tty-usb-option: Coding style
[linux-2.6] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  * 
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/usb.h>
43
44 #include "usb.h"
45 #include "hcd.h"
46 #include "hub.h"
47
48
49 /*-------------------------------------------------------------------------*/
50
51 /*
52  * USB Host Controller Driver framework
53  *
54  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55  * HCD-specific behaviors/bugs.
56  *
57  * This does error checks, tracks devices and urbs, and delegates to a
58  * "hc_driver" only for code (and data) that really needs to know about
59  * hardware differences.  That includes root hub registers, i/o queues,
60  * and so on ... but as little else as possible.
61  *
62  * Shared code includes most of the "root hub" code (these are emulated,
63  * though each HC's hardware works differently) and PCI glue, plus request
64  * tracking overhead.  The HCD code should only block on spinlocks or on
65  * hardware handshaking; blocking on software events (such as other kernel
66  * threads releasing resources, or completing actions) is all generic.
67  *
68  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70  * only by the hub driver ... and that neither should be seen or used by
71  * usb client device drivers.
72  *
73  * Contributors of ideas or unattributed patches include: David Brownell,
74  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
75  *
76  * HISTORY:
77  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
78  *              associated cleanup.  "usb_hcd" still != "usb_bus".
79  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
80  */
81
82 /*-------------------------------------------------------------------------*/
83
84 /* host controllers we manage */
85 LIST_HEAD (usb_bus_list);
86 EXPORT_SYMBOL_GPL (usb_bus_list);
87
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS              64
90 struct usb_busmap {
91         unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
92 };
93 static struct usb_busmap busmap;
94
95 /* used when updating list of hcds */
96 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
97 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
98
99 /* used for controlling access to virtual root hubs */
100 static DEFINE_SPINLOCK(hcd_root_hub_lock);
101
102 /* used when updating an endpoint's URB list */
103 static DEFINE_SPINLOCK(hcd_urb_list_lock);
104
105 /* wait queue for synchronous unlinks */
106 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
107
108 static inline int is_root_hub(struct usb_device *udev)
109 {
110         return (udev->parent == NULL);
111 }
112
113 /*-------------------------------------------------------------------------*/
114
115 /*
116  * Sharable chunks of root hub code.
117  */
118
119 /*-------------------------------------------------------------------------*/
120
121 #define KERNEL_REL      ((LINUX_VERSION_CODE >> 16) & 0x0ff)
122 #define KERNEL_VER      ((LINUX_VERSION_CODE >> 8) & 0x0ff)
123
124 /* usb 2.0 root hub device descriptor */
125 static const u8 usb2_rh_dev_descriptor [18] = {
126         0x12,       /*  __u8  bLength; */
127         0x01,       /*  __u8  bDescriptorType; Device */
128         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
129
130         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
131         0x00,       /*  __u8  bDeviceSubClass; */
132         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
133         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
134
135         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
136         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
137         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
138
139         0x03,       /*  __u8  iManufacturer; */
140         0x02,       /*  __u8  iProduct; */
141         0x01,       /*  __u8  iSerialNumber; */
142         0x01        /*  __u8  bNumConfigurations; */
143 };
144
145 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
146
147 /* usb 1.1 root hub device descriptor */
148 static const u8 usb11_rh_dev_descriptor [18] = {
149         0x12,       /*  __u8  bLength; */
150         0x01,       /*  __u8  bDescriptorType; Device */
151         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
152
153         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
154         0x00,       /*  __u8  bDeviceSubClass; */
155         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
156         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
157
158         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
159         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
160         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
161
162         0x03,       /*  __u8  iManufacturer; */
163         0x02,       /*  __u8  iProduct; */
164         0x01,       /*  __u8  iSerialNumber; */
165         0x01        /*  __u8  bNumConfigurations; */
166 };
167
168
169 /*-------------------------------------------------------------------------*/
170
171 /* Configuration descriptors for our root hubs */
172
173 static const u8 fs_rh_config_descriptor [] = {
174
175         /* one configuration */
176         0x09,       /*  __u8  bLength; */
177         0x02,       /*  __u8  bDescriptorType; Configuration */
178         0x19, 0x00, /*  __le16 wTotalLength; */
179         0x01,       /*  __u8  bNumInterfaces; (1) */
180         0x01,       /*  __u8  bConfigurationValue; */
181         0x00,       /*  __u8  iConfiguration; */
182         0xc0,       /*  __u8  bmAttributes; 
183                                  Bit 7: must be set,
184                                      6: Self-powered,
185                                      5: Remote wakeup,
186                                      4..0: resvd */
187         0x00,       /*  __u8  MaxPower; */
188       
189         /* USB 1.1:
190          * USB 2.0, single TT organization (mandatory):
191          *      one interface, protocol 0
192          *
193          * USB 2.0, multiple TT organization (optional):
194          *      two interfaces, protocols 1 (like single TT)
195          *      and 2 (multiple TT mode) ... config is
196          *      sometimes settable
197          *      NOT IMPLEMENTED
198          */
199
200         /* one interface */
201         0x09,       /*  __u8  if_bLength; */
202         0x04,       /*  __u8  if_bDescriptorType; Interface */
203         0x00,       /*  __u8  if_bInterfaceNumber; */
204         0x00,       /*  __u8  if_bAlternateSetting; */
205         0x01,       /*  __u8  if_bNumEndpoints; */
206         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
207         0x00,       /*  __u8  if_bInterfaceSubClass; */
208         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
209         0x00,       /*  __u8  if_iInterface; */
210      
211         /* one endpoint (status change endpoint) */
212         0x07,       /*  __u8  ep_bLength; */
213         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
214         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
215         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
216         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
217         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
218 };
219
220 static const u8 hs_rh_config_descriptor [] = {
221
222         /* one configuration */
223         0x09,       /*  __u8  bLength; */
224         0x02,       /*  __u8  bDescriptorType; Configuration */
225         0x19, 0x00, /*  __le16 wTotalLength; */
226         0x01,       /*  __u8  bNumInterfaces; (1) */
227         0x01,       /*  __u8  bConfigurationValue; */
228         0x00,       /*  __u8  iConfiguration; */
229         0xc0,       /*  __u8  bmAttributes; 
230                                  Bit 7: must be set,
231                                      6: Self-powered,
232                                      5: Remote wakeup,
233                                      4..0: resvd */
234         0x00,       /*  __u8  MaxPower; */
235       
236         /* USB 1.1:
237          * USB 2.0, single TT organization (mandatory):
238          *      one interface, protocol 0
239          *
240          * USB 2.0, multiple TT organization (optional):
241          *      two interfaces, protocols 1 (like single TT)
242          *      and 2 (multiple TT mode) ... config is
243          *      sometimes settable
244          *      NOT IMPLEMENTED
245          */
246
247         /* one interface */
248         0x09,       /*  __u8  if_bLength; */
249         0x04,       /*  __u8  if_bDescriptorType; Interface */
250         0x00,       /*  __u8  if_bInterfaceNumber; */
251         0x00,       /*  __u8  if_bAlternateSetting; */
252         0x01,       /*  __u8  if_bNumEndpoints; */
253         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
254         0x00,       /*  __u8  if_bInterfaceSubClass; */
255         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
256         0x00,       /*  __u8  if_iInterface; */
257      
258         /* one endpoint (status change endpoint) */
259         0x07,       /*  __u8  ep_bLength; */
260         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
261         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
262         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
263                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
264                      * see hub.c:hub_configure() for details. */
265         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
266         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
267 };
268
269 /*-------------------------------------------------------------------------*/
270
271 /*
272  * helper routine for returning string descriptors in UTF-16LE
273  * input can actually be ISO-8859-1; ASCII is its 7-bit subset
274  */
275 static int ascii2utf (char *s, u8 *utf, int utfmax)
276 {
277         int retval;
278
279         for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
280                 *utf++ = *s++;
281                 *utf++ = 0;
282         }
283         if (utfmax > 0) {
284                 *utf = *s;
285                 ++retval;
286         }
287         return retval;
288 }
289
290 /*
291  * rh_string - provides manufacturer, product and serial strings for root hub
292  * @id: the string ID number (1: serial number, 2: product, 3: vendor)
293  * @hcd: the host controller for this root hub
294  * @data: return packet in UTF-16 LE
295  * @len: length of the return packet
296  *
297  * Produces either a manufacturer, product or serial number string for the
298  * virtual root hub device.
299  */
300 static int rh_string (
301         int             id,
302         struct usb_hcd  *hcd,
303         u8              *data,
304         int             len
305 ) {
306         char buf [100];
307
308         // language ids
309         if (id == 0) {
310                 buf[0] = 4;    buf[1] = 3;      /* 4 bytes string data */
311                 buf[2] = 0x09; buf[3] = 0x04;   /* MSFT-speak for "en-us" */
312                 len = min (len, 4);
313                 memcpy (data, buf, len);
314                 return len;
315
316         // serial number
317         } else if (id == 1) {
318                 strlcpy (buf, hcd->self.bus_name, sizeof buf);
319
320         // product description
321         } else if (id == 2) {
322                 strlcpy (buf, hcd->product_desc, sizeof buf);
323
324         // id 3 == vendor description
325         } else if (id == 3) {
326                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
327                         init_utsname()->release, hcd->driver->description);
328
329         // unsupported IDs --> "protocol stall"
330         } else
331                 return -EPIPE;
332
333         switch (len) {          /* All cases fall through */
334         default:
335                 len = 2 + ascii2utf (buf, data + 2, len - 2);
336         case 2:
337                 data [1] = 3;   /* type == string */
338         case 1:
339                 data [0] = 2 * (strlen (buf) + 1);
340         case 0:
341                 ;               /* Compiler wants a statement here */
342         }
343         return len;
344 }
345
346
347 /* Root hub control transfers execute synchronously */
348 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
349 {
350         struct usb_ctrlrequest *cmd;
351         u16             typeReq, wValue, wIndex, wLength;
352         u8              *ubuf = urb->transfer_buffer;
353         u8              tbuf [sizeof (struct usb_hub_descriptor)]
354                 __attribute__((aligned(4)));
355         const u8        *bufp = tbuf;
356         int             len = 0;
357         int             status;
358         int             n;
359         u8              patch_wakeup = 0;
360         u8              patch_protocol = 0;
361
362         might_sleep();
363
364         spin_lock_irq(&hcd_root_hub_lock);
365         status = usb_hcd_link_urb_to_ep(hcd, urb);
366         spin_unlock_irq(&hcd_root_hub_lock);
367         if (status)
368                 return status;
369         urb->hcpriv = hcd;      /* Indicate it's queued */
370
371         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
372         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
373         wValue   = le16_to_cpu (cmd->wValue);
374         wIndex   = le16_to_cpu (cmd->wIndex);
375         wLength  = le16_to_cpu (cmd->wLength);
376
377         if (wLength > urb->transfer_buffer_length)
378                 goto error;
379
380         urb->actual_length = 0;
381         switch (typeReq) {
382
383         /* DEVICE REQUESTS */
384
385         /* The root hub's remote wakeup enable bit is implemented using
386          * driver model wakeup flags.  If this system supports wakeup
387          * through USB, userspace may change the default "allow wakeup"
388          * policy through sysfs or these calls.
389          *
390          * Most root hubs support wakeup from downstream devices, for
391          * runtime power management (disabling USB clocks and reducing
392          * VBUS power usage).  However, not all of them do so; silicon,
393          * board, and BIOS bugs here are not uncommon, so these can't
394          * be treated quite like external hubs.
395          *
396          * Likewise, not all root hubs will pass wakeup events upstream,
397          * to wake up the whole system.  So don't assume root hub and
398          * controller capabilities are identical.
399          */
400
401         case DeviceRequest | USB_REQ_GET_STATUS:
402                 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
403                                         << USB_DEVICE_REMOTE_WAKEUP)
404                                 | (1 << USB_DEVICE_SELF_POWERED);
405                 tbuf [1] = 0;
406                 len = 2;
407                 break;
408         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
409                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
410                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
411                 else
412                         goto error;
413                 break;
414         case DeviceOutRequest | USB_REQ_SET_FEATURE:
415                 if (device_can_wakeup(&hcd->self.root_hub->dev)
416                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
417                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
418                 else
419                         goto error;
420                 break;
421         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
422                 tbuf [0] = 1;
423                 len = 1;
424                         /* FALLTHROUGH */
425         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
426                 break;
427         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
428                 switch (wValue & 0xff00) {
429                 case USB_DT_DEVICE << 8:
430                         if (hcd->driver->flags & HCD_USB2)
431                                 bufp = usb2_rh_dev_descriptor;
432                         else if (hcd->driver->flags & HCD_USB11)
433                                 bufp = usb11_rh_dev_descriptor;
434                         else
435                                 goto error;
436                         len = 18;
437                         if (hcd->has_tt)
438                                 patch_protocol = 1;
439                         break;
440                 case USB_DT_CONFIG << 8:
441                         if (hcd->driver->flags & HCD_USB2) {
442                                 bufp = hs_rh_config_descriptor;
443                                 len = sizeof hs_rh_config_descriptor;
444                         } else {
445                                 bufp = fs_rh_config_descriptor;
446                                 len = sizeof fs_rh_config_descriptor;
447                         }
448                         if (device_can_wakeup(&hcd->self.root_hub->dev))
449                                 patch_wakeup = 1;
450                         break;
451                 case USB_DT_STRING << 8:
452                         n = rh_string (wValue & 0xff, hcd, ubuf, wLength);
453                         if (n < 0)
454                                 goto error;
455                         urb->actual_length = n;
456                         break;
457                 default:
458                         goto error;
459                 }
460                 break;
461         case DeviceRequest | USB_REQ_GET_INTERFACE:
462                 tbuf [0] = 0;
463                 len = 1;
464                         /* FALLTHROUGH */
465         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
466                 break;
467         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
468                 // wValue == urb->dev->devaddr
469                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
470                         wValue);
471                 break;
472
473         /* INTERFACE REQUESTS (no defined feature/status flags) */
474
475         /* ENDPOINT REQUESTS */
476
477         case EndpointRequest | USB_REQ_GET_STATUS:
478                 // ENDPOINT_HALT flag
479                 tbuf [0] = 0;
480                 tbuf [1] = 0;
481                 len = 2;
482                         /* FALLTHROUGH */
483         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
484         case EndpointOutRequest | USB_REQ_SET_FEATURE:
485                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
486                 break;
487
488         /* CLASS REQUESTS (and errors) */
489
490         default:
491                 /* non-generic request */
492                 switch (typeReq) {
493                 case GetHubStatus:
494                 case GetPortStatus:
495                         len = 4;
496                         break;
497                 case GetHubDescriptor:
498                         len = sizeof (struct usb_hub_descriptor);
499                         break;
500                 }
501                 status = hcd->driver->hub_control (hcd,
502                         typeReq, wValue, wIndex,
503                         tbuf, wLength);
504                 break;
505 error:
506                 /* "protocol stall" on error */
507                 status = -EPIPE;
508         }
509
510         if (status) {
511                 len = 0;
512                 if (status != -EPIPE) {
513                         dev_dbg (hcd->self.controller,
514                                 "CTRL: TypeReq=0x%x val=0x%x "
515                                 "idx=0x%x len=%d ==> %d\n",
516                                 typeReq, wValue, wIndex,
517                                 wLength, status);
518                 }
519         }
520         if (len) {
521                 if (urb->transfer_buffer_length < len)
522                         len = urb->transfer_buffer_length;
523                 urb->actual_length = len;
524                 // always USB_DIR_IN, toward host
525                 memcpy (ubuf, bufp, len);
526
527                 /* report whether RH hardware supports remote wakeup */
528                 if (patch_wakeup &&
529                                 len > offsetof (struct usb_config_descriptor,
530                                                 bmAttributes))
531                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
532                                 |= USB_CONFIG_ATT_WAKEUP;
533
534                 /* report whether RH hardware has an integrated TT */
535                 if (patch_protocol &&
536                                 len > offsetof(struct usb_device_descriptor,
537                                                 bDeviceProtocol))
538                         ((struct usb_device_descriptor *) ubuf)->
539                                         bDeviceProtocol = 1;
540         }
541
542         /* any errors get returned through the urb completion */
543         spin_lock_irq(&hcd_root_hub_lock);
544         usb_hcd_unlink_urb_from_ep(hcd, urb);
545
546         /* This peculiar use of spinlocks echoes what real HC drivers do.
547          * Avoiding calls to local_irq_disable/enable makes the code
548          * RT-friendly.
549          */
550         spin_unlock(&hcd_root_hub_lock);
551         usb_hcd_giveback_urb(hcd, urb, status);
552         spin_lock(&hcd_root_hub_lock);
553
554         spin_unlock_irq(&hcd_root_hub_lock);
555         return 0;
556 }
557
558 /*-------------------------------------------------------------------------*/
559
560 /*
561  * Root Hub interrupt transfers are polled using a timer if the
562  * driver requests it; otherwise the driver is responsible for
563  * calling usb_hcd_poll_rh_status() when an event occurs.
564  *
565  * Completions are called in_interrupt(), but they may or may not
566  * be in_irq().
567  */
568 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
569 {
570         struct urb      *urb;
571         int             length;
572         unsigned long   flags;
573         char            buffer[4];      /* Any root hubs with > 31 ports? */
574
575         if (unlikely(!hcd->rh_registered))
576                 return;
577         if (!hcd->uses_new_polling && !hcd->status_urb)
578                 return;
579
580         length = hcd->driver->hub_status_data(hcd, buffer);
581         if (length > 0) {
582
583                 /* try to complete the status urb */
584                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
585                 urb = hcd->status_urb;
586                 if (urb) {
587                         hcd->poll_pending = 0;
588                         hcd->status_urb = NULL;
589                         urb->actual_length = length;
590                         memcpy(urb->transfer_buffer, buffer, length);
591
592                         usb_hcd_unlink_urb_from_ep(hcd, urb);
593                         spin_unlock(&hcd_root_hub_lock);
594                         usb_hcd_giveback_urb(hcd, urb, 0);
595                         spin_lock(&hcd_root_hub_lock);
596                 } else {
597                         length = 0;
598                         hcd->poll_pending = 1;
599                 }
600                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
601         }
602
603         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
604          * exceed that limit if HZ is 100. The math is more clunky than
605          * maybe expected, this is to make sure that all timers for USB devices
606          * fire at the same time to give the CPU a break inbetween */
607         if (hcd->uses_new_polling ? hcd->poll_rh :
608                         (length == 0 && hcd->status_urb != NULL))
609                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
610 }
611 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
612
613 /* timer callback */
614 static void rh_timer_func (unsigned long _hcd)
615 {
616         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
617 }
618
619 /*-------------------------------------------------------------------------*/
620
621 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
622 {
623         int             retval;
624         unsigned long   flags;
625         int             len = 1 + (urb->dev->maxchild / 8);
626
627         spin_lock_irqsave (&hcd_root_hub_lock, flags);
628         if (hcd->status_urb || urb->transfer_buffer_length < len) {
629                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
630                 retval = -EINVAL;
631                 goto done;
632         }
633
634         retval = usb_hcd_link_urb_to_ep(hcd, urb);
635         if (retval)
636                 goto done;
637
638         hcd->status_urb = urb;
639         urb->hcpriv = hcd;      /* indicate it's queued */
640         if (!hcd->uses_new_polling)
641                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
642
643         /* If a status change has already occurred, report it ASAP */
644         else if (hcd->poll_pending)
645                 mod_timer(&hcd->rh_timer, jiffies);
646         retval = 0;
647  done:
648         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
649         return retval;
650 }
651
652 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
653 {
654         if (usb_endpoint_xfer_int(&urb->ep->desc))
655                 return rh_queue_status (hcd, urb);
656         if (usb_endpoint_xfer_control(&urb->ep->desc))
657                 return rh_call_control (hcd, urb);
658         return -EINVAL;
659 }
660
661 /*-------------------------------------------------------------------------*/
662
663 /* Unlinks of root-hub control URBs are legal, but they don't do anything
664  * since these URBs always execute synchronously.
665  */
666 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
667 {
668         unsigned long   flags;
669         int             rc;
670
671         spin_lock_irqsave(&hcd_root_hub_lock, flags);
672         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
673         if (rc)
674                 goto done;
675
676         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
677                 ;       /* Do nothing */
678
679         } else {                                /* Status URB */
680                 if (!hcd->uses_new_polling)
681                         del_timer (&hcd->rh_timer);
682                 if (urb == hcd->status_urb) {
683                         hcd->status_urb = NULL;
684                         usb_hcd_unlink_urb_from_ep(hcd, urb);
685
686                         spin_unlock(&hcd_root_hub_lock);
687                         usb_hcd_giveback_urb(hcd, urb, status);
688                         spin_lock(&hcd_root_hub_lock);
689                 }
690         }
691  done:
692         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
693         return rc;
694 }
695
696
697
698 /*
699  * Show & store the current value of authorized_default
700  */
701 static ssize_t usb_host_authorized_default_show(struct device *dev,
702                                                 struct device_attribute *attr,
703                                                 char *buf)
704 {
705         struct usb_device *rh_usb_dev = to_usb_device(dev);
706         struct usb_bus *usb_bus = rh_usb_dev->bus;
707         struct usb_hcd *usb_hcd;
708
709         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
710                 return -ENODEV;
711         usb_hcd = bus_to_hcd(usb_bus);
712         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
713 }
714
715 static ssize_t usb_host_authorized_default_store(struct device *dev,
716                                                  struct device_attribute *attr,
717                                                  const char *buf, size_t size)
718 {
719         ssize_t result;
720         unsigned val;
721         struct usb_device *rh_usb_dev = to_usb_device(dev);
722         struct usb_bus *usb_bus = rh_usb_dev->bus;
723         struct usb_hcd *usb_hcd;
724
725         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
726                 return -ENODEV;
727         usb_hcd = bus_to_hcd(usb_bus);
728         result = sscanf(buf, "%u\n", &val);
729         if (result == 1) {
730                 usb_hcd->authorized_default = val? 1 : 0;
731                 result = size;
732         }
733         else
734                 result = -EINVAL;
735         return result;
736 }
737
738 static DEVICE_ATTR(authorized_default, 0644,
739             usb_host_authorized_default_show,
740             usb_host_authorized_default_store);
741
742
743 /* Group all the USB bus attributes */
744 static struct attribute *usb_bus_attrs[] = {
745                 &dev_attr_authorized_default.attr,
746                 NULL,
747 };
748
749 static struct attribute_group usb_bus_attr_group = {
750         .name = NULL,   /* we want them in the same directory */
751         .attrs = usb_bus_attrs,
752 };
753
754
755
756 /*-------------------------------------------------------------------------*/
757
758 static struct class *usb_host_class;
759
760 int usb_host_init(void)
761 {
762         int retval = 0;
763
764         usb_host_class = class_create(THIS_MODULE, "usb_host");
765         if (IS_ERR(usb_host_class))
766                 retval = PTR_ERR(usb_host_class);
767         return retval;
768 }
769
770 void usb_host_cleanup(void)
771 {
772         class_destroy(usb_host_class);
773 }
774
775 /**
776  * usb_bus_init - shared initialization code
777  * @bus: the bus structure being initialized
778  *
779  * This code is used to initialize a usb_bus structure, memory for which is
780  * separately managed.
781  */
782 static void usb_bus_init (struct usb_bus *bus)
783 {
784         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
785
786         bus->devnum_next = 1;
787
788         bus->root_hub = NULL;
789         bus->busnum = -1;
790         bus->bandwidth_allocated = 0;
791         bus->bandwidth_int_reqs  = 0;
792         bus->bandwidth_isoc_reqs = 0;
793
794         INIT_LIST_HEAD (&bus->bus_list);
795 }
796
797 /*-------------------------------------------------------------------------*/
798
799 /**
800  * usb_register_bus - registers the USB host controller with the usb core
801  * @bus: pointer to the bus to register
802  * Context: !in_interrupt()
803  *
804  * Assigns a bus number, and links the controller into usbcore data
805  * structures so that it can be seen by scanning the bus list.
806  */
807 static int usb_register_bus(struct usb_bus *bus)
808 {
809         int result = -E2BIG;
810         int busnum;
811
812         mutex_lock(&usb_bus_list_lock);
813         busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
814         if (busnum >= USB_MAXBUS) {
815                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
816                 goto error_find_busnum;
817         }
818         set_bit (busnum, busmap.busmap);
819         bus->busnum = busnum;
820
821         bus->dev = device_create_drvdata(usb_host_class, bus->controller,
822                                          MKDEV(0, 0), bus,
823                                          "usb_host%d", busnum);
824         result = PTR_ERR(bus->dev);
825         if (IS_ERR(bus->dev))
826                 goto error_create_class_dev;
827
828         /* Add it to the local list of buses */
829         list_add (&bus->bus_list, &usb_bus_list);
830         mutex_unlock(&usb_bus_list_lock);
831
832         usb_notify_add_bus(bus);
833
834         dev_info (bus->controller, "new USB bus registered, assigned bus "
835                   "number %d\n", bus->busnum);
836         return 0;
837
838 error_create_class_dev:
839         clear_bit(busnum, busmap.busmap);
840 error_find_busnum:
841         mutex_unlock(&usb_bus_list_lock);
842         return result;
843 }
844
845 /**
846  * usb_deregister_bus - deregisters the USB host controller
847  * @bus: pointer to the bus to deregister
848  * Context: !in_interrupt()
849  *
850  * Recycles the bus number, and unlinks the controller from usbcore data
851  * structures so that it won't be seen by scanning the bus list.
852  */
853 static void usb_deregister_bus (struct usb_bus *bus)
854 {
855         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
856
857         /*
858          * NOTE: make sure that all the devices are removed by the
859          * controller code, as well as having it call this when cleaning
860          * itself up
861          */
862         mutex_lock(&usb_bus_list_lock);
863         list_del (&bus->bus_list);
864         mutex_unlock(&usb_bus_list_lock);
865
866         usb_notify_remove_bus(bus);
867
868         clear_bit (bus->busnum, busmap.busmap);
869
870         device_unregister(bus->dev);
871 }
872
873 /**
874  * register_root_hub - called by usb_add_hcd() to register a root hub
875  * @hcd: host controller for this root hub
876  *
877  * This function registers the root hub with the USB subsystem.  It sets up
878  * the device properly in the device tree and then calls usb_new_device()
879  * to register the usb device.  It also assigns the root hub's USB address
880  * (always 1).
881  */
882 static int register_root_hub(struct usb_hcd *hcd)
883 {
884         struct device *parent_dev = hcd->self.controller;
885         struct usb_device *usb_dev = hcd->self.root_hub;
886         const int devnum = 1;
887         int retval;
888
889         usb_dev->devnum = devnum;
890         usb_dev->bus->devnum_next = devnum + 1;
891         memset (&usb_dev->bus->devmap.devicemap, 0,
892                         sizeof usb_dev->bus->devmap.devicemap);
893         set_bit (devnum, usb_dev->bus->devmap.devicemap);
894         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
895
896         mutex_lock(&usb_bus_list_lock);
897
898         usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
899         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
900         if (retval != sizeof usb_dev->descriptor) {
901                 mutex_unlock(&usb_bus_list_lock);
902                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
903                                 dev_name(&usb_dev->dev), retval);
904                 return (retval < 0) ? retval : -EMSGSIZE;
905         }
906
907         retval = usb_new_device (usb_dev);
908         if (retval) {
909                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
910                                 dev_name(&usb_dev->dev), retval);
911         }
912         mutex_unlock(&usb_bus_list_lock);
913
914         if (retval == 0) {
915                 spin_lock_irq (&hcd_root_hub_lock);
916                 hcd->rh_registered = 1;
917                 spin_unlock_irq (&hcd_root_hub_lock);
918
919                 /* Did the HC die before the root hub was registered? */
920                 if (hcd->state == HC_STATE_HALT)
921                         usb_hc_died (hcd);      /* This time clean up */
922         }
923
924         return retval;
925 }
926
927 void usb_enable_root_hub_irq (struct usb_bus *bus)
928 {
929         struct usb_hcd *hcd;
930
931         hcd = container_of (bus, struct usb_hcd, self);
932         if (hcd->driver->hub_irq_enable && hcd->state != HC_STATE_HALT)
933                 hcd->driver->hub_irq_enable (hcd);
934 }
935
936
937 /*-------------------------------------------------------------------------*/
938
939 /**
940  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
941  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
942  * @is_input: true iff the transaction sends data to the host
943  * @isoc: true for isochronous transactions, false for interrupt ones
944  * @bytecount: how many bytes in the transaction.
945  *
946  * Returns approximate bus time in nanoseconds for a periodic transaction.
947  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
948  * scheduled in software, this function is only used for such scheduling.
949  */
950 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
951 {
952         unsigned long   tmp;
953
954         switch (speed) {
955         case USB_SPEED_LOW:     /* INTR only */
956                 if (is_input) {
957                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
958                         return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
959                 } else {
960                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
961                         return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
962                 }
963         case USB_SPEED_FULL:    /* ISOC or INTR */
964                 if (isoc) {
965                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
966                         return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
967                 } else {
968                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
969                         return (9107L + BW_HOST_DELAY + tmp);
970                 }
971         case USB_SPEED_HIGH:    /* ISOC or INTR */
972                 // FIXME adjust for input vs output
973                 if (isoc)
974                         tmp = HS_NSECS_ISO (bytecount);
975                 else
976                         tmp = HS_NSECS (bytecount);
977                 return tmp;
978         default:
979                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
980                 return -1;
981         }
982 }
983 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
984
985
986 /*-------------------------------------------------------------------------*/
987
988 /*
989  * Generic HC operations.
990  */
991
992 /*-------------------------------------------------------------------------*/
993
994 /**
995  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
996  * @hcd: host controller to which @urb was submitted
997  * @urb: URB being submitted
998  *
999  * Host controller drivers should call this routine in their enqueue()
1000  * method.  The HCD's private spinlock must be held and interrupts must
1001  * be disabled.  The actions carried out here are required for URB
1002  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1003  *
1004  * Returns 0 for no error, otherwise a negative error code (in which case
1005  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1006  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1007  * the private spinlock and returning.
1008  */
1009 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1010 {
1011         int             rc = 0;
1012
1013         spin_lock(&hcd_urb_list_lock);
1014
1015         /* Check that the URB isn't being killed */
1016         if (unlikely(urb->reject)) {
1017                 rc = -EPERM;
1018                 goto done;
1019         }
1020
1021         if (unlikely(!urb->ep->enabled)) {
1022                 rc = -ENOENT;
1023                 goto done;
1024         }
1025
1026         if (unlikely(!urb->dev->can_submit)) {
1027                 rc = -EHOSTUNREACH;
1028                 goto done;
1029         }
1030
1031         /*
1032          * Check the host controller's state and add the URB to the
1033          * endpoint's queue.
1034          */
1035         switch (hcd->state) {
1036         case HC_STATE_RUNNING:
1037         case HC_STATE_RESUMING:
1038                 urb->unlinked = 0;
1039                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1040                 break;
1041         default:
1042                 rc = -ESHUTDOWN;
1043                 goto done;
1044         }
1045  done:
1046         spin_unlock(&hcd_urb_list_lock);
1047         return rc;
1048 }
1049 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1050
1051 /**
1052  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1053  * @hcd: host controller to which @urb was submitted
1054  * @urb: URB being checked for unlinkability
1055  * @status: error code to store in @urb if the unlink succeeds
1056  *
1057  * Host controller drivers should call this routine in their dequeue()
1058  * method.  The HCD's private spinlock must be held and interrupts must
1059  * be disabled.  The actions carried out here are required for making
1060  * sure than an unlink is valid.
1061  *
1062  * Returns 0 for no error, otherwise a negative error code (in which case
1063  * the dequeue() method must fail).  The possible error codes are:
1064  *
1065  *      -EIDRM: @urb was not submitted or has already completed.
1066  *              The completion function may not have been called yet.
1067  *
1068  *      -EBUSY: @urb has already been unlinked.
1069  */
1070 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1071                 int status)
1072 {
1073         struct list_head        *tmp;
1074
1075         /* insist the urb is still queued */
1076         list_for_each(tmp, &urb->ep->urb_list) {
1077                 if (tmp == &urb->urb_list)
1078                         break;
1079         }
1080         if (tmp != &urb->urb_list)
1081                 return -EIDRM;
1082
1083         /* Any status except -EINPROGRESS means something already started to
1084          * unlink this URB from the hardware.  So there's no more work to do.
1085          */
1086         if (urb->unlinked)
1087                 return -EBUSY;
1088         urb->unlinked = status;
1089
1090         /* IRQ setup can easily be broken so that USB controllers
1091          * never get completion IRQs ... maybe even the ones we need to
1092          * finish unlinking the initial failed usb_set_address()
1093          * or device descriptor fetch.
1094          */
1095         if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1096                         !is_root_hub(urb->dev)) {
1097                 dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1098                         "Controller is probably using the wrong IRQ.\n");
1099                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1100         }
1101
1102         return 0;
1103 }
1104 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1105
1106 /**
1107  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1108  * @hcd: host controller to which @urb was submitted
1109  * @urb: URB being unlinked
1110  *
1111  * Host controller drivers should call this routine before calling
1112  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1113  * interrupts must be disabled.  The actions carried out here are required
1114  * for URB completion.
1115  */
1116 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1117 {
1118         /* clear all state linking urb to this dev (and hcd) */
1119         spin_lock(&hcd_urb_list_lock);
1120         list_del_init(&urb->urb_list);
1121         spin_unlock(&hcd_urb_list_lock);
1122 }
1123 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1124
1125 /*
1126  * Some usb host controllers can only perform dma using a small SRAM area.
1127  * The usb core itself is however optimized for host controllers that can dma
1128  * using regular system memory - like pci devices doing bus mastering.
1129  *
1130  * To support host controllers with limited dma capabilites we provide dma
1131  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1132  * For this to work properly the host controller code must first use the
1133  * function dma_declare_coherent_memory() to point out which memory area
1134  * that should be used for dma allocations.
1135  *
1136  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1137  * dma using dma_alloc_coherent() which in turn allocates from the memory
1138  * area pointed out with dma_declare_coherent_memory().
1139  *
1140  * So, to summarize...
1141  *
1142  * - We need "local" memory, canonical example being
1143  *   a small SRAM on a discrete controller being the
1144  *   only memory that the controller can read ...
1145  *   (a) "normal" kernel memory is no good, and
1146  *   (b) there's not enough to share
1147  *
1148  * - The only *portable* hook for such stuff in the
1149  *   DMA framework is dma_declare_coherent_memory()
1150  *
1151  * - So we use that, even though the primary requirement
1152  *   is that the memory be "local" (hence addressible
1153  *   by that device), not "coherent".
1154  *
1155  */
1156
1157 static int hcd_alloc_coherent(struct usb_bus *bus,
1158                               gfp_t mem_flags, dma_addr_t *dma_handle,
1159                               void **vaddr_handle, size_t size,
1160                               enum dma_data_direction dir)
1161 {
1162         unsigned char *vaddr;
1163
1164         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1165                                  mem_flags, dma_handle);
1166         if (!vaddr)
1167                 return -ENOMEM;
1168
1169         /*
1170          * Store the virtual address of the buffer at the end
1171          * of the allocated dma buffer. The size of the buffer
1172          * may be uneven so use unaligned functions instead
1173          * of just rounding up. It makes sense to optimize for
1174          * memory footprint over access speed since the amount
1175          * of memory available for dma may be limited.
1176          */
1177         put_unaligned((unsigned long)*vaddr_handle,
1178                       (unsigned long *)(vaddr + size));
1179
1180         if (dir == DMA_TO_DEVICE)
1181                 memcpy(vaddr, *vaddr_handle, size);
1182
1183         *vaddr_handle = vaddr;
1184         return 0;
1185 }
1186
1187 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1188                               void **vaddr_handle, size_t size,
1189                               enum dma_data_direction dir)
1190 {
1191         unsigned char *vaddr = *vaddr_handle;
1192
1193         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1194
1195         if (dir == DMA_FROM_DEVICE)
1196                 memcpy(vaddr, *vaddr_handle, size);
1197
1198         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1199
1200         *vaddr_handle = vaddr;
1201         *dma_handle = 0;
1202 }
1203
1204 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1205                            gfp_t mem_flags)
1206 {
1207         enum dma_data_direction dir;
1208         int ret = 0;
1209
1210         /* Map the URB's buffers for DMA access.
1211          * Lower level HCD code should use *_dma exclusively,
1212          * unless it uses pio or talks to another transport.
1213          */
1214         if (is_root_hub(urb->dev))
1215                 return 0;
1216
1217         if (usb_endpoint_xfer_control(&urb->ep->desc)
1218             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1219                 if (hcd->self.uses_dma)
1220                         urb->setup_dma = dma_map_single(
1221                                         hcd->self.controller,
1222                                         urb->setup_packet,
1223                                         sizeof(struct usb_ctrlrequest),
1224                                         DMA_TO_DEVICE);
1225                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1226                         ret = hcd_alloc_coherent(
1227                                         urb->dev->bus, mem_flags,
1228                                         &urb->setup_dma,
1229                                         (void **)&urb->setup_packet,
1230                                         sizeof(struct usb_ctrlrequest),
1231                                         DMA_TO_DEVICE);
1232         }
1233
1234         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1235         if (ret == 0 && urb->transfer_buffer_length != 0
1236             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1237                 if (hcd->self.uses_dma)
1238                         urb->transfer_dma = dma_map_single (
1239                                         hcd->self.controller,
1240                                         urb->transfer_buffer,
1241                                         urb->transfer_buffer_length,
1242                                         dir);
1243                 else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1244                         ret = hcd_alloc_coherent(
1245                                         urb->dev->bus, mem_flags,
1246                                         &urb->transfer_dma,
1247                                         &urb->transfer_buffer,
1248                                         urb->transfer_buffer_length,
1249                                         dir);
1250
1251                         if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1252                             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1253                                 hcd_free_coherent(urb->dev->bus,
1254                                         &urb->setup_dma,
1255                                         (void **)&urb->setup_packet,
1256                                         sizeof(struct usb_ctrlrequest),
1257                                         DMA_TO_DEVICE);
1258                 }
1259         }
1260         return ret;
1261 }
1262
1263 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1264 {
1265         enum dma_data_direction dir;
1266
1267         if (is_root_hub(urb->dev))
1268                 return;
1269
1270         if (usb_endpoint_xfer_control(&urb->ep->desc)
1271             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1272                 if (hcd->self.uses_dma)
1273                         dma_unmap_single(hcd->self.controller, urb->setup_dma,
1274                                         sizeof(struct usb_ctrlrequest),
1275                                         DMA_TO_DEVICE);
1276                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1277                         hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1278                                         (void **)&urb->setup_packet,
1279                                         sizeof(struct usb_ctrlrequest),
1280                                         DMA_TO_DEVICE);
1281         }
1282
1283         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1284         if (urb->transfer_buffer_length != 0
1285             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1286                 if (hcd->self.uses_dma)
1287                         dma_unmap_single(hcd->self.controller,
1288                                         urb->transfer_dma,
1289                                         urb->transfer_buffer_length,
1290                                         dir);
1291                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1292                         hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1293                                         &urb->transfer_buffer,
1294                                         urb->transfer_buffer_length,
1295                                         dir);
1296         }
1297 }
1298
1299 /*-------------------------------------------------------------------------*/
1300
1301 /* may be called in any context with a valid urb->dev usecount
1302  * caller surrenders "ownership" of urb
1303  * expects usb_submit_urb() to have sanity checked and conditioned all
1304  * inputs in the urb
1305  */
1306 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1307 {
1308         int                     status;
1309         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1310
1311         /* increment urb's reference count as part of giving it to the HCD
1312          * (which will control it).  HCD guarantees that it either returns
1313          * an error or calls giveback(), but not both.
1314          */
1315         usb_get_urb(urb);
1316         atomic_inc(&urb->use_count);
1317         atomic_inc(&urb->dev->urbnum);
1318         usbmon_urb_submit(&hcd->self, urb);
1319
1320         /* NOTE requirements on root-hub callers (usbfs and the hub
1321          * driver, for now):  URBs' urb->transfer_buffer must be
1322          * valid and usb_buffer_{sync,unmap}() not be needed, since
1323          * they could clobber root hub response data.  Also, control
1324          * URBs must be submitted in process context with interrupts
1325          * enabled.
1326          */
1327         status = map_urb_for_dma(hcd, urb, mem_flags);
1328         if (unlikely(status)) {
1329                 usbmon_urb_submit_error(&hcd->self, urb, status);
1330                 goto error;
1331         }
1332
1333         if (is_root_hub(urb->dev))
1334                 status = rh_urb_enqueue(hcd, urb);
1335         else
1336                 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1337
1338         if (unlikely(status)) {
1339                 usbmon_urb_submit_error(&hcd->self, urb, status);
1340                 unmap_urb_for_dma(hcd, urb);
1341  error:
1342                 urb->hcpriv = NULL;
1343                 INIT_LIST_HEAD(&urb->urb_list);
1344                 atomic_dec(&urb->use_count);
1345                 atomic_dec(&urb->dev->urbnum);
1346                 if (urb->reject)
1347                         wake_up(&usb_kill_urb_queue);
1348                 usb_put_urb(urb);
1349         }
1350         return status;
1351 }
1352
1353 /*-------------------------------------------------------------------------*/
1354
1355 /* this makes the hcd giveback() the urb more quickly, by kicking it
1356  * off hardware queues (which may take a while) and returning it as
1357  * soon as practical.  we've already set up the urb's return status,
1358  * but we can't know if the callback completed already.
1359  */
1360 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1361 {
1362         int             value;
1363
1364         if (is_root_hub(urb->dev))
1365                 value = usb_rh_urb_dequeue(hcd, urb, status);
1366         else {
1367
1368                 /* The only reason an HCD might fail this call is if
1369                  * it has not yet fully queued the urb to begin with.
1370                  * Such failures should be harmless. */
1371                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1372         }
1373         return value;
1374 }
1375
1376 /*
1377  * called in any context
1378  *
1379  * caller guarantees urb won't be recycled till both unlink()
1380  * and the urb's completion function return
1381  */
1382 int usb_hcd_unlink_urb (struct urb *urb, int status)
1383 {
1384         struct usb_hcd          *hcd;
1385         int                     retval;
1386
1387         hcd = bus_to_hcd(urb->dev->bus);
1388         retval = unlink1(hcd, urb, status);
1389
1390         if (retval == 0)
1391                 retval = -EINPROGRESS;
1392         else if (retval != -EIDRM && retval != -EBUSY)
1393                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1394                                 urb, retval);
1395         return retval;
1396 }
1397
1398 /*-------------------------------------------------------------------------*/
1399
1400 /**
1401  * usb_hcd_giveback_urb - return URB from HCD to device driver
1402  * @hcd: host controller returning the URB
1403  * @urb: urb being returned to the USB device driver.
1404  * @status: completion status code for the URB.
1405  * Context: in_interrupt()
1406  *
1407  * This hands the URB from HCD to its USB device driver, using its
1408  * completion function.  The HCD has freed all per-urb resources
1409  * (and is done using urb->hcpriv).  It also released all HCD locks;
1410  * the device driver won't cause problems if it frees, modifies,
1411  * or resubmits this URB.
1412  *
1413  * If @urb was unlinked, the value of @status will be overridden by
1414  * @urb->unlinked.  Erroneous short transfers are detected in case
1415  * the HCD hasn't checked for them.
1416  */
1417 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1418 {
1419         urb->hcpriv = NULL;
1420         if (unlikely(urb->unlinked))
1421                 status = urb->unlinked;
1422         else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1423                         urb->actual_length < urb->transfer_buffer_length &&
1424                         !status))
1425                 status = -EREMOTEIO;
1426
1427         unmap_urb_for_dma(hcd, urb);
1428         usbmon_urb_complete(&hcd->self, urb, status);
1429         usb_unanchor_urb(urb);
1430
1431         /* pass ownership to the completion handler */
1432         urb->status = status;
1433         urb->complete (urb);
1434         atomic_dec (&urb->use_count);
1435         if (unlikely (urb->reject))
1436                 wake_up (&usb_kill_urb_queue);
1437         usb_put_urb (urb);
1438 }
1439 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1440
1441 /*-------------------------------------------------------------------------*/
1442
1443 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1444  * queue to drain completely.  The caller must first insure that no more
1445  * URBs can be submitted for this endpoint.
1446  */
1447 void usb_hcd_flush_endpoint(struct usb_device *udev,
1448                 struct usb_host_endpoint *ep)
1449 {
1450         struct usb_hcd          *hcd;
1451         struct urb              *urb;
1452
1453         if (!ep)
1454                 return;
1455         might_sleep();
1456         hcd = bus_to_hcd(udev->bus);
1457
1458         /* No more submits can occur */
1459         spin_lock_irq(&hcd_urb_list_lock);
1460 rescan:
1461         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1462                 int     is_in;
1463
1464                 if (urb->unlinked)
1465                         continue;
1466                 usb_get_urb (urb);
1467                 is_in = usb_urb_dir_in(urb);
1468                 spin_unlock(&hcd_urb_list_lock);
1469
1470                 /* kick hcd */
1471                 unlink1(hcd, urb, -ESHUTDOWN);
1472                 dev_dbg (hcd->self.controller,
1473                         "shutdown urb %p ep%d%s%s\n",
1474                         urb, usb_endpoint_num(&ep->desc),
1475                         is_in ? "in" : "out",
1476                         ({      char *s;
1477
1478                                  switch (usb_endpoint_type(&ep->desc)) {
1479                                  case USB_ENDPOINT_XFER_CONTROL:
1480                                         s = ""; break;
1481                                  case USB_ENDPOINT_XFER_BULK:
1482                                         s = "-bulk"; break;
1483                                  case USB_ENDPOINT_XFER_INT:
1484                                         s = "-intr"; break;
1485                                  default:
1486                                         s = "-iso"; break;
1487                                 };
1488                                 s;
1489                         }));
1490                 usb_put_urb (urb);
1491
1492                 /* list contents may have changed */
1493                 spin_lock(&hcd_urb_list_lock);
1494                 goto rescan;
1495         }
1496         spin_unlock_irq(&hcd_urb_list_lock);
1497
1498         /* Wait until the endpoint queue is completely empty */
1499         while (!list_empty (&ep->urb_list)) {
1500                 spin_lock_irq(&hcd_urb_list_lock);
1501
1502                 /* The list may have changed while we acquired the spinlock */
1503                 urb = NULL;
1504                 if (!list_empty (&ep->urb_list)) {
1505                         urb = list_entry (ep->urb_list.prev, struct urb,
1506                                         urb_list);
1507                         usb_get_urb (urb);
1508                 }
1509                 spin_unlock_irq(&hcd_urb_list_lock);
1510
1511                 if (urb) {
1512                         usb_kill_urb (urb);
1513                         usb_put_urb (urb);
1514                 }
1515         }
1516 }
1517
1518 /* Disables the endpoint: synchronizes with the hcd to make sure all
1519  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1520  * have been called previously.  Use for set_configuration, set_interface,
1521  * driver removal, physical disconnect.
1522  *
1523  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1524  * type, maxpacket size, toggle, halt status, and scheduling.
1525  */
1526 void usb_hcd_disable_endpoint(struct usb_device *udev,
1527                 struct usb_host_endpoint *ep)
1528 {
1529         struct usb_hcd          *hcd;
1530
1531         might_sleep();
1532         hcd = bus_to_hcd(udev->bus);
1533         if (hcd->driver->endpoint_disable)
1534                 hcd->driver->endpoint_disable(hcd, ep);
1535 }
1536
1537 /*-------------------------------------------------------------------------*/
1538
1539 /* called in any context */
1540 int usb_hcd_get_frame_number (struct usb_device *udev)
1541 {
1542         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
1543
1544         if (!HC_IS_RUNNING (hcd->state))
1545                 return -ESHUTDOWN;
1546         return hcd->driver->get_frame_number (hcd);
1547 }
1548
1549 /*-------------------------------------------------------------------------*/
1550
1551 #ifdef  CONFIG_PM
1552
1553 int hcd_bus_suspend(struct usb_device *rhdev)
1554 {
1555         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1556         int             status;
1557         int             old_state = hcd->state;
1558
1559         dev_dbg(&rhdev->dev, "bus %s%s\n",
1560                         rhdev->auto_pm ? "auto-" : "", "suspend");
1561         if (!hcd->driver->bus_suspend) {
1562                 status = -ENOENT;
1563         } else {
1564                 hcd->state = HC_STATE_QUIESCING;
1565                 status = hcd->driver->bus_suspend(hcd);
1566         }
1567         if (status == 0) {
1568                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1569                 hcd->state = HC_STATE_SUSPENDED;
1570         } else {
1571                 hcd->state = old_state;
1572                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1573                                 "suspend", status);
1574         }
1575         return status;
1576 }
1577
1578 int hcd_bus_resume(struct usb_device *rhdev)
1579 {
1580         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1581         int             status;
1582         int             old_state = hcd->state;
1583
1584         dev_dbg(&rhdev->dev, "usb %s%s\n",
1585                         rhdev->auto_pm ? "auto-" : "", "resume");
1586         if (!hcd->driver->bus_resume)
1587                 return -ENOENT;
1588         if (hcd->state == HC_STATE_RUNNING)
1589                 return 0;
1590
1591         hcd->state = HC_STATE_RESUMING;
1592         status = hcd->driver->bus_resume(hcd);
1593         if (status == 0) {
1594                 /* TRSMRCY = 10 msec */
1595                 msleep(10);
1596                 usb_set_device_state(rhdev, rhdev->actconfig
1597                                 ? USB_STATE_CONFIGURED
1598                                 : USB_STATE_ADDRESS);
1599                 hcd->state = HC_STATE_RUNNING;
1600         } else {
1601                 hcd->state = old_state;
1602                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1603                                 "resume", status);
1604                 if (status != -ESHUTDOWN)
1605                         usb_hc_died(hcd);
1606         }
1607         return status;
1608 }
1609
1610 /* Workqueue routine for root-hub remote wakeup */
1611 static void hcd_resume_work(struct work_struct *work)
1612 {
1613         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1614         struct usb_device *udev = hcd->self.root_hub;
1615
1616         usb_lock_device(udev);
1617         usb_mark_last_busy(udev);
1618         usb_external_resume_device(udev);
1619         usb_unlock_device(udev);
1620 }
1621
1622 /**
1623  * usb_hcd_resume_root_hub - called by HCD to resume its root hub 
1624  * @hcd: host controller for this root hub
1625  *
1626  * The USB host controller calls this function when its root hub is
1627  * suspended (with the remote wakeup feature enabled) and a remote
1628  * wakeup request is received.  The routine submits a workqueue request
1629  * to resume the root hub (that is, manage its downstream ports again).
1630  */
1631 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1632 {
1633         unsigned long flags;
1634
1635         spin_lock_irqsave (&hcd_root_hub_lock, flags);
1636         if (hcd->rh_registered)
1637                 queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1638         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1639 }
1640 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1641
1642 #endif
1643
1644 /*-------------------------------------------------------------------------*/
1645
1646 #ifdef  CONFIG_USB_OTG
1647
1648 /**
1649  * usb_bus_start_enum - start immediate enumeration (for OTG)
1650  * @bus: the bus (must use hcd framework)
1651  * @port_num: 1-based number of port; usually bus->otg_port
1652  * Context: in_interrupt()
1653  *
1654  * Starts enumeration, with an immediate reset followed later by
1655  * khubd identifying and possibly configuring the device.
1656  * This is needed by OTG controller drivers, where it helps meet
1657  * HNP protocol timing requirements for starting a port reset.
1658  */
1659 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1660 {
1661         struct usb_hcd          *hcd;
1662         int                     status = -EOPNOTSUPP;
1663
1664         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1665          * boards with root hubs hooked up to internal devices (instead of
1666          * just the OTG port) may need more attention to resetting...
1667          */
1668         hcd = container_of (bus, struct usb_hcd, self);
1669         if (port_num && hcd->driver->start_port_reset)
1670                 status = hcd->driver->start_port_reset(hcd, port_num);
1671
1672         /* run khubd shortly after (first) root port reset finishes;
1673          * it may issue others, until at least 50 msecs have passed.
1674          */
1675         if (status == 0)
1676                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1677         return status;
1678 }
1679 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1680
1681 #endif
1682
1683 /*-------------------------------------------------------------------------*/
1684
1685 /**
1686  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1687  * @irq: the IRQ being raised
1688  * @__hcd: pointer to the HCD whose IRQ is being signaled
1689  *
1690  * If the controller isn't HALTed, calls the driver's irq handler.
1691  * Checks whether the controller is now dead.
1692  */
1693 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1694 {
1695         struct usb_hcd          *hcd = __hcd;
1696         unsigned long           flags;
1697         irqreturn_t             rc;
1698
1699         /* IRQF_DISABLED doesn't work correctly with shared IRQs
1700          * when the first handler doesn't use it.  So let's just
1701          * assume it's never used.
1702          */
1703         local_irq_save(flags);
1704
1705         if (unlikely(hcd->state == HC_STATE_HALT ||
1706                      !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1707                 rc = IRQ_NONE;
1708         } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1709                 rc = IRQ_NONE;
1710         } else {
1711                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1712
1713                 if (unlikely(hcd->state == HC_STATE_HALT))
1714                         usb_hc_died(hcd);
1715                 rc = IRQ_HANDLED;
1716         }
1717
1718         local_irq_restore(flags);
1719         return rc;
1720 }
1721
1722 /*-------------------------------------------------------------------------*/
1723
1724 /**
1725  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1726  * @hcd: pointer to the HCD representing the controller
1727  *
1728  * This is called by bus glue to report a USB host controller that died
1729  * while operations may still have been pending.  It's called automatically
1730  * by the PCI glue, so only glue for non-PCI busses should need to call it. 
1731  */
1732 void usb_hc_died (struct usb_hcd *hcd)
1733 {
1734         unsigned long flags;
1735
1736         dev_err (hcd->self.controller, "HC died; cleaning up\n");
1737
1738         spin_lock_irqsave (&hcd_root_hub_lock, flags);
1739         if (hcd->rh_registered) {
1740                 hcd->poll_rh = 0;
1741
1742                 /* make khubd clean up old urbs and devices */
1743                 usb_set_device_state (hcd->self.root_hub,
1744                                 USB_STATE_NOTATTACHED);
1745                 usb_kick_khubd (hcd->self.root_hub);
1746         }
1747         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1748 }
1749 EXPORT_SYMBOL_GPL (usb_hc_died);
1750
1751 /*-------------------------------------------------------------------------*/
1752
1753 /**
1754  * usb_create_hcd - create and initialize an HCD structure
1755  * @driver: HC driver that will use this hcd
1756  * @dev: device for this HC, stored in hcd->self.controller
1757  * @bus_name: value to store in hcd->self.bus_name
1758  * Context: !in_interrupt()
1759  *
1760  * Allocate a struct usb_hcd, with extra space at the end for the
1761  * HC driver's private data.  Initialize the generic members of the
1762  * hcd structure.
1763  *
1764  * If memory is unavailable, returns NULL.
1765  */
1766 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1767                 struct device *dev, const char *bus_name)
1768 {
1769         struct usb_hcd *hcd;
1770
1771         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1772         if (!hcd) {
1773                 dev_dbg (dev, "hcd alloc failed\n");
1774                 return NULL;
1775         }
1776         dev_set_drvdata(dev, hcd);
1777         kref_init(&hcd->kref);
1778
1779         usb_bus_init(&hcd->self);
1780         hcd->self.controller = dev;
1781         hcd->self.bus_name = bus_name;
1782         hcd->self.uses_dma = (dev->dma_mask != NULL);
1783
1784         init_timer(&hcd->rh_timer);
1785         hcd->rh_timer.function = rh_timer_func;
1786         hcd->rh_timer.data = (unsigned long) hcd;
1787 #ifdef CONFIG_PM
1788         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1789 #endif
1790
1791         hcd->driver = driver;
1792         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1793                         "USB Host Controller";
1794         return hcd;
1795 }
1796 EXPORT_SYMBOL_GPL(usb_create_hcd);
1797
1798 static void hcd_release (struct kref *kref)
1799 {
1800         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1801
1802         kfree(hcd);
1803 }
1804
1805 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1806 {
1807         if (hcd)
1808                 kref_get (&hcd->kref);
1809         return hcd;
1810 }
1811 EXPORT_SYMBOL_GPL(usb_get_hcd);
1812
1813 void usb_put_hcd (struct usb_hcd *hcd)
1814 {
1815         if (hcd)
1816                 kref_put (&hcd->kref, hcd_release);
1817 }
1818 EXPORT_SYMBOL_GPL(usb_put_hcd);
1819
1820 /**
1821  * usb_add_hcd - finish generic HCD structure initialization and register
1822  * @hcd: the usb_hcd structure to initialize
1823  * @irqnum: Interrupt line to allocate
1824  * @irqflags: Interrupt type flags
1825  *
1826  * Finish the remaining parts of generic HCD initialization: allocate the
1827  * buffers of consistent memory, register the bus, request the IRQ line,
1828  * and call the driver's reset() and start() routines.
1829  */
1830 int usb_add_hcd(struct usb_hcd *hcd,
1831                 unsigned int irqnum, unsigned long irqflags)
1832 {
1833         int retval;
1834         struct usb_device *rhdev;
1835
1836         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1837
1838         hcd->authorized_default = hcd->wireless? 0 : 1;
1839         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1840
1841         /* HC is in reset state, but accessible.  Now do the one-time init,
1842          * bottom up so that hcds can customize the root hubs before khubd
1843          * starts talking to them.  (Note, bus id is assigned early too.)
1844          */
1845         if ((retval = hcd_buffer_create(hcd)) != 0) {
1846                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
1847                 return retval;
1848         }
1849
1850         if ((retval = usb_register_bus(&hcd->self)) < 0)
1851                 goto err_register_bus;
1852
1853         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1854                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
1855                 retval = -ENOMEM;
1856                 goto err_allocate_root_hub;
1857         }
1858         rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1859                         USB_SPEED_FULL;
1860         hcd->self.root_hub = rhdev;
1861
1862         /* wakeup flag init defaults to "everything works" for root hubs,
1863          * but drivers can override it in reset() if needed, along with
1864          * recording the overall controller's system wakeup capability.
1865          */
1866         device_init_wakeup(&rhdev->dev, 1);
1867
1868         /* "reset" is misnamed; its role is now one-time init. the controller
1869          * should already have been reset (and boot firmware kicked off etc).
1870          */
1871         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1872                 dev_err(hcd->self.controller, "can't setup\n");
1873                 goto err_hcd_driver_setup;
1874         }
1875
1876         /* NOTE: root hub and controller capabilities may not be the same */
1877         if (device_can_wakeup(hcd->self.controller)
1878                         && device_can_wakeup(&hcd->self.root_hub->dev))
1879                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1880
1881         /* enable irqs just before we start the controller */
1882         if (hcd->driver->irq) {
1883
1884                 /* IRQF_DISABLED doesn't work as advertised when used together
1885                  * with IRQF_SHARED. As usb_hcd_irq() will always disable
1886                  * interrupts we can remove it here.
1887                  */
1888                 irqflags &= ~IRQF_DISABLED;
1889
1890                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1891                                 hcd->driver->description, hcd->self.busnum);
1892                 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1893                                 hcd->irq_descr, hcd)) != 0) {
1894                         dev_err(hcd->self.controller,
1895                                         "request interrupt %d failed\n", irqnum);
1896                         goto err_request_irq;
1897                 }
1898                 hcd->irq = irqnum;
1899                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1900                                 (hcd->driver->flags & HCD_MEMORY) ?
1901                                         "io mem" : "io base",
1902                                         (unsigned long long)hcd->rsrc_start);
1903         } else {
1904                 hcd->irq = -1;
1905                 if (hcd->rsrc_start)
1906                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
1907                                         (hcd->driver->flags & HCD_MEMORY) ?
1908                                         "io mem" : "io base",
1909                                         (unsigned long long)hcd->rsrc_start);
1910         }
1911
1912         if ((retval = hcd->driver->start(hcd)) < 0) {
1913                 dev_err(hcd->self.controller, "startup error %d\n", retval);
1914                 goto err_hcd_driver_start;
1915         }
1916
1917         /* starting here, usbcore will pay attention to this root hub */
1918         rhdev->bus_mA = min(500u, hcd->power_budget);
1919         if ((retval = register_root_hub(hcd)) != 0)
1920                 goto err_register_root_hub;
1921
1922         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
1923         if (retval < 0) {
1924                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
1925                        retval);
1926                 goto error_create_attr_group;
1927         }
1928         if (hcd->uses_new_polling && hcd->poll_rh)
1929                 usb_hcd_poll_rh_status(hcd);
1930         return retval;
1931
1932 error_create_attr_group:
1933         mutex_lock(&usb_bus_list_lock);
1934         usb_disconnect(&hcd->self.root_hub);
1935         mutex_unlock(&usb_bus_list_lock);
1936 err_register_root_hub:
1937         hcd->driver->stop(hcd);
1938 err_hcd_driver_start:
1939         if (hcd->irq >= 0)
1940                 free_irq(irqnum, hcd);
1941 err_request_irq:
1942 err_hcd_driver_setup:
1943         hcd->self.root_hub = NULL;
1944         usb_put_dev(rhdev);
1945 err_allocate_root_hub:
1946         usb_deregister_bus(&hcd->self);
1947 err_register_bus:
1948         hcd_buffer_destroy(hcd);
1949         return retval;
1950
1951 EXPORT_SYMBOL_GPL(usb_add_hcd);
1952
1953 /**
1954  * usb_remove_hcd - shutdown processing for generic HCDs
1955  * @hcd: the usb_hcd structure to remove
1956  * Context: !in_interrupt()
1957  *
1958  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1959  * invoking the HCD's stop() method.
1960  */
1961 void usb_remove_hcd(struct usb_hcd *hcd)
1962 {
1963         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1964
1965         if (HC_IS_RUNNING (hcd->state))
1966                 hcd->state = HC_STATE_QUIESCING;
1967
1968         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1969         spin_lock_irq (&hcd_root_hub_lock);
1970         hcd->rh_registered = 0;
1971         spin_unlock_irq (&hcd_root_hub_lock);
1972
1973 #ifdef CONFIG_PM
1974         cancel_work_sync(&hcd->wakeup_work);
1975 #endif
1976
1977         sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
1978         mutex_lock(&usb_bus_list_lock);
1979         usb_disconnect(&hcd->self.root_hub);
1980         mutex_unlock(&usb_bus_list_lock);
1981
1982         hcd->driver->stop(hcd);
1983         hcd->state = HC_STATE_HALT;
1984
1985         hcd->poll_rh = 0;
1986         del_timer_sync(&hcd->rh_timer);
1987
1988         if (hcd->irq >= 0)
1989                 free_irq(hcd->irq, hcd);
1990         usb_deregister_bus(&hcd->self);
1991         hcd_buffer_destroy(hcd);
1992 }
1993 EXPORT_SYMBOL_GPL(usb_remove_hcd);
1994
1995 void
1996 usb_hcd_platform_shutdown(struct platform_device* dev)
1997 {
1998         struct usb_hcd *hcd = platform_get_drvdata(dev);
1999
2000         if (hcd->driver->shutdown)
2001                 hcd->driver->shutdown(hcd);
2002 }
2003 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2004
2005 /*-------------------------------------------------------------------------*/
2006
2007 #if defined(CONFIG_USB_MON)
2008
2009 struct usb_mon_operations *mon_ops;
2010
2011 /*
2012  * The registration is unlocked.
2013  * We do it this way because we do not want to lock in hot paths.
2014  *
2015  * Notice that the code is minimally error-proof. Because usbmon needs
2016  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2017  */
2018  
2019 int usb_mon_register (struct usb_mon_operations *ops)
2020 {
2021
2022         if (mon_ops)
2023                 return -EBUSY;
2024
2025         mon_ops = ops;
2026         mb();
2027         return 0;
2028 }
2029 EXPORT_SYMBOL_GPL (usb_mon_register);
2030
2031 void usb_mon_deregister (void)
2032 {
2033
2034         if (mon_ops == NULL) {
2035                 printk(KERN_ERR "USB: monitor was not registered\n");
2036                 return;
2037         }
2038         mon_ops = NULL;
2039         mb();
2040 }
2041 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2042
2043 #endif /* CONFIG_USB_MON */