2 * Copyright (C) 2004 PathScale, Inc
3 * Licensed under the GPL
15 #include "signal_kern.h"
16 #include "sysdep/sigcontext.h"
17 #include "sysdep/barrier.h"
18 #include "sigcontext.h"
22 /* These are the asynchronous signals. SIGVTALRM and SIGARLM are handled
23 * together under SIGVTALRM_BIT. SIGPROF is excluded because we want to
24 * be able to profile all of UML, not just the non-critical sections. If
25 * profiling is not thread-safe, then that is not my problem. We can disable
26 * profiling when SMP is enabled in that case.
29 #define SIGIO_MASK (1 << SIGIO_BIT)
31 #define SIGVTALRM_BIT 1
32 #define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
35 #define SIGALRM_MASK (1 << SIGALRM_BIT)
37 /* These are used by both the signal handlers and
38 * block/unblock_signals. I don't want modifications cached in a
39 * register - they must go straight to memory.
41 static volatile int signals_enabled = 1;
42 static volatile int pending = 0;
44 void sig_handler(int sig, struct sigcontext *sc)
48 enabled = signals_enabled;
49 if(!enabled && (sig == SIGIO)){
50 pending |= SIGIO_MASK;
56 CHOOSE_MODE_PROC(sig_handler_common_tt, sig_handler_common_skas,
62 static void real_alarm_handler(int sig, struct sigcontext *sc)
64 union uml_pt_regs regs;
71 regs.skas.is_user = 0;
73 timer_handler(sig, ®s);
79 void alarm_handler(int sig, struct sigcontext *sc)
83 enabled = signals_enabled;
86 pending |= SIGVTALRM_MASK;
87 else pending |= SIGALRM_MASK;
94 real_alarm_handler(sig, sc);
98 void set_sigstack(void *sig_stack, int size)
100 stack_t stack = ((stack_t) { .ss_flags = 0,
101 .ss_sp = (__ptr_t) sig_stack,
102 .ss_size = size - sizeof(void *) });
104 if(sigaltstack(&stack, NULL) != 0)
105 panic("enabling signal stack failed, errno = %d\n", errno);
108 void remove_sigstack(void)
110 stack_t stack = ((stack_t) { .ss_flags = SS_DISABLE,
114 if(sigaltstack(&stack, NULL) != 0)
115 panic("disabling signal stack failed, errno = %d\n", errno);
118 void (*handlers[_NSIG])(int sig, struct sigcontext *sc);
120 void handle_signal(int sig, struct sigcontext *sc)
122 unsigned long pending = 0;
128 * pending comes back with one bit set for each
129 * interrupt that arrived while setting up the stack,
130 * plus a bit for this interrupt, plus the zero bit is
131 * set if this is a nested interrupt.
132 * If bail is true, then we interrupted another
133 * handler setting up the stack. In this case, we
134 * have to return, and the upper handler will deal
135 * with this interrupt.
137 bail = to_irq_stack(sig, &pending);
141 nested = pending & 1;
144 while((sig = ffs(pending)) != 0){
146 pending &= ~(1 << sig);
147 (*handlers[sig])(sig, sc);
150 /* Again, pending comes back with a mask of signals
151 * that arrived while tearing down the stack. If this
152 * is non-zero, we just go back, set up the stack
153 * again, and handle the new interrupts.
156 pending = from_irq_stack(nested);
160 extern void hard_handler(int sig);
162 void set_handler(int sig, void (*handler)(int), int flags, ...)
164 struct sigaction action;
169 handlers[sig] = (void (*)(int, struct sigcontext *)) handler;
170 action.sa_handler = hard_handler;
172 sigemptyset(&action.sa_mask);
175 while((mask = va_arg(ap, int)) != -1)
176 sigaddset(&action.sa_mask, mask);
179 action.sa_flags = flags;
180 action.sa_restorer = NULL;
181 if(sigaction(sig, &action, NULL) < 0)
182 panic("sigaction failed - errno = %d\n", errno);
184 sigemptyset(&sig_mask);
185 sigaddset(&sig_mask, sig);
186 if(sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
187 panic("sigprocmask failed - errno = %d\n", errno);
190 int change_sig(int signal, int on)
192 sigset_t sigset, old;
194 sigemptyset(&sigset);
195 sigaddset(&sigset, signal);
196 sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, &old);
197 return(!sigismember(&old, signal));
200 void block_signals(void)
203 /* This must return with signals disabled, so this barrier
204 * ensures that writes are flushed out before the return.
205 * This might matter if gcc figures out how to inline this and
206 * decides to shuffle this code into the caller.
211 void unblock_signals(void)
215 if(signals_enabled == 1)
218 /* We loop because the IRQ handler returns with interrupts off. So,
219 * interrupts may have arrived and we need to re-enable them and
223 /* Save and reset save_pending after enabling signals. This
224 * way, pending won't be changed while we're reading it.
228 /* Setting signals_enabled and reading pending must
229 * happen in this order.
233 save_pending = pending;
234 if(save_pending == 0){
235 /* This must return with signals enabled, so
236 * this barrier ensures that writes are
237 * flushed out before the return. This might
238 * matter if gcc figures out how to inline
239 * this (unlikely, given its size) and decides
240 * to shuffle this code into the caller.
248 /* We have pending interrupts, so disable signals, as the
249 * handlers expect them off when they are called. They will
250 * be enabled again above.
255 /* Deal with SIGIO first because the alarm handler might
256 * schedule, leaving the pending SIGIO stranded until we come
259 if(save_pending & SIGIO_MASK)
260 CHOOSE_MODE_PROC(sig_handler_common_tt,
261 sig_handler_common_skas, SIGIO, NULL);
263 if(save_pending & SIGALRM_MASK)
264 real_alarm_handler(SIGALRM, NULL);
266 if(save_pending & SIGVTALRM_MASK)
267 real_alarm_handler(SIGVTALRM, NULL);
271 int get_signals(void)
273 return signals_enabled;
276 int set_signals(int enable)
279 if(signals_enabled == enable)
282 ret = signals_enabled;
285 else block_signals();