;
6741 ap->lock = &host->lock;
6742 ap->flags = ATA_FLAG_DISABLED;
6744 ap->ctl = ATA_DEVCTL_OBS;
6746 ap->dev = host->dev;
6747 ap->last_ctl = 0xFF;
6749 #if defined(ATA_VERBOSE_DEBUG)
6750 /* turn on all debugging levels */
6751 ap->msg_enable = 0x00FF;
6752 #elif defined(ATA_DEBUG)
6753 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6755 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6758 INIT_DELAYED_WORK(&ap->port_task, NULL);
6759 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6760 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6761 INIT_LIST_HEAD(&ap->eh_done_q);
6762 init_waitqueue_head(&ap->eh_wait_q);
6763 init_timer_deferrable(&ap->fastdrain_timer);
6764 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6765 ap->fastdrain_timer.data = (unsigned long)ap;
6767 ap->cbl = ATA_CBL_NONE;
6769 ata_link_init(ap, &ap->link, 0);
6772 ap->stats.unhandled_irq = 1;
6773 ap->stats.idle_irq = 1;
6778 static void ata_host_release(struct device *gendev, void *res)
6780 struct ata_host *host = dev_get_drvdata(gendev);
6783 for (i = 0; i < host->n_ports; i++) {
6784 struct ata_port *ap = host->ports[i];
6789 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6790 ap->ops->port_stop(ap);
6793 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6794 host->ops->host_stop(host);
6796 for (i = 0; i < host->n_ports; i++) {
6797 struct ata_port *ap = host->ports[i];
6803 scsi_host_put(ap->scsi_host);
6805 kfree(ap->pmp_link);
6807 host->ports[i] = NULL;
6810 dev_set_drvdata(gendev, NULL);
6814 * ata_host_alloc - allocate and init basic ATA host resources
6815 * @dev: generic device this host is associated with
6816 * @max_ports: maximum number of ATA ports associated with this host
6818 * Allocate and initialize basic ATA host resources. LLD calls
6819 * this function to allocate a host, initializes it fully and
6820 * attaches it using ata_host_register().
6822 * @max_ports ports are allocated and host->n_ports is
6823 * initialized to @max_ports. The caller is allowed to decrease
6824 * host->n_ports before calling ata_host_register(). The unused
6825 * ports will be automatically freed on registration.
6828 * Allocate ATA host on success, NULL on failure.
6831 * Inherited from calling layer (may sleep).
6833 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6835 struct ata_host *host;
6841 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6844 /* alloc a container for our list of ATA ports (buses) */
6845 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6846 /* alloc a container for our list of ATA ports (buses) */
6847 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6851 devres_add(dev, host);
6852 dev_set_drvdata(dev, host);
6854 spin_lock_init(&host->lock);
6856 host->n_ports = max_ports;
6858 /* allocate ports bound to this host */
6859 for (i = 0; i < max_ports; i++) {
6860 struct ata_port *ap;
6862 ap = ata_port_alloc(host);
6867 host->ports[i] = ap;
6870 devres_remove_group(dev, NULL);
6874 devres_release_group(dev, NULL);
6879 * ata_host_alloc_pinfo - alloc host and init with port_info array
6880 * @dev: generic device this host is associated with
6881 * @ppi: array of ATA port_info to initialize host with
6882 * @n_ports: number of ATA ports attached to this host
6884 * Allocate ATA host and initialize with info from @ppi. If NULL
6885 * terminated, @ppi may contain fewer entries than @n_ports. The
6886 * last entry will be used for the remaining ports.
6889 * Allocate ATA host on success, NULL on failure.
6892 * Inherited from calling layer (may sleep).
6894 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6895 const struct ata_port_info * const * ppi,
6898 const struct ata_port_info *pi;
6899 struct ata_host *host;
6902 host = ata_host_alloc(dev, n_ports);
6906 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6907 struct ata_port *ap = host->ports[i];
6912 ap->pio_mask = pi->pio_mask;
6913 ap->mwdma_mask = pi->mwdma_mask;
6914 ap->udma_mask = pi->udma_mask;
6915 ap->flags |= pi->flags;
6916 ap->link.flags |= pi->link_flags;
6917 ap->ops = pi->port_ops;
6919 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6920 host->ops = pi->port_ops;
6921 if (!host->private_data && pi->private_data)
6922 host->private_data = pi->private_data;
6929 * ata_host_start - start and freeze ports of an ATA host
6930 * @host: ATA host to start ports for
6932 * Start and then freeze ports of @host. Started status is
6933 * recorded in host->flags, so this function can be called
6934 * multiple times. Ports are guaranteed to get started only
6935 * once. If host->ops isn't initialized yet, its set to the
6936 * first non-dummy port ops.
6939 * Inherited from calling layer (may sleep).
6942 * 0 if all ports are started successfully, -errno otherwise.
6944 int ata_host_start(struct ata_host *host)
6948 if (host->flags & ATA_HOST_STARTED)
6951 for (i = 0; i < host->n_ports; i++) {
6952 struct ata_port *ap = host->ports[i];
6954 if (!host->ops && !ata_port_is_dummy(ap))
6955 host->ops = ap->ops;
6957 if (ap->ops->port_start) {
6958 rc = ap->ops->port_start(ap);
6960 ata_port_printk(ap, KERN_ERR, "failed to "
6961 "start port (errno=%d)\n", rc);
6966 ata_eh_freeze_port(ap);
6969 host->flags |= ATA_HOST_STARTED;
6974 struct ata_port *ap = host->ports[i];
6976 if (ap->ops->port_stop)
6977 ap->ops->port_stop(ap);
6983 * ata_sas_host_init - Initialize a host struct
6984 * @host: host to initialize
6985 * @dev: device host is attached to
6986 * @flags: host flags
6990 * PCI/etc. bus probe sem.
6993 /* KILLME - the only user left is ipr */
6994 void ata_host_init(struct ata_host *host, struct device *dev,
6995 unsigned long flags, const struct ata_port_operations *ops)
6997 spin_lock_init(&host->lock);
6999 host->flags = flags;
7004 * ata_host_register - register initialized ATA host
7005 * @host: ATA host to register
7006 * @sht: template for SCSI host
7008 * Register initialized ATA host. @host is allocated using
7009 * ata_host_alloc() and fully initialized by LLD. This function
7010 * starts ports, registers @host with ATA and SCSI layers and
7011 * probe registered devices.
7014 * Inherited from calling layer (may sleep).
7017 * 0 on success, -errno otherwise.
7019 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7023 /* host must have been started */
7024 if (!(host->flags & ATA_HOST_STARTED)) {
7025 dev_printk(KERN_ERR, host->dev,
7026 "BUG: trying to register unstarted host\n");
7031 /* Blow away unused ports. This happens when LLD can't
7032 * determine the exact number of ports to allocate at
7035 for (i = host->n_ports; host->ports[i]; i++)
7036 kfree(host->ports[i]);
7038 /* give ports names and add SCSI hosts */
7039 for (i = 0; i < host->n_ports; i++)
7040 host->ports[i]->print_id = ata_print_id++;
7042 rc = ata_scsi_add_hosts(host, sht);
7046 /* associate with ACPI nodes */
7047 ata_acpi_associate(host);
7049 /* set cable, sata_spd_limit and report */
7050 for (i = 0; i < host->n_ports; i++) {
7051 struct ata_port *ap = host->ports[i];
7052 unsigned long xfer_mask;
7054 /* set SATA cable type if still unset */
7055 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7056 ap->cbl = ATA_CBL_SATA;
7058 /* init sata_spd_limit to the current value */
7059 sata_link_init_spd(&ap->link);
7061 /* print per-port info to dmesg */
7062 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7065 if (!ata_port_is_dummy(ap)) {
7066 ata_port_printk(ap, KERN_INFO,
7067 "%cATA max %s %s\n",
7068 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
7069 ata_mode_string(xfer_mask),
7070 ap->link.eh_info.desc);
7071 ata_ehi_clear_desc(&ap->link.eh_info);
7073 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7076 /* perform each probe synchronously */
7077 DPRINTK("probe begin\n");
7078 for (i = 0; i < host->n_ports; i++) {
7079 struct ata_port *ap = host->ports[i];
7083 if (ap->ops->error_handler) {
7084 struct ata_eh_info *ehi = &ap->link.eh_info;
7085 unsigned long flags;
7089 /* kick EH for boot probing */
7090 spin_lock_irqsave(ap->lock, flags);
7093 (1 << ata_link_max_devices(&ap->link)) - 1;
7094 ehi->action |= ATA_EH_SOFTRESET;
7095 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7097 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
7098 ap->pflags |= ATA_PFLAG_LOADING;
7099 ata_port_schedule_eh(ap);
7101 spin_unlock_irqrestore(ap->lock, flags);
7103 /* wait for EH to finish */
7104 ata_port_wait_eh(ap);
7106 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7107 rc = ata_bus_probe(ap);
7108 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7111 /* FIXME: do something useful here?
7112 * Current libata behavior will
7113 * tear down everything when
7114 * the module is removed
7115 * or the h/w is unplugged.
7121 /* probes are done, now scan each port's disk(s) */
7122 DPRINTK("host probe begin\n");
7123 for (i = 0; i < host->n_ports; i++) {
7124 struct ata_port *ap = host->ports[i];
7126 ata_scsi_scan_host(ap, 1);
7127 ata_lpm_schedule(ap, ap->pm_policy);
7134 * ata_host_activate - start host, request IRQ and register it
7135 * @host: target ATA host
7136 * @irq: IRQ to request
7137 * @irq_handler: irq_handler used when requesting IRQ
7138 * @irq_flags: irq_flags used when requesting IRQ
7139 * @sht: scsi_host_template to use when registering the host
7141 * After allocating an ATA host and initializing it, most libata
7142 * LLDs perform three steps to activate the host - start host,
7143 * request IRQ and register it. This helper takes necessasry
7144 * arguments and performs the three steps in one go.
7147 * Inherited from calling layer (may sleep).
7150 * 0 on success, -errno otherwise.
7152 int ata_host_activate(struct ata_host *host, int irq,
7153 irq_handler_t irq_handler, unsigned long irq_flags,
7154 struct scsi_host_template *sht)
7158 rc = ata_host_start(host);
7162 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7163 dev_driver_string(host->dev), host);
7167 for (i = 0; i < host->n_ports; i++)
7168 ata_port_desc(host->ports[i], "irq %d", irq);
7170 rc = ata_host_register(host, sht);
7171 /* if failed, just free the IRQ and leave ports alone */
7173 devm_free_irq(host->dev, irq, host);
7179 * ata_port_detach - Detach ATA port in prepration of device removal
7180 * @ap: ATA port to be detached
7182 * Detach all ATA devices and the associated SCSI devices of @ap;
7183 * then, remove the associated SCSI host. @ap is guaranteed to
7184 * be quiescent on return from this function.
7187 * Kernel thread context (may sleep).
7189 static void ata_port_detach(struct ata_port *ap)
7191 unsigned long flags;
7192 struct ata_link *link;
7193 struct ata_device *dev;
7195 if (!ap->ops->error_handler)
7198 /* tell EH we're leaving & flush EH */
7199 spin_lock_irqsave(ap->lock, flags);
7200 ap->pflags |= ATA_PFLAG_UNLOADING;
7201 spin_unlock_irqrestore(ap->lock, flags);
7203 ata_port_wait_eh(ap);
7205 /* EH is now guaranteed to see UNLOADING, so no new device
7206 * will be attached. Disable all existing devices.
7208 spin_lock_irqsave(ap->lock, flags);
7210 ata_port_for_each_link(link, ap) {
7211 ata_link_for_each_dev(dev, link)
7212 ata_dev_disable(dev);
7215 spin_unlock_irqrestore(ap->lock, flags);
7217 /* Final freeze & EH. All in-flight commands are aborted. EH
7218 * will be skipped and retrials will be terminated with bad
7221 spin_lock_irqsave(ap->lock, flags);
7222 ata_port_freeze(ap); /* won't be thawed */
7223 spin_unlock_irqrestore(ap->lock, flags);
7225 ata_port_wait_eh(ap);
7226 cancel_rearming_delayed_work(&ap->hotplug_task);
7229 /* remove the associated SCSI host */
7230 scsi_remove_host(ap->scsi_host);
7234 * ata_host_detach - Detach all ports of an ATA host
7235 * @host: Host to detach
7237 * Detach all ports of @host.
7240 * Kernel thread context (may sleep).
7242 void ata_host_detach(struct ata_host *host)
7246 for (i = 0; i < host->n_ports; i++)
7247 ata_port_detach(host->ports[i]);
7251 * ata_std_ports - initialize ioaddr with standard port offsets.
7252 * @ioaddr: IO address structure to be initialized
7254 * Utility function which initializes data_addr, error_addr,
7255 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7256 * device_addr, status_addr, and command_addr to standard offsets
7257 * relative to cmd_addr.
7259 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7262 void ata_std_ports(struct ata_ioports *ioaddr)
7264 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7265 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7266 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7267 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7268 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7269 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7270 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7271 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7272 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7273 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7280 * ata_pci_remove_one - PCI layer callback for device removal
7281 * @pdev: PCI device that was removed
7283 * PCI layer indicates to libata via this hook that hot-unplug or
7284 * module unload event has occurred. Detach all ports. Resource
7285 * release is handled via devres.
7288 * Inherited from PCI layer (may sleep).
7290 void ata_pci_remove_one(struct pci_dev *pdev)
7292 struct device *dev = &pdev->dev;
7293 struct ata_host *host = dev_get_drvdata(dev);
7295 ata_host_detach(host);
7298 /* move to PCI subsystem */
7299 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
7301 unsigned long tmp = 0;
7303 switch (bits->width) {
7306 pci_read_config_byte(pdev, bits->reg, &tmp8);
7312 pci_read_config_word(pdev, bits->reg, &tmp16);
7318 pci_read_config_dword(pdev, bits->reg, &tmp32);
7329 return (tmp == bits->val) ? 1 : 0;
7333 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
7335 pci_save_state(pdev);
7336 pci_disable_device(pdev);
7338 if (mesg.event == PM_EVENT_SUSPEND)
7339 pci_set_power_state(pdev, PCI_D3hot);
7342 int ata_pci_device_do_resume(struct pci_dev *pdev)
7346 pci_set_power_state(pdev, PCI_D0);
7347 pci_restore_state(pdev);
7349 rc = pcim_enable_device(pdev);
7351 dev_printk(KERN_ERR, &pdev->dev,
7352 "failed to enable device after resume (%d)\n", rc);
7356 pci_set_master(pdev);
7360 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
7362 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7365 rc = ata_host_suspend(host, mesg);
7369 ata_pci_device_do_suspend(pdev, mesg);
7374 int ata_pci_device_resume(struct pci_dev *pdev)
7376 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7379 rc = ata_pci_device_do_resume(pdev);
7381 ata_host_resume(host);
7384 #endif /* CONFIG_PM */
7386 #endif /* CONFIG_PCI */
7389 static int __init ata_init(void)
7391 ata_probe_timeout *= HZ;
7392 ata_wq = create_workqueue("ata");
7396 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7398 destroy_workqueue(ata_wq);
7402 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7406 static void __exit ata_exit(void)
7408 destroy_workqueue(ata_wq);
7409 destroy_workqueue(ata_aux_wq);
7412 subsys_initcall(ata_init);
7413 module_exit(ata_exit);
7415 static unsigned long ratelimit_time;
7416 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7418 int ata_ratelimit(void)
7421 unsigned long flags;
7423 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7425 if (time_after(jiffies, ratelimit_time)) {
7427 ratelimit_time = jiffies + (HZ/5);
7431 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7437 * ata_wait_register - wait until register value changes
7438 * @reg: IO-mapped register
7439 * @mask: Mask to apply to read register value
7440 * @val: Wait condition
7441 * @interval_msec: polling interval in milliseconds
7442 * @timeout_msec: timeout in milliseconds
7444 * Waiting for some bits of register to change is a common
7445 * operation for ATA controllers. This function reads 32bit LE
7446 * IO-mapped register @reg and tests for the following condition.
7448 * (*@reg & mask) != val
7450 * If the condition is met, it returns; otherwise, the process is
7451 * repeated after @interval_msec until timeout.
7454 * Kernel thread context (may sleep)
7457 * The final register value.
7459 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7460 unsigned long interval_msec,
7461 unsigned long timeout_msec)
7463 unsigned long timeout;
7466 tmp = ioread32(reg);
7468 /* Calculate timeout _after_ the first read to make sure
7469 * preceding writes reach the controller before starting to
7470 * eat away the timeout.
7472 timeout = jiffies + (timeout_msec * HZ) / 1000;
7474 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7475 msleep(interval_msec);
7476 tmp = ioread32(reg);
7485 static void ata_dummy_noret(struct ata_port *ap) { }
7486 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7487 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7489 static u8 ata_dummy_check_status(struct ata_port *ap)
7494 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7496 return AC_ERR_SYSTEM;
7499 const struct ata_port_operations ata_dummy_port_ops = {
7500 .check_status = ata_dummy_check_status,
7501 .check_altstatus = ata_dummy_check_status,
7502 .dev_select = ata_noop_dev_select,
7503 .qc_prep = ata_noop_qc_prep,
7504 .qc_issue = ata_dummy_qc_issue,
7505 .freeze = ata_dummy_noret,
7506 .thaw = ata_dummy_noret,
7507 .error_handler = ata_dummy_noret,
7508 .post_internal_cmd = ata_dummy_qc_noret,
7509 .irq_clear = ata_dummy_noret,
7510 .port_start = ata_dummy_ret0,
7511 .port_stop = ata_dummy_noret,
7514 const struct ata_port_info ata_dummy_port_info = {
7515 .port_ops = &ata_dummy_port_ops,
7519 * libata is essentially a library of internal helper functions for
7520 * low-level ATA host controller drivers. As such, the API/ABI is
7521 * likely to change as new drivers are added and updated.
7522 * Do not depend on ABI/API stability.
7524 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7525 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7526 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7527 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7528 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7529 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7530 EXPORT_SYMBOL_GPL(ata_std_ports);
7531 EXPORT_SYMBOL_GPL(ata_host_init);
7532 EXPORT_SYMBOL_GPL(ata_host_alloc);
7533 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7534 EXPORT_SYMBOL_GPL(ata_host_start);
7535 EXPORT_SYMBOL_GPL(ata_host_register);
7536 EXPORT_SYMBOL_GPL(ata_host_activate);
7537 EXPORT_SYMBOL_GPL(ata_host_detach);
7538 EXPORT_SYMBOL_GPL(ata_sg_init);
7539 EXPORT_SYMBOL_GPL(ata_sg_init_one);
7540 EXPORT_SYMBOL_GPL(ata_hsm_move);
7541 EXPORT_SYMBOL_GPL(ata_qc_complete);
7542 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7543 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7544 EXPORT_SYMBOL_GPL(ata_tf_load);
7545 EXPORT_SYMBOL_GPL(ata_tf_read);
7546 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7547 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7548 EXPORT_SYMBOL_GPL(sata_print_link_status);
7549 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7550 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7551 EXPORT_SYMBOL_GPL(ata_check_status);
7552 EXPORT_SYMBOL_GPL(ata_altstatus);
7553 EXPORT_SYMBOL_GPL(ata_exec_command);
7554 EXPORT_SYMBOL_GPL(ata_port_start);
7555 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7556 EXPORT_SYMBOL_GPL(ata_interrupt);
7557 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7558 EXPORT_SYMBOL_GPL(ata_data_xfer);
7559 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7560 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7561 EXPORT_SYMBOL_GPL(ata_qc_prep);
7562 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7563 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7564 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7565 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7566 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7567 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7568 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7569 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7570 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7571 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7572 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7573 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7574 EXPORT_SYMBOL_GPL(ata_port_probe);
7575 EXPORT_SYMBOL_GPL(ata_dev_disable);
7576 EXPORT_SYMBOL_GPL(sata_set_spd);
7577 EXPORT_SYMBOL_GPL(sata_link_debounce);
7578 EXPORT_SYMBOL_GPL(sata_link_resume);
7579 EXPORT_SYMBOL_GPL(sata_phy_reset);
7580 EXPORT_SYMBOL_GPL(__sata_phy_reset);
7581 EXPORT_SYMBOL_GPL(ata_bus_reset);
7582 EXPORT_SYMBOL_GPL(ata_std_prereset);
7583 EXPORT_SYMBOL_GPL(ata_std_softreset);
7584 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7585 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7586 EXPORT_SYMBOL_GPL(ata_std_postreset);
7587 EXPORT_SYMBOL_GPL(ata_dev_classify);
7588 EXPORT_SYMBOL_GPL(ata_dev_pair);
7589 EXPORT_SYMBOL_GPL(ata_port_disable);
7590 EXPORT_SYMBOL_GPL(ata_ratelimit);
7591 EXPORT_SYMBOL_GPL(ata_wait_register);
7592 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7593 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7594 EXPORT_SYMBOL_GPL(ata_wait_ready);
7595 EXPORT_SYMBOL_GPL(ata_port_queue_task);
7596 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7597 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7598 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7599 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7600 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7601 EXPORT_SYMBOL_GPL(ata_host_intr);
7602 EXPORT_SYMBOL_GPL(sata_scr_valid);
7603 EXPORT_SYMBOL_GPL(sata_scr_read);
7604 EXPORT_SYMBOL_GPL(sata_scr_write);
7605 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7606 EXPORT_SYMBOL_GPL(ata_link_online);
7607 EXPORT_SYMBOL_GPL(ata_link_offline);
7609 EXPORT_SYMBOL_GPL(ata_host_suspend);
7610 EXPORT_SYMBOL_GPL(ata_host_resume);
7611 #endif /* CONFIG_PM */
7612 EXPORT_SYMBOL_GPL(ata_id_string);
7613 EXPORT_SYMBOL_GPL(ata_id_c_string);
7614 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
7615 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7617 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7618 EXPORT_SYMBOL_GPL(ata_timing_compute);
7619 EXPORT_SYMBOL_GPL(ata_timing_merge);
7622 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7623 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7624 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7625 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7626 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7627 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7629 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7630 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7631 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7632 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7633 #endif /* CONFIG_PM */
7634 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7635 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7636 #endif /* CONFIG_PCI */
7638 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
7639 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7640 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7641 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7642 EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7644 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7645 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7646 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7647 EXPORT_SYMBOL_GPL(ata_port_desc);
7649 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7650 #endif /* CONFIG_PCI */
7651 EXPORT_SYMBOL_GPL(ata_eng_timeout);
7652 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7653 EXPORT_SYMBOL_GPL(ata_link_abort);
7654 EXPORT_SYMBOL_GPL(ata_port_abort);
7655 EXPORT_SYMBOL_GPL(ata_port_freeze);
7656 EXPORT_SYMBOL_GPL(sata_async_notification);
7657 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7658 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7659 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7660 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7661 EXPORT_SYMBOL_GPL(ata_do_eh);
7662 EXPORT_SYMBOL_GPL(ata_irq_on);
7663 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7665 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7666 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7667 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7668 EXPORT_SYMBOL_GPL(ata_cable_sata);