4 * Kernel internal timers, kernel timekeeping, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
37 #include <asm/uaccess.h>
38 #include <asm/unistd.h>
39 #include <asm/div64.h>
40 #include <asm/timex.h>
43 #ifdef CONFIG_TIME_INTERPOLATION
44 static void time_interpolator_update(long delta_nsec);
46 #define time_interpolator_update(x)
50 * per-CPU timer vector definitions:
53 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
54 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
55 #define TVN_SIZE (1 << TVN_BITS)
56 #define TVR_SIZE (1 << TVR_BITS)
57 #define TVN_MASK (TVN_SIZE - 1)
58 #define TVR_MASK (TVR_SIZE - 1)
62 struct timer_list *running_timer;
65 typedef struct tvec_s {
66 struct list_head vec[TVN_SIZE];
69 typedef struct tvec_root_s {
70 struct list_head vec[TVR_SIZE];
73 struct tvec_t_base_s {
74 struct timer_base_s t_base;
75 unsigned long timer_jiffies;
81 } ____cacheline_aligned_in_smp;
83 typedef struct tvec_t_base_s tvec_base_t;
84 static DEFINE_PER_CPU(tvec_base_t, tvec_bases);
86 static inline void set_running_timer(tvec_base_t *base,
87 struct timer_list *timer)
90 base->t_base.running_timer = timer;
94 static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
96 unsigned long expires = timer->expires;
97 unsigned long idx = expires - base->timer_jiffies;
98 struct list_head *vec;
100 if (idx < TVR_SIZE) {
101 int i = expires & TVR_MASK;
102 vec = base->tv1.vec + i;
103 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
104 int i = (expires >> TVR_BITS) & TVN_MASK;
105 vec = base->tv2.vec + i;
106 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
107 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
108 vec = base->tv3.vec + i;
109 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
110 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
111 vec = base->tv4.vec + i;
112 } else if ((signed long) idx < 0) {
114 * Can happen if you add a timer with expires == jiffies,
115 * or you set a timer to go off in the past
117 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
120 /* If the timeout is larger than 0xffffffff on 64-bit
121 * architectures then we use the maximum timeout:
123 if (idx > 0xffffffffUL) {
125 expires = idx + base->timer_jiffies;
127 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
128 vec = base->tv5.vec + i;
133 list_add_tail(&timer->entry, vec);
136 typedef struct timer_base_s timer_base_t;
138 * Used by TIMER_INITIALIZER, we can't use per_cpu(tvec_bases)
139 * at compile time, and we need timer->base to lock the timer.
141 timer_base_t __init_timer_base
142 ____cacheline_aligned_in_smp = { .lock = SPIN_LOCK_UNLOCKED };
143 EXPORT_SYMBOL(__init_timer_base);
146 * init_timer - initialize a timer.
147 * @timer: the timer to be initialized
149 * init_timer() must be done to a timer prior calling *any* of the
150 * other timer functions.
152 void fastcall init_timer(struct timer_list *timer)
154 timer->entry.next = NULL;
155 timer->base = &per_cpu(tvec_bases, raw_smp_processor_id()).t_base;
157 EXPORT_SYMBOL(init_timer);
159 static inline void detach_timer(struct timer_list *timer,
162 struct list_head *entry = &timer->entry;
164 __list_del(entry->prev, entry->next);
167 entry->prev = LIST_POISON2;
171 * We are using hashed locking: holding per_cpu(tvec_bases).t_base.lock
172 * means that all timers which are tied to this base via timer->base are
173 * locked, and the base itself is locked too.
175 * So __run_timers/migrate_timers can safely modify all timers which could
176 * be found on ->tvX lists.
178 * When the timer's base is locked, and the timer removed from list, it is
179 * possible to set timer->base = NULL and drop the lock: the timer remains
182 static timer_base_t *lock_timer_base(struct timer_list *timer,
183 unsigned long *flags)
189 if (likely(base != NULL)) {
190 spin_lock_irqsave(&base->lock, *flags);
191 if (likely(base == timer->base))
193 /* The timer has migrated to another CPU */
194 spin_unlock_irqrestore(&base->lock, *flags);
200 int __mod_timer(struct timer_list *timer, unsigned long expires)
203 tvec_base_t *new_base;
207 BUG_ON(!timer->function);
209 base = lock_timer_base(timer, &flags);
211 if (timer_pending(timer)) {
212 detach_timer(timer, 0);
216 new_base = &__get_cpu_var(tvec_bases);
218 if (base != &new_base->t_base) {
220 * We are trying to schedule the timer on the local CPU.
221 * However we can't change timer's base while it is running,
222 * otherwise del_timer_sync() can't detect that the timer's
223 * handler yet has not finished. This also guarantees that
224 * the timer is serialized wrt itself.
226 if (unlikely(base->running_timer == timer)) {
227 /* The timer remains on a former base */
228 new_base = container_of(base, tvec_base_t, t_base);
230 /* See the comment in lock_timer_base() */
232 spin_unlock(&base->lock);
233 spin_lock(&new_base->t_base.lock);
234 timer->base = &new_base->t_base;
238 timer->expires = expires;
239 internal_add_timer(new_base, timer);
240 spin_unlock_irqrestore(&new_base->t_base.lock, flags);
245 EXPORT_SYMBOL(__mod_timer);
248 * add_timer_on - start a timer on a particular CPU
249 * @timer: the timer to be added
250 * @cpu: the CPU to start it on
252 * This is not very scalable on SMP. Double adds are not possible.
254 void add_timer_on(struct timer_list *timer, int cpu)
256 tvec_base_t *base = &per_cpu(tvec_bases, cpu);
259 BUG_ON(timer_pending(timer) || !timer->function);
260 spin_lock_irqsave(&base->t_base.lock, flags);
261 timer->base = &base->t_base;
262 internal_add_timer(base, timer);
263 spin_unlock_irqrestore(&base->t_base.lock, flags);
268 * mod_timer - modify a timer's timeout
269 * @timer: the timer to be modified
271 * mod_timer is a more efficient way to update the expire field of an
272 * active timer (if the timer is inactive it will be activated)
274 * mod_timer(timer, expires) is equivalent to:
276 * del_timer(timer); timer->expires = expires; add_timer(timer);
278 * Note that if there are multiple unserialized concurrent users of the
279 * same timer, then mod_timer() is the only safe way to modify the timeout,
280 * since add_timer() cannot modify an already running timer.
282 * The function returns whether it has modified a pending timer or not.
283 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
284 * active timer returns 1.)
286 int mod_timer(struct timer_list *timer, unsigned long expires)
288 BUG_ON(!timer->function);
291 * This is a common optimization triggered by the
292 * networking code - if the timer is re-modified
293 * to be the same thing then just return:
295 if (timer->expires == expires && timer_pending(timer))
298 return __mod_timer(timer, expires);
301 EXPORT_SYMBOL(mod_timer);
304 * del_timer - deactive a timer.
305 * @timer: the timer to be deactivated
307 * del_timer() deactivates a timer - this works on both active and inactive
310 * The function returns whether it has deactivated a pending timer or not.
311 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
312 * active timer returns 1.)
314 int del_timer(struct timer_list *timer)
320 if (timer_pending(timer)) {
321 base = lock_timer_base(timer, &flags);
322 if (timer_pending(timer)) {
323 detach_timer(timer, 1);
326 spin_unlock_irqrestore(&base->lock, flags);
332 EXPORT_SYMBOL(del_timer);
336 * This function tries to deactivate a timer. Upon successful (ret >= 0)
337 * exit the timer is not queued and the handler is not running on any CPU.
339 * It must not be called from interrupt contexts.
341 int try_to_del_timer_sync(struct timer_list *timer)
347 base = lock_timer_base(timer, &flags);
349 if (base->running_timer == timer)
353 if (timer_pending(timer)) {
354 detach_timer(timer, 1);
358 spin_unlock_irqrestore(&base->lock, flags);
364 * del_timer_sync - deactivate a timer and wait for the handler to finish.
365 * @timer: the timer to be deactivated
367 * This function only differs from del_timer() on SMP: besides deactivating
368 * the timer it also makes sure the handler has finished executing on other
371 * Synchronization rules: callers must prevent restarting of the timer,
372 * otherwise this function is meaningless. It must not be called from
373 * interrupt contexts. The caller must not hold locks which would prevent
374 * completion of the timer's handler. The timer's handler must not call
375 * add_timer_on(). Upon exit the timer is not queued and the handler is
376 * not running on any CPU.
378 * The function returns whether it has deactivated a pending timer or not.
380 int del_timer_sync(struct timer_list *timer)
383 int ret = try_to_del_timer_sync(timer);
389 EXPORT_SYMBOL(del_timer_sync);
392 static int cascade(tvec_base_t *base, tvec_t *tv, int index)
394 /* cascade all the timers from tv up one level */
395 struct list_head *head, *curr;
397 head = tv->vec + index;
400 * We are removing _all_ timers from the list, so we don't have to
401 * detach them individually, just clear the list afterwards.
403 while (curr != head) {
404 struct timer_list *tmp;
406 tmp = list_entry(curr, struct timer_list, entry);
407 BUG_ON(tmp->base != &base->t_base);
409 internal_add_timer(base, tmp);
411 INIT_LIST_HEAD(head);
417 * __run_timers - run all expired timers (if any) on this CPU.
418 * @base: the timer vector to be processed.
420 * This function cascades all vectors and executes all expired timer
423 #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
425 static inline void __run_timers(tvec_base_t *base)
427 struct timer_list *timer;
429 spin_lock_irq(&base->t_base.lock);
430 while (time_after_eq(jiffies, base->timer_jiffies)) {
431 struct list_head work_list = LIST_HEAD_INIT(work_list);
432 struct list_head *head = &work_list;
433 int index = base->timer_jiffies & TVR_MASK;
439 (!cascade(base, &base->tv2, INDEX(0))) &&
440 (!cascade(base, &base->tv3, INDEX(1))) &&
441 !cascade(base, &base->tv4, INDEX(2)))
442 cascade(base, &base->tv5, INDEX(3));
443 ++base->timer_jiffies;
444 list_splice_init(base->tv1.vec + index, &work_list);
445 while (!list_empty(head)) {
446 void (*fn)(unsigned long);
449 timer = list_entry(head->next,struct timer_list,entry);
450 fn = timer->function;
453 set_running_timer(base, timer);
454 detach_timer(timer, 1);
455 spin_unlock_irq(&base->t_base.lock);
457 int preempt_count = preempt_count();
459 if (preempt_count != preempt_count()) {
460 printk(KERN_WARNING "huh, entered %p "
461 "with preempt_count %08x, exited"
468 spin_lock_irq(&base->t_base.lock);
471 set_running_timer(base, NULL);
472 spin_unlock_irq(&base->t_base.lock);
475 #ifdef CONFIG_NO_IDLE_HZ
477 * Find out when the next timer event is due to happen. This
478 * is used on S/390 to stop all activity when a cpus is idle.
479 * This functions needs to be called disabled.
481 unsigned long next_timer_interrupt(void)
484 struct list_head *list;
485 struct timer_list *nte;
486 unsigned long expires;
490 base = &__get_cpu_var(tvec_bases);
491 spin_lock(&base->t_base.lock);
492 expires = base->timer_jiffies + (LONG_MAX >> 1);
495 /* Look for timer events in tv1. */
496 j = base->timer_jiffies & TVR_MASK;
498 list_for_each_entry(nte, base->tv1.vec + j, entry) {
499 expires = nte->expires;
500 if (j < (base->timer_jiffies & TVR_MASK))
501 list = base->tv2.vec + (INDEX(0));
504 j = (j + 1) & TVR_MASK;
505 } while (j != (base->timer_jiffies & TVR_MASK));
508 varray[0] = &base->tv2;
509 varray[1] = &base->tv3;
510 varray[2] = &base->tv4;
511 varray[3] = &base->tv5;
512 for (i = 0; i < 4; i++) {
515 if (list_empty(varray[i]->vec + j)) {
516 j = (j + 1) & TVN_MASK;
519 list_for_each_entry(nte, varray[i]->vec + j, entry)
520 if (time_before(nte->expires, expires))
521 expires = nte->expires;
522 if (j < (INDEX(i)) && i < 3)
523 list = varray[i + 1]->vec + (INDEX(i + 1));
525 } while (j != (INDEX(i)));
530 * The search wrapped. We need to look at the next list
531 * from next tv element that would cascade into tv element
532 * where we found the timer element.
534 list_for_each_entry(nte, list, entry) {
535 if (time_before(nte->expires, expires))
536 expires = nte->expires;
539 spin_unlock(&base->t_base.lock);
544 /******************************************************************/
547 * Timekeeping variables
549 unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
550 unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */
554 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
555 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
556 * at zero at system boot time, so wall_to_monotonic will be negative,
557 * however, we will ALWAYS keep the tv_nsec part positive so we can use
558 * the usual normalization.
560 struct timespec xtime __attribute__ ((aligned (16)));
561 struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
563 EXPORT_SYMBOL(xtime);
565 /* Don't completely fail for HZ > 500. */
566 int tickadj = 500/HZ ? : 1; /* microsecs */
570 * phase-lock loop variables
572 /* TIME_ERROR prevents overwriting the CMOS clock */
573 int time_state = TIME_OK; /* clock synchronization status */
574 int time_status = STA_UNSYNC; /* clock status bits */
575 long time_offset; /* time adjustment (us) */
576 long time_constant = 2; /* pll time constant */
577 long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
578 long time_precision = 1; /* clock precision (us) */
579 long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
580 long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
581 static long time_phase; /* phase offset (scaled us) */
582 long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
583 /* frequency offset (scaled ppm)*/
584 static long time_adj; /* tick adjust (scaled 1 / HZ) */
585 long time_reftime; /* time at last adjustment (s) */
587 long time_next_adjust;
590 * this routine handles the overflow of the microsecond field
592 * The tricky bits of code to handle the accurate clock support
593 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
594 * They were originally developed for SUN and DEC kernels.
595 * All the kudos should go to Dave for this stuff.
598 static void second_overflow(void)
602 /* Bump the maxerror field */
603 time_maxerror += time_tolerance >> SHIFT_USEC;
604 if (time_maxerror > NTP_PHASE_LIMIT) {
605 time_maxerror = NTP_PHASE_LIMIT;
606 time_status |= STA_UNSYNC;
610 * Leap second processing. If in leap-insert state at the end of the
611 * day, the system clock is set back one second; if in leap-delete
612 * state, the system clock is set ahead one second. The microtime()
613 * routine or external clock driver will insure that reported time is
614 * always monotonic. The ugly divides should be replaced.
616 switch (time_state) {
618 if (time_status & STA_INS)
619 time_state = TIME_INS;
620 else if (time_status & STA_DEL)
621 time_state = TIME_DEL;
624 if (xtime.tv_sec % 86400 == 0) {
626 wall_to_monotonic.tv_sec++;
628 * The timer interpolator will make time change
629 * gradually instead of an immediate jump by one second
631 time_interpolator_update(-NSEC_PER_SEC);
632 time_state = TIME_OOP;
634 printk(KERN_NOTICE "Clock: inserting leap second "
639 if ((xtime.tv_sec + 1) % 86400 == 0) {
641 wall_to_monotonic.tv_sec--;
643 * Use of time interpolator for a gradual change of
646 time_interpolator_update(NSEC_PER_SEC);
647 time_state = TIME_WAIT;
649 printk(KERN_NOTICE "Clock: deleting leap second "
654 time_state = TIME_WAIT;
657 if (!(time_status & (STA_INS | STA_DEL)))
658 time_state = TIME_OK;
662 * Compute the phase adjustment for the next second. In PLL mode, the
663 * offset is reduced by a fixed factor times the time constant. In FLL
664 * mode the offset is used directly. In either mode, the maximum phase
665 * adjustment for each second is clamped so as to spread the adjustment
666 * over not more than the number of seconds between updates.
669 if (!(time_status & STA_FLL))
670 ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
671 ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
672 ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
673 time_offset -= ltemp;
674 time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
677 * Compute the frequency estimate and additional phase adjustment due
678 * to frequency error for the next second. When the PPS signal is
679 * engaged, gnaw on the watchdog counter and update the frequency
680 * computed by the pll and the PPS signal.
683 if (pps_valid == PPS_VALID) { /* PPS signal lost */
684 pps_jitter = MAXTIME;
685 pps_stabil = MAXFREQ;
686 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
687 STA_PPSWANDER | STA_PPSERROR);
689 ltemp = time_freq + pps_freq;
690 time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
694 * Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to
695 * get 128.125; => only 0.125% error (p. 14)
697 time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
701 * Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and
702 * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
704 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
708 * Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and
709 * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
711 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
715 /* in the NTP reference this is called "hardclock()" */
716 static void update_wall_time_one_tick(void)
718 long time_adjust_step, delta_nsec;
720 if ((time_adjust_step = time_adjust) != 0 ) {
722 * We are doing an adjtime thing. Prepare time_adjust_step to
723 * be within bounds. Note that a positive time_adjust means we
724 * want the clock to run faster.
726 * Limit the amount of the step to be in the range
727 * -tickadj .. +tickadj
729 time_adjust_step = min(time_adjust_step, (long)tickadj);
730 time_adjust_step = max(time_adjust_step, (long)-tickadj);
732 /* Reduce by this step the amount of time left */
733 time_adjust -= time_adjust_step;
735 delta_nsec = tick_nsec + time_adjust_step * 1000;
737 * Advance the phase, once it gets to one microsecond, then
738 * advance the tick more.
740 time_phase += time_adj;
741 if ((time_phase >= FINENSEC) || (time_phase <= -FINENSEC)) {
742 long ltemp = shift_right(time_phase, (SHIFT_SCALE - 10));
743 time_phase -= ltemp << (SHIFT_SCALE - 10);
746 xtime.tv_nsec += delta_nsec;
747 time_interpolator_update(delta_nsec);
749 /* Changes by adjtime() do not take effect till next tick. */
750 if (time_next_adjust != 0) {
751 time_adjust = time_next_adjust;
752 time_next_adjust = 0;
757 * Using a loop looks inefficient, but "ticks" is
758 * usually just one (we shouldn't be losing ticks,
759 * we're doing this this way mainly for interrupt
760 * latency reasons, not because we think we'll
761 * have lots of lost timer ticks
763 static void update_wall_time(unsigned long ticks)
767 update_wall_time_one_tick();
768 if (xtime.tv_nsec >= 1000000000) {
769 xtime.tv_nsec -= 1000000000;
777 * Called from the timer interrupt handler to charge one tick to the current
778 * process. user_tick is 1 if the tick is user time, 0 for system.
780 void update_process_times(int user_tick)
782 struct task_struct *p = current;
783 int cpu = smp_processor_id();
785 /* Note: this timer irq context must be accounted for as well. */
787 account_user_time(p, jiffies_to_cputime(1));
789 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
791 if (rcu_pending(cpu))
792 rcu_check_callbacks(cpu, user_tick);
794 run_posix_cpu_timers(p);
798 * Nr of active tasks - counted in fixed-point numbers
800 static unsigned long count_active_tasks(void)
802 return (nr_running() + nr_uninterruptible()) * FIXED_1;
806 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
807 * imply that avenrun[] is the standard name for this kind of thing.
808 * Nothing else seems to be standardized: the fractional size etc
809 * all seem to differ on different machines.
811 * Requires xtime_lock to access.
813 unsigned long avenrun[3];
815 EXPORT_SYMBOL(avenrun);
818 * calc_load - given tick count, update the avenrun load estimates.
819 * This is called while holding a write_lock on xtime_lock.
821 static inline void calc_load(unsigned long ticks)
823 unsigned long active_tasks; /* fixed-point */
824 static int count = LOAD_FREQ;
829 active_tasks = count_active_tasks();
830 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
831 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
832 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
836 /* jiffies at the most recent update of wall time */
837 unsigned long wall_jiffies = INITIAL_JIFFIES;
840 * This read-write spinlock protects us from races in SMP while
841 * playing with xtime and avenrun.
843 #ifndef ARCH_HAVE_XTIME_LOCK
844 seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
846 EXPORT_SYMBOL(xtime_lock);
850 * This function runs timers and the timer-tq in bottom half context.
852 static void run_timer_softirq(struct softirq_action *h)
854 tvec_base_t *base = &__get_cpu_var(tvec_bases);
856 if (time_after_eq(jiffies, base->timer_jiffies))
861 * Called by the local, per-CPU timer interrupt on SMP.
863 void run_local_timers(void)
865 raise_softirq(TIMER_SOFTIRQ);
869 * Called by the timer interrupt. xtime_lock must already be taken
872 static inline void update_times(void)
876 ticks = jiffies - wall_jiffies;
878 wall_jiffies += ticks;
879 update_wall_time(ticks);
885 * The 64-bit jiffies value is not atomic - you MUST NOT read it
886 * without sampling the sequence number in xtime_lock.
887 * jiffies is defined in the linker script...
890 void do_timer(struct pt_regs *regs)
894 softlockup_tick(regs);
897 #ifdef __ARCH_WANT_SYS_ALARM
900 * For backwards compatibility? This can be done in libc so Alpha
901 * and all newer ports shouldn't need it.
903 asmlinkage unsigned long sys_alarm(unsigned int seconds)
905 struct itimerval it_new, it_old;
906 unsigned int oldalarm;
908 it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
909 it_new.it_value.tv_sec = seconds;
910 it_new.it_value.tv_usec = 0;
911 do_setitimer(ITIMER_REAL, &it_new, &it_old);
912 oldalarm = it_old.it_value.tv_sec;
913 /* ehhh.. We can't return 0 if we have an alarm pending.. */
914 /* And we'd better return too much than too little anyway */
915 if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000)
925 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
926 * should be moved into arch/i386 instead?
930 * sys_getpid - return the thread group id of the current process
932 * Note, despite the name, this returns the tgid not the pid. The tgid and
933 * the pid are identical unless CLONE_THREAD was specified on clone() in
934 * which case the tgid is the same in all threads of the same group.
936 * This is SMP safe as current->tgid does not change.
938 asmlinkage long sys_getpid(void)
940 return current->tgid;
944 * Accessing ->group_leader->real_parent is not SMP-safe, it could
945 * change from under us. However, rather than getting any lock
946 * we can use an optimistic algorithm: get the parent
947 * pid, and go back and check that the parent is still
948 * the same. If it has changed (which is extremely unlikely
949 * indeed), we just try again..
951 * NOTE! This depends on the fact that even if we _do_
952 * get an old value of "parent", we can happily dereference
953 * the pointer (it was and remains a dereferencable kernel pointer
954 * no matter what): we just can't necessarily trust the result
955 * until we know that the parent pointer is valid.
957 * NOTE2: ->group_leader never changes from under us.
959 asmlinkage long sys_getppid(void)
962 struct task_struct *me = current;
963 struct task_struct *parent;
965 parent = me->group_leader->real_parent;
968 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
970 struct task_struct *old = parent;
973 * Make sure we read the pid before re-reading the
977 parent = me->group_leader->real_parent;
987 asmlinkage long sys_getuid(void)
989 /* Only we change this so SMP safe */
993 asmlinkage long sys_geteuid(void)
995 /* Only we change this so SMP safe */
996 return current->euid;
999 asmlinkage long sys_getgid(void)
1001 /* Only we change this so SMP safe */
1002 return current->gid;
1005 asmlinkage long sys_getegid(void)
1007 /* Only we change this so SMP safe */
1008 return current->egid;
1013 static void process_timeout(unsigned long __data)
1015 wake_up_process((task_t *)__data);
1019 * schedule_timeout - sleep until timeout
1020 * @timeout: timeout value in jiffies
1022 * Make the current task sleep until @timeout jiffies have
1023 * elapsed. The routine will return immediately unless
1024 * the current task state has been set (see set_current_state()).
1026 * You can set the task state as follows -
1028 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1029 * pass before the routine returns. The routine will return 0
1031 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1032 * delivered to the current task. In this case the remaining time
1033 * in jiffies will be returned, or 0 if the timer expired in time
1035 * The current task state is guaranteed to be TASK_RUNNING when this
1038 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1039 * the CPU away without a bound on the timeout. In this case the return
1040 * value will be %MAX_SCHEDULE_TIMEOUT.
1042 * In all cases the return value is guaranteed to be non-negative.
1044 fastcall signed long __sched schedule_timeout(signed long timeout)
1046 struct timer_list timer;
1047 unsigned long expire;
1051 case MAX_SCHEDULE_TIMEOUT:
1053 * These two special cases are useful to be comfortable
1054 * in the caller. Nothing more. We could take
1055 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1056 * but I' d like to return a valid offset (>=0) to allow
1057 * the caller to do everything it want with the retval.
1063 * Another bit of PARANOID. Note that the retval will be
1064 * 0 since no piece of kernel is supposed to do a check
1065 * for a negative retval of schedule_timeout() (since it
1066 * should never happens anyway). You just have the printk()
1067 * that will tell you if something is gone wrong and where.
1071 printk(KERN_ERR "schedule_timeout: wrong timeout "
1072 "value %lx from %p\n", timeout,
1073 __builtin_return_address(0));
1074 current->state = TASK_RUNNING;
1079 expire = timeout + jiffies;
1081 setup_timer(&timer, process_timeout, (unsigned long)current);
1082 __mod_timer(&timer, expire);
1084 del_singleshot_timer_sync(&timer);
1086 timeout = expire - jiffies;
1089 return timeout < 0 ? 0 : timeout;
1091 EXPORT_SYMBOL(schedule_timeout);
1094 * We can use __set_current_state() here because schedule_timeout() calls
1095 * schedule() unconditionally.
1097 signed long __sched schedule_timeout_interruptible(signed long timeout)
1099 __set_current_state(TASK_INTERRUPTIBLE);
1100 return schedule_timeout(timeout);
1102 EXPORT_SYMBOL(schedule_timeout_interruptible);
1104 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1106 __set_current_state(TASK_UNINTERRUPTIBLE);
1107 return schedule_timeout(timeout);
1109 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1111 /* Thread ID - the internal kernel "pid" */
1112 asmlinkage long sys_gettid(void)
1114 return current->pid;
1117 static long __sched nanosleep_restart(struct restart_block *restart)
1119 unsigned long expire = restart->arg0, now = jiffies;
1120 struct timespec __user *rmtp = (struct timespec __user *) restart->arg1;
1123 /* Did it expire while we handled signals? */
1124 if (!time_after(expire, now))
1127 expire = schedule_timeout_interruptible(expire - now);
1132 jiffies_to_timespec(expire, &t);
1134 ret = -ERESTART_RESTARTBLOCK;
1135 if (rmtp && copy_to_user(rmtp, &t, sizeof(t)))
1137 /* The 'restart' block is already filled in */
1142 asmlinkage long sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1145 unsigned long expire;
1148 if (copy_from_user(&t, rqtp, sizeof(t)))
1151 if ((t.tv_nsec >= 1000000000L) || (t.tv_nsec < 0) || (t.tv_sec < 0))
1154 expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec);
1155 expire = schedule_timeout_interruptible(expire);
1159 struct restart_block *restart;
1160 jiffies_to_timespec(expire, &t);
1161 if (rmtp && copy_to_user(rmtp, &t, sizeof(t)))
1164 restart = ¤t_thread_info()->restart_block;
1165 restart->fn = nanosleep_restart;
1166 restart->arg0 = jiffies + expire;
1167 restart->arg1 = (unsigned long) rmtp;
1168 ret = -ERESTART_RESTARTBLOCK;
1174 * sys_sysinfo - fill in sysinfo struct
1176 asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1179 unsigned long mem_total, sav_total;
1180 unsigned int mem_unit, bitcount;
1183 memset((char *)&val, 0, sizeof(struct sysinfo));
1187 seq = read_seqbegin(&xtime_lock);
1190 * This is annoying. The below is the same thing
1191 * posix_get_clock_monotonic() does, but it wants to
1192 * take the lock which we want to cover the loads stuff
1196 getnstimeofday(&tp);
1197 tp.tv_sec += wall_to_monotonic.tv_sec;
1198 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1199 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1200 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1203 val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1205 val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1206 val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1207 val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1209 val.procs = nr_threads;
1210 } while (read_seqretry(&xtime_lock, seq));
1216 * If the sum of all the available memory (i.e. ram + swap)
1217 * is less than can be stored in a 32 bit unsigned long then
1218 * we can be binary compatible with 2.2.x kernels. If not,
1219 * well, in that case 2.2.x was broken anyways...
1221 * -Erik Andersen <andersee@debian.org>
1224 mem_total = val.totalram + val.totalswap;
1225 if (mem_total < val.totalram || mem_total < val.totalswap)
1228 mem_unit = val.mem_unit;
1229 while (mem_unit > 1) {
1232 sav_total = mem_total;
1234 if (mem_total < sav_total)
1239 * If mem_total did not overflow, multiply all memory values by
1240 * val.mem_unit and set it to 1. This leaves things compatible
1241 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1246 val.totalram <<= bitcount;
1247 val.freeram <<= bitcount;
1248 val.sharedram <<= bitcount;
1249 val.bufferram <<= bitcount;
1250 val.totalswap <<= bitcount;
1251 val.freeswap <<= bitcount;
1252 val.totalhigh <<= bitcount;
1253 val.freehigh <<= bitcount;
1256 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1262 static void __devinit init_timers_cpu(int cpu)
1267 base = &per_cpu(tvec_bases, cpu);
1268 spin_lock_init(&base->t_base.lock);
1269 for (j = 0; j < TVN_SIZE; j++) {
1270 INIT_LIST_HEAD(base->tv5.vec + j);
1271 INIT_LIST_HEAD(base->tv4.vec + j);
1272 INIT_LIST_HEAD(base->tv3.vec + j);
1273 INIT_LIST_HEAD(base->tv2.vec + j);
1275 for (j = 0; j < TVR_SIZE; j++)
1276 INIT_LIST_HEAD(base->tv1.vec + j);
1278 base->timer_jiffies = jiffies;
1281 #ifdef CONFIG_HOTPLUG_CPU
1282 static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1284 struct timer_list *timer;
1286 while (!list_empty(head)) {
1287 timer = list_entry(head->next, struct timer_list, entry);
1288 detach_timer(timer, 0);
1289 timer->base = &new_base->t_base;
1290 internal_add_timer(new_base, timer);
1294 static void __devinit migrate_timers(int cpu)
1296 tvec_base_t *old_base;
1297 tvec_base_t *new_base;
1300 BUG_ON(cpu_online(cpu));
1301 old_base = &per_cpu(tvec_bases, cpu);
1302 new_base = &get_cpu_var(tvec_bases);
1304 local_irq_disable();
1305 spin_lock(&new_base->t_base.lock);
1306 spin_lock(&old_base->t_base.lock);
1308 if (old_base->t_base.running_timer)
1310 for (i = 0; i < TVR_SIZE; i++)
1311 migrate_timer_list(new_base, old_base->tv1.vec + i);
1312 for (i = 0; i < TVN_SIZE; i++) {
1313 migrate_timer_list(new_base, old_base->tv2.vec + i);
1314 migrate_timer_list(new_base, old_base->tv3.vec + i);
1315 migrate_timer_list(new_base, old_base->tv4.vec + i);
1316 migrate_timer_list(new_base, old_base->tv5.vec + i);
1319 spin_unlock(&old_base->t_base.lock);
1320 spin_unlock(&new_base->t_base.lock);
1322 put_cpu_var(tvec_bases);
1324 #endif /* CONFIG_HOTPLUG_CPU */
1326 static int __devinit timer_cpu_notify(struct notifier_block *self,
1327 unsigned long action, void *hcpu)
1329 long cpu = (long)hcpu;
1331 case CPU_UP_PREPARE:
1332 init_timers_cpu(cpu);
1334 #ifdef CONFIG_HOTPLUG_CPU
1336 migrate_timers(cpu);
1345 static struct notifier_block __devinitdata timers_nb = {
1346 .notifier_call = timer_cpu_notify,
1350 void __init init_timers(void)
1352 timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1353 (void *)(long)smp_processor_id());
1354 register_cpu_notifier(&timers_nb);
1355 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1358 #ifdef CONFIG_TIME_INTERPOLATION
1360 struct time_interpolator *time_interpolator;
1361 static struct time_interpolator *time_interpolator_list;
1362 static DEFINE_SPINLOCK(time_interpolator_lock);
1364 static inline u64 time_interpolator_get_cycles(unsigned int src)
1366 unsigned long (*x)(void);
1370 case TIME_SOURCE_FUNCTION:
1371 x = time_interpolator->addr;
1374 case TIME_SOURCE_MMIO64 :
1375 return readq((void __iomem *) time_interpolator->addr);
1377 case TIME_SOURCE_MMIO32 :
1378 return readl((void __iomem *) time_interpolator->addr);
1380 default: return get_cycles();
1384 static inline u64 time_interpolator_get_counter(int writelock)
1386 unsigned int src = time_interpolator->source;
1388 if (time_interpolator->jitter)
1394 lcycle = time_interpolator->last_cycle;
1395 now = time_interpolator_get_cycles(src);
1396 if (lcycle && time_after(lcycle, now))
1399 /* When holding the xtime write lock, there's no need
1400 * to add the overhead of the cmpxchg. Readers are
1401 * force to retry until the write lock is released.
1404 time_interpolator->last_cycle = now;
1407 /* Keep track of the last timer value returned. The use of cmpxchg here
1408 * will cause contention in an SMP environment.
1410 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1414 return time_interpolator_get_cycles(src);
1417 void time_interpolator_reset(void)
1419 time_interpolator->offset = 0;
1420 time_interpolator->last_counter = time_interpolator_get_counter(1);
1423 #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1425 unsigned long time_interpolator_get_offset(void)
1427 /* If we do not have a time interpolator set up then just return zero */
1428 if (!time_interpolator)
1431 return time_interpolator->offset +
1432 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1435 #define INTERPOLATOR_ADJUST 65536
1436 #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1438 static void time_interpolator_update(long delta_nsec)
1441 unsigned long offset;
1443 /* If there is no time interpolator set up then do nothing */
1444 if (!time_interpolator)
1448 * The interpolator compensates for late ticks by accumulating the late
1449 * time in time_interpolator->offset. A tick earlier than expected will
1450 * lead to a reset of the offset and a corresponding jump of the clock
1451 * forward. Again this only works if the interpolator clock is running
1452 * slightly slower than the regular clock and the tuning logic insures
1456 counter = time_interpolator_get_counter(1);
1457 offset = time_interpolator->offset +
1458 GET_TI_NSECS(counter, time_interpolator);
1460 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1461 time_interpolator->offset = offset - delta_nsec;
1463 time_interpolator->skips++;
1464 time_interpolator->ns_skipped += delta_nsec - offset;
1465 time_interpolator->offset = 0;
1467 time_interpolator->last_counter = counter;
1469 /* Tuning logic for time interpolator invoked every minute or so.
1470 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1471 * Increase interpolator clock speed if we skip too much time.
1473 if (jiffies % INTERPOLATOR_ADJUST == 0)
1475 if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC)
1476 time_interpolator->nsec_per_cyc--;
1477 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1478 time_interpolator->nsec_per_cyc++;
1479 time_interpolator->skips = 0;
1480 time_interpolator->ns_skipped = 0;
1485 is_better_time_interpolator(struct time_interpolator *new)
1487 if (!time_interpolator)
1489 return new->frequency > 2*time_interpolator->frequency ||
1490 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1494 register_time_interpolator(struct time_interpolator *ti)
1496 unsigned long flags;
1499 if (ti->frequency == 0 || ti->mask == 0)
1502 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1503 spin_lock(&time_interpolator_lock);
1504 write_seqlock_irqsave(&xtime_lock, flags);
1505 if (is_better_time_interpolator(ti)) {
1506 time_interpolator = ti;
1507 time_interpolator_reset();
1509 write_sequnlock_irqrestore(&xtime_lock, flags);
1511 ti->next = time_interpolator_list;
1512 time_interpolator_list = ti;
1513 spin_unlock(&time_interpolator_lock);
1517 unregister_time_interpolator(struct time_interpolator *ti)
1519 struct time_interpolator *curr, **prev;
1520 unsigned long flags;
1522 spin_lock(&time_interpolator_lock);
1523 prev = &time_interpolator_list;
1524 for (curr = *prev; curr; curr = curr->next) {
1532 write_seqlock_irqsave(&xtime_lock, flags);
1533 if (ti == time_interpolator) {
1534 /* we lost the best time-interpolator: */
1535 time_interpolator = NULL;
1536 /* find the next-best interpolator */
1537 for (curr = time_interpolator_list; curr; curr = curr->next)
1538 if (is_better_time_interpolator(curr))
1539 time_interpolator = curr;
1540 time_interpolator_reset();
1542 write_sequnlock_irqrestore(&xtime_lock, flags);
1543 spin_unlock(&time_interpolator_lock);
1545 #endif /* CONFIG_TIME_INTERPOLATION */
1548 * msleep - sleep safely even with waitqueue interruptions
1549 * @msecs: Time in milliseconds to sleep for
1551 void msleep(unsigned int msecs)
1553 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1556 timeout = schedule_timeout_uninterruptible(timeout);
1559 EXPORT_SYMBOL(msleep);
1562 * msleep_interruptible - sleep waiting for signals
1563 * @msecs: Time in milliseconds to sleep for
1565 unsigned long msleep_interruptible(unsigned int msecs)
1567 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1569 while (timeout && !signal_pending(current))
1570 timeout = schedule_timeout_interruptible(timeout);
1571 return jiffies_to_msecs(timeout);
1574 EXPORT_SYMBOL(msleep_interruptible);