1 /* -*- mode: c; c-basic-offset: 8 -*- */
3 /* Copyright (C) 1999,2001
5 * Author: J.E.J.Bottomley@HansenPartnership.com
7 * linux/arch/i386/kernel/voyager_smp.c
9 * This file provides all the same external entries as smp.c but uses
10 * the voyager hal to provide the functionality
12 #include <linux/module.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/mc146818rtc.h>
17 #include <linux/cache.h>
18 #include <linux/interrupt.h>
19 #include <linux/smp_lock.h>
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/bootmem.h>
23 #include <linux/completion.h>
25 #include <asm/voyager.h>
28 #include <asm/pgalloc.h>
29 #include <asm/tlbflush.h>
30 #include <asm/arch_hooks.h>
33 /* TLB state -- visible externally, indexed physically */
34 DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0 };
36 /* CPU IRQ affinity -- set to all ones initially */
37 static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned = { [0 ... NR_CPUS-1] = ~0UL };
39 /* per CPU data structure (for /proc/cpuinfo et al), visible externally
40 * indexed physically */
41 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
42 EXPORT_SYMBOL(cpu_data);
44 /* physical ID of the CPU used to boot the system */
45 unsigned char boot_cpu_id;
47 /* The memory line addresses for the Quad CPIs */
48 struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
50 /* The masks for the Extended VIC processors, filled in by cat_init */
51 __u32 voyager_extended_vic_processors = 0;
53 /* Masks for the extended Quad processors which cannot be VIC booted */
54 __u32 voyager_allowed_boot_processors = 0;
56 /* The mask for the Quad Processors (both extended and non-extended) */
57 __u32 voyager_quad_processors = 0;
59 /* Total count of live CPUs, used in process.c to display
60 * the CPU information and in irq.c for the per CPU irq
61 * activity count. Finally exported by i386_ksyms.c */
62 static int voyager_extended_cpus = 1;
64 /* Have we found an SMP box - used by time.c to do the profiling
65 interrupt for timeslicing; do not set to 1 until the per CPU timer
66 interrupt is active */
67 int smp_found_config = 0;
69 /* Used for the invalidate map that's also checked in the spinlock */
70 static volatile unsigned long smp_invalidate_needed;
72 /* Bitmask of currently online CPUs - used by setup.c for
73 /proc/cpuinfo, visible externally but still physical */
74 cpumask_t cpu_online_map = CPU_MASK_NONE;
75 EXPORT_SYMBOL(cpu_online_map);
77 /* Bitmask of CPUs present in the system - exported by i386_syms.c, used
78 * by scheduler but indexed physically */
79 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
82 /* The internal functions */
83 static void send_CPI(__u32 cpuset, __u8 cpi);
84 static void ack_CPI(__u8 cpi);
85 static int ack_QIC_CPI(__u8 cpi);
86 static void ack_special_QIC_CPI(__u8 cpi);
87 static void ack_VIC_CPI(__u8 cpi);
88 static void send_CPI_allbutself(__u8 cpi);
89 static void mask_vic_irq(unsigned int irq);
90 static void unmask_vic_irq(unsigned int irq);
91 static unsigned int startup_vic_irq(unsigned int irq);
92 static void enable_local_vic_irq(unsigned int irq);
93 static void disable_local_vic_irq(unsigned int irq);
94 static void before_handle_vic_irq(unsigned int irq);
95 static void after_handle_vic_irq(unsigned int irq);
96 static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
97 static void ack_vic_irq(unsigned int irq);
98 static void vic_enable_cpi(void);
99 static void do_boot_cpu(__u8 cpuid);
100 static void do_quad_bootstrap(void);
102 int hard_smp_processor_id(void);
103 int safe_smp_processor_id(void);
105 /* Inline functions */
107 send_one_QIC_CPI(__u8 cpu, __u8 cpi)
109 voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
110 (smp_processor_id() << 16) + cpi;
114 send_QIC_CPI(__u32 cpuset, __u8 cpi)
118 for_each_online_cpu(cpu) {
119 if(cpuset & (1<<cpu)) {
121 if(!cpu_isset(cpu, cpu_online_map))
122 VDEBUG(("CPU%d sending cpi %d to CPU%d not in cpu_online_map\n", hard_smp_processor_id(), cpi, cpu));
124 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
130 wrapper_smp_local_timer_interrupt(void)
133 smp_local_timer_interrupt();
138 send_one_CPI(__u8 cpu, __u8 cpi)
140 if(voyager_quad_processors & (1<<cpu))
141 send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
143 send_CPI(1<<cpu, cpi);
147 send_CPI_allbutself(__u8 cpi)
149 __u8 cpu = smp_processor_id();
150 __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
157 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
158 return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
162 is_cpu_extended(void)
164 __u8 cpu = hard_smp_processor_id();
166 return(voyager_extended_vic_processors & (1<<cpu));
170 is_cpu_vic_boot(void)
172 __u8 cpu = hard_smp_processor_id();
174 return(voyager_extended_vic_processors
175 & voyager_allowed_boot_processors & (1<<cpu));
183 case VIC_CPU_BOOT_CPI:
184 if(is_cpu_quad() && !is_cpu_vic_boot())
191 /* These are slightly strange. Even on the Quad card,
192 * They are vectored as VIC CPIs */
194 ack_special_QIC_CPI(cpi);
199 printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
204 /* local variables */
206 /* The VIC IRQ descriptors -- these look almost identical to the
207 * 8259 IRQs except that masks and things must be kept per processor
209 static struct irq_chip vic_chip = {
211 .startup = startup_vic_irq,
212 .mask = mask_vic_irq,
213 .unmask = unmask_vic_irq,
214 .set_affinity = set_vic_irq_affinity,
217 /* used to count up as CPUs are brought on line (starts at 0) */
218 static int cpucount = 0;
220 /* steal a page from the bottom of memory for the trampoline and
221 * squirrel its address away here. This will be in kernel virtual
223 static __u32 trampoline_base;
225 /* The per cpu profile stuff - used in smp_local_timer_interrupt */
226 static DEFINE_PER_CPU(int, prof_multiplier) = 1;
227 static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
228 static DEFINE_PER_CPU(int, prof_counter) = 1;
230 /* the map used to check if a CPU has booted */
231 static __u32 cpu_booted_map;
233 /* the synchronize flag used to hold all secondary CPUs spinning in
234 * a tight loop until the boot sequence is ready for them */
235 static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
237 /* This is for the new dynamic CPU boot code */
238 cpumask_t cpu_callin_map = CPU_MASK_NONE;
239 cpumask_t cpu_callout_map = CPU_MASK_NONE;
240 EXPORT_SYMBOL(cpu_callout_map);
241 cpumask_t cpu_possible_map = CPU_MASK_NONE;
242 EXPORT_SYMBOL(cpu_possible_map);
244 /* The per processor IRQ masks (these are usually kept in sync) */
245 static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
247 /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
248 static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
250 /* Lock for enable/disable of VIC interrupts */
251 static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
253 /* The boot processor is correctly set up in PC mode when it
254 * comes up, but the secondaries need their master/slave 8259
255 * pairs initializing correctly */
257 /* Interrupt counters (per cpu) and total - used to try to
258 * even up the interrupt handling routines */
259 static long vic_intr_total = 0;
260 static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
261 static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
263 /* Since we can only use CPI0, we fake all the other CPIs */
264 static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
266 /* debugging routine to read the isr of the cpu's pic */
273 isr = inb(0xa0) << 8;
284 /* not a quad, no setup */
287 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
288 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
290 if(is_cpu_extended()) {
291 /* the QIC duplicate of the VIC base register */
292 outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
293 outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
295 /* FIXME: should set up the QIC timer and memory parity
296 * error vectors here */
303 outb(1, VIC_REDIRECT_REGISTER_1);
304 /* clear the claim registers for dynamic routing */
305 outb(0, VIC_CLAIM_REGISTER_0);
306 outb(0, VIC_CLAIM_REGISTER_1);
308 outb(0, VIC_PRIORITY_REGISTER);
309 /* Set the Primary and Secondary Microchannel vector
310 * bases to be the same as the ordinary interrupts
312 * FIXME: This would be more efficient using separate
314 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
315 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
316 /* Now initiallise the master PIC belonging to this CPU by
317 * sending the four ICWs */
319 /* ICW1: level triggered, ICW4 needed */
322 /* ICW2: vector base */
323 outb(FIRST_EXTERNAL_VECTOR, 0x21);
325 /* ICW3: slave at line 2 */
328 /* ICW4: 8086 mode */
331 /* now the same for the slave PIC */
333 /* ICW1: level trigger, ICW4 needed */
336 /* ICW2: slave vector base */
337 outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
342 /* ICW4: 8086 mode */
347 do_quad_bootstrap(void)
349 if(is_cpu_quad() && is_cpu_vic_boot()) {
352 __u8 cpuid = hard_smp_processor_id();
354 local_irq_save(flags);
356 for(i = 0; i<4; i++) {
357 /* FIXME: this would be >>3 &0x7 on the 32 way */
358 if(((cpuid >> 2) & 0x03) == i)
359 /* don't lower our own mask! */
362 /* masquerade as local Quad CPU */
363 outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
364 /* enable the startup CPI */
365 outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
367 outb(0, QIC_PROCESSOR_ID);
369 local_irq_restore(flags);
374 /* Set up all the basic stuff: read the SMP config and make all the
375 * SMP information reflect only the boot cpu. All others will be
376 * brought on-line later. */
378 find_smp_config(void)
382 boot_cpu_id = hard_smp_processor_id();
384 printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
386 /* initialize the CPU structures (moved from smp_boot_cpus) */
387 for(i=0; i<NR_CPUS; i++) {
388 cpu_irq_affinity[i] = ~0;
390 cpu_online_map = cpumask_of_cpu(boot_cpu_id);
392 /* The boot CPU must be extended */
393 voyager_extended_vic_processors = 1<<boot_cpu_id;
394 /* initially, all of the first 8 cpu's can boot */
395 voyager_allowed_boot_processors = 0xff;
396 /* set up everything for just this CPU, we can alter
397 * this as we start the other CPUs later */
398 /* now get the CPU disposition from the extended CMOS */
399 cpus_addr(phys_cpu_present_map)[0] = voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
400 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
401 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 2) << 16;
402 cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 3) << 24;
403 cpu_possible_map = phys_cpu_present_map;
404 printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n", cpus_addr(phys_cpu_present_map)[0]);
405 /* Here we set up the VIC to enable SMP */
406 /* enable the CPIs by writing the base vector to their register */
407 outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
408 outb(1, VIC_REDIRECT_REGISTER_1);
409 /* set the claim registers for static routing --- Boot CPU gets
410 * all interrupts untill all other CPUs started */
411 outb(0xff, VIC_CLAIM_REGISTER_0);
412 outb(0xff, VIC_CLAIM_REGISTER_1);
413 /* Set the Primary and Secondary Microchannel vector
414 * bases to be the same as the ordinary interrupts
416 * FIXME: This would be more efficient using separate
418 outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
419 outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
421 /* Finally tell the firmware that we're driving */
422 outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
423 VOYAGER_SUS_IN_CONTROL_PORT);
425 current_thread_info()->cpu = boot_cpu_id;
426 write_pda(cpu_number, boot_cpu_id);
430 * The bootstrap kernel entry code has set these up. Save them
431 * for a given CPU, id is physical */
433 smp_store_cpu_info(int id)
435 struct cpuinfo_x86 *c=&cpu_data[id];
442 /* set up the trampoline and return the physical address of the code */
444 setup_trampoline(void)
446 /* these two are global symbols in trampoline.S */
447 extern __u8 trampoline_end[];
448 extern __u8 trampoline_data[];
450 memcpy((__u8 *)trampoline_base, trampoline_data,
451 trampoline_end - trampoline_data);
452 return virt_to_phys((__u8 *)trampoline_base);
455 /* Routine initially called when a non-boot CPU is brought online */
457 start_secondary(void *unused)
459 __u8 cpuid = hard_smp_processor_id();
460 /* external functions not defined in the headers */
461 extern void calibrate_delay(void);
463 secondary_cpu_init();
465 /* OK, we're in the routine */
466 ack_CPI(VIC_CPU_BOOT_CPI);
468 /* setup the 8259 master slave pair belonging to this CPU ---
469 * we won't actually receive any until the boot CPU
470 * relinquishes it's static routing mask */
475 if(is_cpu_quad() && !is_cpu_vic_boot()) {
476 /* clear the boot CPI */
479 dummy = voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
480 printk("read dummy %d\n", dummy);
483 /* lower the mask to receive CPIs */
486 VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
488 /* enable interrupts */
491 /* get our bogomips */
494 /* save our processor parameters */
495 smp_store_cpu_info(cpuid);
497 /* if we're a quad, we may need to bootstrap other CPUs */
500 /* FIXME: this is rather a poor hack to prevent the CPU
501 * activating softirqs while it's supposed to be waiting for
502 * permission to proceed. Without this, the new per CPU stuff
503 * in the softirqs will fail */
505 cpu_set(cpuid, cpu_callin_map);
507 /* signal that we're done */
510 while (!cpu_isset(cpuid, smp_commenced_mask))
516 cpu_set(cpuid, cpu_online_map);
522 /* Routine to kick start the given CPU and wait for it to report ready
523 * (or timeout in startup). When this routine returns, the requested
524 * CPU is either fully running and configured or known to be dead.
526 * We call this routine sequentially 1 CPU at a time, so no need for
530 do_boot_cpu(__u8 cpu)
532 struct task_struct *idle;
535 int quad_boot = (1<<cpu) & voyager_quad_processors
536 & ~( voyager_extended_vic_processors
537 & voyager_allowed_boot_processors);
539 /* For the 486, we can't use the 4Mb page table trick, so
540 * must map a region of memory */
543 unsigned long *page_table_copies = (unsigned long *)
544 __get_free_page(GFP_KERNEL);
546 pgd_t orig_swapper_pg_dir0;
548 /* This is an area in head.S which was used to set up the
549 * initial kernel stack. We need to alter this to give the
550 * booting CPU a new stack (taken from its idle process) */
555 /* This is the format of the CPI IDT gate (in real mode) which
556 * we're hijacking to boot the CPU */
565 __u32 *hijack_vector;
566 __u32 start_phys_address = setup_trampoline();
568 /* There's a clever trick to this: The linux trampoline is
569 * compiled to begin at absolute location zero, so make the
570 * address zero but have the data segment selector compensate
571 * for the actual address */
572 hijack_source.idt.Offset = start_phys_address & 0x000F;
573 hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
576 idle = fork_idle(cpu);
578 panic("failed fork for CPU%d", cpu);
579 idle->thread.eip = (unsigned long) start_secondary;
580 /* init_tasks (in sched.c) is indexed logically */
581 stack_start.esp = (void *) idle->thread.esp;
583 /* Pre-allocate and initialize the CPU's GDT and PDA so it
584 doesn't have to do any memory allocation during the
585 delicate CPU-bringup phase. */
586 if (!init_gdt(cpu, idle)) {
587 printk(KERN_INFO "Couldn't allocate GDT/PDA for CPU %d\n", cpu);
594 /* Note: Don't modify initial ss override */
595 VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
596 (unsigned long)hijack_source.val, hijack_source.idt.Segment,
597 hijack_source.idt.Offset, stack_start.esp));
598 /* set the original swapper_pg_dir[0] to map 0 to 4Mb transparently
599 * (so that the booting CPU can find start_32 */
600 orig_swapper_pg_dir0 = swapper_pg_dir[0];
602 if(page_table_copies == NULL)
603 panic("No free memory for 486 page tables\n");
604 for(i = 0; i < PAGE_SIZE/sizeof(unsigned long); i++)
605 page_table_copies[i] = (i * PAGE_SIZE)
606 | _PAGE_RW | _PAGE_USER | _PAGE_PRESENT;
608 ((unsigned long *)swapper_pg_dir)[0] =
609 ((virt_to_phys(page_table_copies)) & PAGE_MASK)
610 | _PAGE_RW | _PAGE_USER | _PAGE_PRESENT;
612 ((unsigned long *)swapper_pg_dir)[0] =
613 (virt_to_phys(pg0) & PAGE_MASK)
614 | _PAGE_RW | _PAGE_USER | _PAGE_PRESENT;
618 printk("CPU %d: non extended Quad boot\n", cpu);
619 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE)*4);
620 *hijack_vector = hijack_source.val;
622 printk("CPU%d: extended VIC boot\n", cpu);
623 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE)*4);
624 *hijack_vector = hijack_source.val;
625 /* VIC errata, may also receive interrupt at this address */
626 hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI + VIC_DEFAULT_CPI_BASE)*4);
627 *hijack_vector = hijack_source.val;
629 /* All non-boot CPUs start with interrupts fully masked. Need
630 * to lower the mask of the CPI we're about to send. We do
631 * this in the VIC by masquerading as the processor we're
632 * about to boot and lowering its interrupt mask */
633 local_irq_save(flags);
635 send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
637 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
638 /* here we're altering registers belonging to `cpu' */
640 outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
641 /* now go back to our original identity */
642 outb(boot_cpu_id, VIC_PROCESSOR_ID);
644 /* and boot the CPU */
646 send_CPI((1<<cpu), VIC_CPU_BOOT_CPI);
649 local_irq_restore(flags);
651 /* now wait for it to become ready (or timeout) */
652 for(timeout = 0; timeout < 50000; timeout++) {
657 /* reset the page table */
658 swapper_pg_dir[0] = orig_swapper_pg_dir0;
661 free_page((unsigned long)page_table_copies);
664 if (cpu_booted_map) {
665 VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
666 cpu, smp_processor_id()));
668 printk("CPU%d: ", cpu);
669 print_cpu_info(&cpu_data[cpu]);
671 cpu_set(cpu, cpu_callout_map);
672 cpu_set(cpu, cpu_present_map);
675 printk("CPU%d FAILED TO BOOT: ", cpu);
676 if (*((volatile unsigned char *)phys_to_virt(start_phys_address))==0xA5)
679 printk("Not responding.\n");
690 /* CAT BUS initialisation must be done after the memory */
691 /* FIXME: The L4 has a catbus too, it just needs to be
692 * accessed in a totally different way */
693 if(voyager_level == 5) {
696 /* now that the cat has probed the Voyager System Bus, sanity
697 * check the cpu map */
698 if( ((voyager_quad_processors | voyager_extended_vic_processors)
699 & cpus_addr(phys_cpu_present_map)[0]) != cpus_addr(phys_cpu_present_map)[0]) {
701 printk("\n\n***WARNING*** Sanity check of CPU present map FAILED\n");
703 } else if(voyager_level == 4)
704 voyager_extended_vic_processors = cpus_addr(phys_cpu_present_map)[0];
706 /* this sets up the idle task to run on the current cpu */
707 voyager_extended_cpus = 1;
708 /* Remove the global_irq_holder setting, it triggers a BUG() on
709 * schedule at the moment */
710 //global_irq_holder = boot_cpu_id;
712 /* FIXME: Need to do something about this but currently only works
713 * on CPUs with a tsc which none of mine have.
714 smp_tune_scheduling();
716 smp_store_cpu_info(boot_cpu_id);
717 printk("CPU%d: ", boot_cpu_id);
718 print_cpu_info(&cpu_data[boot_cpu_id]);
721 /* booting on a Quad CPU */
722 printk("VOYAGER SMP: Boot CPU is Quad\n");
727 /* enable our own CPIs */
730 cpu_set(boot_cpu_id, cpu_online_map);
731 cpu_set(boot_cpu_id, cpu_callout_map);
733 /* loop over all the extended VIC CPUs and boot them. The
734 * Quad CPUs must be bootstrapped by their extended VIC cpu */
735 for(i = 0; i < NR_CPUS; i++) {
736 if(i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
739 /* This udelay seems to be needed for the Quad boots
740 * don't remove unless you know what you're doing */
743 /* we could compute the total bogomips here, but why bother?,
744 * Code added from smpboot.c */
746 unsigned long bogosum = 0;
747 for (i = 0; i < NR_CPUS; i++)
748 if (cpu_isset(i, cpu_online_map))
749 bogosum += cpu_data[i].loops_per_jiffy;
750 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
753 (bogosum/(5000/HZ))%100);
755 voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
756 printk("VOYAGER: Extended (interrupt handling CPUs): %d, non-extended: %d\n", voyager_extended_cpus, num_booting_cpus() - voyager_extended_cpus);
757 /* that's it, switch to symmetric mode */
758 outb(0, VIC_PRIORITY_REGISTER);
759 outb(0, VIC_CLAIM_REGISTER_0);
760 outb(0, VIC_CLAIM_REGISTER_1);
762 VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
765 /* Reload the secondary CPUs task structure (this function does not
768 initialize_secondary(void)
772 set_current(hard_get_current());
776 * switch to the per CPU GDT we already set up
779 cpu_set_gdt(current_thread_info()->cpu);
782 * We don't actually need to load the full TSS,
783 * basically just the stack pointer and the eip.
790 :"r" (current->thread.esp),"r" (current->thread.eip));
793 /* handle a Voyager SYS_INT -- If we don't, the base board will
796 * System interrupts occur because some problem was detected on the
797 * various busses. To find out what you have to probe all the
798 * hardware via the CAT bus. FIXME: At the moment we do nothing. */
800 smp_vic_sys_interrupt(struct pt_regs *regs)
802 ack_CPI(VIC_SYS_INT);
803 printk("Voyager SYSTEM INTERRUPT\n");
806 /* Handle a voyager CMN_INT; These interrupts occur either because of
807 * a system status change or because a single bit memory error
808 * occurred. FIXME: At the moment, ignore all this. */
810 smp_vic_cmn_interrupt(struct pt_regs *regs)
812 static __u8 in_cmn_int = 0;
813 static DEFINE_SPINLOCK(cmn_int_lock);
815 /* common ints are broadcast, so make sure we only do this once */
816 _raw_spin_lock(&cmn_int_lock);
821 _raw_spin_unlock(&cmn_int_lock);
823 VDEBUG(("Voyager COMMON INTERRUPT\n"));
825 if(voyager_level == 5)
826 voyager_cat_do_common_interrupt();
828 _raw_spin_lock(&cmn_int_lock);
831 _raw_spin_unlock(&cmn_int_lock);
832 ack_CPI(VIC_CMN_INT);
836 * Reschedule call back. Nothing to do, all the work is done
837 * automatically when we return from the interrupt. */
839 smp_reschedule_interrupt(void)
844 static struct mm_struct * flush_mm;
845 static unsigned long flush_va;
846 static DEFINE_SPINLOCK(tlbstate_lock);
847 #define FLUSH_ALL 0xffffffff
850 * We cannot call mmdrop() because we are in interrupt context,
851 * instead update mm->cpu_vm_mask.
853 * We need to reload %cr3 since the page tables may be going
854 * away from under us..
857 leave_mm (unsigned long cpu)
859 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
861 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
862 load_cr3(swapper_pg_dir);
867 * Invalidate call-back
870 smp_invalidate_interrupt(void)
872 __u8 cpu = smp_processor_id();
874 if (!test_bit(cpu, &smp_invalidate_needed))
876 /* This will flood messages. Don't uncomment unless you see
877 * Problems with cross cpu invalidation
878 VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
879 smp_processor_id()));
882 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
883 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
884 if (flush_va == FLUSH_ALL)
887 __flush_tlb_one(flush_va);
891 smp_mb__before_clear_bit();
892 clear_bit(cpu, &smp_invalidate_needed);
893 smp_mb__after_clear_bit();
896 /* All the new flush operations for 2.4 */
899 /* This routine is called with a physical cpu mask */
901 flush_tlb_others (unsigned long cpumask, struct mm_struct *mm,
908 if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
910 if (cpumask & (1 << smp_processor_id()))
915 spin_lock(&tlbstate_lock);
919 atomic_set_mask(cpumask, &smp_invalidate_needed);
921 * We have to send the CPI only to
924 send_CPI(cpumask, VIC_INVALIDATE_CPI);
926 while (smp_invalidate_needed) {
929 printk("***WARNING*** Stuck doing invalidate CPI (CPU%d)\n", smp_processor_id());
934 /* Uncomment only to debug invalidation problems
935 VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
940 spin_unlock(&tlbstate_lock);
944 flush_tlb_current_task(void)
946 struct mm_struct *mm = current->mm;
947 unsigned long cpu_mask;
951 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
954 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
961 flush_tlb_mm (struct mm_struct * mm)
963 unsigned long cpu_mask;
967 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
969 if (current->active_mm == mm) {
973 leave_mm(smp_processor_id());
976 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
981 void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
983 struct mm_struct *mm = vma->vm_mm;
984 unsigned long cpu_mask;
988 cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
989 if (current->active_mm == mm) {
993 leave_mm(smp_processor_id());
997 flush_tlb_others(cpu_mask, mm, va);
1001 EXPORT_SYMBOL(flush_tlb_page);
1003 /* enable the requested IRQs */
1005 smp_enable_irq_interrupt(void)
1008 __u8 cpu = get_cpu();
1010 VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
1011 vic_irq_enable_mask[cpu]));
1013 spin_lock(&vic_irq_lock);
1014 for(irq = 0; irq < 16; irq++) {
1015 if(vic_irq_enable_mask[cpu] & (1<<irq))
1016 enable_local_vic_irq(irq);
1018 vic_irq_enable_mask[cpu] = 0;
1019 spin_unlock(&vic_irq_lock);
1021 put_cpu_no_resched();
1025 * CPU halt call-back
1028 smp_stop_cpu_function(void *dummy)
1030 VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
1031 cpu_clear(smp_processor_id(), cpu_online_map);
1032 local_irq_disable();
1037 static DEFINE_SPINLOCK(call_lock);
1039 struct call_data_struct {
1040 void (*func) (void *info);
1042 volatile unsigned long started;
1043 volatile unsigned long finished;
1047 static struct call_data_struct * call_data;
1049 /* execute a thread on a new CPU. The function to be called must be
1050 * previously set up. This is used to schedule a function for
1051 * execution on all CPU's - set up the function then broadcast a
1052 * function_interrupt CPI to come here on each CPU */
1054 smp_call_function_interrupt(void)
1056 void (*func) (void *info) = call_data->func;
1057 void *info = call_data->info;
1058 /* must take copy of wait because call_data may be replaced
1059 * unless the function is waiting for us to finish */
1060 int wait = call_data->wait;
1061 __u8 cpu = smp_processor_id();
1064 * Notify initiating CPU that I've grabbed the data and am
1065 * about to execute the function
1068 if(!test_and_clear_bit(cpu, &call_data->started)) {
1069 /* If the bit wasn't set, this could be a replay */
1070 printk(KERN_WARNING "VOYAGER SMP: CPU %d received call funtion with no call pending\n", cpu);
1074 * At this point the info structure may be out of scope unless wait==1
1081 clear_bit(cpu, &call_data->finished);
1085 /* Call this function on all CPUs using the function_interrupt above
1086 <func> The function to run. This must be fast and non-blocking.
1087 <info> An arbitrary pointer to pass to the function.
1088 <retry> If true, keep retrying until ready.
1089 <wait> If true, wait until function has completed on other CPUs.
1090 [RETURNS] 0 on success, else a negative status code. Does not return until
1091 remote CPUs are nearly ready to execute <<func>> or are or have executed.
1094 smp_call_function (void (*func) (void *info), void *info, int retry,
1097 struct call_data_struct data;
1098 __u32 mask = cpus_addr(cpu_online_map)[0];
1100 mask &= ~(1<<smp_processor_id());
1105 /* Can deadlock when called with interrupts disabled */
1106 WARN_ON(irqs_disabled());
1110 data.started = mask;
1113 data.finished = mask;
1115 spin_lock(&call_lock);
1118 /* Send a message to all other CPUs and wait for them to respond */
1119 send_CPI_allbutself(VIC_CALL_FUNCTION_CPI);
1121 /* Wait for response */
1122 while (data.started)
1126 while (data.finished)
1129 spin_unlock(&call_lock);
1133 EXPORT_SYMBOL(smp_call_function);
1135 /* Sorry about the name. In an APIC based system, the APICs
1136 * themselves are programmed to send a timer interrupt. This is used
1137 * by linux to reschedule the processor. Voyager doesn't have this,
1138 * so we use the system clock to interrupt one processor, which in
1139 * turn, broadcasts a timer CPI to all the others --- we receive that
1140 * CPI here. We don't use this actually for counting so losing
1141 * ticks doesn't matter
1143 * FIXME: For those CPU's which actually have a local APIC, we could
1144 * try to use it to trigger this interrupt instead of having to
1145 * broadcast the timer tick. Unfortunately, all my pentium DYADs have
1146 * no local APIC, so I can't do this
1148 * This function is currently a placeholder and is unused in the code */
1150 smp_apic_timer_interrupt(struct pt_regs *regs)
1152 struct pt_regs *old_regs = set_irq_regs(regs);
1153 wrapper_smp_local_timer_interrupt();
1154 set_irq_regs(old_regs);
1157 /* All of the QUAD interrupt GATES */
1159 smp_qic_timer_interrupt(struct pt_regs *regs)
1161 struct pt_regs *old_regs = set_irq_regs(regs);
1162 ack_QIC_CPI(QIC_TIMER_CPI);
1163 wrapper_smp_local_timer_interrupt();
1164 set_irq_regs(old_regs);
1168 smp_qic_invalidate_interrupt(struct pt_regs *regs)
1170 ack_QIC_CPI(QIC_INVALIDATE_CPI);
1171 smp_invalidate_interrupt();
1175 smp_qic_reschedule_interrupt(struct pt_regs *regs)
1177 ack_QIC_CPI(QIC_RESCHEDULE_CPI);
1178 smp_reschedule_interrupt();
1182 smp_qic_enable_irq_interrupt(struct pt_regs *regs)
1184 ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
1185 smp_enable_irq_interrupt();
1189 smp_qic_call_function_interrupt(struct pt_regs *regs)
1191 ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
1192 smp_call_function_interrupt();
1196 smp_vic_cpi_interrupt(struct pt_regs *regs)
1198 struct pt_regs *old_regs = set_irq_regs(regs);
1199 __u8 cpu = smp_processor_id();
1202 ack_QIC_CPI(VIC_CPI_LEVEL0);
1204 ack_VIC_CPI(VIC_CPI_LEVEL0);
1206 if(test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
1207 wrapper_smp_local_timer_interrupt();
1208 if(test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
1209 smp_invalidate_interrupt();
1210 if(test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
1211 smp_reschedule_interrupt();
1212 if(test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
1213 smp_enable_irq_interrupt();
1214 if(test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
1215 smp_call_function_interrupt();
1216 set_irq_regs(old_regs);
1220 do_flush_tlb_all(void* info)
1222 unsigned long cpu = smp_processor_id();
1225 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
1230 /* flush the TLB of every active CPU in the system */
1234 on_each_cpu(do_flush_tlb_all, 0, 1, 1);
1237 /* used to set up the trampoline for other CPUs when the memory manager
1240 smp_alloc_memory(void)
1242 trampoline_base = (__u32)alloc_bootmem_low_pages(PAGE_SIZE);
1243 if(__pa(trampoline_base) >= 0x93000)
1247 /* send a reschedule CPI to one CPU by physical CPU number*/
1249 smp_send_reschedule(int cpu)
1251 send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
1256 hard_smp_processor_id(void)
1259 __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
1260 if((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
1261 return cpumask & 0x1F;
1263 for(i = 0; i < 8; i++) {
1264 if(cpumask & (1<<i))
1267 printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
1272 safe_smp_processor_id(void)
1274 return hard_smp_processor_id();
1277 /* broadcast a halt to all other CPUs */
1281 smp_call_function(smp_stop_cpu_function, NULL, 1, 1);
1284 /* this function is triggered in time.c when a clock tick fires
1285 * we need to re-broadcast the tick to all CPUs */
1287 smp_vic_timer_interrupt(void)
1289 send_CPI_allbutself(VIC_TIMER_CPI);
1290 smp_local_timer_interrupt();
1293 /* local (per CPU) timer interrupt. It does both profiling and
1294 * process statistics/rescheduling.
1296 * We do profiling in every local tick, statistics/rescheduling
1297 * happen only every 'profiling multiplier' ticks. The default
1298 * multiplier is 1 and it can be changed by writing the new multiplier
1299 * value into /proc/profile.
1302 smp_local_timer_interrupt(void)
1304 int cpu = smp_processor_id();
1307 profile_tick(CPU_PROFILING);
1308 if (--per_cpu(prof_counter, cpu) <= 0) {
1310 * The multiplier may have changed since the last time we got
1311 * to this point as a result of the user writing to
1312 * /proc/profile. In this case we need to adjust the APIC
1313 * timer accordingly.
1315 * Interrupts are already masked off at this point.
1317 per_cpu(prof_counter,cpu) = per_cpu(prof_multiplier, cpu);
1318 if (per_cpu(prof_counter, cpu) !=
1319 per_cpu(prof_old_multiplier, cpu)) {
1320 /* FIXME: need to update the vic timer tick here */
1321 per_cpu(prof_old_multiplier, cpu) =
1322 per_cpu(prof_counter, cpu);
1325 update_process_times(user_mode_vm(get_irq_regs()));
1328 if( ((1<<cpu) & voyager_extended_vic_processors) == 0)
1329 /* only extended VIC processors participate in
1330 * interrupt distribution */
1334 * We take the 'long' return path, and there every subsystem
1335 * grabs the apropriate locks (kernel lock/ irq lock).
1337 * we might want to decouple profiling from the 'long path',
1338 * and do the profiling totally in assembly.
1340 * Currently this isn't too much of an issue (performance wise),
1341 * we can take more than 100K local irqs per second on a 100 MHz P5.
1344 if((++vic_tick[cpu] & 0x7) != 0)
1346 /* get here every 16 ticks (about every 1/6 of a second) */
1348 /* Change our priority to give someone else a chance at getting
1349 * the IRQ. The algorithm goes like this:
1351 * In the VIC, the dynamically routed interrupt is always
1352 * handled by the lowest priority eligible (i.e. receiving
1353 * interrupts) CPU. If >1 eligible CPUs are equal lowest, the
1354 * lowest processor number gets it.
1356 * The priority of a CPU is controlled by a special per-CPU
1357 * VIC priority register which is 3 bits wide 0 being lowest
1358 * and 7 highest priority..
1360 * Therefore we subtract the average number of interrupts from
1361 * the number we've fielded. If this number is negative, we
1362 * lower the activity count and if it is positive, we raise
1365 * I'm afraid this still leads to odd looking interrupt counts:
1366 * the totals are all roughly equal, but the individual ones
1367 * look rather skewed.
1369 * FIXME: This algorithm is total crap when mixed with SMP
1370 * affinity code since we now try to even up the interrupt
1371 * counts when an affinity binding is keeping them on a
1373 weight = (vic_intr_count[cpu]*voyager_extended_cpus
1374 - vic_intr_total) >> 4;
1381 outb((__u8)weight, VIC_PRIORITY_REGISTER);
1383 #ifdef VOYAGER_DEBUG
1384 if((vic_tick[cpu] & 0xFFF) == 0) {
1385 /* print this message roughly every 25 secs */
1386 printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1387 cpu, vic_tick[cpu], weight);
1392 /* setup the profiling timer */
1394 setup_profiling_timer(unsigned int multiplier)
1402 * Set the new multiplier for each CPU. CPUs don't start using the
1403 * new values until the next timer interrupt in which they do process
1406 for (i = 0; i < NR_CPUS; ++i)
1407 per_cpu(prof_multiplier, i) = multiplier;
1412 /* This is a bit of a mess, but forced on us by the genirq changes
1413 * there's no genirq handler that really does what voyager wants
1414 * so hack it up with the simple IRQ handler */
1415 static void fastcall
1416 handle_vic_irq(unsigned int irq, struct irq_desc *desc)
1418 before_handle_vic_irq(irq);
1419 handle_simple_irq(irq, desc);
1420 after_handle_vic_irq(irq);
1424 /* The CPIs are handled in the per cpu 8259s, so they must be
1425 * enabled to be received: FIX: enabling the CPIs in the early
1426 * boot sequence interferes with bug checking; enable them later
1428 #define VIC_SET_GATE(cpi, vector) \
1429 set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1430 #define QIC_SET_GATE(cpi, vector) \
1431 set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1438 /* initialize the per cpu irq mask to all disabled */
1439 for(i = 0; i < NR_CPUS; i++)
1440 vic_irq_mask[i] = 0xFFFF;
1442 VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
1444 VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
1445 VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
1447 QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
1448 QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
1449 QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
1450 QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
1451 QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
1454 /* now put the VIC descriptor into the first 48 IRQs
1456 * This is for later: first 16 correspond to PC IRQs; next 16
1457 * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1458 for(i = 0; i < 48; i++)
1459 set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq);
1462 /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1463 * processor to receive CPI */
1465 send_CPI(__u32 cpuset, __u8 cpi)
1468 __u32 quad_cpuset = (cpuset & voyager_quad_processors);
1470 if(cpi < VIC_START_FAKE_CPI) {
1471 /* fake CPI are only used for booting, so send to the
1472 * extended quads as well---Quads must be VIC booted */
1473 outb((__u8)(cpuset), VIC_CPI_Registers[cpi]);
1477 send_QIC_CPI(quad_cpuset, cpi);
1478 cpuset &= ~quad_cpuset;
1479 cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */
1482 for_each_online_cpu(cpu) {
1483 if(cpuset & (1<<cpu))
1484 set_bit(cpi, &vic_cpi_mailbox[cpu]);
1487 outb((__u8)cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
1490 /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1491 * set the cache line to shared by reading it.
1493 * DON'T make this inline otherwise the cache line read will be
1497 ack_QIC_CPI(__u8 cpi) {
1498 __u8 cpu = hard_smp_processor_id();
1502 outb(1<<cpi, QIC_INTERRUPT_CLEAR1);
1503 return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
1507 ack_special_QIC_CPI(__u8 cpi)
1511 outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
1514 outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
1517 /* also clear at the VIC, just in case (nop for non-extended proc) */
1521 /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
1523 ack_VIC_CPI(__u8 cpi)
1525 #ifdef VOYAGER_DEBUG
1526 unsigned long flags;
1528 __u8 cpu = smp_processor_id();
1530 local_irq_save(flags);
1531 isr = vic_read_isr();
1532 if((isr & (1<<(cpi &7))) == 0) {
1533 printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
1536 /* send specific EOI; the two system interrupts have
1537 * bit 4 set for a separate vector but behave as the
1538 * corresponding 3 bit intr */
1539 outb_p(0x60|(cpi & 7),0x20);
1541 #ifdef VOYAGER_DEBUG
1542 if((vic_read_isr() & (1<<(cpi &7))) != 0) {
1543 printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
1545 local_irq_restore(flags);
1549 /* cribbed with thanks from irq.c */
1550 #define __byte(x,y) (((unsigned char *)&(y))[x])
1551 #define cached_21(cpu) (__byte(0,vic_irq_mask[cpu]))
1552 #define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu]))
1555 startup_vic_irq(unsigned int irq)
1557 unmask_vic_irq(irq);
1562 /* The enable and disable routines. This is where we run into
1563 * conflicting architectural philosophy. Fundamentally, the voyager
1564 * architecture does not expect to have to disable interrupts globally
1565 * (the IRQ controllers belong to each CPU). The processor masquerade
1566 * which is used to start the system shouldn't be used in a running OS
1567 * since it will cause great confusion if two separate CPUs drive to
1568 * the same IRQ controller (I know, I've tried it).
1570 * The solution is a variant on the NCR lazy SPL design:
1572 * 1) To disable an interrupt, do nothing (other than set the
1573 * IRQ_DISABLED flag). This dares the interrupt actually to arrive.
1575 * 2) If the interrupt dares to come in, raise the local mask against
1576 * it (this will result in all the CPU masks being raised
1579 * 3) To enable the interrupt, lower the mask on the local CPU and
1580 * broadcast an Interrupt enable CPI which causes all other CPUs to
1581 * adjust their masks accordingly. */
1584 unmask_vic_irq(unsigned int irq)
1586 /* linux doesn't to processor-irq affinity, so enable on
1587 * all CPUs we know about */
1588 int cpu = smp_processor_id(), real_cpu;
1589 __u16 mask = (1<<irq);
1590 __u32 processorList = 0;
1591 unsigned long flags;
1593 VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n",
1594 irq, cpu, cpu_irq_affinity[cpu]));
1595 spin_lock_irqsave(&vic_irq_lock, flags);
1596 for_each_online_cpu(real_cpu) {
1597 if(!(voyager_extended_vic_processors & (1<<real_cpu)))
1599 if(!(cpu_irq_affinity[real_cpu] & mask)) {
1600 /* irq has no affinity for this CPU, ignore */
1603 if(real_cpu == cpu) {
1604 enable_local_vic_irq(irq);
1606 else if(vic_irq_mask[real_cpu] & mask) {
1607 vic_irq_enable_mask[real_cpu] |= mask;
1608 processorList |= (1<<real_cpu);
1611 spin_unlock_irqrestore(&vic_irq_lock, flags);
1613 send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
1617 mask_vic_irq(unsigned int irq)
1619 /* lazy disable, do nothing */
1623 enable_local_vic_irq(unsigned int irq)
1625 __u8 cpu = smp_processor_id();
1626 __u16 mask = ~(1 << irq);
1627 __u16 old_mask = vic_irq_mask[cpu];
1629 vic_irq_mask[cpu] &= mask;
1630 if(vic_irq_mask[cpu] == old_mask)
1633 VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1637 outb_p(cached_A1(cpu),0xA1);
1641 outb_p(cached_21(cpu),0x21);
1647 disable_local_vic_irq(unsigned int irq)
1649 __u8 cpu = smp_processor_id();
1650 __u16 mask = (1 << irq);
1651 __u16 old_mask = vic_irq_mask[cpu];
1656 vic_irq_mask[cpu] |= mask;
1657 if(old_mask == vic_irq_mask[cpu])
1660 VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1664 outb_p(cached_A1(cpu),0xA1);
1668 outb_p(cached_21(cpu),0x21);
1673 /* The VIC is level triggered, so the ack can only be issued after the
1674 * interrupt completes. However, we do Voyager lazy interrupt
1675 * handling here: It is an extremely expensive operation to mask an
1676 * interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If
1677 * this interrupt actually comes in, then we mask and ack here to push
1678 * the interrupt off to another CPU */
1680 before_handle_vic_irq(unsigned int irq)
1682 irq_desc_t *desc = irq_desc + irq;
1683 __u8 cpu = smp_processor_id();
1685 _raw_spin_lock(&vic_irq_lock);
1687 vic_intr_count[cpu]++;
1689 if(!(cpu_irq_affinity[cpu] & (1<<irq))) {
1690 /* The irq is not in our affinity mask, push it off
1691 * onto another CPU */
1692 VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d on cpu %d\n",
1694 disable_local_vic_irq(irq);
1695 /* set IRQ_INPROGRESS to prevent the handler in irq.c from
1696 * actually calling the interrupt routine */
1697 desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
1698 } else if(desc->status & IRQ_DISABLED) {
1699 /* Damn, the interrupt actually arrived, do the lazy
1700 * disable thing. The interrupt routine in irq.c will
1701 * not handle a IRQ_DISABLED interrupt, so nothing more
1702 * need be done here */
1703 VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1705 disable_local_vic_irq(irq);
1706 desc->status |= IRQ_REPLAY;
1708 desc->status &= ~IRQ_REPLAY;
1711 _raw_spin_unlock(&vic_irq_lock);
1714 /* Finish the VIC interrupt: basically mask */
1716 after_handle_vic_irq(unsigned int irq)
1718 irq_desc_t *desc = irq_desc + irq;
1720 _raw_spin_lock(&vic_irq_lock);
1722 unsigned int status = desc->status & ~IRQ_INPROGRESS;
1723 #ifdef VOYAGER_DEBUG
1727 desc->status = status;
1728 if ((status & IRQ_DISABLED))
1729 disable_local_vic_irq(irq);
1730 #ifdef VOYAGER_DEBUG
1731 /* DEBUG: before we ack, check what's in progress */
1732 isr = vic_read_isr();
1733 if((isr & (1<<irq) && !(status & IRQ_REPLAY)) == 0) {
1735 __u8 cpu = smp_processor_id();
1737 int mask; /* Um... initialize me??? --RR */
1739 printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1741 for_each_possible_cpu(real_cpu, mask) {
1743 outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
1745 isr = vic_read_isr();
1746 if(isr & (1<<irq)) {
1747 printk("VOYAGER SMP: CPU%d ack irq %d\n",
1751 outb(cpu, VIC_PROCESSOR_ID);
1754 #endif /* VOYAGER_DEBUG */
1755 /* as soon as we ack, the interrupt is eligible for
1756 * receipt by another CPU so everything must be in
1759 if(status & IRQ_REPLAY) {
1760 /* replay is set if we disable the interrupt
1761 * in the before_handle_vic_irq() routine, so
1762 * clear the in progress bit here to allow the
1763 * next CPU to handle this correctly */
1764 desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
1766 #ifdef VOYAGER_DEBUG
1767 isr = vic_read_isr();
1768 if((isr & (1<<irq)) != 0)
1769 printk("VOYAGER SMP: after_handle_vic_irq() after ack irq=%d, isr=0x%x\n",
1771 #endif /* VOYAGER_DEBUG */
1773 _raw_spin_unlock(&vic_irq_lock);
1775 /* All code after this point is out of the main path - the IRQ
1776 * may be intercepted by another CPU if reasserted */
1780 /* Linux processor - interrupt affinity manipulations.
1782 * For each processor, we maintain a 32 bit irq affinity mask.
1783 * Initially it is set to all 1's so every processor accepts every
1784 * interrupt. In this call, we change the processor's affinity mask:
1786 * Change from enable to disable:
1788 * If the interrupt ever comes in to the processor, we will disable it
1789 * and ack it to push it off to another CPU, so just accept the mask here.
1791 * Change from disable to enable:
1793 * change the mask and then do an interrupt enable CPI to re-enable on
1794 * the selected processors */
1797 set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
1799 /* Only extended processors handle interrupts */
1800 unsigned long real_mask;
1801 unsigned long irq_mask = 1 << irq;
1804 real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
1806 if(cpus_addr(mask)[0] == 0)
1807 /* can't have no cpu's to accept the interrupt -- extremely
1808 * bad things will happen */
1812 /* can't change the affinity of the timer IRQ. This
1813 * is due to the constraint in the voyager
1814 * architecture that the CPI also comes in on and IRQ
1815 * line and we have chosen IRQ0 for this. If you
1816 * raise the mask on this interrupt, the processor
1817 * will no-longer be able to accept VIC CPIs */
1821 /* You can only have 32 interrupts in a voyager system
1822 * (and 32 only if you have a secondary microchannel
1826 for_each_online_cpu(cpu) {
1827 unsigned long cpu_mask = 1 << cpu;
1829 if(cpu_mask & real_mask) {
1830 /* enable the interrupt for this cpu */
1831 cpu_irq_affinity[cpu] |= irq_mask;
1833 /* disable the interrupt for this cpu */
1834 cpu_irq_affinity[cpu] &= ~irq_mask;
1837 /* this is magic, we now have the correct affinity maps, so
1838 * enable the interrupt. This will send an enable CPI to
1839 * those cpu's who need to enable it in their local masks,
1840 * causing them to correct for the new affinity . If the
1841 * interrupt is currently globally disabled, it will simply be
1842 * disabled again as it comes in (voyager lazy disable). If
1843 * the affinity map is tightened to disable the interrupt on a
1844 * cpu, it will be pushed off when it comes in */
1845 unmask_vic_irq(irq);
1849 ack_vic_irq(unsigned int irq)
1852 outb(0x62,0x20); /* Specific EOI to cascade */
1853 outb(0x60|(irq & 7),0xA0);
1855 outb(0x60 | (irq & 7),0x20);
1859 /* enable the CPIs. In the VIC, the CPIs are delivered by the 8259
1860 * but are not vectored by it. This means that the 8259 mask must be
1861 * lowered to receive them */
1863 vic_enable_cpi(void)
1865 __u8 cpu = smp_processor_id();
1867 /* just take a copy of the current mask (nop for boot cpu) */
1868 vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
1870 enable_local_vic_irq(VIC_CPI_LEVEL0);
1871 enable_local_vic_irq(VIC_CPI_LEVEL1);
1872 /* for sys int and cmn int */
1873 enable_local_vic_irq(7);
1876 outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
1877 outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
1878 VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1879 cpu, QIC_CPI_ENABLE));
1882 VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1883 cpu, vic_irq_mask[cpu]));
1889 int old_cpu = smp_processor_id(), cpu;
1891 /* dump the interrupt masks of each processor */
1892 for_each_online_cpu(cpu) {
1893 __u16 imr, isr, irr;
1894 unsigned long flags;
1896 local_irq_save(flags);
1897 outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
1898 imr = (inb(0xa1) << 8) | inb(0x21);
1900 irr = inb(0xa0) << 8;
1904 isr = inb(0xa0) << 8;
1907 outb(old_cpu, VIC_PROCESSOR_ID);
1908 local_irq_restore(flags);
1909 printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1910 cpu, vic_irq_mask[cpu], imr, irr, isr);
1912 /* These lines are put in to try to unstick an un ack'd irq */
1915 for(irq=0; irq<16; irq++) {
1916 if(isr & (1<<irq)) {
1917 printk("\tCPU%d: ack irq %d\n",
1919 local_irq_save(flags);
1920 outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
1923 outb(old_cpu, VIC_PROCESSOR_ID);
1924 local_irq_restore(flags);
1933 smp_voyager_power_off(void *dummy)
1935 if(smp_processor_id() == boot_cpu_id)
1936 voyager_power_off();
1938 smp_stop_cpu_function(NULL);
1942 smp_prepare_cpus(unsigned int max_cpus)
1944 /* FIXME: ignore max_cpus for now */
1948 void __devinit smp_prepare_boot_cpu(void)
1950 cpu_set(smp_processor_id(), cpu_online_map);
1951 cpu_set(smp_processor_id(), cpu_callout_map);
1952 cpu_set(smp_processor_id(), cpu_possible_map);
1953 cpu_set(smp_processor_id(), cpu_present_map);
1957 __cpu_up(unsigned int cpu)
1959 /* This only works at boot for x86. See "rewrite" above. */
1960 if (cpu_isset(cpu, smp_commenced_mask))
1963 /* In case one didn't come up */
1964 if (!cpu_isset(cpu, cpu_callin_map))
1966 /* Unleash the CPU! */
1967 cpu_set(cpu, smp_commenced_mask);
1968 while (!cpu_isset(cpu, cpu_online_map))
1974 smp_cpus_done(unsigned int max_cpus)
1980 smp_setup_processor_id(void)
1982 current_thread_info()->cpu = hard_smp_processor_id();
1983 write_pda(cpu_number, hard_smp_processor_id());