at76c50x-usb: update to latest mac80211 hw scan api
[linux-2.6] / drivers / net / wireless / ath9k / main.c
1 /*
2  * Copyright (c) 2008 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19
20 #define ATH_PCI_VERSION "0.1"
21
22 static char *dev_info = "ath9k";
23
24 MODULE_AUTHOR("Atheros Communications");
25 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
26 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
27 MODULE_LICENSE("Dual BSD/GPL");
28
29 /* We use the hw_value as an index into our private channel structure */
30
31 #define CHAN2G(_freq, _idx)  { \
32         .center_freq = (_freq), \
33         .hw_value = (_idx), \
34         .max_power = 30, \
35 }
36
37 #define CHAN5G(_freq, _idx) { \
38         .band = IEEE80211_BAND_5GHZ, \
39         .center_freq = (_freq), \
40         .hw_value = (_idx), \
41         .max_power = 30, \
42 }
43
44 /* Some 2 GHz radios are actually tunable on 2312-2732
45  * on 5 MHz steps, we support the channels which we know
46  * we have calibration data for all cards though to make
47  * this static */
48 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
49         CHAN2G(2412, 0), /* Channel 1 */
50         CHAN2G(2417, 1), /* Channel 2 */
51         CHAN2G(2422, 2), /* Channel 3 */
52         CHAN2G(2427, 3), /* Channel 4 */
53         CHAN2G(2432, 4), /* Channel 5 */
54         CHAN2G(2437, 5), /* Channel 6 */
55         CHAN2G(2442, 6), /* Channel 7 */
56         CHAN2G(2447, 7), /* Channel 8 */
57         CHAN2G(2452, 8), /* Channel 9 */
58         CHAN2G(2457, 9), /* Channel 10 */
59         CHAN2G(2462, 10), /* Channel 11 */
60         CHAN2G(2467, 11), /* Channel 12 */
61         CHAN2G(2472, 12), /* Channel 13 */
62         CHAN2G(2484, 13), /* Channel 14 */
63 };
64
65 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
66  * on 5 MHz steps, we support the channels which we know
67  * we have calibration data for all cards though to make
68  * this static */
69 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
70         /* _We_ call this UNII 1 */
71         CHAN5G(5180, 14), /* Channel 36 */
72         CHAN5G(5200, 15), /* Channel 40 */
73         CHAN5G(5220, 16), /* Channel 44 */
74         CHAN5G(5240, 17), /* Channel 48 */
75         /* _We_ call this UNII 2 */
76         CHAN5G(5260, 18), /* Channel 52 */
77         CHAN5G(5280, 19), /* Channel 56 */
78         CHAN5G(5300, 20), /* Channel 60 */
79         CHAN5G(5320, 21), /* Channel 64 */
80         /* _We_ call this "Middle band" */
81         CHAN5G(5500, 22), /* Channel 100 */
82         CHAN5G(5520, 23), /* Channel 104 */
83         CHAN5G(5540, 24), /* Channel 108 */
84         CHAN5G(5560, 25), /* Channel 112 */
85         CHAN5G(5580, 26), /* Channel 116 */
86         CHAN5G(5600, 27), /* Channel 120 */
87         CHAN5G(5620, 28), /* Channel 124 */
88         CHAN5G(5640, 29), /* Channel 128 */
89         CHAN5G(5660, 30), /* Channel 132 */
90         CHAN5G(5680, 31), /* Channel 136 */
91         CHAN5G(5700, 32), /* Channel 140 */
92         /* _We_ call this UNII 3 */
93         CHAN5G(5745, 33), /* Channel 149 */
94         CHAN5G(5765, 34), /* Channel 153 */
95         CHAN5G(5785, 35), /* Channel 157 */
96         CHAN5G(5805, 36), /* Channel 161 */
97         CHAN5G(5825, 37), /* Channel 165 */
98 };
99
100 static void ath_cache_conf_rate(struct ath_softc *sc,
101                                 struct ieee80211_conf *conf)
102 {
103         switch (conf->channel->band) {
104         case IEEE80211_BAND_2GHZ:
105                 if (conf_is_ht20(conf))
106                         sc->cur_rate_table =
107                           sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
108                 else if (conf_is_ht40_minus(conf))
109                         sc->cur_rate_table =
110                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
111                 else if (conf_is_ht40_plus(conf))
112                         sc->cur_rate_table =
113                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
114                 else
115                         sc->cur_rate_table =
116                           sc->hw_rate_table[ATH9K_MODE_11G];
117                 break;
118         case IEEE80211_BAND_5GHZ:
119                 if (conf_is_ht20(conf))
120                         sc->cur_rate_table =
121                           sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
122                 else if (conf_is_ht40_minus(conf))
123                         sc->cur_rate_table =
124                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
125                 else if (conf_is_ht40_plus(conf))
126                         sc->cur_rate_table =
127                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
128                 else
129                         sc->cur_rate_table =
130                           sc->hw_rate_table[ATH9K_MODE_11A];
131                 break;
132         default:
133                 BUG_ON(1);
134                 break;
135         }
136 }
137
138 static void ath_update_txpow(struct ath_softc *sc)
139 {
140         struct ath_hw *ah = sc->sc_ah;
141         u32 txpow;
142
143         if (sc->curtxpow != sc->config.txpowlimit) {
144                 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
145                 /* read back in case value is clamped */
146                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
147                 sc->curtxpow = txpow;
148         }
149 }
150
151 static u8 parse_mpdudensity(u8 mpdudensity)
152 {
153         /*
154          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
155          *   0 for no restriction
156          *   1 for 1/4 us
157          *   2 for 1/2 us
158          *   3 for 1 us
159          *   4 for 2 us
160          *   5 for 4 us
161          *   6 for 8 us
162          *   7 for 16 us
163          */
164         switch (mpdudensity) {
165         case 0:
166                 return 0;
167         case 1:
168         case 2:
169         case 3:
170                 /* Our lower layer calculations limit our precision to
171                    1 microsecond */
172                 return 1;
173         case 4:
174                 return 2;
175         case 5:
176                 return 4;
177         case 6:
178                 return 8;
179         case 7:
180                 return 16;
181         default:
182                 return 0;
183         }
184 }
185
186 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
187 {
188         struct ath_rate_table *rate_table = NULL;
189         struct ieee80211_supported_band *sband;
190         struct ieee80211_rate *rate;
191         int i, maxrates;
192
193         switch (band) {
194         case IEEE80211_BAND_2GHZ:
195                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
196                 break;
197         case IEEE80211_BAND_5GHZ:
198                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
199                 break;
200         default:
201                 break;
202         }
203
204         if (rate_table == NULL)
205                 return;
206
207         sband = &sc->sbands[band];
208         rate = sc->rates[band];
209
210         if (rate_table->rate_cnt > ATH_RATE_MAX)
211                 maxrates = ATH_RATE_MAX;
212         else
213                 maxrates = rate_table->rate_cnt;
214
215         for (i = 0; i < maxrates; i++) {
216                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
217                 rate[i].hw_value = rate_table->info[i].ratecode;
218                 if (rate_table->info[i].short_preamble) {
219                         rate[i].hw_value_short = rate_table->info[i].ratecode |
220                                 rate_table->info[i].short_preamble;
221                         rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
222                 }
223                 sband->n_bitrates++;
224
225                 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
226                         rate[i].bitrate / 10, rate[i].hw_value);
227         }
228 }
229
230 /*
231  * Set/change channels.  If the channel is really being changed, it's done
232  * by reseting the chip.  To accomplish this we must first cleanup any pending
233  * DMA, then restart stuff.
234 */
235 static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
236 {
237         struct ath_hw *ah = sc->sc_ah;
238         bool fastcc = true, stopped;
239         struct ieee80211_hw *hw = sc->hw;
240         struct ieee80211_channel *channel = hw->conf.channel;
241         int r;
242
243         if (sc->sc_flags & SC_OP_INVALID)
244                 return -EIO;
245
246         ath9k_ps_wakeup(sc);
247
248         /*
249          * This is only performed if the channel settings have
250          * actually changed.
251          *
252          * To switch channels clear any pending DMA operations;
253          * wait long enough for the RX fifo to drain, reset the
254          * hardware at the new frequency, and then re-enable
255          * the relevant bits of the h/w.
256          */
257         ath9k_hw_set_interrupts(ah, 0);
258         ath_drain_all_txq(sc, false);
259         stopped = ath_stoprecv(sc);
260
261         /* XXX: do not flush receive queue here. We don't want
262          * to flush data frames already in queue because of
263          * changing channel. */
264
265         if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
266                 fastcc = false;
267
268         DPRINTF(sc, ATH_DBG_CONFIG,
269                 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
270                 sc->sc_ah->curchan->channel,
271                 channel->center_freq, sc->tx_chan_width);
272
273         spin_lock_bh(&sc->sc_resetlock);
274
275         r = ath9k_hw_reset(ah, hchan, fastcc);
276         if (r) {
277                 DPRINTF(sc, ATH_DBG_FATAL,
278                         "Unable to reset channel (%u Mhz) "
279                         "reset status %u\n",
280                         channel->center_freq, r);
281                 spin_unlock_bh(&sc->sc_resetlock);
282                 return r;
283         }
284         spin_unlock_bh(&sc->sc_resetlock);
285
286         sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
287         sc->sc_flags &= ~SC_OP_FULL_RESET;
288
289         if (ath_startrecv(sc) != 0) {
290                 DPRINTF(sc, ATH_DBG_FATAL,
291                         "Unable to restart recv logic\n");
292                 return -EIO;
293         }
294
295         ath_cache_conf_rate(sc, &hw->conf);
296         ath_update_txpow(sc);
297         ath9k_hw_set_interrupts(ah, sc->imask);
298         ath9k_ps_restore(sc);
299         return 0;
300 }
301
302 /*
303  *  This routine performs the periodic noise floor calibration function
304  *  that is used to adjust and optimize the chip performance.  This
305  *  takes environmental changes (location, temperature) into account.
306  *  When the task is complete, it reschedules itself depending on the
307  *  appropriate interval that was calculated.
308  */
309 static void ath_ani_calibrate(unsigned long data)
310 {
311         struct ath_softc *sc;
312         struct ath_hw *ah;
313         bool longcal = false;
314         bool shortcal = false;
315         bool aniflag = false;
316         unsigned int timestamp = jiffies_to_msecs(jiffies);
317         u32 cal_interval;
318
319         sc = (struct ath_softc *)data;
320         ah = sc->sc_ah;
321
322         /*
323         * don't calibrate when we're scanning.
324         * we are most likely not on our home channel.
325         */
326         if (sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)
327                 return;
328
329         /* Long calibration runs independently of short calibration. */
330         if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
331                 longcal = true;
332                 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
333                 sc->ani.longcal_timer = timestamp;
334         }
335
336         /* Short calibration applies only while caldone is false */
337         if (!sc->ani.caldone) {
338                 if ((timestamp - sc->ani.shortcal_timer) >=
339                     ATH_SHORT_CALINTERVAL) {
340                         shortcal = true;
341                         DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
342                         sc->ani.shortcal_timer = timestamp;
343                         sc->ani.resetcal_timer = timestamp;
344                 }
345         } else {
346                 if ((timestamp - sc->ani.resetcal_timer) >=
347                     ATH_RESTART_CALINTERVAL) {
348                         sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
349                         if (sc->ani.caldone)
350                                 sc->ani.resetcal_timer = timestamp;
351                 }
352         }
353
354         /* Verify whether we must check ANI */
355         if ((timestamp - sc->ani.checkani_timer) >=
356            ATH_ANI_POLLINTERVAL) {
357                 aniflag = true;
358                 sc->ani.checkani_timer = timestamp;
359         }
360
361         /* Skip all processing if there's nothing to do. */
362         if (longcal || shortcal || aniflag) {
363                 /* Call ANI routine if necessary */
364                 if (aniflag)
365                         ath9k_hw_ani_monitor(ah, &sc->nodestats,
366                                              ah->curchan);
367
368                 /* Perform calibration if necessary */
369                 if (longcal || shortcal) {
370                         bool iscaldone = false;
371
372                         if (ath9k_hw_calibrate(ah, ah->curchan,
373                                                sc->rx_chainmask, longcal,
374                                                &iscaldone)) {
375                                 if (longcal)
376                                         sc->ani.noise_floor =
377                                                 ath9k_hw_getchan_noise(ah,
378                                                                ah->curchan);
379
380                                 DPRINTF(sc, ATH_DBG_ANI,
381                                         "calibrate chan %u/%x nf: %d\n",
382                                         ah->curchan->channel,
383                                         ah->curchan->channelFlags,
384                                         sc->ani.noise_floor);
385                         } else {
386                                 DPRINTF(sc, ATH_DBG_ANY,
387                                         "calibrate chan %u/%x failed\n",
388                                         ah->curchan->channel,
389                                         ah->curchan->channelFlags);
390                         }
391                         sc->ani.caldone = iscaldone;
392                 }
393         }
394
395         /*
396         * Set timer interval based on previous results.
397         * The interval must be the shortest necessary to satisfy ANI,
398         * short calibration and long calibration.
399         */
400         cal_interval = ATH_LONG_CALINTERVAL;
401         if (sc->sc_ah->config.enable_ani)
402                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
403         if (!sc->ani.caldone)
404                 cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL);
405
406         mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
407 }
408
409 /*
410  * Update tx/rx chainmask. For legacy association,
411  * hard code chainmask to 1x1, for 11n association, use
412  * the chainmask configuration, for bt coexistence, use
413  * the chainmask configuration even in legacy mode.
414  */
415 static void ath_update_chainmask(struct ath_softc *sc, int is_ht)
416 {
417         sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
418         if (is_ht ||
419             (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
420                 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
421                 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
422         } else {
423                 sc->tx_chainmask = 1;
424                 sc->rx_chainmask = 1;
425         }
426
427         DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
428                 sc->tx_chainmask, sc->rx_chainmask);
429 }
430
431 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
432 {
433         struct ath_node *an;
434
435         an = (struct ath_node *)sta->drv_priv;
436
437         if (sc->sc_flags & SC_OP_TXAGGR)
438                 ath_tx_node_init(sc, an);
439
440         an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
441                              sta->ht_cap.ampdu_factor);
442         an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
443 }
444
445 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
446 {
447         struct ath_node *an = (struct ath_node *)sta->drv_priv;
448
449         if (sc->sc_flags & SC_OP_TXAGGR)
450                 ath_tx_node_cleanup(sc, an);
451 }
452
453 static void ath9k_tasklet(unsigned long data)
454 {
455         struct ath_softc *sc = (struct ath_softc *)data;
456         u32 status = sc->intrstatus;
457
458         if (status & ATH9K_INT_FATAL) {
459                 /* need a chip reset */
460                 ath_reset(sc, false);
461                 return;
462         } else {
463
464                 if (status &
465                     (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
466                         spin_lock_bh(&sc->rx.rxflushlock);
467                         ath_rx_tasklet(sc, 0);
468                         spin_unlock_bh(&sc->rx.rxflushlock);
469                 }
470                 /* XXX: optimize this */
471                 if (status & ATH9K_INT_TX)
472                         ath_tx_tasklet(sc);
473         }
474
475         /* re-enable hardware interrupt */
476         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
477 }
478
479 irqreturn_t ath_isr(int irq, void *dev)
480 {
481         struct ath_softc *sc = dev;
482         struct ath_hw *ah = sc->sc_ah;
483         enum ath9k_int status;
484         bool sched = false;
485
486         do {
487                 if (sc->sc_flags & SC_OP_INVALID) {
488                         /*
489                          * The hardware is not ready/present, don't
490                          * touch anything. Note this can happen early
491                          * on if the IRQ is shared.
492                          */
493                         return IRQ_NONE;
494                 }
495                 if (!ath9k_hw_intrpend(ah)) {   /* shared irq, not for us */
496                         return IRQ_NONE;
497                 }
498
499                 /*
500                  * Figure out the reason(s) for the interrupt.  Note
501                  * that the hal returns a pseudo-ISR that may include
502                  * bits we haven't explicitly enabled so we mask the
503                  * value to insure we only process bits we requested.
504                  */
505                 ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
506
507                 status &= sc->imask;    /* discard unasked-for bits */
508
509                 /*
510                  * If there are no status bits set, then this interrupt was not
511                  * for me (should have been caught above).
512                  */
513                 if (!status)
514                         return IRQ_NONE;
515
516                 sc->intrstatus = status;
517
518                 if (status & ATH9K_INT_FATAL) {
519                         /* need a chip reset */
520                         sched = true;
521                 } else if (status & ATH9K_INT_RXORN) {
522                         /* need a chip reset */
523                         sched = true;
524                 } else {
525                         if (status & ATH9K_INT_SWBA) {
526                                 /* schedule a tasklet for beacon handling */
527                                 tasklet_schedule(&sc->bcon_tasklet);
528                         }
529                         if (status & ATH9K_INT_RXEOL) {
530                                 /*
531                                  * NB: the hardware should re-read the link when
532                                  *     RXE bit is written, but it doesn't work
533                                  *     at least on older hardware revs.
534                                  */
535                                 sched = true;
536                         }
537
538                         if (status & ATH9K_INT_TXURN)
539                                 /* bump tx trigger level */
540                                 ath9k_hw_updatetxtriglevel(ah, true);
541                         /* XXX: optimize this */
542                         if (status & ATH9K_INT_RX)
543                                 sched = true;
544                         if (status & ATH9K_INT_TX)
545                                 sched = true;
546                         if (status & ATH9K_INT_BMISS)
547                                 sched = true;
548                         /* carrier sense timeout */
549                         if (status & ATH9K_INT_CST)
550                                 sched = true;
551                         if (status & ATH9K_INT_MIB) {
552                                 /*
553                                  * Disable interrupts until we service the MIB
554                                  * interrupt; otherwise it will continue to
555                                  * fire.
556                                  */
557                                 ath9k_hw_set_interrupts(ah, 0);
558                                 /*
559                                  * Let the hal handle the event. We assume
560                                  * it will clear whatever condition caused
561                                  * the interrupt.
562                                  */
563                                 ath9k_hw_procmibevent(ah, &sc->nodestats);
564                                 ath9k_hw_set_interrupts(ah, sc->imask);
565                         }
566                         if (status & ATH9K_INT_TIM_TIMER) {
567                                 if (!(ah->caps.hw_caps &
568                                       ATH9K_HW_CAP_AUTOSLEEP)) {
569                                         /* Clear RxAbort bit so that we can
570                                          * receive frames */
571                                         ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
572                                         ath9k_hw_setrxabort(ah, 0);
573                                         sched = true;
574                                         sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
575                                 }
576                         }
577                         if (status & ATH9K_INT_TSFOOR) {
578                                 /* FIXME: Handle this interrupt for power save */
579                                 sched = true;
580                         }
581                 }
582         } while (0);
583
584         ath_debug_stat_interrupt(sc, status);
585
586         if (sched) {
587                 /* turn off every interrupt except SWBA */
588                 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
589                 tasklet_schedule(&sc->intr_tq);
590         }
591
592         return IRQ_HANDLED;
593 }
594
595 static u32 ath_get_extchanmode(struct ath_softc *sc,
596                                struct ieee80211_channel *chan,
597                                enum nl80211_channel_type channel_type)
598 {
599         u32 chanmode = 0;
600
601         switch (chan->band) {
602         case IEEE80211_BAND_2GHZ:
603                 switch(channel_type) {
604                 case NL80211_CHAN_NO_HT:
605                 case NL80211_CHAN_HT20:
606                         chanmode = CHANNEL_G_HT20;
607                         break;
608                 case NL80211_CHAN_HT40PLUS:
609                         chanmode = CHANNEL_G_HT40PLUS;
610                         break;
611                 case NL80211_CHAN_HT40MINUS:
612                         chanmode = CHANNEL_G_HT40MINUS;
613                         break;
614                 }
615                 break;
616         case IEEE80211_BAND_5GHZ:
617                 switch(channel_type) {
618                 case NL80211_CHAN_NO_HT:
619                 case NL80211_CHAN_HT20:
620                         chanmode = CHANNEL_A_HT20;
621                         break;
622                 case NL80211_CHAN_HT40PLUS:
623                         chanmode = CHANNEL_A_HT40PLUS;
624                         break;
625                 case NL80211_CHAN_HT40MINUS:
626                         chanmode = CHANNEL_A_HT40MINUS;
627                         break;
628                 }
629                 break;
630         default:
631                 break;
632         }
633
634         return chanmode;
635 }
636
637 static int ath_keyset(struct ath_softc *sc, u16 keyix,
638                struct ath9k_keyval *hk, const u8 mac[ETH_ALEN])
639 {
640         bool status;
641
642         status = ath9k_hw_set_keycache_entry(sc->sc_ah,
643                 keyix, hk, mac, false);
644
645         return status != false;
646 }
647
648 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
649                            struct ath9k_keyval *hk,
650                            const u8 *addr)
651 {
652         const u8 *key_rxmic;
653         const u8 *key_txmic;
654
655         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
656         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
657
658         if (addr == NULL) {
659                 /* Group key installation */
660                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
661                 return ath_keyset(sc, keyix, hk, addr);
662         }
663         if (!sc->splitmic) {
664                 /*
665                  * data key goes at first index,
666                  * the hal handles the MIC keys at index+64.
667                  */
668                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
669                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
670                 return ath_keyset(sc, keyix, hk, addr);
671         }
672         /*
673          * TX key goes at first index, RX key at +32.
674          * The hal handles the MIC keys at index+64.
675          */
676         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
677         if (!ath_keyset(sc, keyix, hk, NULL)) {
678                 /* Txmic entry failed. No need to proceed further */
679                 DPRINTF(sc, ATH_DBG_KEYCACHE,
680                         "Setting TX MIC Key Failed\n");
681                 return 0;
682         }
683
684         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
685         /* XXX delete tx key on failure? */
686         return ath_keyset(sc, keyix + 32, hk, addr);
687 }
688
689 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
690 {
691         int i;
692
693         for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
694                 if (test_bit(i, sc->keymap) ||
695                     test_bit(i + 64, sc->keymap))
696                         continue; /* At least one part of TKIP key allocated */
697                 if (sc->splitmic &&
698                     (test_bit(i + 32, sc->keymap) ||
699                      test_bit(i + 64 + 32, sc->keymap)))
700                         continue; /* At least one part of TKIP key allocated */
701
702                 /* Found a free slot for a TKIP key */
703                 return i;
704         }
705         return -1;
706 }
707
708 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
709 {
710         int i;
711
712         /* First, try to find slots that would not be available for TKIP. */
713         if (sc->splitmic) {
714                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
715                         if (!test_bit(i, sc->keymap) &&
716                             (test_bit(i + 32, sc->keymap) ||
717                              test_bit(i + 64, sc->keymap) ||
718                              test_bit(i + 64 + 32, sc->keymap)))
719                                 return i;
720                         if (!test_bit(i + 32, sc->keymap) &&
721                             (test_bit(i, sc->keymap) ||
722                              test_bit(i + 64, sc->keymap) ||
723                              test_bit(i + 64 + 32, sc->keymap)))
724                                 return i + 32;
725                         if (!test_bit(i + 64, sc->keymap) &&
726                             (test_bit(i , sc->keymap) ||
727                              test_bit(i + 32, sc->keymap) ||
728                              test_bit(i + 64 + 32, sc->keymap)))
729                                 return i + 64;
730                         if (!test_bit(i + 64 + 32, sc->keymap) &&
731                             (test_bit(i, sc->keymap) ||
732                              test_bit(i + 32, sc->keymap) ||
733                              test_bit(i + 64, sc->keymap)))
734                                 return i + 64 + 32;
735                 }
736         } else {
737                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
738                         if (!test_bit(i, sc->keymap) &&
739                             test_bit(i + 64, sc->keymap))
740                                 return i;
741                         if (test_bit(i, sc->keymap) &&
742                             !test_bit(i + 64, sc->keymap))
743                                 return i + 64;
744                 }
745         }
746
747         /* No partially used TKIP slots, pick any available slot */
748         for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
749                 /* Do not allow slots that could be needed for TKIP group keys
750                  * to be used. This limitation could be removed if we know that
751                  * TKIP will not be used. */
752                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
753                         continue;
754                 if (sc->splitmic) {
755                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
756                                 continue;
757                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
758                                 continue;
759                 }
760
761                 if (!test_bit(i, sc->keymap))
762                         return i; /* Found a free slot for a key */
763         }
764
765         /* No free slot found */
766         return -1;
767 }
768
769 static int ath_key_config(struct ath_softc *sc,
770                           struct ieee80211_sta *sta,
771                           struct ieee80211_key_conf *key)
772 {
773         struct ath9k_keyval hk;
774         const u8 *mac = NULL;
775         int ret = 0;
776         int idx;
777
778         memset(&hk, 0, sizeof(hk));
779
780         switch (key->alg) {
781         case ALG_WEP:
782                 hk.kv_type = ATH9K_CIPHER_WEP;
783                 break;
784         case ALG_TKIP:
785                 hk.kv_type = ATH9K_CIPHER_TKIP;
786                 break;
787         case ALG_CCMP:
788                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
789                 break;
790         default:
791                 return -EOPNOTSUPP;
792         }
793
794         hk.kv_len = key->keylen;
795         memcpy(hk.kv_val, key->key, key->keylen);
796
797         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
798                 /* For now, use the default keys for broadcast keys. This may
799                  * need to change with virtual interfaces. */
800                 idx = key->keyidx;
801         } else if (key->keyidx) {
802                 struct ieee80211_vif *vif;
803
804                 if (WARN_ON(!sta))
805                         return -EOPNOTSUPP;
806                 mac = sta->addr;
807
808                 vif = sc->vifs[0];
809                 if (vif->type != NL80211_IFTYPE_AP) {
810                         /* Only keyidx 0 should be used with unicast key, but
811                          * allow this for client mode for now. */
812                         idx = key->keyidx;
813                 } else
814                         return -EIO;
815         } else {
816                 if (WARN_ON(!sta))
817                         return -EOPNOTSUPP;
818                 mac = sta->addr;
819
820                 if (key->alg == ALG_TKIP)
821                         idx = ath_reserve_key_cache_slot_tkip(sc);
822                 else
823                         idx = ath_reserve_key_cache_slot(sc);
824                 if (idx < 0)
825                         return -ENOSPC; /* no free key cache entries */
826         }
827
828         if (key->alg == ALG_TKIP)
829                 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac);
830         else
831                 ret = ath_keyset(sc, idx, &hk, mac);
832
833         if (!ret)
834                 return -EIO;
835
836         set_bit(idx, sc->keymap);
837         if (key->alg == ALG_TKIP) {
838                 set_bit(idx + 64, sc->keymap);
839                 if (sc->splitmic) {
840                         set_bit(idx + 32, sc->keymap);
841                         set_bit(idx + 64 + 32, sc->keymap);
842                 }
843         }
844
845         return idx;
846 }
847
848 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
849 {
850         ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
851         if (key->hw_key_idx < IEEE80211_WEP_NKID)
852                 return;
853
854         clear_bit(key->hw_key_idx, sc->keymap);
855         if (key->alg != ALG_TKIP)
856                 return;
857
858         clear_bit(key->hw_key_idx + 64, sc->keymap);
859         if (sc->splitmic) {
860                 clear_bit(key->hw_key_idx + 32, sc->keymap);
861                 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
862         }
863 }
864
865 static void setup_ht_cap(struct ath_softc *sc,
866                          struct ieee80211_sta_ht_cap *ht_info)
867 {
868 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3       /* 2 ^ 16 */
869 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6          /* 8 usec */
870
871         ht_info->ht_supported = true;
872         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
873                        IEEE80211_HT_CAP_SM_PS |
874                        IEEE80211_HT_CAP_SGI_40 |
875                        IEEE80211_HT_CAP_DSSSCCK40;
876
877         ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
878         ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
879
880         /* set up supported mcs set */
881         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
882
883         switch(sc->rx_chainmask) {
884         case 1:
885                 ht_info->mcs.rx_mask[0] = 0xff;
886                 break;
887         case 3:
888         case 5:
889         case 7:
890         default:
891                 ht_info->mcs.rx_mask[0] = 0xff;
892                 ht_info->mcs.rx_mask[1] = 0xff;
893                 break;
894         }
895
896         ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
897 }
898
899 static void ath9k_bss_assoc_info(struct ath_softc *sc,
900                                  struct ieee80211_vif *vif,
901                                  struct ieee80211_bss_conf *bss_conf)
902 {
903         struct ath_vif *avp = (void *)vif->drv_priv;
904
905         if (bss_conf->assoc) {
906                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
907                         bss_conf->aid, sc->curbssid);
908
909                 /* New association, store aid */
910                 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
911                         sc->curaid = bss_conf->aid;
912                         ath9k_hw_write_associd(sc);
913                 }
914
915                 /* Configure the beacon */
916                 ath_beacon_config(sc, 0);
917                 sc->sc_flags |= SC_OP_BEACONS;
918
919                 /* Reset rssi stats */
920                 sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
921                 sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
922                 sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
923                 sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
924
925                 /* Start ANI */
926                 mod_timer(&sc->ani.timer,
927                         jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
928
929         } else {
930                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
931                 sc->curaid = 0;
932         }
933 }
934
935 /********************************/
936 /*       LED functions          */
937 /********************************/
938
939 static void ath_led_blink_work(struct work_struct *work)
940 {
941         struct ath_softc *sc = container_of(work, struct ath_softc,
942                                             ath_led_blink_work.work);
943
944         if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
945                 return;
946         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
947                           (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
948
949         queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
950                            (sc->sc_flags & SC_OP_LED_ON) ?
951                            msecs_to_jiffies(sc->led_off_duration) :
952                            msecs_to_jiffies(sc->led_on_duration));
953
954         sc->led_on_duration =
955                         max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25);
956         sc->led_off_duration =
957                         max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10);
958         sc->led_on_cnt = sc->led_off_cnt = 0;
959         if (sc->sc_flags & SC_OP_LED_ON)
960                 sc->sc_flags &= ~SC_OP_LED_ON;
961         else
962                 sc->sc_flags |= SC_OP_LED_ON;
963 }
964
965 static void ath_led_brightness(struct led_classdev *led_cdev,
966                                enum led_brightness brightness)
967 {
968         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
969         struct ath_softc *sc = led->sc;
970
971         switch (brightness) {
972         case LED_OFF:
973                 if (led->led_type == ATH_LED_ASSOC ||
974                     led->led_type == ATH_LED_RADIO) {
975                         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
976                                 (led->led_type == ATH_LED_RADIO));
977                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
978                         if (led->led_type == ATH_LED_RADIO)
979                                 sc->sc_flags &= ~SC_OP_LED_ON;
980                 } else {
981                         sc->led_off_cnt++;
982                 }
983                 break;
984         case LED_FULL:
985                 if (led->led_type == ATH_LED_ASSOC) {
986                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
987                         queue_delayed_work(sc->hw->workqueue,
988                                            &sc->ath_led_blink_work, 0);
989                 } else if (led->led_type == ATH_LED_RADIO) {
990                         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
991                         sc->sc_flags |= SC_OP_LED_ON;
992                 } else {
993                         sc->led_on_cnt++;
994                 }
995                 break;
996         default:
997                 break;
998         }
999 }
1000
1001 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1002                             char *trigger)
1003 {
1004         int ret;
1005
1006         led->sc = sc;
1007         led->led_cdev.name = led->name;
1008         led->led_cdev.default_trigger = trigger;
1009         led->led_cdev.brightness_set = ath_led_brightness;
1010
1011         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1012         if (ret)
1013                 DPRINTF(sc, ATH_DBG_FATAL,
1014                         "Failed to register led:%s", led->name);
1015         else
1016                 led->registered = 1;
1017         return ret;
1018 }
1019
1020 static void ath_unregister_led(struct ath_led *led)
1021 {
1022         if (led->registered) {
1023                 led_classdev_unregister(&led->led_cdev);
1024                 led->registered = 0;
1025         }
1026 }
1027
1028 static void ath_deinit_leds(struct ath_softc *sc)
1029 {
1030         cancel_delayed_work_sync(&sc->ath_led_blink_work);
1031         ath_unregister_led(&sc->assoc_led);
1032         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1033         ath_unregister_led(&sc->tx_led);
1034         ath_unregister_led(&sc->rx_led);
1035         ath_unregister_led(&sc->radio_led);
1036         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1037 }
1038
1039 static void ath_init_leds(struct ath_softc *sc)
1040 {
1041         char *trigger;
1042         int ret;
1043
1044         /* Configure gpio 1 for output */
1045         ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1046                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1047         /* LED off, active low */
1048         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1049
1050         INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1051
1052         trigger = ieee80211_get_radio_led_name(sc->hw);
1053         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1054                 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1055         ret = ath_register_led(sc, &sc->radio_led, trigger);
1056         sc->radio_led.led_type = ATH_LED_RADIO;
1057         if (ret)
1058                 goto fail;
1059
1060         trigger = ieee80211_get_assoc_led_name(sc->hw);
1061         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1062                 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1063         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1064         sc->assoc_led.led_type = ATH_LED_ASSOC;
1065         if (ret)
1066                 goto fail;
1067
1068         trigger = ieee80211_get_tx_led_name(sc->hw);
1069         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1070                 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1071         ret = ath_register_led(sc, &sc->tx_led, trigger);
1072         sc->tx_led.led_type = ATH_LED_TX;
1073         if (ret)
1074                 goto fail;
1075
1076         trigger = ieee80211_get_rx_led_name(sc->hw);
1077         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1078                 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1079         ret = ath_register_led(sc, &sc->rx_led, trigger);
1080         sc->rx_led.led_type = ATH_LED_RX;
1081         if (ret)
1082                 goto fail;
1083
1084         return;
1085
1086 fail:
1087         ath_deinit_leds(sc);
1088 }
1089
1090 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1091
1092 /*******************/
1093 /*      Rfkill     */
1094 /*******************/
1095
1096 static void ath_radio_enable(struct ath_softc *sc)
1097 {
1098         struct ath_hw *ah = sc->sc_ah;
1099         struct ieee80211_channel *channel = sc->hw->conf.channel;
1100         int r;
1101
1102         ath9k_ps_wakeup(sc);
1103         spin_lock_bh(&sc->sc_resetlock);
1104
1105         r = ath9k_hw_reset(ah, ah->curchan, false);
1106
1107         if (r) {
1108                 DPRINTF(sc, ATH_DBG_FATAL,
1109                         "Unable to reset channel %u (%uMhz) ",
1110                         "reset status %u\n",
1111                         channel->center_freq, r);
1112         }
1113         spin_unlock_bh(&sc->sc_resetlock);
1114
1115         ath_update_txpow(sc);
1116         if (ath_startrecv(sc) != 0) {
1117                 DPRINTF(sc, ATH_DBG_FATAL,
1118                         "Unable to restart recv logic\n");
1119                 return;
1120         }
1121
1122         if (sc->sc_flags & SC_OP_BEACONS)
1123                 ath_beacon_config(sc, ATH_IF_ID_ANY);   /* restart beacons */
1124
1125         /* Re-Enable  interrupts */
1126         ath9k_hw_set_interrupts(ah, sc->imask);
1127
1128         /* Enable LED */
1129         ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1130                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1131         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1132
1133         ieee80211_wake_queues(sc->hw);
1134         ath9k_ps_restore(sc);
1135 }
1136
1137 static void ath_radio_disable(struct ath_softc *sc)
1138 {
1139         struct ath_hw *ah = sc->sc_ah;
1140         struct ieee80211_channel *channel = sc->hw->conf.channel;
1141         int r;
1142
1143         ath9k_ps_wakeup(sc);
1144         ieee80211_stop_queues(sc->hw);
1145
1146         /* Disable LED */
1147         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1148         ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1149
1150         /* Disable interrupts */
1151         ath9k_hw_set_interrupts(ah, 0);
1152
1153         ath_drain_all_txq(sc, false);   /* clear pending tx frames */
1154         ath_stoprecv(sc);               /* turn off frame recv */
1155         ath_flushrecv(sc);              /* flush recv queue */
1156
1157         spin_lock_bh(&sc->sc_resetlock);
1158         r = ath9k_hw_reset(ah, ah->curchan, false);
1159         if (r) {
1160                 DPRINTF(sc, ATH_DBG_FATAL,
1161                         "Unable to reset channel %u (%uMhz) "
1162                         "reset status %u\n",
1163                         channel->center_freq, r);
1164         }
1165         spin_unlock_bh(&sc->sc_resetlock);
1166
1167         ath9k_hw_phy_disable(ah);
1168         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1169         ath9k_ps_restore(sc);
1170 }
1171
1172 static bool ath_is_rfkill_set(struct ath_softc *sc)
1173 {
1174         struct ath_hw *ah = sc->sc_ah;
1175
1176         return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1177                                   ah->rfkill_polarity;
1178 }
1179
1180 /* h/w rfkill poll function */
1181 static void ath_rfkill_poll(struct work_struct *work)
1182 {
1183         struct ath_softc *sc = container_of(work, struct ath_softc,
1184                                             rf_kill.rfkill_poll.work);
1185         bool radio_on;
1186
1187         if (sc->sc_flags & SC_OP_INVALID)
1188                 return;
1189
1190         radio_on = !ath_is_rfkill_set(sc);
1191
1192         /*
1193          * enable/disable radio only when there is a
1194          * state change in RF switch
1195          */
1196         if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1197                 enum rfkill_state state;
1198
1199                 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1200                         state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1201                                 : RFKILL_STATE_HARD_BLOCKED;
1202                 } else if (radio_on) {
1203                         ath_radio_enable(sc);
1204                         state = RFKILL_STATE_UNBLOCKED;
1205                 } else {
1206                         ath_radio_disable(sc);
1207                         state = RFKILL_STATE_HARD_BLOCKED;
1208                 }
1209
1210                 if (state == RFKILL_STATE_HARD_BLOCKED)
1211                         sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1212                 else
1213                         sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1214
1215                 rfkill_force_state(sc->rf_kill.rfkill, state);
1216         }
1217
1218         queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1219                            msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1220 }
1221
1222 /* s/w rfkill handler */
1223 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1224 {
1225         struct ath_softc *sc = data;
1226
1227         switch (state) {
1228         case RFKILL_STATE_SOFT_BLOCKED:
1229                 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1230                     SC_OP_RFKILL_SW_BLOCKED)))
1231                         ath_radio_disable(sc);
1232                 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1233                 return 0;
1234         case RFKILL_STATE_UNBLOCKED:
1235                 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1236                         sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1237                         if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1238                                 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1239                                         "radio as it is disabled by h/w\n");
1240                                 return -EPERM;
1241                         }
1242                         ath_radio_enable(sc);
1243                 }
1244                 return 0;
1245         default:
1246                 return -EINVAL;
1247         }
1248 }
1249
1250 /* Init s/w rfkill */
1251 static int ath_init_sw_rfkill(struct ath_softc *sc)
1252 {
1253         sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1254                                              RFKILL_TYPE_WLAN);
1255         if (!sc->rf_kill.rfkill) {
1256                 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1257                 return -ENOMEM;
1258         }
1259
1260         snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1261                 "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
1262         sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1263         sc->rf_kill.rfkill->data = sc;
1264         sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1265         sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1266         sc->rf_kill.rfkill->user_claim_unsupported = 1;
1267
1268         return 0;
1269 }
1270
1271 /* Deinitialize rfkill */
1272 static void ath_deinit_rfkill(struct ath_softc *sc)
1273 {
1274         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1275                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1276
1277         if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1278                 rfkill_unregister(sc->rf_kill.rfkill);
1279                 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1280                 sc->rf_kill.rfkill = NULL;
1281         }
1282 }
1283
1284 static int ath_start_rfkill_poll(struct ath_softc *sc)
1285 {
1286         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1287                 queue_delayed_work(sc->hw->workqueue,
1288                                    &sc->rf_kill.rfkill_poll, 0);
1289
1290         if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1291                 if (rfkill_register(sc->rf_kill.rfkill)) {
1292                         DPRINTF(sc, ATH_DBG_FATAL,
1293                                 "Unable to register rfkill\n");
1294                         rfkill_free(sc->rf_kill.rfkill);
1295
1296                         /* Deinitialize the device */
1297                         ath_cleanup(sc);
1298                         return -EIO;
1299                 } else {
1300                         sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1301                 }
1302         }
1303
1304         return 0;
1305 }
1306 #endif /* CONFIG_RFKILL */
1307
1308 void ath_cleanup(struct ath_softc *sc)
1309 {
1310         ath_detach(sc);
1311         free_irq(sc->irq, sc);
1312         ath_bus_cleanup(sc);
1313         ieee80211_free_hw(sc->hw);
1314 }
1315
1316 void ath_detach(struct ath_softc *sc)
1317 {
1318         struct ieee80211_hw *hw = sc->hw;
1319         int i = 0;
1320
1321         ath9k_ps_wakeup(sc);
1322
1323         DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1324
1325 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1326         ath_deinit_rfkill(sc);
1327 #endif
1328         ath_deinit_leds(sc);
1329
1330         ieee80211_unregister_hw(hw);
1331         ath_rx_cleanup(sc);
1332         ath_tx_cleanup(sc);
1333
1334         tasklet_kill(&sc->intr_tq);
1335         tasklet_kill(&sc->bcon_tasklet);
1336
1337         if (!(sc->sc_flags & SC_OP_INVALID))
1338                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1339
1340         /* cleanup tx queues */
1341         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1342                 if (ATH_TXQ_SETUP(sc, i))
1343                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1344
1345         ath9k_hw_detach(sc->sc_ah);
1346         ath9k_exit_debug(sc);
1347         ath9k_ps_restore(sc);
1348 }
1349
1350 static int ath_init(u16 devid, struct ath_softc *sc)
1351 {
1352         struct ath_hw *ah = NULL;
1353         int status;
1354         int error = 0, i;
1355         int csz = 0;
1356
1357         /* XXX: hardware will not be ready until ath_open() being called */
1358         sc->sc_flags |= SC_OP_INVALID;
1359
1360         if (ath9k_init_debug(sc) < 0)
1361                 printk(KERN_ERR "Unable to create debugfs files\n");
1362
1363         spin_lock_init(&sc->sc_resetlock);
1364         mutex_init(&sc->mutex);
1365         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1366         tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
1367                      (unsigned long)sc);
1368
1369         /*
1370          * Cache line size is used to size and align various
1371          * structures used to communicate with the hardware.
1372          */
1373         ath_read_cachesize(sc, &csz);
1374         /* XXX assert csz is non-zero */
1375         sc->cachelsz = csz << 2;        /* convert to bytes */
1376
1377         ah = ath9k_hw_attach(devid, sc, &status);
1378         if (ah == NULL) {
1379                 DPRINTF(sc, ATH_DBG_FATAL,
1380                         "Unable to attach hardware; HAL status %d\n", status);
1381                 error = -ENXIO;
1382                 goto bad;
1383         }
1384         sc->sc_ah = ah;
1385
1386         /* Get the hardware key cache size. */
1387         sc->keymax = ah->caps.keycache_size;
1388         if (sc->keymax > ATH_KEYMAX) {
1389                 DPRINTF(sc, ATH_DBG_KEYCACHE,
1390                         "Warning, using only %u entries in %u key cache\n",
1391                         ATH_KEYMAX, sc->keymax);
1392                 sc->keymax = ATH_KEYMAX;
1393         }
1394
1395         /*
1396          * Reset the key cache since some parts do not
1397          * reset the contents on initial power up.
1398          */
1399         for (i = 0; i < sc->keymax; i++)
1400                 ath9k_hw_keyreset(ah, (u16) i);
1401
1402         if (ath9k_regd_init(sc->sc_ah))
1403                 goto bad;
1404
1405         /* default to MONITOR mode */
1406         sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1407
1408         /* Setup rate tables */
1409
1410         ath_rate_attach(sc);
1411         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1412         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1413
1414         /*
1415          * Allocate hardware transmit queues: one queue for
1416          * beacon frames and one data queue for each QoS
1417          * priority.  Note that the hal handles reseting
1418          * these queues at the needed time.
1419          */
1420         sc->beacon.beaconq = ath_beaconq_setup(ah);
1421         if (sc->beacon.beaconq == -1) {
1422                 DPRINTF(sc, ATH_DBG_FATAL,
1423                         "Unable to setup a beacon xmit queue\n");
1424                 error = -EIO;
1425                 goto bad2;
1426         }
1427         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1428         if (sc->beacon.cabq == NULL) {
1429                 DPRINTF(sc, ATH_DBG_FATAL,
1430                         "Unable to setup CAB xmit queue\n");
1431                 error = -EIO;
1432                 goto bad2;
1433         }
1434
1435         sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1436         ath_cabq_update(sc);
1437
1438         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1439                 sc->tx.hwq_map[i] = -1;
1440
1441         /* Setup data queues */
1442         /* NB: ensure BK queue is the lowest priority h/w queue */
1443         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1444                 DPRINTF(sc, ATH_DBG_FATAL,
1445                         "Unable to setup xmit queue for BK traffic\n");
1446                 error = -EIO;
1447                 goto bad2;
1448         }
1449
1450         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1451                 DPRINTF(sc, ATH_DBG_FATAL,
1452                         "Unable to setup xmit queue for BE traffic\n");
1453                 error = -EIO;
1454                 goto bad2;
1455         }
1456         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1457                 DPRINTF(sc, ATH_DBG_FATAL,
1458                         "Unable to setup xmit queue for VI traffic\n");
1459                 error = -EIO;
1460                 goto bad2;
1461         }
1462         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1463                 DPRINTF(sc, ATH_DBG_FATAL,
1464                         "Unable to setup xmit queue for VO traffic\n");
1465                 error = -EIO;
1466                 goto bad2;
1467         }
1468
1469         /* Initializes the noise floor to a reasonable default value.
1470          * Later on this will be updated during ANI processing. */
1471
1472         sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1473         setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1474
1475         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1476                                    ATH9K_CIPHER_TKIP, NULL)) {
1477                 /*
1478                  * Whether we should enable h/w TKIP MIC.
1479                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1480                  * report WMM capable, so it's always safe to turn on
1481                  * TKIP MIC in this case.
1482                  */
1483                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1484                                        0, 1, NULL);
1485         }
1486
1487         /*
1488          * Check whether the separate key cache entries
1489          * are required to handle both tx+rx MIC keys.
1490          * With split mic keys the number of stations is limited
1491          * to 27 otherwise 59.
1492          */
1493         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1494                                    ATH9K_CIPHER_TKIP, NULL)
1495             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1496                                       ATH9K_CIPHER_MIC, NULL)
1497             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1498                                       0, NULL))
1499                 sc->splitmic = 1;
1500
1501         /* turn on mcast key search if possible */
1502         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1503                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1504                                              1, NULL);
1505
1506         sc->config.txpowlimit = ATH_TXPOWER_MAX;
1507
1508         /* 11n Capabilities */
1509         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1510                 sc->sc_flags |= SC_OP_TXAGGR;
1511                 sc->sc_flags |= SC_OP_RXAGGR;
1512         }
1513
1514         sc->tx_chainmask = ah->caps.tx_chainmask;
1515         sc->rx_chainmask = ah->caps.rx_chainmask;
1516
1517         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1518         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1519
1520         if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
1521                 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1522                 ATH_SET_VIF_BSSID_MASK(sc->bssidmask);
1523                 ath9k_hw_setbssidmask(sc);
1524         }
1525
1526         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1527
1528         /* initialize beacon slots */
1529         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
1530                 sc->beacon.bslot[i] = ATH_IF_ID_ANY;
1531
1532         /* save MISC configurations */
1533         sc->config.swBeaconProcess = 1;
1534
1535         /* setup channels and rates */
1536
1537         sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1538         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1539                 sc->rates[IEEE80211_BAND_2GHZ];
1540         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1541         sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1542                 ARRAY_SIZE(ath9k_2ghz_chantable);
1543
1544         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1545                 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1546                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1547                         sc->rates[IEEE80211_BAND_5GHZ];
1548                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1549                 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1550                         ARRAY_SIZE(ath9k_5ghz_chantable);
1551         }
1552
1553         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1554                 ath9k_hw_btcoex_enable(sc->sc_ah);
1555
1556         return 0;
1557 bad2:
1558         /* cleanup tx queues */
1559         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1560                 if (ATH_TXQ_SETUP(sc, i))
1561                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1562 bad:
1563         if (ah)
1564                 ath9k_hw_detach(ah);
1565         ath9k_exit_debug(sc);
1566
1567         return error;
1568 }
1569
1570 int ath_attach(u16 devid, struct ath_softc *sc)
1571 {
1572         struct ieee80211_hw *hw = sc->hw;
1573         const struct ieee80211_regdomain *regd;
1574         int error = 0, i;
1575
1576         DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1577
1578         error = ath_init(devid, sc);
1579         if (error != 0)
1580                 return error;
1581
1582         /* get mac address from hardware and set in mac80211 */
1583
1584         SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1585
1586         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1587                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1588                 IEEE80211_HW_SIGNAL_DBM |
1589                 IEEE80211_HW_AMPDU_AGGREGATION |
1590                 IEEE80211_HW_SUPPORTS_PS |
1591                 IEEE80211_HW_PS_NULLFUNC_STACK;
1592
1593         if (AR_SREV_9160_10_OR_LATER(sc->sc_ah))
1594                 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1595
1596         hw->wiphy->interface_modes =
1597                 BIT(NL80211_IFTYPE_AP) |
1598                 BIT(NL80211_IFTYPE_STATION) |
1599                 BIT(NL80211_IFTYPE_ADHOC);
1600
1601         hw->wiphy->reg_notifier = ath9k_reg_notifier;
1602         hw->wiphy->strict_regulatory = true;
1603
1604         hw->queues = 4;
1605         hw->max_rates = 4;
1606         hw->channel_change_time = 5000;
1607         hw->max_rate_tries = ATH_11N_TXMAXTRY;
1608         hw->sta_data_size = sizeof(struct ath_node);
1609         hw->vif_data_size = sizeof(struct ath_vif);
1610
1611         hw->rate_control_algorithm = "ath9k_rate_control";
1612
1613         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1614                 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1615                 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1616                         setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1617         }
1618
1619         hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ];
1620         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1621                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1622                         &sc->sbands[IEEE80211_BAND_5GHZ];
1623
1624         /* initialize tx/rx engine */
1625         error = ath_tx_init(sc, ATH_TXBUF);
1626         if (error != 0)
1627                 goto error_attach;
1628
1629         error = ath_rx_init(sc, ATH_RXBUF);
1630         if (error != 0)
1631                 goto error_attach;
1632
1633 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1634         /* Initialze h/w Rfkill */
1635         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1636                 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1637
1638         /* Initialize s/w rfkill */
1639         error = ath_init_sw_rfkill(sc);
1640         if (error)
1641                 goto error_attach;
1642 #endif
1643
1644         if (ath9k_is_world_regd(sc->sc_ah)) {
1645                 /* Anything applied here (prior to wiphy registration) gets
1646                  * saved on the wiphy orig_* parameters */
1647                 regd = ath9k_world_regdomain(sc->sc_ah);
1648                 hw->wiphy->custom_regulatory = true;
1649                 hw->wiphy->strict_regulatory = false;
1650         } else {
1651                 /* This gets applied in the case of the absense of CRDA,
1652                  * it's our own custom world regulatory domain, similar to
1653                  * cfg80211's but we enable passive scanning */
1654                 regd = ath9k_default_world_regdomain();
1655         }
1656         wiphy_apply_custom_regulatory(hw->wiphy, regd);
1657         ath9k_reg_apply_radar_flags(hw->wiphy);
1658         ath9k_reg_apply_world_flags(hw->wiphy, REGDOM_SET_BY_INIT);
1659
1660         error = ieee80211_register_hw(hw);
1661
1662         if (!ath9k_is_world_regd(sc->sc_ah))
1663                 regulatory_hint(hw->wiphy, sc->sc_ah->regulatory.alpha2);
1664
1665         /* Initialize LED control */
1666         ath_init_leds(sc);
1667
1668
1669         return 0;
1670
1671 error_attach:
1672         /* cleanup tx queues */
1673         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1674                 if (ATH_TXQ_SETUP(sc, i))
1675                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1676
1677         ath9k_hw_detach(sc->sc_ah);
1678         ath9k_exit_debug(sc);
1679
1680         return error;
1681 }
1682
1683 int ath_reset(struct ath_softc *sc, bool retry_tx)
1684 {
1685         struct ath_hw *ah = sc->sc_ah;
1686         struct ieee80211_hw *hw = sc->hw;
1687         int r;
1688
1689         ath9k_hw_set_interrupts(ah, 0);
1690         ath_drain_all_txq(sc, retry_tx);
1691         ath_stoprecv(sc);
1692         ath_flushrecv(sc);
1693
1694         spin_lock_bh(&sc->sc_resetlock);
1695         r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1696         if (r)
1697                 DPRINTF(sc, ATH_DBG_FATAL,
1698                         "Unable to reset hardware; reset status %u\n", r);
1699         spin_unlock_bh(&sc->sc_resetlock);
1700
1701         if (ath_startrecv(sc) != 0)
1702                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1703
1704         /*
1705          * We may be doing a reset in response to a request
1706          * that changes the channel so update any state that
1707          * might change as a result.
1708          */
1709         ath_cache_conf_rate(sc, &hw->conf);
1710
1711         ath_update_txpow(sc);
1712
1713         if (sc->sc_flags & SC_OP_BEACONS)
1714                 ath_beacon_config(sc, ATH_IF_ID_ANY);   /* restart beacons */
1715
1716         ath9k_hw_set_interrupts(ah, sc->imask);
1717
1718         if (retry_tx) {
1719                 int i;
1720                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1721                         if (ATH_TXQ_SETUP(sc, i)) {
1722                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1723                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
1724                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1725                         }
1726                 }
1727         }
1728
1729         return r;
1730 }
1731
1732 /*
1733  *  This function will allocate both the DMA descriptor structure, and the
1734  *  buffers it contains.  These are used to contain the descriptors used
1735  *  by the system.
1736 */
1737 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1738                       struct list_head *head, const char *name,
1739                       int nbuf, int ndesc)
1740 {
1741 #define DS2PHYS(_dd, _ds)                                               \
1742         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1743 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1744 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1745
1746         struct ath_desc *ds;
1747         struct ath_buf *bf;
1748         int i, bsize, error;
1749
1750         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1751                 name, nbuf, ndesc);
1752
1753         /* ath_desc must be a multiple of DWORDs */
1754         if ((sizeof(struct ath_desc) % 4) != 0) {
1755                 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1756                 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1757                 error = -ENOMEM;
1758                 goto fail;
1759         }
1760
1761         dd->dd_name = name;
1762         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1763
1764         /*
1765          * Need additional DMA memory because we can't use
1766          * descriptors that cross the 4K page boundary. Assume
1767          * one skipped descriptor per 4K page.
1768          */
1769         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1770                 u32 ndesc_skipped =
1771                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1772                 u32 dma_len;
1773
1774                 while (ndesc_skipped) {
1775                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
1776                         dd->dd_desc_len += dma_len;
1777
1778                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1779                 };
1780         }
1781
1782         /* allocate descriptors */
1783         dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1784                                          &dd->dd_desc_paddr, GFP_ATOMIC);
1785         if (dd->dd_desc == NULL) {
1786                 error = -ENOMEM;
1787                 goto fail;
1788         }
1789         ds = dd->dd_desc;
1790         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1791                 dd->dd_name, ds, (u32) dd->dd_desc_len,
1792                 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1793
1794         /* allocate buffers */
1795         bsize = sizeof(struct ath_buf) * nbuf;
1796         bf = kmalloc(bsize, GFP_KERNEL);
1797         if (bf == NULL) {
1798                 error = -ENOMEM;
1799                 goto fail2;
1800         }
1801         memset(bf, 0, bsize);
1802         dd->dd_bufptr = bf;
1803
1804         INIT_LIST_HEAD(head);
1805         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1806                 bf->bf_desc = ds;
1807                 bf->bf_daddr = DS2PHYS(dd, ds);
1808
1809                 if (!(sc->sc_ah->caps.hw_caps &
1810                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1811                         /*
1812                          * Skip descriptor addresses which can cause 4KB
1813                          * boundary crossing (addr + length) with a 32 dword
1814                          * descriptor fetch.
1815                          */
1816                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1817                                 ASSERT((caddr_t) bf->bf_desc <
1818                                        ((caddr_t) dd->dd_desc +
1819                                         dd->dd_desc_len));
1820
1821                                 ds += ndesc;
1822                                 bf->bf_desc = ds;
1823                                 bf->bf_daddr = DS2PHYS(dd, ds);
1824                         }
1825                 }
1826                 list_add_tail(&bf->list, head);
1827         }
1828         return 0;
1829 fail2:
1830         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1831                           dd->dd_desc_paddr);
1832 fail:
1833         memset(dd, 0, sizeof(*dd));
1834         return error;
1835 #undef ATH_DESC_4KB_BOUND_CHECK
1836 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1837 #undef DS2PHYS
1838 }
1839
1840 void ath_descdma_cleanup(struct ath_softc *sc,
1841                          struct ath_descdma *dd,
1842                          struct list_head *head)
1843 {
1844         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1845                           dd->dd_desc_paddr);
1846
1847         INIT_LIST_HEAD(head);
1848         kfree(dd->dd_bufptr);
1849         memset(dd, 0, sizeof(*dd));
1850 }
1851
1852 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1853 {
1854         int qnum;
1855
1856         switch (queue) {
1857         case 0:
1858                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1859                 break;
1860         case 1:
1861                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1862                 break;
1863         case 2:
1864                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1865                 break;
1866         case 3:
1867                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1868                 break;
1869         default:
1870                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1871                 break;
1872         }
1873
1874         return qnum;
1875 }
1876
1877 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1878 {
1879         int qnum;
1880
1881         switch (queue) {
1882         case ATH9K_WME_AC_VO:
1883                 qnum = 0;
1884                 break;
1885         case ATH9K_WME_AC_VI:
1886                 qnum = 1;
1887                 break;
1888         case ATH9K_WME_AC_BE:
1889                 qnum = 2;
1890                 break;
1891         case ATH9K_WME_AC_BK:
1892                 qnum = 3;
1893                 break;
1894         default:
1895                 qnum = -1;
1896                 break;
1897         }
1898
1899         return qnum;
1900 }
1901
1902 /* XXX: Remove me once we don't depend on ath9k_channel for all
1903  * this redundant data */
1904 static void ath9k_update_ichannel(struct ath_softc *sc,
1905                           struct ath9k_channel *ichan)
1906 {
1907         struct ieee80211_hw *hw = sc->hw;
1908         struct ieee80211_channel *chan = hw->conf.channel;
1909         struct ieee80211_conf *conf = &hw->conf;
1910
1911         ichan->channel = chan->center_freq;
1912         ichan->chan = chan;
1913
1914         if (chan->band == IEEE80211_BAND_2GHZ) {
1915                 ichan->chanmode = CHANNEL_G;
1916                 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1917         } else {
1918                 ichan->chanmode = CHANNEL_A;
1919                 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1920         }
1921
1922         sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1923
1924         if (conf_is_ht(conf)) {
1925                 if (conf_is_ht40(conf))
1926                         sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1927
1928                 ichan->chanmode = ath_get_extchanmode(sc, chan,
1929                                             conf->channel_type);
1930         }
1931 }
1932
1933 /**********************/
1934 /* mac80211 callbacks */
1935 /**********************/
1936
1937 static int ath9k_start(struct ieee80211_hw *hw)
1938 {
1939         struct ath_softc *sc = hw->priv;
1940         struct ieee80211_channel *curchan = hw->conf.channel;
1941         struct ath9k_channel *init_channel;
1942         int r, pos;
1943
1944         DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1945                 "initial channel: %d MHz\n", curchan->center_freq);
1946
1947         mutex_lock(&sc->mutex);
1948
1949         /* setup initial channel */
1950
1951         pos = curchan->hw_value;
1952
1953         init_channel = &sc->sc_ah->channels[pos];
1954         ath9k_update_ichannel(sc, init_channel);
1955
1956         /* Reset SERDES registers */
1957         ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1958
1959         /*
1960          * The basic interface to setting the hardware in a good
1961          * state is ``reset''.  On return the hardware is known to
1962          * be powered up and with interrupts disabled.  This must
1963          * be followed by initialization of the appropriate bits
1964          * and then setup of the interrupt mask.
1965          */
1966         spin_lock_bh(&sc->sc_resetlock);
1967         r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
1968         if (r) {
1969                 DPRINTF(sc, ATH_DBG_FATAL,
1970                         "Unable to reset hardware; reset status %u "
1971                         "(freq %u MHz)\n", r,
1972                         curchan->center_freq);
1973                 spin_unlock_bh(&sc->sc_resetlock);
1974                 goto mutex_unlock;
1975         }
1976         spin_unlock_bh(&sc->sc_resetlock);
1977
1978         /*
1979          * This is needed only to setup initial state
1980          * but it's best done after a reset.
1981          */
1982         ath_update_txpow(sc);
1983
1984         /*
1985          * Setup the hardware after reset:
1986          * The receive engine is set going.
1987          * Frame transmit is handled entirely
1988          * in the frame output path; there's nothing to do
1989          * here except setup the interrupt mask.
1990          */
1991         if (ath_startrecv(sc) != 0) {
1992                 DPRINTF(sc, ATH_DBG_FATAL,
1993                         "Unable to start recv logic\n");
1994                 r = -EIO;
1995                 goto mutex_unlock;
1996         }
1997
1998         /* Setup our intr mask. */
1999         sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2000                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2001                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2002
2003         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2004                 sc->imask |= ATH9K_INT_GTT;
2005
2006         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2007                 sc->imask |= ATH9K_INT_CST;
2008
2009         ath_cache_conf_rate(sc, &hw->conf);
2010
2011         sc->sc_flags &= ~SC_OP_INVALID;
2012
2013         /* Disable BMISS interrupt when we're not associated */
2014         sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2015         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2016
2017         ieee80211_wake_queues(sc->hw);
2018
2019 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2020         r = ath_start_rfkill_poll(sc);
2021 #endif
2022
2023 mutex_unlock:
2024         mutex_unlock(&sc->mutex);
2025
2026         return r;
2027 }
2028
2029 static int ath9k_tx(struct ieee80211_hw *hw,
2030                     struct sk_buff *skb)
2031 {
2032         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2033         struct ath_softc *sc = hw->priv;
2034         struct ath_tx_control txctl;
2035         int hdrlen, padsize;
2036
2037         memset(&txctl, 0, sizeof(struct ath_tx_control));
2038
2039         /*
2040          * As a temporary workaround, assign seq# here; this will likely need
2041          * to be cleaned up to work better with Beacon transmission and virtual
2042          * BSSes.
2043          */
2044         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2045                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2046                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2047                         sc->tx.seq_no += 0x10;
2048                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2049                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2050         }
2051
2052         /* Add the padding after the header if this is not already done */
2053         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2054         if (hdrlen & 3) {
2055                 padsize = hdrlen % 4;
2056                 if (skb_headroom(skb) < padsize)
2057                         return -1;
2058                 skb_push(skb, padsize);
2059                 memmove(skb->data, skb->data + padsize, hdrlen);
2060         }
2061
2062         /* Check if a tx queue is available */
2063
2064         txctl.txq = ath_test_get_txq(sc, skb);
2065         if (!txctl.txq)
2066                 goto exit;
2067
2068         DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2069
2070         if (ath_tx_start(sc, skb, &txctl) != 0) {
2071                 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2072                 goto exit;
2073         }
2074
2075         return 0;
2076 exit:
2077         dev_kfree_skb_any(skb);
2078         return 0;
2079 }
2080
2081 static void ath9k_stop(struct ieee80211_hw *hw)
2082 {
2083         struct ath_softc *sc = hw->priv;
2084
2085         if (sc->sc_flags & SC_OP_INVALID) {
2086                 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2087                 return;
2088         }
2089
2090         mutex_lock(&sc->mutex);
2091
2092         ieee80211_stop_queues(sc->hw);
2093
2094         /* make sure h/w will not generate any interrupt
2095          * before setting the invalid flag. */
2096         ath9k_hw_set_interrupts(sc->sc_ah, 0);
2097
2098         if (!(sc->sc_flags & SC_OP_INVALID)) {
2099                 ath_drain_all_txq(sc, false);
2100                 ath_stoprecv(sc);
2101                 ath9k_hw_phy_disable(sc->sc_ah);
2102         } else
2103                 sc->rx.rxlink = NULL;
2104
2105 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2106         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2107                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2108 #endif
2109         /* disable HAL and put h/w to sleep */
2110         ath9k_hw_disable(sc->sc_ah);
2111         ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2112
2113         sc->sc_flags |= SC_OP_INVALID;
2114
2115         mutex_unlock(&sc->mutex);
2116
2117         DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2118 }
2119
2120 static int ath9k_add_interface(struct ieee80211_hw *hw,
2121                                struct ieee80211_if_init_conf *conf)
2122 {
2123         struct ath_softc *sc = hw->priv;
2124         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2125         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2126
2127         /* Support only vif for now */
2128
2129         if (sc->nvifs)
2130                 return -ENOBUFS;
2131
2132         mutex_lock(&sc->mutex);
2133
2134         switch (conf->type) {
2135         case NL80211_IFTYPE_STATION:
2136                 ic_opmode = NL80211_IFTYPE_STATION;
2137                 break;
2138         case NL80211_IFTYPE_ADHOC:
2139                 ic_opmode = NL80211_IFTYPE_ADHOC;
2140                 break;
2141         case NL80211_IFTYPE_AP:
2142                 ic_opmode = NL80211_IFTYPE_AP;
2143                 break;
2144         default:
2145                 DPRINTF(sc, ATH_DBG_FATAL,
2146                         "Interface type %d not yet supported\n", conf->type);
2147                 return -EOPNOTSUPP;
2148         }
2149
2150         DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2151
2152         /* Set the VIF opmode */
2153         avp->av_opmode = ic_opmode;
2154         avp->av_bslot = -1;
2155
2156         if (ic_opmode == NL80211_IFTYPE_AP)
2157                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2158
2159         sc->vifs[0] = conf->vif;
2160         sc->nvifs++;
2161
2162         /* Set the device opmode */
2163         sc->sc_ah->opmode = ic_opmode;
2164
2165         /*
2166          * Enable MIB interrupts when there are hardware phy counters.
2167          * Note we only do this (at the moment) for station mode.
2168          */
2169         if ((conf->type == NL80211_IFTYPE_STATION) ||
2170             (conf->type == NL80211_IFTYPE_ADHOC)) {
2171                 if (ath9k_hw_phycounters(sc->sc_ah))
2172                         sc->imask |= ATH9K_INT_MIB;
2173                 sc->imask |= ATH9K_INT_TSFOOR;
2174         }
2175
2176         /*
2177          * Some hardware processes the TIM IE and fires an
2178          * interrupt when the TIM bit is set.  For hardware
2179          * that does, if not overridden by configuration,
2180          * enable the TIM interrupt when operating as station.
2181          */
2182         if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
2183             (conf->type == NL80211_IFTYPE_STATION) &&
2184             !sc->config.swBeaconProcess)
2185                 sc->imask |= ATH9K_INT_TIM;
2186
2187         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2188
2189         if (conf->type == NL80211_IFTYPE_AP) {
2190                 /* TODO: is this a suitable place to start ANI for AP mode? */
2191                 /* Start ANI */
2192                 mod_timer(&sc->ani.timer,
2193                           jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2194         }
2195
2196         mutex_unlock(&sc->mutex);
2197
2198         return 0;
2199 }
2200
2201 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2202                                    struct ieee80211_if_init_conf *conf)
2203 {
2204         struct ath_softc *sc = hw->priv;
2205         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2206
2207         DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2208
2209         mutex_lock(&sc->mutex);
2210
2211         /* Stop ANI */
2212         del_timer_sync(&sc->ani.timer);
2213
2214         /* Reclaim beacon resources */
2215         if (sc->sc_ah->opmode == NL80211_IFTYPE_AP ||
2216             sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) {
2217                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2218                 ath_beacon_return(sc, avp);
2219         }
2220
2221         sc->sc_flags &= ~SC_OP_BEACONS;
2222
2223         sc->vifs[0] = NULL;
2224         sc->nvifs--;
2225
2226         mutex_unlock(&sc->mutex);
2227 }
2228
2229 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2230 {
2231         struct ath_softc *sc = hw->priv;
2232         struct ieee80211_conf *conf = &hw->conf;
2233
2234         mutex_lock(&sc->mutex);
2235
2236         if (changed & IEEE80211_CONF_CHANGE_PS) {
2237                 if (conf->flags & IEEE80211_CONF_PS) {
2238                         if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2239                                 sc->imask |= ATH9K_INT_TIM_TIMER;
2240                                 ath9k_hw_set_interrupts(sc->sc_ah,
2241                                                 sc->imask);
2242                         }
2243                         ath9k_hw_setrxabort(sc->sc_ah, 1);
2244                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2245                 } else {
2246                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2247                         ath9k_hw_setrxabort(sc->sc_ah, 0);
2248                         sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
2249                         if (sc->imask & ATH9K_INT_TIM_TIMER) {
2250                                 sc->imask &= ~ATH9K_INT_TIM_TIMER;
2251                                 ath9k_hw_set_interrupts(sc->sc_ah,
2252                                                 sc->imask);
2253                         }
2254                 }
2255         }
2256
2257         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2258                 struct ieee80211_channel *curchan = hw->conf.channel;
2259                 int pos = curchan->hw_value;
2260
2261                 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2262                         curchan->center_freq);
2263
2264                 /* XXX: remove me eventualy */
2265                 ath9k_update_ichannel(sc, &sc->sc_ah->channels[pos]);
2266
2267                 ath_update_chainmask(sc, conf_is_ht(conf));
2268
2269                 if (ath_set_channel(sc, &sc->sc_ah->channels[pos]) < 0) {
2270                         DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2271                         mutex_unlock(&sc->mutex);
2272                         return -EINVAL;
2273                 }
2274         }
2275
2276         if (changed & IEEE80211_CONF_CHANGE_POWER)
2277                 sc->config.txpowlimit = 2 * conf->power_level;
2278
2279         mutex_unlock(&sc->mutex);
2280
2281         return 0;
2282 }
2283
2284 static int ath9k_config_interface(struct ieee80211_hw *hw,
2285                                   struct ieee80211_vif *vif,
2286                                   struct ieee80211_if_conf *conf)
2287 {
2288         struct ath_softc *sc = hw->priv;
2289         struct ath_hw *ah = sc->sc_ah;
2290         struct ath_vif *avp = (void *)vif->drv_priv;
2291         u32 rfilt = 0;
2292         int error, i;
2293
2294         /* TODO: Need to decide which hw opmode to use for multi-interface
2295          * cases */
2296         if (vif->type == NL80211_IFTYPE_AP &&
2297             ah->opmode != NL80211_IFTYPE_AP) {
2298                 ah->opmode = NL80211_IFTYPE_STATION;
2299                 ath9k_hw_setopmode(ah);
2300                 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2301                 sc->curaid = 0;
2302                 ath9k_hw_write_associd(sc);
2303                 /* Request full reset to get hw opmode changed properly */
2304                 sc->sc_flags |= SC_OP_FULL_RESET;
2305         }
2306
2307         if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2308             !is_zero_ether_addr(conf->bssid)) {
2309                 switch (vif->type) {
2310                 case NL80211_IFTYPE_STATION:
2311                 case NL80211_IFTYPE_ADHOC:
2312                         /* Set BSSID */
2313                         memcpy(sc->curbssid, conf->bssid, ETH_ALEN);
2314                         sc->curaid = 0;
2315                         ath9k_hw_write_associd(sc);
2316
2317                         /* Set aggregation protection mode parameters */
2318                         sc->config.ath_aggr_prot = 0;
2319
2320                         DPRINTF(sc, ATH_DBG_CONFIG,
2321                                 "RX filter 0x%x bssid %pM aid 0x%x\n",
2322                                 rfilt, sc->curbssid, sc->curaid);
2323
2324                         /* need to reconfigure the beacon */
2325                         sc->sc_flags &= ~SC_OP_BEACONS ;
2326
2327                         break;
2328                 default:
2329                         break;
2330                 }
2331         }
2332
2333         if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2334             (vif->type == NL80211_IFTYPE_AP)) {
2335                 if ((conf->changed & IEEE80211_IFCC_BEACON) ||
2336                     (conf->changed & IEEE80211_IFCC_BEACON_ENABLED &&
2337                      conf->enable_beacon)) {
2338                         /*
2339                          * Allocate and setup the beacon frame.
2340                          *
2341                          * Stop any previous beacon DMA.  This may be
2342                          * necessary, for example, when an ibss merge
2343                          * causes reconfiguration; we may be called
2344                          * with beacon transmission active.
2345                          */
2346                         ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2347
2348                         error = ath_beacon_alloc(sc, 0);
2349                         if (error != 0)
2350                                 return error;
2351
2352                         ath_beacon_sync(sc, 0);
2353                 }
2354         }
2355
2356         /* Check for WLAN_CAPABILITY_PRIVACY ? */
2357         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2358                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2359                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2360                                 ath9k_hw_keysetmac(sc->sc_ah,
2361                                                    (u16)i,
2362                                                    sc->curbssid);
2363         }
2364
2365         /* Only legacy IBSS for now */
2366         if (vif->type == NL80211_IFTYPE_ADHOC)
2367                 ath_update_chainmask(sc, 0);
2368
2369         return 0;
2370 }
2371
2372 #define SUPPORTED_FILTERS                       \
2373         (FIF_PROMISC_IN_BSS |                   \
2374         FIF_ALLMULTI |                          \
2375         FIF_CONTROL |                           \
2376         FIF_OTHER_BSS |                         \
2377         FIF_BCN_PRBRESP_PROMISC |               \
2378         FIF_FCSFAIL)
2379
2380 /* FIXME: sc->sc_full_reset ? */
2381 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2382                                    unsigned int changed_flags,
2383                                    unsigned int *total_flags,
2384                                    int mc_count,
2385                                    struct dev_mc_list *mclist)
2386 {
2387         struct ath_softc *sc = hw->priv;
2388         u32 rfilt;
2389
2390         changed_flags &= SUPPORTED_FILTERS;
2391         *total_flags &= SUPPORTED_FILTERS;
2392
2393         sc->rx.rxfilter = *total_flags;
2394         rfilt = ath_calcrxfilter(sc);
2395         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2396
2397         if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
2398                 if (*total_flags & FIF_BCN_PRBRESP_PROMISC) {
2399                         memcpy(sc->curbssid, ath_bcast_mac, ETH_ALEN);
2400                         sc->curaid = 0;
2401                         ath9k_hw_write_associd(sc);
2402                 }
2403         }
2404
2405         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2406 }
2407
2408 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2409                              struct ieee80211_vif *vif,
2410                              enum sta_notify_cmd cmd,
2411                              struct ieee80211_sta *sta)
2412 {
2413         struct ath_softc *sc = hw->priv;
2414
2415         switch (cmd) {
2416         case STA_NOTIFY_ADD:
2417                 ath_node_attach(sc, sta);
2418                 break;
2419         case STA_NOTIFY_REMOVE:
2420                 ath_node_detach(sc, sta);
2421                 break;
2422         default:
2423                 break;
2424         }
2425 }
2426
2427 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2428                          const struct ieee80211_tx_queue_params *params)
2429 {
2430         struct ath_softc *sc = hw->priv;
2431         struct ath9k_tx_queue_info qi;
2432         int ret = 0, qnum;
2433
2434         if (queue >= WME_NUM_AC)
2435                 return 0;
2436
2437         mutex_lock(&sc->mutex);
2438
2439         qi.tqi_aifs = params->aifs;
2440         qi.tqi_cwmin = params->cw_min;
2441         qi.tqi_cwmax = params->cw_max;
2442         qi.tqi_burstTime = params->txop;
2443         qnum = ath_get_hal_qnum(queue, sc);
2444
2445         DPRINTF(sc, ATH_DBG_CONFIG,
2446                 "Configure tx [queue/halq] [%d/%d],  "
2447                 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2448                 queue, qnum, params->aifs, params->cw_min,
2449                 params->cw_max, params->txop);
2450
2451         ret = ath_txq_update(sc, qnum, &qi);
2452         if (ret)
2453                 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2454
2455         mutex_unlock(&sc->mutex);
2456
2457         return ret;
2458 }
2459
2460 static int ath9k_set_key(struct ieee80211_hw *hw,
2461                          enum set_key_cmd cmd,
2462                          struct ieee80211_vif *vif,
2463                          struct ieee80211_sta *sta,
2464                          struct ieee80211_key_conf *key)
2465 {
2466         struct ath_softc *sc = hw->priv;
2467         int ret = 0;
2468
2469         mutex_lock(&sc->mutex);
2470         ath9k_ps_wakeup(sc);
2471         DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
2472
2473         switch (cmd) {
2474         case SET_KEY:
2475                 ret = ath_key_config(sc, sta, key);
2476                 if (ret >= 0) {
2477                         key->hw_key_idx = ret;
2478                         /* push IV and Michael MIC generation to stack */
2479                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2480                         if (key->alg == ALG_TKIP)
2481                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2482                         if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2483                                 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2484                         ret = 0;
2485                 }
2486                 break;
2487         case DISABLE_KEY:
2488                 ath_key_delete(sc, key);
2489                 break;
2490         default:
2491                 ret = -EINVAL;
2492         }
2493
2494         ath9k_ps_restore(sc);
2495         mutex_unlock(&sc->mutex);
2496
2497         return ret;
2498 }
2499
2500 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2501                                    struct ieee80211_vif *vif,
2502                                    struct ieee80211_bss_conf *bss_conf,
2503                                    u32 changed)
2504 {
2505         struct ath_softc *sc = hw->priv;
2506
2507         mutex_lock(&sc->mutex);
2508
2509         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2510                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2511                         bss_conf->use_short_preamble);
2512                 if (bss_conf->use_short_preamble)
2513                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2514                 else
2515                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2516         }
2517
2518         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2519                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2520                         bss_conf->use_cts_prot);
2521                 if (bss_conf->use_cts_prot &&
2522                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2523                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2524                 else
2525                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2526         }
2527
2528         if (changed & BSS_CHANGED_ASSOC) {
2529                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2530                         bss_conf->assoc);
2531                 ath9k_bss_assoc_info(sc, vif, bss_conf);
2532         }
2533
2534         mutex_unlock(&sc->mutex);
2535 }
2536
2537 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2538 {
2539         u64 tsf;
2540         struct ath_softc *sc = hw->priv;
2541
2542         mutex_lock(&sc->mutex);
2543         tsf = ath9k_hw_gettsf64(sc->sc_ah);
2544         mutex_unlock(&sc->mutex);
2545
2546         return tsf;
2547 }
2548
2549 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2550 {
2551         struct ath_softc *sc = hw->priv;
2552
2553         mutex_lock(&sc->mutex);
2554         ath9k_hw_settsf64(sc->sc_ah, tsf);
2555         mutex_unlock(&sc->mutex);
2556 }
2557
2558 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2559 {
2560         struct ath_softc *sc = hw->priv;
2561
2562         mutex_lock(&sc->mutex);
2563         ath9k_hw_reset_tsf(sc->sc_ah);
2564         mutex_unlock(&sc->mutex);
2565 }
2566
2567 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2568                               enum ieee80211_ampdu_mlme_action action,
2569                               struct ieee80211_sta *sta,
2570                               u16 tid, u16 *ssn)
2571 {
2572         struct ath_softc *sc = hw->priv;
2573         int ret = 0;
2574
2575         switch (action) {
2576         case IEEE80211_AMPDU_RX_START:
2577                 if (!(sc->sc_flags & SC_OP_RXAGGR))
2578                         ret = -ENOTSUPP;
2579                 break;
2580         case IEEE80211_AMPDU_RX_STOP:
2581                 break;
2582         case IEEE80211_AMPDU_TX_START:
2583                 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2584                 if (ret < 0)
2585                         DPRINTF(sc, ATH_DBG_FATAL,
2586                                 "Unable to start TX aggregation\n");
2587                 else
2588                         ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2589                 break;
2590         case IEEE80211_AMPDU_TX_STOP:
2591                 ret = ath_tx_aggr_stop(sc, sta, tid);
2592                 if (ret < 0)
2593                         DPRINTF(sc, ATH_DBG_FATAL,
2594                                 "Unable to stop TX aggregation\n");
2595
2596                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2597                 break;
2598         case IEEE80211_AMPDU_TX_RESUME:
2599                 ath_tx_aggr_resume(sc, sta, tid);
2600                 break;
2601         default:
2602                 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2603         }
2604
2605         return ret;
2606 }
2607
2608 struct ieee80211_ops ath9k_ops = {
2609         .tx                 = ath9k_tx,
2610         .start              = ath9k_start,
2611         .stop               = ath9k_stop,
2612         .add_interface      = ath9k_add_interface,
2613         .remove_interface   = ath9k_remove_interface,
2614         .config             = ath9k_config,
2615         .config_interface   = ath9k_config_interface,
2616         .configure_filter   = ath9k_configure_filter,
2617         .sta_notify         = ath9k_sta_notify,
2618         .conf_tx            = ath9k_conf_tx,
2619         .bss_info_changed   = ath9k_bss_info_changed,
2620         .set_key            = ath9k_set_key,
2621         .get_tsf            = ath9k_get_tsf,
2622         .set_tsf            = ath9k_set_tsf,
2623         .reset_tsf          = ath9k_reset_tsf,
2624         .ampdu_action       = ath9k_ampdu_action,
2625 };
2626
2627 static struct {
2628         u32 version;
2629         const char * name;
2630 } ath_mac_bb_names[] = {
2631         { AR_SREV_VERSION_5416_PCI,     "5416" },
2632         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2633         { AR_SREV_VERSION_9100,         "9100" },
2634         { AR_SREV_VERSION_9160,         "9160" },
2635         { AR_SREV_VERSION_9280,         "9280" },
2636         { AR_SREV_VERSION_9285,         "9285" }
2637 };
2638
2639 static struct {
2640         u16 version;
2641         const char * name;
2642 } ath_rf_names[] = {
2643         { 0,                            "5133" },
2644         { AR_RAD5133_SREV_MAJOR,        "5133" },
2645         { AR_RAD5122_SREV_MAJOR,        "5122" },
2646         { AR_RAD2133_SREV_MAJOR,        "2133" },
2647         { AR_RAD2122_SREV_MAJOR,        "2122" }
2648 };
2649
2650 /*
2651  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2652  */
2653 const char *
2654 ath_mac_bb_name(u32 mac_bb_version)
2655 {
2656         int i;
2657
2658         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2659                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2660                         return ath_mac_bb_names[i].name;
2661                 }
2662         }
2663
2664         return "????";
2665 }
2666
2667 /*
2668  * Return the RF name. "????" is returned if the RF is unknown.
2669  */
2670 const char *
2671 ath_rf_name(u16 rf_version)
2672 {
2673         int i;
2674
2675         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2676                 if (ath_rf_names[i].version == rf_version) {
2677                         return ath_rf_names[i].name;
2678                 }
2679         }
2680
2681         return "????";
2682 }
2683
2684 static int __init ath9k_init(void)
2685 {
2686         int error;
2687
2688         /* Register rate control algorithm */
2689         error = ath_rate_control_register();
2690         if (error != 0) {
2691                 printk(KERN_ERR
2692                         "ath9k: Unable to register rate control "
2693                         "algorithm: %d\n",
2694                         error);
2695                 goto err_out;
2696         }
2697
2698         error = ath_pci_init();
2699         if (error < 0) {
2700                 printk(KERN_ERR
2701                         "ath9k: No PCI devices found, driver not installed.\n");
2702                 error = -ENODEV;
2703                 goto err_rate_unregister;
2704         }
2705
2706         error = ath_ahb_init();
2707         if (error < 0) {
2708                 error = -ENODEV;
2709                 goto err_pci_exit;
2710         }
2711
2712         return 0;
2713
2714  err_pci_exit:
2715         ath_pci_exit();
2716
2717  err_rate_unregister:
2718         ath_rate_control_unregister();
2719  err_out:
2720         return error;
2721 }
2722 module_init(ath9k_init);
2723
2724 static void __exit ath9k_exit(void)
2725 {
2726         ath_ahb_exit();
2727         ath_pci_exit();
2728         ath_rate_control_unregister();
2729         printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2730 }
2731 module_exit(ath9k_exit);