b43: Fix compilation for devices without PCI core
[linux-2.6] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos_params.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW2100_DEBUG
179 #define IPW2100_RX_DEBUG        /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int mode = 0;
189 static int channel = 0;
190 static int associate = 0;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param(mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW2100_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214         if (ipw2100_debug_level & (level)) { \
215                 printk(KERN_DEBUG "ipw2100: %c %s ", \
216                        in_interrupt() ? 'I' : 'U',  __func__); \
217                 printk(message); \
218         } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif                          /* CONFIG_IPW2100_DEBUG */
223
224 #ifdef CONFIG_IPW2100_DEBUG
225 static const char *command_types[] = {
226         "undefined",
227         "unused",               /* HOST_ATTENTION */
228         "HOST_COMPLETE",
229         "unused",               /* SLEEP */
230         "unused",               /* HOST_POWER_DOWN */
231         "unused",
232         "SYSTEM_CONFIG",
233         "unused",               /* SET_IMR */
234         "SSID",
235         "MANDATORY_BSSID",
236         "AUTHENTICATION_TYPE",
237         "ADAPTER_ADDRESS",
238         "PORT_TYPE",
239         "INTERNATIONAL_MODE",
240         "CHANNEL",
241         "RTS_THRESHOLD",
242         "FRAG_THRESHOLD",
243         "POWER_MODE",
244         "TX_RATES",
245         "BASIC_TX_RATES",
246         "WEP_KEY_INFO",
247         "unused",
248         "unused",
249         "unused",
250         "unused",
251         "WEP_KEY_INDEX",
252         "WEP_FLAGS",
253         "ADD_MULTICAST",
254         "CLEAR_ALL_MULTICAST",
255         "BEACON_INTERVAL",
256         "ATIM_WINDOW",
257         "CLEAR_STATISTICS",
258         "undefined",
259         "undefined",
260         "undefined",
261         "undefined",
262         "TX_POWER_INDEX",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "BROADCAST_SCAN",
270         "CARD_DISABLE",
271         "PREFERRED_BSSID",
272         "SET_SCAN_OPTIONS",
273         "SCAN_DWELL_TIME",
274         "SWEEP_TABLE",
275         "AP_OR_STATION_TABLE",
276         "GROUP_ORDINALS",
277         "SHORT_RETRY_LIMIT",
278         "LONG_RETRY_LIMIT",
279         "unused",               /* SAVE_CALIBRATION */
280         "unused",               /* RESTORE_CALIBRATION */
281         "undefined",
282         "undefined",
283         "undefined",
284         "HOST_PRE_POWER_DOWN",
285         "unused",               /* HOST_INTERRUPT_COALESCING */
286         "undefined",
287         "CARD_DISABLE_PHY_OFF",
288         "MSDU_TX_RATES" "undefined",
289         "undefined",
290         "SET_STATION_STAT_BITS",
291         "CLEAR_STATIONS_STAT_BITS",
292         "LEAP_ROGUE_MODE",
293         "SET_SECURITY_INFORMATION",
294         "DISASSOCIATION_BSSID",
295         "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309                                struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311                                 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313                                  size_t max);
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315                                     size_t max);
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317                                      struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319                                   struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct work_struct *work);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
323
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 {
326         *val = readl((void __iomem *)(dev->base_addr + reg));
327         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 }
329
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 {
332         writel(val, (void __iomem *)(dev->base_addr + reg));
333         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 }
335
336 static inline void read_register_word(struct net_device *dev, u32 reg,
337                                       u16 * val)
338 {
339         *val = readw((void __iomem *)(dev->base_addr + reg));
340         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 }
342
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 {
345         *val = readb((void __iomem *)(dev->base_addr + reg));
346         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 }
348
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 {
351         writew(val, (void __iomem *)(dev->base_addr + reg));
352         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 }
354
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 {
357         writeb(val, (void __iomem *)(dev->base_addr + reg));
358         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 }
360
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 {
363         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364                        addr & IPW_REG_INDIRECT_ADDR_MASK);
365         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 }
367
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 {
370         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371                        addr & IPW_REG_INDIRECT_ADDR_MASK);
372         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 }
374
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 {
377         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378                        addr & IPW_REG_INDIRECT_ADDR_MASK);
379         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 }
381
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 {
384         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385                        addr & IPW_REG_INDIRECT_ADDR_MASK);
386         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 }
388
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 {
391         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392                        addr & IPW_REG_INDIRECT_ADDR_MASK);
393         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 }
395
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 {
398         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399                        addr & IPW_REG_INDIRECT_ADDR_MASK);
400         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 }
402
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 {
405         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406                        addr & IPW_REG_INDIRECT_ADDR_MASK);
407 }
408
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 {
411         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 }
413
414 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415                                     const u8 * buf)
416 {
417         u32 aligned_addr;
418         u32 aligned_len;
419         u32 dif_len;
420         u32 i;
421
422         /* read first nibble byte by byte */
423         aligned_addr = addr & (~0x3);
424         dif_len = addr - aligned_addr;
425         if (dif_len) {
426                 /* Start reading at aligned_addr + dif_len */
427                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428                                aligned_addr);
429                 for (i = dif_len; i < 4; i++, buf++)
430                         write_register_byte(dev,
431                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
432                                             *buf);
433
434                 len -= dif_len;
435                 aligned_addr += 4;
436         }
437
438         /* read DWs through autoincrement registers */
439         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440         aligned_len = len & (~0x3);
441         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444         /* copy the last nibble */
445         dif_len = len - aligned_len;
446         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447         for (i = 0; i < dif_len; i++, buf++)
448                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449                                     *buf);
450 }
451
452 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453                                    u8 * buf)
454 {
455         u32 aligned_addr;
456         u32 aligned_len;
457         u32 dif_len;
458         u32 i;
459
460         /* read first nibble byte by byte */
461         aligned_addr = addr & (~0x3);
462         dif_len = addr - aligned_addr;
463         if (dif_len) {
464                 /* Start reading at aligned_addr + dif_len */
465                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466                                aligned_addr);
467                 for (i = dif_len; i < 4; i++, buf++)
468                         read_register_byte(dev,
469                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
470                                            buf);
471
472                 len -= dif_len;
473                 aligned_addr += 4;
474         }
475
476         /* read DWs through autoincrement registers */
477         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478         aligned_len = len & (~0x3);
479         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482         /* copy the last nibble */
483         dif_len = len - aligned_len;
484         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485         for (i = 0; i < dif_len; i++, buf++)
486                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 }
488
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 {
491         return (dev->base_addr &&
492                 (readl
493                  ((void __iomem *)(dev->base_addr +
494                                    IPW_REG_DOA_DEBUG_AREA_START))
495                  == IPW_DATA_DOA_DEBUG_VALUE));
496 }
497
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499                                void *val, u32 * len)
500 {
501         struct ipw2100_ordinals *ordinals = &priv->ordinals;
502         u32 addr;
503         u32 field_info;
504         u16 field_len;
505         u16 field_count;
506         u32 total_length;
507
508         if (ordinals->table1_addr == 0) {
509                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510                        "before they have been loaded.\n");
511                 return -EINVAL;
512         }
513
514         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518                         printk(KERN_WARNING DRV_NAME
519                                ": ordinal buffer length too small, need %zd\n",
520                                IPW_ORD_TAB_1_ENTRY_SIZE);
521
522                         return -EINVAL;
523                 }
524
525                 read_nic_dword(priv->net_dev,
526                                ordinals->table1_addr + (ord << 2), &addr);
527                 read_nic_dword(priv->net_dev, addr, val);
528
529                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531                 return 0;
532         }
533
534         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536                 ord -= IPW_START_ORD_TAB_2;
537
538                 /* get the address of statistic */
539                 read_nic_dword(priv->net_dev,
540                                ordinals->table2_addr + (ord << 3), &addr);
541
542                 /* get the second DW of statistics ;
543                  * two 16-bit words - first is length, second is count */
544                 read_nic_dword(priv->net_dev,
545                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
546                                &field_info);
547
548                 /* get each entry length */
549                 field_len = *((u16 *) & field_info);
550
551                 /* get number of entries */
552                 field_count = *(((u16 *) & field_info) + 1);
553
554                 /* abort if no enought memory */
555                 total_length = field_len * field_count;
556                 if (total_length > *len) {
557                         *len = total_length;
558                         return -EINVAL;
559                 }
560
561                 *len = total_length;
562                 if (!total_length)
563                         return 0;
564
565                 /* read the ordinal data from the SRAM */
566                 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568                 return 0;
569         }
570
571         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572                "in table 2\n", ord);
573
574         return -EINVAL;
575 }
576
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578                                u32 * len)
579 {
580         struct ipw2100_ordinals *ordinals = &priv->ordinals;
581         u32 addr;
582
583         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586                         IPW_DEBUG_INFO("wrong size\n");
587                         return -EINVAL;
588                 }
589
590                 read_nic_dword(priv->net_dev,
591                                ordinals->table1_addr + (ord << 2), &addr);
592
593                 write_nic_dword(priv->net_dev, addr, *val);
594
595                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597                 return 0;
598         }
599
600         IPW_DEBUG_INFO("wrong table\n");
601         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602                 return -EINVAL;
603
604         return -EINVAL;
605 }
606
607 static char *snprint_line(char *buf, size_t count,
608                           const u8 * data, u32 len, u32 ofs)
609 {
610         int out, i, j, l;
611         char c;
612
613         out = snprintf(buf, count, "%08X", ofs);
614
615         for (l = 0, i = 0; i < 2; i++) {
616                 out += snprintf(buf + out, count - out, " ");
617                 for (j = 0; j < 8 && l < len; j++, l++)
618                         out += snprintf(buf + out, count - out, "%02X ",
619                                         data[(i * 8 + j)]);
620                 for (; j < 8; j++)
621                         out += snprintf(buf + out, count - out, "   ");
622         }
623
624         out += snprintf(buf + out, count - out, " ");
625         for (l = 0, i = 0; i < 2; i++) {
626                 out += snprintf(buf + out, count - out, " ");
627                 for (j = 0; j < 8 && l < len; j++, l++) {
628                         c = data[(i * 8 + j)];
629                         if (!isascii(c) || !isprint(c))
630                                 c = '.';
631
632                         out += snprintf(buf + out, count - out, "%c", c);
633                 }
634
635                 for (; j < 8; j++)
636                         out += snprintf(buf + out, count - out, " ");
637         }
638
639         return buf;
640 }
641
642 static void printk_buf(int level, const u8 * data, u32 len)
643 {
644         char line[81];
645         u32 ofs = 0;
646         if (!(ipw2100_debug_level & level))
647                 return;
648
649         while (len) {
650                 printk(KERN_DEBUG "%s\n",
651                        snprint_line(line, sizeof(line), &data[ofs],
652                                     min(len, 16U), ofs));
653                 ofs += 16;
654                 len -= min(len, 16U);
655         }
656 }
657
658 #define MAX_RESET_BACKOFF 10
659
660 static void schedule_reset(struct ipw2100_priv *priv)
661 {
662         unsigned long now = get_seconds();
663
664         /* If we haven't received a reset request within the backoff period,
665          * then we can reset the backoff interval so this reset occurs
666          * immediately */
667         if (priv->reset_backoff &&
668             (now - priv->last_reset > priv->reset_backoff))
669                 priv->reset_backoff = 0;
670
671         priv->last_reset = get_seconds();
672
673         if (!(priv->status & STATUS_RESET_PENDING)) {
674                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675                                priv->net_dev->name, priv->reset_backoff);
676                 netif_carrier_off(priv->net_dev);
677                 netif_stop_queue(priv->net_dev);
678                 priv->status |= STATUS_RESET_PENDING;
679                 if (priv->reset_backoff)
680                         queue_delayed_work(priv->workqueue, &priv->reset_work,
681                                            priv->reset_backoff * HZ);
682                 else
683                         queue_delayed_work(priv->workqueue, &priv->reset_work,
684                                            0);
685
686                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
687                         priv->reset_backoff++;
688
689                 wake_up_interruptible(&priv->wait_command_queue);
690         } else
691                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
692                                priv->net_dev->name);
693
694 }
695
696 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
697 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
698                                    struct host_command *cmd)
699 {
700         struct list_head *element;
701         struct ipw2100_tx_packet *packet;
702         unsigned long flags;
703         int err = 0;
704
705         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
706                      command_types[cmd->host_command], cmd->host_command,
707                      cmd->host_command_length);
708         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
709                    cmd->host_command_length);
710
711         spin_lock_irqsave(&priv->low_lock, flags);
712
713         if (priv->fatal_error) {
714                 IPW_DEBUG_INFO
715                     ("Attempt to send command while hardware in fatal error condition.\n");
716                 err = -EIO;
717                 goto fail_unlock;
718         }
719
720         if (!(priv->status & STATUS_RUNNING)) {
721                 IPW_DEBUG_INFO
722                     ("Attempt to send command while hardware is not running.\n");
723                 err = -EIO;
724                 goto fail_unlock;
725         }
726
727         if (priv->status & STATUS_CMD_ACTIVE) {
728                 IPW_DEBUG_INFO
729                     ("Attempt to send command while another command is pending.\n");
730                 err = -EBUSY;
731                 goto fail_unlock;
732         }
733
734         if (list_empty(&priv->msg_free_list)) {
735                 IPW_DEBUG_INFO("no available msg buffers\n");
736                 goto fail_unlock;
737         }
738
739         priv->status |= STATUS_CMD_ACTIVE;
740         priv->messages_sent++;
741
742         element = priv->msg_free_list.next;
743
744         packet = list_entry(element, struct ipw2100_tx_packet, list);
745         packet->jiffy_start = jiffies;
746
747         /* initialize the firmware command packet */
748         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
749         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
750         packet->info.c_struct.cmd->host_command_len_reg =
751             cmd->host_command_length;
752         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
753
754         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
755                cmd->host_command_parameters,
756                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
757
758         list_del(element);
759         DEC_STAT(&priv->msg_free_stat);
760
761         list_add_tail(element, &priv->msg_pend_list);
762         INC_STAT(&priv->msg_pend_stat);
763
764         ipw2100_tx_send_commands(priv);
765         ipw2100_tx_send_data(priv);
766
767         spin_unlock_irqrestore(&priv->low_lock, flags);
768
769         /*
770          * We must wait for this command to complete before another
771          * command can be sent...  but if we wait more than 3 seconds
772          * then there is a problem.
773          */
774
775         err =
776             wait_event_interruptible_timeout(priv->wait_command_queue,
777                                              !(priv->
778                                                status & STATUS_CMD_ACTIVE),
779                                              HOST_COMPLETE_TIMEOUT);
780
781         if (err == 0) {
782                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
783                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
784                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
785                 priv->status &= ~STATUS_CMD_ACTIVE;
786                 schedule_reset(priv);
787                 return -EIO;
788         }
789
790         if (priv->fatal_error) {
791                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
792                        priv->net_dev->name);
793                 return -EIO;
794         }
795
796         /* !!!!! HACK TEST !!!!!
797          * When lots of debug trace statements are enabled, the driver
798          * doesn't seem to have as many firmware restart cycles...
799          *
800          * As a test, we're sticking in a 1/100s delay here */
801         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
802
803         return 0;
804
805       fail_unlock:
806         spin_unlock_irqrestore(&priv->low_lock, flags);
807
808         return err;
809 }
810
811 /*
812  * Verify the values and data access of the hardware
813  * No locks needed or used.  No functions called.
814  */
815 static int ipw2100_verify(struct ipw2100_priv *priv)
816 {
817         u32 data1, data2;
818         u32 address;
819
820         u32 val1 = 0x76543210;
821         u32 val2 = 0xFEDCBA98;
822
823         /* Domain 0 check - all values should be DOA_DEBUG */
824         for (address = IPW_REG_DOA_DEBUG_AREA_START;
825              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
826                 read_register(priv->net_dev, address, &data1);
827                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
828                         return -EIO;
829         }
830
831         /* Domain 1 check - use arbitrary read/write compare  */
832         for (address = 0; address < 5; address++) {
833                 /* The memory area is not used now */
834                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
835                                val1);
836                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
837                                val2);
838                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
839                               &data1);
840                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
841                               &data2);
842                 if (val1 == data1 && val2 == data2)
843                         return 0;
844         }
845
846         return -EIO;
847 }
848
849 /*
850  *
851  * Loop until the CARD_DISABLED bit is the same value as the
852  * supplied parameter
853  *
854  * TODO: See if it would be more efficient to do a wait/wake
855  *       cycle and have the completion event trigger the wakeup
856  *
857  */
858 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
859 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
860 {
861         int i;
862         u32 card_state;
863         u32 len = sizeof(card_state);
864         int err;
865
866         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
867                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
868                                           &card_state, &len);
869                 if (err) {
870                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
871                                        "failed.\n");
872                         return 0;
873                 }
874
875                 /* We'll break out if either the HW state says it is
876                  * in the state we want, or if HOST_COMPLETE command
877                  * finishes */
878                 if ((card_state == state) ||
879                     ((priv->status & STATUS_ENABLED) ?
880                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
881                         if (state == IPW_HW_STATE_ENABLED)
882                                 priv->status |= STATUS_ENABLED;
883                         else
884                                 priv->status &= ~STATUS_ENABLED;
885
886                         return 0;
887                 }
888
889                 udelay(50);
890         }
891
892         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
893                        state ? "DISABLED" : "ENABLED");
894         return -EIO;
895 }
896
897 /*********************************************************************
898     Procedure   :   sw_reset_and_clock
899     Purpose     :   Asserts s/w reset, asserts clock initialization
900                     and waits for clock stabilization
901  ********************************************************************/
902 static int sw_reset_and_clock(struct ipw2100_priv *priv)
903 {
904         int i;
905         u32 r;
906
907         // assert s/w reset
908         write_register(priv->net_dev, IPW_REG_RESET_REG,
909                        IPW_AUX_HOST_RESET_REG_SW_RESET);
910
911         // wait for clock stabilization
912         for (i = 0; i < 1000; i++) {
913                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
914
915                 // check clock ready bit
916                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
917                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
918                         break;
919         }
920
921         if (i == 1000)
922                 return -EIO;    // TODO: better error value
923
924         /* set "initialization complete" bit to move adapter to
925          * D0 state */
926         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
927                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
928
929         /* wait for clock stabilization */
930         for (i = 0; i < 10000; i++) {
931                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
932
933                 /* check clock ready bit */
934                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
935                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
936                         break;
937         }
938
939         if (i == 10000)
940                 return -EIO;    /* TODO: better error value */
941
942         /* set D0 standby bit */
943         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
944         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
945                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
946
947         return 0;
948 }
949
950 /*********************************************************************
951     Procedure   :   ipw2100_download_firmware
952     Purpose     :   Initiaze adapter after power on.
953                     The sequence is:
954                     1. assert s/w reset first!
955                     2. awake clocks & wait for clock stabilization
956                     3. hold ARC (don't ask me why...)
957                     4. load Dino ucode and reset/clock init again
958                     5. zero-out shared mem
959                     6. download f/w
960  *******************************************************************/
961 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
962 {
963         u32 address;
964         int err;
965
966 #ifndef CONFIG_PM
967         /* Fetch the firmware and microcode */
968         struct ipw2100_fw ipw2100_firmware;
969 #endif
970
971         if (priv->fatal_error) {
972                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
973                                 "fatal error %d.  Interface must be brought down.\n",
974                                 priv->net_dev->name, priv->fatal_error);
975                 return -EINVAL;
976         }
977 #ifdef CONFIG_PM
978         if (!ipw2100_firmware.version) {
979                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
980                 if (err) {
981                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
982                                         priv->net_dev->name, err);
983                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
984                         goto fail;
985                 }
986         }
987 #else
988         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
989         if (err) {
990                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
991                                 priv->net_dev->name, err);
992                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
993                 goto fail;
994         }
995 #endif
996         priv->firmware_version = ipw2100_firmware.version;
997
998         /* s/w reset and clock stabilization */
999         err = sw_reset_and_clock(priv);
1000         if (err) {
1001                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1002                                 priv->net_dev->name, err);
1003                 goto fail;
1004         }
1005
1006         err = ipw2100_verify(priv);
1007         if (err) {
1008                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1009                                 priv->net_dev->name, err);
1010                 goto fail;
1011         }
1012
1013         /* Hold ARC */
1014         write_nic_dword(priv->net_dev,
1015                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1016
1017         /* allow ARC to run */
1018         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1019
1020         /* load microcode */
1021         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1022         if (err) {
1023                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1024                        priv->net_dev->name, err);
1025                 goto fail;
1026         }
1027
1028         /* release ARC */
1029         write_nic_dword(priv->net_dev,
1030                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1031
1032         /* s/w reset and clock stabilization (again!!!) */
1033         err = sw_reset_and_clock(priv);
1034         if (err) {
1035                 printk(KERN_ERR DRV_NAME
1036                        ": %s: sw_reset_and_clock failed: %d\n",
1037                        priv->net_dev->name, err);
1038                 goto fail;
1039         }
1040
1041         /* load f/w */
1042         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1043         if (err) {
1044                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1045                                 priv->net_dev->name, err);
1046                 goto fail;
1047         }
1048 #ifndef CONFIG_PM
1049         /*
1050          * When the .resume method of the driver is called, the other
1051          * part of the system, i.e. the ide driver could still stay in
1052          * the suspend stage. This prevents us from loading the firmware
1053          * from the disk.  --YZ
1054          */
1055
1056         /* free any storage allocated for firmware image */
1057         ipw2100_release_firmware(priv, &ipw2100_firmware);
1058 #endif
1059
1060         /* zero out Domain 1 area indirectly (Si requirement) */
1061         for (address = IPW_HOST_FW_SHARED_AREA0;
1062              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1063                 write_nic_dword(priv->net_dev, address, 0);
1064         for (address = IPW_HOST_FW_SHARED_AREA1;
1065              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1066                 write_nic_dword(priv->net_dev, address, 0);
1067         for (address = IPW_HOST_FW_SHARED_AREA2;
1068              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1069                 write_nic_dword(priv->net_dev, address, 0);
1070         for (address = IPW_HOST_FW_SHARED_AREA3;
1071              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1072                 write_nic_dword(priv->net_dev, address, 0);
1073         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1074              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1075                 write_nic_dword(priv->net_dev, address, 0);
1076
1077         return 0;
1078
1079       fail:
1080         ipw2100_release_firmware(priv, &ipw2100_firmware);
1081         return err;
1082 }
1083
1084 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1085 {
1086         if (priv->status & STATUS_INT_ENABLED)
1087                 return;
1088         priv->status |= STATUS_INT_ENABLED;
1089         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1090 }
1091
1092 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1093 {
1094         if (!(priv->status & STATUS_INT_ENABLED))
1095                 return;
1096         priv->status &= ~STATUS_INT_ENABLED;
1097         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1098 }
1099
1100 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1101 {
1102         struct ipw2100_ordinals *ord = &priv->ordinals;
1103
1104         IPW_DEBUG_INFO("enter\n");
1105
1106         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1107                       &ord->table1_addr);
1108
1109         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1110                       &ord->table2_addr);
1111
1112         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1113         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1114
1115         ord->table2_size &= 0x0000FFFF;
1116
1117         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1118         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1119         IPW_DEBUG_INFO("exit\n");
1120 }
1121
1122 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1123 {
1124         u32 reg = 0;
1125         /*
1126          * Set GPIO 3 writable by FW; GPIO 1 writable
1127          * by driver and enable clock
1128          */
1129         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1130                IPW_BIT_GPIO_LED_OFF);
1131         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1132 }
1133
1134 static int rf_kill_active(struct ipw2100_priv *priv)
1135 {
1136 #define MAX_RF_KILL_CHECKS 5
1137 #define RF_KILL_CHECK_DELAY 40
1138
1139         unsigned short value = 0;
1140         u32 reg = 0;
1141         int i;
1142
1143         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1144                 priv->status &= ~STATUS_RF_KILL_HW;
1145                 return 0;
1146         }
1147
1148         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1149                 udelay(RF_KILL_CHECK_DELAY);
1150                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1151                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1152         }
1153
1154         if (value == 0)
1155                 priv->status |= STATUS_RF_KILL_HW;
1156         else
1157                 priv->status &= ~STATUS_RF_KILL_HW;
1158
1159         return (value == 0);
1160 }
1161
1162 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1163 {
1164         u32 addr, len;
1165         u32 val;
1166
1167         /*
1168          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1169          */
1170         len = sizeof(addr);
1171         if (ipw2100_get_ordinal
1172             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1173                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1174                                __LINE__);
1175                 return -EIO;
1176         }
1177
1178         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1179
1180         /*
1181          * EEPROM version is the byte at offset 0xfd in firmware
1182          * We read 4 bytes, then shift out the byte we actually want */
1183         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1184         priv->eeprom_version = (val >> 24) & 0xFF;
1185         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1186
1187         /*
1188          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1189          *
1190          *  notice that the EEPROM bit is reverse polarity, i.e.
1191          *     bit = 0  signifies HW RF kill switch is supported
1192          *     bit = 1  signifies HW RF kill switch is NOT supported
1193          */
1194         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1195         if (!((val >> 24) & 0x01))
1196                 priv->hw_features |= HW_FEATURE_RFKILL;
1197
1198         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1199                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1200
1201         return 0;
1202 }
1203
1204 /*
1205  * Start firmware execution after power on and intialization
1206  * The sequence is:
1207  *  1. Release ARC
1208  *  2. Wait for f/w initialization completes;
1209  */
1210 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1211 {
1212         int i;
1213         u32 inta, inta_mask, gpio;
1214
1215         IPW_DEBUG_INFO("enter\n");
1216
1217         if (priv->status & STATUS_RUNNING)
1218                 return 0;
1219
1220         /*
1221          * Initialize the hw - drive adapter to DO state by setting
1222          * init_done bit. Wait for clk_ready bit and Download
1223          * fw & dino ucode
1224          */
1225         if (ipw2100_download_firmware(priv)) {
1226                 printk(KERN_ERR DRV_NAME
1227                        ": %s: Failed to power on the adapter.\n",
1228                        priv->net_dev->name);
1229                 return -EIO;
1230         }
1231
1232         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1233          * in the firmware RBD and TBD ring queue */
1234         ipw2100_queues_initialize(priv);
1235
1236         ipw2100_hw_set_gpio(priv);
1237
1238         /* TODO -- Look at disabling interrupts here to make sure none
1239          * get fired during FW initialization */
1240
1241         /* Release ARC - clear reset bit */
1242         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1243
1244         /* wait for f/w intialization complete */
1245         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1246         i = 5000;
1247         do {
1248                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1249                 /* Todo... wait for sync command ... */
1250
1251                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1252
1253                 /* check "init done" bit */
1254                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1255                         /* reset "init done" bit */
1256                         write_register(priv->net_dev, IPW_REG_INTA,
1257                                        IPW2100_INTA_FW_INIT_DONE);
1258                         break;
1259                 }
1260
1261                 /* check error conditions : we check these after the firmware
1262                  * check so that if there is an error, the interrupt handler
1263                  * will see it and the adapter will be reset */
1264                 if (inta &
1265                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1266                         /* clear error conditions */
1267                         write_register(priv->net_dev, IPW_REG_INTA,
1268                                        IPW2100_INTA_FATAL_ERROR |
1269                                        IPW2100_INTA_PARITY_ERROR);
1270                 }
1271         } while (--i);
1272
1273         /* Clear out any pending INTAs since we aren't supposed to have
1274          * interrupts enabled at this point... */
1275         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1276         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1277         inta &= IPW_INTERRUPT_MASK;
1278         /* Clear out any pending interrupts */
1279         if (inta & inta_mask)
1280                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1281
1282         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1283                      i ? "SUCCESS" : "FAILED");
1284
1285         if (!i) {
1286                 printk(KERN_WARNING DRV_NAME
1287                        ": %s: Firmware did not initialize.\n",
1288                        priv->net_dev->name);
1289                 return -EIO;
1290         }
1291
1292         /* allow firmware to write to GPIO1 & GPIO3 */
1293         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1294
1295         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1296
1297         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1298
1299         /* Ready to receive commands */
1300         priv->status |= STATUS_RUNNING;
1301
1302         /* The adapter has been reset; we are not associated */
1303         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1304
1305         IPW_DEBUG_INFO("exit\n");
1306
1307         return 0;
1308 }
1309
1310 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1311 {
1312         if (!priv->fatal_error)
1313                 return;
1314
1315         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1316         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1317         priv->fatal_error = 0;
1318 }
1319
1320 /* NOTE: Our interrupt is disabled when this method is called */
1321 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1322 {
1323         u32 reg;
1324         int i;
1325
1326         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1327
1328         ipw2100_hw_set_gpio(priv);
1329
1330         /* Step 1. Stop Master Assert */
1331         write_register(priv->net_dev, IPW_REG_RESET_REG,
1332                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1333
1334         /* Step 2. Wait for stop Master Assert
1335          *         (not more than 50us, otherwise ret error */
1336         i = 5;
1337         do {
1338                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1339                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1340
1341                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1342                         break;
1343         } while (--i);
1344
1345         priv->status &= ~STATUS_RESET_PENDING;
1346
1347         if (!i) {
1348                 IPW_DEBUG_INFO
1349                     ("exit - waited too long for master assert stop\n");
1350                 return -EIO;
1351         }
1352
1353         write_register(priv->net_dev, IPW_REG_RESET_REG,
1354                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1355
1356         /* Reset any fatal_error conditions */
1357         ipw2100_reset_fatalerror(priv);
1358
1359         /* At this point, the adapter is now stopped and disabled */
1360         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1361                           STATUS_ASSOCIATED | STATUS_ENABLED);
1362
1363         return 0;
1364 }
1365
1366 /*
1367  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1368  *
1369  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1370  *
1371  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1372  * if STATUS_ASSN_LOST is sent.
1373  */
1374 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1375 {
1376
1377 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1378
1379         struct host_command cmd = {
1380                 .host_command = CARD_DISABLE_PHY_OFF,
1381                 .host_command_sequence = 0,
1382                 .host_command_length = 0,
1383         };
1384         int err, i;
1385         u32 val1, val2;
1386
1387         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1388
1389         /* Turn off the radio */
1390         err = ipw2100_hw_send_command(priv, &cmd);
1391         if (err)
1392                 return err;
1393
1394         for (i = 0; i < 2500; i++) {
1395                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1396                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1397
1398                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1399                     (val2 & IPW2100_COMMAND_PHY_OFF))
1400                         return 0;
1401
1402                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1403         }
1404
1405         return -EIO;
1406 }
1407
1408 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1409 {
1410         struct host_command cmd = {
1411                 .host_command = HOST_COMPLETE,
1412                 .host_command_sequence = 0,
1413                 .host_command_length = 0
1414         };
1415         int err = 0;
1416
1417         IPW_DEBUG_HC("HOST_COMPLETE\n");
1418
1419         if (priv->status & STATUS_ENABLED)
1420                 return 0;
1421
1422         mutex_lock(&priv->adapter_mutex);
1423
1424         if (rf_kill_active(priv)) {
1425                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1426                 goto fail_up;
1427         }
1428
1429         err = ipw2100_hw_send_command(priv, &cmd);
1430         if (err) {
1431                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1432                 goto fail_up;
1433         }
1434
1435         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1436         if (err) {
1437                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1438                                priv->net_dev->name);
1439                 goto fail_up;
1440         }
1441
1442         if (priv->stop_hang_check) {
1443                 priv->stop_hang_check = 0;
1444                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1445         }
1446
1447       fail_up:
1448         mutex_unlock(&priv->adapter_mutex);
1449         return err;
1450 }
1451
1452 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1453 {
1454 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1455
1456         struct host_command cmd = {
1457                 .host_command = HOST_PRE_POWER_DOWN,
1458                 .host_command_sequence = 0,
1459                 .host_command_length = 0,
1460         };
1461         int err, i;
1462         u32 reg;
1463
1464         if (!(priv->status & STATUS_RUNNING))
1465                 return 0;
1466
1467         priv->status |= STATUS_STOPPING;
1468
1469         /* We can only shut down the card if the firmware is operational.  So,
1470          * if we haven't reset since a fatal_error, then we can not send the
1471          * shutdown commands. */
1472         if (!priv->fatal_error) {
1473                 /* First, make sure the adapter is enabled so that the PHY_OFF
1474                  * command can shut it down */
1475                 ipw2100_enable_adapter(priv);
1476
1477                 err = ipw2100_hw_phy_off(priv);
1478                 if (err)
1479                         printk(KERN_WARNING DRV_NAME
1480                                ": Error disabling radio %d\n", err);
1481
1482                 /*
1483                  * If in D0-standby mode going directly to D3 may cause a
1484                  * PCI bus violation.  Therefore we must change out of the D0
1485                  * state.
1486                  *
1487                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1488                  * hardware from going into standby mode and will transition
1489                  * out of D0-standby if it is already in that state.
1490                  *
1491                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1492                  * driver upon completion.  Once received, the driver can
1493                  * proceed to the D3 state.
1494                  *
1495                  * Prepare for power down command to fw.  This command would
1496                  * take HW out of D0-standby and prepare it for D3 state.
1497                  *
1498                  * Currently FW does not support event notification for this
1499                  * event. Therefore, skip waiting for it.  Just wait a fixed
1500                  * 100ms
1501                  */
1502                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1503
1504                 err = ipw2100_hw_send_command(priv, &cmd);
1505                 if (err)
1506                         printk(KERN_WARNING DRV_NAME ": "
1507                                "%s: Power down command failed: Error %d\n",
1508                                priv->net_dev->name, err);
1509                 else
1510                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1511         }
1512
1513         priv->status &= ~STATUS_ENABLED;
1514
1515         /*
1516          * Set GPIO 3 writable by FW; GPIO 1 writable
1517          * by driver and enable clock
1518          */
1519         ipw2100_hw_set_gpio(priv);
1520
1521         /*
1522          * Power down adapter.  Sequence:
1523          * 1. Stop master assert (RESET_REG[9]=1)
1524          * 2. Wait for stop master (RESET_REG[8]==1)
1525          * 3. S/w reset assert (RESET_REG[7] = 1)
1526          */
1527
1528         /* Stop master assert */
1529         write_register(priv->net_dev, IPW_REG_RESET_REG,
1530                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1531
1532         /* wait stop master not more than 50 usec.
1533          * Otherwise return error. */
1534         for (i = 5; i > 0; i--) {
1535                 udelay(10);
1536
1537                 /* Check master stop bit */
1538                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1539
1540                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1541                         break;
1542         }
1543
1544         if (i == 0)
1545                 printk(KERN_WARNING DRV_NAME
1546                        ": %s: Could now power down adapter.\n",
1547                        priv->net_dev->name);
1548
1549         /* assert s/w reset */
1550         write_register(priv->net_dev, IPW_REG_RESET_REG,
1551                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1552
1553         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1554
1555         return 0;
1556 }
1557
1558 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1559 {
1560         struct host_command cmd = {
1561                 .host_command = CARD_DISABLE,
1562                 .host_command_sequence = 0,
1563                 .host_command_length = 0
1564         };
1565         int err = 0;
1566
1567         IPW_DEBUG_HC("CARD_DISABLE\n");
1568
1569         if (!(priv->status & STATUS_ENABLED))
1570                 return 0;
1571
1572         /* Make sure we clear the associated state */
1573         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1574
1575         if (!priv->stop_hang_check) {
1576                 priv->stop_hang_check = 1;
1577                 cancel_delayed_work(&priv->hang_check);
1578         }
1579
1580         mutex_lock(&priv->adapter_mutex);
1581
1582         err = ipw2100_hw_send_command(priv, &cmd);
1583         if (err) {
1584                 printk(KERN_WARNING DRV_NAME
1585                        ": exit - failed to send CARD_DISABLE command\n");
1586                 goto fail_up;
1587         }
1588
1589         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1590         if (err) {
1591                 printk(KERN_WARNING DRV_NAME
1592                        ": exit - card failed to change to DISABLED\n");
1593                 goto fail_up;
1594         }
1595
1596         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1597
1598       fail_up:
1599         mutex_unlock(&priv->adapter_mutex);
1600         return err;
1601 }
1602
1603 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1604 {
1605         struct host_command cmd = {
1606                 .host_command = SET_SCAN_OPTIONS,
1607                 .host_command_sequence = 0,
1608                 .host_command_length = 8
1609         };
1610         int err;
1611
1612         IPW_DEBUG_INFO("enter\n");
1613
1614         IPW_DEBUG_SCAN("setting scan options\n");
1615
1616         cmd.host_command_parameters[0] = 0;
1617
1618         if (!(priv->config & CFG_ASSOCIATE))
1619                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1620         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1621                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1622         if (priv->config & CFG_PASSIVE_SCAN)
1623                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1624
1625         cmd.host_command_parameters[1] = priv->channel_mask;
1626
1627         err = ipw2100_hw_send_command(priv, &cmd);
1628
1629         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1630                      cmd.host_command_parameters[0]);
1631
1632         return err;
1633 }
1634
1635 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1636 {
1637         struct host_command cmd = {
1638                 .host_command = BROADCAST_SCAN,
1639                 .host_command_sequence = 0,
1640                 .host_command_length = 4
1641         };
1642         int err;
1643
1644         IPW_DEBUG_HC("START_SCAN\n");
1645
1646         cmd.host_command_parameters[0] = 0;
1647
1648         /* No scanning if in monitor mode */
1649         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1650                 return 1;
1651
1652         if (priv->status & STATUS_SCANNING) {
1653                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1654                 return 0;
1655         }
1656
1657         IPW_DEBUG_INFO("enter\n");
1658
1659         /* Not clearing here; doing so makes iwlist always return nothing...
1660          *
1661          * We should modify the table logic to use aging tables vs. clearing
1662          * the table on each scan start.
1663          */
1664         IPW_DEBUG_SCAN("starting scan\n");
1665
1666         priv->status |= STATUS_SCANNING;
1667         err = ipw2100_hw_send_command(priv, &cmd);
1668         if (err)
1669                 priv->status &= ~STATUS_SCANNING;
1670
1671         IPW_DEBUG_INFO("exit\n");
1672
1673         return err;
1674 }
1675
1676 static const struct ieee80211_geo ipw_geos[] = {
1677         {                       /* Restricted */
1678          "---",
1679          .bg_channels = 14,
1680          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1681                 {2427, 4}, {2432, 5}, {2437, 6},
1682                 {2442, 7}, {2447, 8}, {2452, 9},
1683                 {2457, 10}, {2462, 11}, {2467, 12},
1684                 {2472, 13}, {2484, 14}},
1685          },
1686 };
1687
1688 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1689 {
1690         unsigned long flags;
1691         int rc = 0;
1692         u32 lock;
1693         u32 ord_len = sizeof(lock);
1694
1695         /* Age scan list entries found before suspend */
1696         if (priv->suspend_time) {
1697                 ieee80211_networks_age(priv->ieee, priv->suspend_time);
1698                 priv->suspend_time = 0;
1699         }
1700
1701         /* Quiet if manually disabled. */
1702         if (priv->status & STATUS_RF_KILL_SW) {
1703                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1704                                "switch\n", priv->net_dev->name);
1705                 return 0;
1706         }
1707
1708         /* the ipw2100 hardware really doesn't want power management delays
1709          * longer than 175usec
1710          */
1711         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100", 175);
1712
1713         /* If the interrupt is enabled, turn it off... */
1714         spin_lock_irqsave(&priv->low_lock, flags);
1715         ipw2100_disable_interrupts(priv);
1716
1717         /* Reset any fatal_error conditions */
1718         ipw2100_reset_fatalerror(priv);
1719         spin_unlock_irqrestore(&priv->low_lock, flags);
1720
1721         if (priv->status & STATUS_POWERED ||
1722             (priv->status & STATUS_RESET_PENDING)) {
1723                 /* Power cycle the card ... */
1724                 if (ipw2100_power_cycle_adapter(priv)) {
1725                         printk(KERN_WARNING DRV_NAME
1726                                ": %s: Could not cycle adapter.\n",
1727                                priv->net_dev->name);
1728                         rc = 1;
1729                         goto exit;
1730                 }
1731         } else
1732                 priv->status |= STATUS_POWERED;
1733
1734         /* Load the firmware, start the clocks, etc. */
1735         if (ipw2100_start_adapter(priv)) {
1736                 printk(KERN_ERR DRV_NAME
1737                        ": %s: Failed to start the firmware.\n",
1738                        priv->net_dev->name);
1739                 rc = 1;
1740                 goto exit;
1741         }
1742
1743         ipw2100_initialize_ordinals(priv);
1744
1745         /* Determine capabilities of this particular HW configuration */
1746         if (ipw2100_get_hw_features(priv)) {
1747                 printk(KERN_ERR DRV_NAME
1748                        ": %s: Failed to determine HW features.\n",
1749                        priv->net_dev->name);
1750                 rc = 1;
1751                 goto exit;
1752         }
1753
1754         /* Initialize the geo */
1755         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1756                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1757                 return 0;
1758         }
1759         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1760
1761         lock = LOCK_NONE;
1762         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1763                 printk(KERN_ERR DRV_NAME
1764                        ": %s: Failed to clear ordinal lock.\n",
1765                        priv->net_dev->name);
1766                 rc = 1;
1767                 goto exit;
1768         }
1769
1770         priv->status &= ~STATUS_SCANNING;
1771
1772         if (rf_kill_active(priv)) {
1773                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1774                        priv->net_dev->name);
1775
1776                 if (priv->stop_rf_kill) {
1777                         priv->stop_rf_kill = 0;
1778                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1779                                            round_jiffies_relative(HZ));
1780                 }
1781
1782                 deferred = 1;
1783         }
1784
1785         /* Turn on the interrupt so that commands can be processed */
1786         ipw2100_enable_interrupts(priv);
1787
1788         /* Send all of the commands that must be sent prior to
1789          * HOST_COMPLETE */
1790         if (ipw2100_adapter_setup(priv)) {
1791                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1792                        priv->net_dev->name);
1793                 rc = 1;
1794                 goto exit;
1795         }
1796
1797         if (!deferred) {
1798                 /* Enable the adapter - sends HOST_COMPLETE */
1799                 if (ipw2100_enable_adapter(priv)) {
1800                         printk(KERN_ERR DRV_NAME ": "
1801                                "%s: failed in call to enable adapter.\n",
1802                                priv->net_dev->name);
1803                         ipw2100_hw_stop_adapter(priv);
1804                         rc = 1;
1805                         goto exit;
1806                 }
1807
1808                 /* Start a scan . . . */
1809                 ipw2100_set_scan_options(priv);
1810                 ipw2100_start_scan(priv);
1811         }
1812
1813       exit:
1814         return rc;
1815 }
1816
1817 /* Called by register_netdev() */
1818 static int ipw2100_net_init(struct net_device *dev)
1819 {
1820         struct ipw2100_priv *priv = ieee80211_priv(dev);
1821         return ipw2100_up(priv, 1);
1822 }
1823
1824 static void ipw2100_down(struct ipw2100_priv *priv)
1825 {
1826         unsigned long flags;
1827         union iwreq_data wrqu = {
1828                 .ap_addr = {
1829                             .sa_family = ARPHRD_ETHER}
1830         };
1831         int associated = priv->status & STATUS_ASSOCIATED;
1832
1833         /* Kill the RF switch timer */
1834         if (!priv->stop_rf_kill) {
1835                 priv->stop_rf_kill = 1;
1836                 cancel_delayed_work(&priv->rf_kill);
1837         }
1838
1839         /* Kill the firmware hang check timer */
1840         if (!priv->stop_hang_check) {
1841                 priv->stop_hang_check = 1;
1842                 cancel_delayed_work(&priv->hang_check);
1843         }
1844
1845         /* Kill any pending resets */
1846         if (priv->status & STATUS_RESET_PENDING)
1847                 cancel_delayed_work(&priv->reset_work);
1848
1849         /* Make sure the interrupt is on so that FW commands will be
1850          * processed correctly */
1851         spin_lock_irqsave(&priv->low_lock, flags);
1852         ipw2100_enable_interrupts(priv);
1853         spin_unlock_irqrestore(&priv->low_lock, flags);
1854
1855         if (ipw2100_hw_stop_adapter(priv))
1856                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1857                        priv->net_dev->name);
1858
1859         /* Do not disable the interrupt until _after_ we disable
1860          * the adaptor.  Otherwise the CARD_DISABLE command will never
1861          * be ack'd by the firmware */
1862         spin_lock_irqsave(&priv->low_lock, flags);
1863         ipw2100_disable_interrupts(priv);
1864         spin_unlock_irqrestore(&priv->low_lock, flags);
1865
1866         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100",
1867                         PM_QOS_DEFAULT_VALUE);
1868
1869         /* We have to signal any supplicant if we are disassociating */
1870         if (associated)
1871                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1872
1873         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1874         netif_carrier_off(priv->net_dev);
1875         netif_stop_queue(priv->net_dev);
1876 }
1877
1878 static void ipw2100_reset_adapter(struct work_struct *work)
1879 {
1880         struct ipw2100_priv *priv =
1881                 container_of(work, struct ipw2100_priv, reset_work.work);
1882         unsigned long flags;
1883         union iwreq_data wrqu = {
1884                 .ap_addr = {
1885                             .sa_family = ARPHRD_ETHER}
1886         };
1887         int associated = priv->status & STATUS_ASSOCIATED;
1888
1889         spin_lock_irqsave(&priv->low_lock, flags);
1890         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1891         priv->resets++;
1892         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1893         priv->status |= STATUS_SECURITY_UPDATED;
1894
1895         /* Force a power cycle even if interface hasn't been opened
1896          * yet */
1897         cancel_delayed_work(&priv->reset_work);
1898         priv->status |= STATUS_RESET_PENDING;
1899         spin_unlock_irqrestore(&priv->low_lock, flags);
1900
1901         mutex_lock(&priv->action_mutex);
1902         /* stop timed checks so that they don't interfere with reset */
1903         priv->stop_hang_check = 1;
1904         cancel_delayed_work(&priv->hang_check);
1905
1906         /* We have to signal any supplicant if we are disassociating */
1907         if (associated)
1908                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1909
1910         ipw2100_up(priv, 0);
1911         mutex_unlock(&priv->action_mutex);
1912
1913 }
1914
1915 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1916 {
1917
1918 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1919         int ret;
1920         unsigned int len, essid_len;
1921         char essid[IW_ESSID_MAX_SIZE];
1922         u32 txrate;
1923         u32 chan;
1924         char *txratename;
1925         u8 bssid[ETH_ALEN];
1926         DECLARE_SSID_BUF(ssid);
1927
1928         /*
1929          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1930          *      an actual MAC of the AP. Seems like FW sets this
1931          *      address too late. Read it later and expose through
1932          *      /proc or schedule a later task to query and update
1933          */
1934
1935         essid_len = IW_ESSID_MAX_SIZE;
1936         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1937                                   essid, &essid_len);
1938         if (ret) {
1939                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1940                                __LINE__);
1941                 return;
1942         }
1943
1944         len = sizeof(u32);
1945         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1946         if (ret) {
1947                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1948                                __LINE__);
1949                 return;
1950         }
1951
1952         len = sizeof(u32);
1953         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1954         if (ret) {
1955                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1956                                __LINE__);
1957                 return;
1958         }
1959         len = ETH_ALEN;
1960         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1961         if (ret) {
1962                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1963                                __LINE__);
1964                 return;
1965         }
1966         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1967
1968         switch (txrate) {
1969         case TX_RATE_1_MBIT:
1970                 txratename = "1Mbps";
1971                 break;
1972         case TX_RATE_2_MBIT:
1973                 txratename = "2Mbsp";
1974                 break;
1975         case TX_RATE_5_5_MBIT:
1976                 txratename = "5.5Mbps";
1977                 break;
1978         case TX_RATE_11_MBIT:
1979                 txratename = "11Mbps";
1980                 break;
1981         default:
1982                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1983                 txratename = "unknown rate";
1984                 break;
1985         }
1986
1987         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
1988                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
1989                        txratename, chan, bssid);
1990
1991         /* now we copy read ssid into dev */
1992         if (!(priv->config & CFG_STATIC_ESSID)) {
1993                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1994                 memcpy(priv->essid, essid, priv->essid_len);
1995         }
1996         priv->channel = chan;
1997         memcpy(priv->bssid, bssid, ETH_ALEN);
1998
1999         priv->status |= STATUS_ASSOCIATING;
2000         priv->connect_start = get_seconds();
2001
2002         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2003 }
2004
2005 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2006                              int length, int batch_mode)
2007 {
2008         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2009         struct host_command cmd = {
2010                 .host_command = SSID,
2011                 .host_command_sequence = 0,
2012                 .host_command_length = ssid_len
2013         };
2014         int err;
2015         DECLARE_SSID_BUF(ssid);
2016
2017         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2018
2019         if (ssid_len)
2020                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2021
2022         if (!batch_mode) {
2023                 err = ipw2100_disable_adapter(priv);
2024                 if (err)
2025                         return err;
2026         }
2027
2028         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2029          * disable auto association -- so we cheat by setting a bogus SSID */
2030         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2031                 int i;
2032                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2033                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2034                         bogus[i] = 0x18 + i;
2035                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2036         }
2037
2038         /* NOTE:  We always send the SSID command even if the provided ESSID is
2039          * the same as what we currently think is set. */
2040
2041         err = ipw2100_hw_send_command(priv, &cmd);
2042         if (!err) {
2043                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2044                 memcpy(priv->essid, essid, ssid_len);
2045                 priv->essid_len = ssid_len;
2046         }
2047
2048         if (!batch_mode) {
2049                 if (ipw2100_enable_adapter(priv))
2050                         err = -EIO;
2051         }
2052
2053         return err;
2054 }
2055
2056 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2057 {
2058         DECLARE_SSID_BUF(ssid);
2059
2060         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2061                   "disassociated: '%s' %pM \n",
2062                   print_ssid(ssid, priv->essid, priv->essid_len),
2063                   priv->bssid);
2064
2065         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2066
2067         if (priv->status & STATUS_STOPPING) {
2068                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2069                 return;
2070         }
2071
2072         memset(priv->bssid, 0, ETH_ALEN);
2073         memset(priv->ieee->bssid, 0, ETH_ALEN);
2074
2075         netif_carrier_off(priv->net_dev);
2076         netif_stop_queue(priv->net_dev);
2077
2078         if (!(priv->status & STATUS_RUNNING))
2079                 return;
2080
2081         if (priv->status & STATUS_SECURITY_UPDATED)
2082                 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2083
2084         queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2085 }
2086
2087 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2088 {
2089         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2090                        priv->net_dev->name);
2091
2092         /* RF_KILL is now enabled (else we wouldn't be here) */
2093         priv->status |= STATUS_RF_KILL_HW;
2094
2095         /* Make sure the RF Kill check timer is running */
2096         priv->stop_rf_kill = 0;
2097         cancel_delayed_work(&priv->rf_kill);
2098         queue_delayed_work(priv->workqueue, &priv->rf_kill,
2099                            round_jiffies_relative(HZ));
2100 }
2101
2102 static void send_scan_event(void *data)
2103 {
2104         struct ipw2100_priv *priv = data;
2105         union iwreq_data wrqu;
2106
2107         wrqu.data.length = 0;
2108         wrqu.data.flags = 0;
2109         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2110 }
2111
2112 static void ipw2100_scan_event_later(struct work_struct *work)
2113 {
2114         send_scan_event(container_of(work, struct ipw2100_priv,
2115                                         scan_event_later.work));
2116 }
2117
2118 static void ipw2100_scan_event_now(struct work_struct *work)
2119 {
2120         send_scan_event(container_of(work, struct ipw2100_priv,
2121                                         scan_event_now));
2122 }
2123
2124 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2125 {
2126         IPW_DEBUG_SCAN("scan complete\n");
2127         /* Age the scan results... */
2128         priv->ieee->scans++;
2129         priv->status &= ~STATUS_SCANNING;
2130
2131         /* Only userspace-requested scan completion events go out immediately */
2132         if (!priv->user_requested_scan) {
2133                 if (!delayed_work_pending(&priv->scan_event_later))
2134                         queue_delayed_work(priv->workqueue,
2135                                         &priv->scan_event_later,
2136                                         round_jiffies_relative(msecs_to_jiffies(4000)));
2137         } else {
2138                 priv->user_requested_scan = 0;
2139                 cancel_delayed_work(&priv->scan_event_later);
2140                 queue_work(priv->workqueue, &priv->scan_event_now);
2141         }
2142 }
2143
2144 #ifdef CONFIG_IPW2100_DEBUG
2145 #define IPW2100_HANDLER(v, f) { v, f, # v }
2146 struct ipw2100_status_indicator {
2147         int status;
2148         void (*cb) (struct ipw2100_priv * priv, u32 status);
2149         char *name;
2150 };
2151 #else
2152 #define IPW2100_HANDLER(v, f) { v, f }
2153 struct ipw2100_status_indicator {
2154         int status;
2155         void (*cb) (struct ipw2100_priv * priv, u32 status);
2156 };
2157 #endif                          /* CONFIG_IPW2100_DEBUG */
2158
2159 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2160 {
2161         IPW_DEBUG_SCAN("Scanning...\n");
2162         priv->status |= STATUS_SCANNING;
2163 }
2164
2165 static const struct ipw2100_status_indicator status_handlers[] = {
2166         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2167         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2168         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2169         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2170         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2171         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2172         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2173         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2174         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2175         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2176         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2177         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2178         IPW2100_HANDLER(-1, NULL)
2179 };
2180
2181 static void isr_status_change(struct ipw2100_priv *priv, int status)
2182 {
2183         int i;
2184
2185         if (status == IPW_STATE_SCANNING &&
2186             priv->status & STATUS_ASSOCIATED &&
2187             !(priv->status & STATUS_SCANNING)) {
2188                 IPW_DEBUG_INFO("Scan detected while associated, with "
2189                                "no scan request.  Restarting firmware.\n");
2190
2191                 /* Wake up any sleeping jobs */
2192                 schedule_reset(priv);
2193         }
2194
2195         for (i = 0; status_handlers[i].status != -1; i++) {
2196                 if (status == status_handlers[i].status) {
2197                         IPW_DEBUG_NOTIF("Status change: %s\n",
2198                                         status_handlers[i].name);
2199                         if (status_handlers[i].cb)
2200                                 status_handlers[i].cb(priv, status);
2201                         priv->wstats.status = status;
2202                         return;
2203                 }
2204         }
2205
2206         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2207 }
2208
2209 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2210                                     struct ipw2100_cmd_header *cmd)
2211 {
2212 #ifdef CONFIG_IPW2100_DEBUG
2213         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2214                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2215                              command_types[cmd->host_command_reg],
2216                              cmd->host_command_reg);
2217         }
2218 #endif
2219         if (cmd->host_command_reg == HOST_COMPLETE)
2220                 priv->status |= STATUS_ENABLED;
2221
2222         if (cmd->host_command_reg == CARD_DISABLE)
2223                 priv->status &= ~STATUS_ENABLED;
2224
2225         priv->status &= ~STATUS_CMD_ACTIVE;
2226
2227         wake_up_interruptible(&priv->wait_command_queue);
2228 }
2229
2230 #ifdef CONFIG_IPW2100_DEBUG
2231 static const char *frame_types[] = {
2232         "COMMAND_STATUS_VAL",
2233         "STATUS_CHANGE_VAL",
2234         "P80211_DATA_VAL",
2235         "P8023_DATA_VAL",
2236         "HOST_NOTIFICATION_VAL"
2237 };
2238 #endif
2239
2240 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2241                                     struct ipw2100_rx_packet *packet)
2242 {
2243         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2244         if (!packet->skb)
2245                 return -ENOMEM;
2246
2247         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2248         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2249                                           sizeof(struct ipw2100_rx),
2250                                           PCI_DMA_FROMDEVICE);
2251         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2252          *       dma_addr */
2253
2254         return 0;
2255 }
2256
2257 #define SEARCH_ERROR   0xffffffff
2258 #define SEARCH_FAIL    0xfffffffe
2259 #define SEARCH_SUCCESS 0xfffffff0
2260 #define SEARCH_DISCARD 0
2261 #define SEARCH_SNAPSHOT 1
2262
2263 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2264 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2265 {
2266         int i;
2267         if (!priv->snapshot[0])
2268                 return;
2269         for (i = 0; i < 0x30; i++)
2270                 kfree(priv->snapshot[i]);
2271         priv->snapshot[0] = NULL;
2272 }
2273
2274 #ifdef IPW2100_DEBUG_C3
2275 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2276 {
2277         int i;
2278         if (priv->snapshot[0])
2279                 return 1;
2280         for (i = 0; i < 0x30; i++) {
2281                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2282                 if (!priv->snapshot[i]) {
2283                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2284                                        "buffer %d\n", priv->net_dev->name, i);
2285                         while (i > 0)
2286                                 kfree(priv->snapshot[--i]);
2287                         priv->snapshot[0] = NULL;
2288                         return 0;
2289                 }
2290         }
2291
2292         return 1;
2293 }
2294
2295 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2296                                     size_t len, int mode)
2297 {
2298         u32 i, j;
2299         u32 tmp;
2300         u8 *s, *d;
2301         u32 ret;
2302
2303         s = in_buf;
2304         if (mode == SEARCH_SNAPSHOT) {
2305                 if (!ipw2100_snapshot_alloc(priv))
2306                         mode = SEARCH_DISCARD;
2307         }
2308
2309         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2310                 read_nic_dword(priv->net_dev, i, &tmp);
2311                 if (mode == SEARCH_SNAPSHOT)
2312                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2313                 if (ret == SEARCH_FAIL) {
2314                         d = (u8 *) & tmp;
2315                         for (j = 0; j < 4; j++) {
2316                                 if (*s != *d) {
2317                                         s = in_buf;
2318                                         continue;
2319                                 }
2320
2321                                 s++;
2322                                 d++;
2323
2324                                 if ((s - in_buf) == len)
2325                                         ret = (i + j) - len + 1;
2326                         }
2327                 } else if (mode == SEARCH_DISCARD)
2328                         return ret;
2329         }
2330
2331         return ret;
2332 }
2333 #endif
2334
2335 /*
2336  *
2337  * 0) Disconnect the SKB from the firmware (just unmap)
2338  * 1) Pack the ETH header into the SKB
2339  * 2) Pass the SKB to the network stack
2340  *
2341  * When packet is provided by the firmware, it contains the following:
2342  *
2343  * .  ieee80211_hdr
2344  * .  ieee80211_snap_hdr
2345  *
2346  * The size of the constructed ethernet
2347  *
2348  */
2349 #ifdef IPW2100_RX_DEBUG
2350 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2351 #endif
2352
2353 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2354 {
2355 #ifdef IPW2100_DEBUG_C3
2356         struct ipw2100_status *status = &priv->status_queue.drv[i];
2357         u32 match, reg;
2358         int j;
2359 #endif
2360
2361         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2362                        i * sizeof(struct ipw2100_status));
2363
2364 #ifdef IPW2100_DEBUG_C3
2365         /* Halt the fimrware so we can get a good image */
2366         write_register(priv->net_dev, IPW_REG_RESET_REG,
2367                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2368         j = 5;
2369         do {
2370                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2371                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2372
2373                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2374                         break;
2375         } while (j--);
2376
2377         match = ipw2100_match_buf(priv, (u8 *) status,
2378                                   sizeof(struct ipw2100_status),
2379                                   SEARCH_SNAPSHOT);
2380         if (match < SEARCH_SUCCESS)
2381                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2382                                "offset 0x%06X, length %d:\n",
2383                                priv->net_dev->name, match,
2384                                sizeof(struct ipw2100_status));
2385         else
2386                 IPW_DEBUG_INFO("%s: No DMA status match in "
2387                                "Firmware.\n", priv->net_dev->name);
2388
2389         printk_buf((u8 *) priv->status_queue.drv,
2390                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2391 #endif
2392
2393         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2394         priv->ieee->stats.rx_errors++;
2395         schedule_reset(priv);
2396 }
2397
2398 static void isr_rx(struct ipw2100_priv *priv, int i,
2399                           struct ieee80211_rx_stats *stats)
2400 {
2401         struct ipw2100_status *status = &priv->status_queue.drv[i];
2402         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2403
2404         IPW_DEBUG_RX("Handler...\n");
2405
2406         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2407                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2408                                "  Dropping.\n",
2409                                priv->net_dev->name,
2410                                status->frame_size, skb_tailroom(packet->skb));
2411                 priv->ieee->stats.rx_errors++;
2412                 return;
2413         }
2414
2415         if (unlikely(!netif_running(priv->net_dev))) {
2416                 priv->ieee->stats.rx_errors++;
2417                 priv->wstats.discard.misc++;
2418                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2419                 return;
2420         }
2421
2422         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2423                      !(priv->status & STATUS_ASSOCIATED))) {
2424                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2425                 priv->wstats.discard.misc++;
2426                 return;
2427         }
2428
2429         pci_unmap_single(priv->pci_dev,
2430                          packet->dma_addr,
2431                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2432
2433         skb_put(packet->skb, status->frame_size);
2434
2435 #ifdef IPW2100_RX_DEBUG
2436         /* Make a copy of the frame so we can dump it to the logs if
2437          * ieee80211_rx fails */
2438         skb_copy_from_linear_data(packet->skb, packet_data,
2439                                   min_t(u32, status->frame_size,
2440                                              IPW_RX_NIC_BUFFER_LENGTH));
2441 #endif
2442
2443         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2444 #ifdef IPW2100_RX_DEBUG
2445                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2446                                priv->net_dev->name);
2447                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2448 #endif
2449                 priv->ieee->stats.rx_errors++;
2450
2451                 /* ieee80211_rx failed, so it didn't free the SKB */
2452                 dev_kfree_skb_any(packet->skb);
2453                 packet->skb = NULL;
2454         }
2455
2456         /* We need to allocate a new SKB and attach it to the RDB. */
2457         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2458                 printk(KERN_WARNING DRV_NAME ": "
2459                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2460                        "adapter.\n", priv->net_dev->name);
2461                 /* TODO: schedule adapter shutdown */
2462                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2463         }
2464
2465         /* Update the RDB entry */
2466         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2467 }
2468
2469 #ifdef CONFIG_IPW2100_MONITOR
2470
2471 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2472                    struct ieee80211_rx_stats *stats)
2473 {
2474         struct ipw2100_status *status = &priv->status_queue.drv[i];
2475         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2476
2477         /* Magic struct that slots into the radiotap header -- no reason
2478          * to build this manually element by element, we can write it much
2479          * more efficiently than we can parse it. ORDER MATTERS HERE */
2480         struct ipw_rt_hdr {
2481                 struct ieee80211_radiotap_header rt_hdr;
2482                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2483         } *ipw_rt;
2484
2485         IPW_DEBUG_RX("Handler...\n");
2486
2487         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2488                                 sizeof(struct ipw_rt_hdr))) {
2489                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2490                                "  Dropping.\n",
2491                                priv->net_dev->name,
2492                                status->frame_size,
2493                                skb_tailroom(packet->skb));
2494                 priv->ieee->stats.rx_errors++;
2495                 return;
2496         }
2497
2498         if (unlikely(!netif_running(priv->net_dev))) {
2499                 priv->ieee->stats.rx_errors++;
2500                 priv->wstats.discard.misc++;
2501                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2502                 return;
2503         }
2504
2505         if (unlikely(priv->config & CFG_CRC_CHECK &&
2506                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2507                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2508                 priv->ieee->stats.rx_errors++;
2509                 return;
2510         }
2511
2512         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2513                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2514         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2515                 packet->skb->data, status->frame_size);
2516
2517         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2518
2519         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2520         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2521         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2522
2523         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2524
2525         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2526
2527         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2528
2529         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2530                 priv->ieee->stats.rx_errors++;
2531
2532                 /* ieee80211_rx failed, so it didn't free the SKB */
2533                 dev_kfree_skb_any(packet->skb);
2534                 packet->skb = NULL;
2535         }
2536
2537         /* We need to allocate a new SKB and attach it to the RDB. */
2538         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2539                 IPW_DEBUG_WARNING(
2540                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2541                         "adapter.\n", priv->net_dev->name);
2542                 /* TODO: schedule adapter shutdown */
2543                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2544         }
2545
2546         /* Update the RDB entry */
2547         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2548 }
2549
2550 #endif
2551
2552 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2553 {
2554         struct ipw2100_status *status = &priv->status_queue.drv[i];
2555         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2556         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2557
2558         switch (frame_type) {
2559         case COMMAND_STATUS_VAL:
2560                 return (status->frame_size != sizeof(u->rx_data.command));
2561         case STATUS_CHANGE_VAL:
2562                 return (status->frame_size != sizeof(u->rx_data.status));
2563         case HOST_NOTIFICATION_VAL:
2564                 return (status->frame_size < sizeof(u->rx_data.notification));
2565         case P80211_DATA_VAL:
2566         case P8023_DATA_VAL:
2567 #ifdef CONFIG_IPW2100_MONITOR
2568                 return 0;
2569 #else
2570                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2571                 case IEEE80211_FTYPE_MGMT:
2572                 case IEEE80211_FTYPE_CTL:
2573                         return 0;
2574                 case IEEE80211_FTYPE_DATA:
2575                         return (status->frame_size >
2576                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2577                 }
2578 #endif
2579         }
2580
2581         return 1;
2582 }
2583
2584 /*
2585  * ipw2100 interrupts are disabled at this point, and the ISR
2586  * is the only code that calls this method.  So, we do not need
2587  * to play with any locks.
2588  *
2589  * RX Queue works as follows:
2590  *
2591  * Read index - firmware places packet in entry identified by the
2592  *              Read index and advances Read index.  In this manner,
2593  *              Read index will always point to the next packet to
2594  *              be filled--but not yet valid.
2595  *
2596  * Write index - driver fills this entry with an unused RBD entry.
2597  *               This entry has not filled by the firmware yet.
2598  *
2599  * In between the W and R indexes are the RBDs that have been received
2600  * but not yet processed.
2601  *
2602  * The process of handling packets will start at WRITE + 1 and advance
2603  * until it reaches the READ index.
2604  *
2605  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2606  *
2607  */
2608 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2609 {
2610         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2611         struct ipw2100_status_queue *sq = &priv->status_queue;
2612         struct ipw2100_rx_packet *packet;
2613         u16 frame_type;
2614         u32 r, w, i, s;
2615         struct ipw2100_rx *u;
2616         struct ieee80211_rx_stats stats = {
2617                 .mac_time = jiffies,
2618         };
2619
2620         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2621         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2622
2623         if (r >= rxq->entries) {
2624                 IPW_DEBUG_RX("exit - bad read index\n");
2625                 return;
2626         }
2627
2628         i = (rxq->next + 1) % rxq->entries;
2629         s = i;
2630         while (i != r) {
2631                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2632                    r, rxq->next, i); */
2633
2634                 packet = &priv->rx_buffers[i];
2635
2636                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2637                  * the correct values */
2638                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2639                                             sq->nic +
2640                                             sizeof(struct ipw2100_status) * i,
2641                                             sizeof(struct ipw2100_status),
2642                                             PCI_DMA_FROMDEVICE);
2643
2644                 /* Sync the DMA for the RX buffer so CPU is sure to get
2645                  * the correct values */
2646                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2647                                             sizeof(struct ipw2100_rx),
2648                                             PCI_DMA_FROMDEVICE);
2649
2650                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2651                         ipw2100_corruption_detected(priv, i);
2652                         goto increment;
2653                 }
2654
2655                 u = packet->rxp;
2656                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2657                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2658                 stats.len = sq->drv[i].frame_size;
2659
2660                 stats.mask = 0;
2661                 if (stats.rssi != 0)
2662                         stats.mask |= IEEE80211_STATMASK_RSSI;
2663                 stats.freq = IEEE80211_24GHZ_BAND;
2664
2665                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2666                              priv->net_dev->name, frame_types[frame_type],
2667                              stats.len);
2668
2669                 switch (frame_type) {
2670                 case COMMAND_STATUS_VAL:
2671                         /* Reset Rx watchdog */
2672                         isr_rx_complete_command(priv, &u->rx_data.command);
2673                         break;
2674
2675                 case STATUS_CHANGE_VAL:
2676                         isr_status_change(priv, u->rx_data.status);
2677                         break;
2678
2679                 case P80211_DATA_VAL:
2680                 case P8023_DATA_VAL:
2681 #ifdef CONFIG_IPW2100_MONITOR
2682                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2683                                 isr_rx_monitor(priv, i, &stats);
2684                                 break;
2685                         }
2686 #endif
2687                         if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2688                                 break;
2689                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2690                         case IEEE80211_FTYPE_MGMT:
2691                                 ieee80211_rx_mgt(priv->ieee,
2692                                                  &u->rx_data.header, &stats);
2693                                 break;
2694
2695                         case IEEE80211_FTYPE_CTL:
2696                                 break;
2697
2698                         case IEEE80211_FTYPE_DATA:
2699                                 isr_rx(priv, i, &stats);
2700                                 break;
2701
2702                         }
2703                         break;
2704                 }
2705
2706               increment:
2707                 /* clear status field associated with this RBD */
2708                 rxq->drv[i].status.info.field = 0;
2709
2710                 i = (i + 1) % rxq->entries;
2711         }
2712
2713         if (i != s) {
2714                 /* backtrack one entry, wrapping to end if at 0 */
2715                 rxq->next = (i ? i : rxq->entries) - 1;
2716
2717                 write_register(priv->net_dev,
2718                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2719         }
2720 }
2721
2722 /*
2723  * __ipw2100_tx_process
2724  *
2725  * This routine will determine whether the next packet on
2726  * the fw_pend_list has been processed by the firmware yet.
2727  *
2728  * If not, then it does nothing and returns.
2729  *
2730  * If so, then it removes the item from the fw_pend_list, frees
2731  * any associated storage, and places the item back on the
2732  * free list of its source (either msg_free_list or tx_free_list)
2733  *
2734  * TX Queue works as follows:
2735  *
2736  * Read index - points to the next TBD that the firmware will
2737  *              process.  The firmware will read the data, and once
2738  *              done processing, it will advance the Read index.
2739  *
2740  * Write index - driver fills this entry with an constructed TBD
2741  *               entry.  The Write index is not advanced until the
2742  *               packet has been configured.
2743  *
2744  * In between the W and R indexes are the TBDs that have NOT been
2745  * processed.  Lagging behind the R index are packets that have
2746  * been processed but have not been freed by the driver.
2747  *
2748  * In order to free old storage, an internal index will be maintained
2749  * that points to the next packet to be freed.  When all used
2750  * packets have been freed, the oldest index will be the same as the
2751  * firmware's read index.
2752  *
2753  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2754  *
2755  * Because the TBD structure can not contain arbitrary data, the
2756  * driver must keep an internal queue of cached allocations such that
2757  * it can put that data back into the tx_free_list and msg_free_list
2758  * for use by future command and data packets.
2759  *
2760  */
2761 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2762 {
2763         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2764         struct ipw2100_bd *tbd;
2765         struct list_head *element;
2766         struct ipw2100_tx_packet *packet;
2767         int descriptors_used;
2768         int e, i;
2769         u32 r, w, frag_num = 0;
2770
2771         if (list_empty(&priv->fw_pend_list))
2772                 return 0;
2773
2774         element = priv->fw_pend_list.next;
2775
2776         packet = list_entry(element, struct ipw2100_tx_packet, list);
2777         tbd = &txq->drv[packet->index];
2778
2779         /* Determine how many TBD entries must be finished... */
2780         switch (packet->type) {
2781         case COMMAND:
2782                 /* COMMAND uses only one slot; don't advance */
2783                 descriptors_used = 1;
2784                 e = txq->oldest;
2785                 break;
2786
2787         case DATA:
2788                 /* DATA uses two slots; advance and loop position. */
2789                 descriptors_used = tbd->num_fragments;
2790                 frag_num = tbd->num_fragments - 1;
2791                 e = txq->oldest + frag_num;
2792                 e %= txq->entries;
2793                 break;
2794
2795         default:
2796                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2797                        priv->net_dev->name);
2798                 return 0;
2799         }
2800
2801         /* if the last TBD is not done by NIC yet, then packet is
2802          * not ready to be released.
2803          *
2804          */
2805         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2806                       &r);
2807         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2808                       &w);
2809         if (w != txq->next)
2810                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2811                        priv->net_dev->name);
2812
2813         /*
2814          * txq->next is the index of the last packet written txq->oldest is
2815          * the index of the r is the index of the next packet to be read by
2816          * firmware
2817          */
2818
2819         /*
2820          * Quick graphic to help you visualize the following
2821          * if / else statement
2822          *
2823          * ===>|                     s---->|===============
2824          *                               e>|
2825          * | a | b | c | d | e | f | g | h | i | j | k | l
2826          *       r---->|
2827          *               w
2828          *
2829          * w - updated by driver
2830          * r - updated by firmware
2831          * s - start of oldest BD entry (txq->oldest)
2832          * e - end of oldest BD entry
2833          *
2834          */
2835         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2836                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2837                 return 0;
2838         }
2839
2840         list_del(element);
2841         DEC_STAT(&priv->fw_pend_stat);
2842
2843 #ifdef CONFIG_IPW2100_DEBUG
2844         {
2845                 int i = txq->oldest;
2846                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2847                              &txq->drv[i],
2848                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2849                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2850
2851                 if (packet->type == DATA) {
2852                         i = (i + 1) % txq->entries;
2853
2854                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2855                                      &txq->drv[i],
2856                                      (u32) (txq->nic + i *
2857                                             sizeof(struct ipw2100_bd)),
2858                                      (u32) txq->drv[i].host_addr,
2859                                      txq->drv[i].buf_length);
2860                 }
2861         }
2862 #endif
2863
2864         switch (packet->type) {
2865         case DATA:
2866                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2867                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2868                                "Expecting DATA TBD but pulled "
2869                                "something else: ids %d=%d.\n",
2870                                priv->net_dev->name, txq->oldest, packet->index);
2871
2872                 /* DATA packet; we have to unmap and free the SKB */
2873                 for (i = 0; i < frag_num; i++) {
2874                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2875
2876                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2877                                      (packet->index + 1 + i) % txq->entries,
2878                                      tbd->host_addr, tbd->buf_length);
2879
2880                         pci_unmap_single(priv->pci_dev,
2881                                          tbd->host_addr,
2882                                          tbd->buf_length, PCI_DMA_TODEVICE);
2883                 }
2884
2885                 ieee80211_txb_free(packet->info.d_struct.txb);
2886                 packet->info.d_struct.txb = NULL;
2887
2888                 list_add_tail(element, &priv->tx_free_list);
2889                 INC_STAT(&priv->tx_free_stat);
2890
2891                 /* We have a free slot in the Tx queue, so wake up the
2892                  * transmit layer if it is stopped. */
2893                 if (priv->status & STATUS_ASSOCIATED)
2894                         netif_wake_queue(priv->net_dev);
2895
2896                 /* A packet was processed by the hardware, so update the
2897                  * watchdog */
2898                 priv->net_dev->trans_start = jiffies;
2899
2900                 break;
2901
2902         case COMMAND:
2903                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2904                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2905                                "Expecting COMMAND TBD but pulled "
2906                                "something else: ids %d=%d.\n",
2907                                priv->net_dev->name, txq->oldest, packet->index);
2908
2909 #ifdef CONFIG_IPW2100_DEBUG
2910                 if (packet->info.c_struct.cmd->host_command_reg <
2911                     ARRAY_SIZE(command_types))
2912                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2913                                      command_types[packet->info.c_struct.cmd->
2914                                                    host_command_reg],
2915                                      packet->info.c_struct.cmd->
2916                                      host_command_reg,
2917                                      packet->info.c_struct.cmd->cmd_status_reg);
2918 #endif
2919
2920                 list_add_tail(element, &priv->msg_free_list);
2921                 INC_STAT(&priv->msg_free_stat);
2922                 break;
2923         }
2924
2925         /* advance oldest used TBD pointer to start of next entry */
2926         txq->oldest = (e + 1) % txq->entries;
2927         /* increase available TBDs number */
2928         txq->available += descriptors_used;
2929         SET_STAT(&priv->txq_stat, txq->available);
2930
2931         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2932                      jiffies - packet->jiffy_start);
2933
2934         return (!list_empty(&priv->fw_pend_list));
2935 }
2936
2937 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2938 {
2939         int i = 0;
2940
2941         while (__ipw2100_tx_process(priv) && i < 200)
2942                 i++;
2943
2944         if (i == 200) {
2945                 printk(KERN_WARNING DRV_NAME ": "
2946                        "%s: Driver is running slow (%d iters).\n",
2947                        priv->net_dev->name, i);
2948         }
2949 }
2950
2951 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2952 {
2953         struct list_head *element;
2954         struct ipw2100_tx_packet *packet;
2955         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2956         struct ipw2100_bd *tbd;
2957         int next = txq->next;
2958
2959         while (!list_empty(&priv->msg_pend_list)) {
2960                 /* if there isn't enough space in TBD queue, then
2961                  * don't stuff a new one in.
2962                  * NOTE: 3 are needed as a command will take one,
2963                  *       and there is a minimum of 2 that must be
2964                  *       maintained between the r and w indexes
2965                  */
2966                 if (txq->available <= 3) {
2967                         IPW_DEBUG_TX("no room in tx_queue\n");
2968                         break;
2969                 }
2970
2971                 element = priv->msg_pend_list.next;
2972                 list_del(element);
2973                 DEC_STAT(&priv->msg_pend_stat);
2974
2975                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2976
2977                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2978                              &txq->drv[txq->next],
2979                              (void *)(txq->nic + txq->next *
2980                                       sizeof(struct ipw2100_bd)));
2981
2982                 packet->index = txq->next;
2983
2984                 tbd = &txq->drv[txq->next];
2985
2986                 /* initialize TBD */
2987                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2988                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2989                 /* not marking number of fragments causes problems
2990                  * with f/w debug version */
2991                 tbd->num_fragments = 1;
2992                 tbd->status.info.field =
2993                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2994                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2995
2996                 /* update TBD queue counters */
2997                 txq->next++;
2998                 txq->next %= txq->entries;
2999                 txq->available--;
3000                 DEC_STAT(&priv->txq_stat);
3001
3002                 list_add_tail(element, &priv->fw_pend_list);
3003                 INC_STAT(&priv->fw_pend_stat);
3004         }
3005
3006         if (txq->next != next) {
3007                 /* kick off the DMA by notifying firmware the
3008                  * write index has moved; make sure TBD stores are sync'd */
3009                 wmb();
3010                 write_register(priv->net_dev,
3011                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3012                                txq->next);
3013         }
3014 }
3015
3016 /*
3017  * ipw2100_tx_send_data
3018  *
3019  */
3020 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3021 {
3022         struct list_head *element;
3023         struct ipw2100_tx_packet *packet;
3024         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3025         struct ipw2100_bd *tbd;
3026         int next = txq->next;
3027         int i = 0;
3028         struct ipw2100_data_header *ipw_hdr;
3029         struct ieee80211_hdr_3addr *hdr;
3030
3031         while (!list_empty(&priv->tx_pend_list)) {
3032                 /* if there isn't enough space in TBD queue, then
3033                  * don't stuff a new one in.
3034                  * NOTE: 4 are needed as a data will take two,
3035                  *       and there is a minimum of 2 that must be
3036                  *       maintained between the r and w indexes
3037                  */
3038                 element = priv->tx_pend_list.next;
3039                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3040
3041                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3042                              IPW_MAX_BDS)) {
3043                         /* TODO: Support merging buffers if more than
3044                          * IPW_MAX_BDS are used */
3045                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
3046                                        "Increase fragmentation level.\n",
3047                                        priv->net_dev->name);
3048                 }
3049
3050                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3051                         IPW_DEBUG_TX("no room in tx_queue\n");
3052                         break;
3053                 }
3054
3055                 list_del(element);
3056                 DEC_STAT(&priv->tx_pend_stat);
3057
3058                 tbd = &txq->drv[txq->next];
3059
3060                 packet->index = txq->next;
3061
3062                 ipw_hdr = packet->info.d_struct.data;
3063                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3064                     fragments[0]->data;
3065
3066                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3067                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3068                            Addr3 = DA */
3069                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3070                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3071                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3072                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3073                            Addr3 = BSSID */
3074                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3075                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3076                 }
3077
3078                 ipw_hdr->host_command_reg = SEND;
3079                 ipw_hdr->host_command_reg1 = 0;
3080
3081                 /* For now we only support host based encryption */
3082                 ipw_hdr->needs_encryption = 0;
3083                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3084                 if (packet->info.d_struct.txb->nr_frags > 1)
3085                         ipw_hdr->fragment_size =
3086                             packet->info.d_struct.txb->frag_size -
3087                             IEEE80211_3ADDR_LEN;
3088                 else
3089                         ipw_hdr->fragment_size = 0;
3090
3091                 tbd->host_addr = packet->info.d_struct.data_phys;
3092                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3093                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3094                 tbd->status.info.field =
3095                     IPW_BD_STATUS_TX_FRAME_802_3 |
3096                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3097                 txq->next++;
3098                 txq->next %= txq->entries;
3099
3100                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3101                              packet->index, tbd->host_addr, tbd->buf_length);
3102 #ifdef CONFIG_IPW2100_DEBUG
3103                 if (packet->info.d_struct.txb->nr_frags > 1)
3104                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3105                                        packet->info.d_struct.txb->nr_frags);
3106 #endif
3107
3108                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3109                         tbd = &txq->drv[txq->next];
3110                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3111                                 tbd->status.info.field =
3112                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3113                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3114                         else
3115                                 tbd->status.info.field =
3116                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3117                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3118
3119                         tbd->buf_length = packet->info.d_struct.txb->
3120                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3121
3122                         tbd->host_addr = pci_map_single(priv->pci_dev,
3123                                                         packet->info.d_struct.
3124                                                         txb->fragments[i]->
3125                                                         data +
3126                                                         IEEE80211_3ADDR_LEN,
3127                                                         tbd->buf_length,
3128                                                         PCI_DMA_TODEVICE);
3129
3130                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3131                                      txq->next, tbd->host_addr,
3132                                      tbd->buf_length);
3133
3134                         pci_dma_sync_single_for_device(priv->pci_dev,
3135                                                        tbd->host_addr,
3136                                                        tbd->buf_length,
3137                                                        PCI_DMA_TODEVICE);
3138
3139                         txq->next++;
3140                         txq->next %= txq->entries;
3141                 }
3142
3143                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3144                 SET_STAT(&priv->txq_stat, txq->available);
3145
3146                 list_add_tail(element, &priv->fw_pend_list);
3147                 INC_STAT(&priv->fw_pend_stat);
3148         }
3149
3150         if (txq->next != next) {
3151                 /* kick off the DMA by notifying firmware the
3152                  * write index has moved; make sure TBD stores are sync'd */
3153                 write_register(priv->net_dev,
3154                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3155                                txq->next);
3156         }
3157         return;
3158 }
3159
3160 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3161 {
3162         struct net_device *dev = priv->net_dev;
3163         unsigned long flags;
3164         u32 inta, tmp;
3165
3166         spin_lock_irqsave(&priv->low_lock, flags);
3167         ipw2100_disable_interrupts(priv);
3168
3169         read_register(dev, IPW_REG_INTA, &inta);
3170
3171         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3172                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3173
3174         priv->in_isr++;
3175         priv->interrupts++;
3176
3177         /* We do not loop and keep polling for more interrupts as this
3178          * is frowned upon and doesn't play nicely with other potentially
3179          * chained IRQs */
3180         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3181                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3182
3183         if (inta & IPW2100_INTA_FATAL_ERROR) {
3184                 printk(KERN_WARNING DRV_NAME
3185                        ": Fatal interrupt. Scheduling firmware restart.\n");
3186                 priv->inta_other++;
3187                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3188
3189                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3190                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3191                                priv->net_dev->name, priv->fatal_error);
3192
3193                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3194                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3195                                priv->net_dev->name, tmp);
3196
3197                 /* Wake up any sleeping jobs */
3198                 schedule_reset(priv);
3199         }
3200
3201         if (inta & IPW2100_INTA_PARITY_ERROR) {
3202                 printk(KERN_ERR DRV_NAME
3203                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3204                 priv->inta_other++;
3205                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3206         }
3207
3208         if (inta & IPW2100_INTA_RX_TRANSFER) {
3209                 IPW_DEBUG_ISR("RX interrupt\n");
3210
3211                 priv->rx_interrupts++;
3212
3213                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3214
3215                 __ipw2100_rx_process(priv);
3216                 __ipw2100_tx_complete(priv);
3217         }
3218
3219         if (inta & IPW2100_INTA_TX_TRANSFER) {
3220                 IPW_DEBUG_ISR("TX interrupt\n");
3221
3222                 priv->tx_interrupts++;
3223
3224                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3225
3226                 __ipw2100_tx_complete(priv);
3227                 ipw2100_tx_send_commands(priv);
3228                 ipw2100_tx_send_data(priv);
3229         }
3230
3231         if (inta & IPW2100_INTA_TX_COMPLETE) {
3232                 IPW_DEBUG_ISR("TX complete\n");
3233                 priv->inta_other++;
3234                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3235
3236                 __ipw2100_tx_complete(priv);
3237         }
3238
3239         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3240                 /* ipw2100_handle_event(dev); */
3241                 priv->inta_other++;
3242                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3243         }
3244
3245         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3246                 IPW_DEBUG_ISR("FW init done interrupt\n");
3247                 priv->inta_other++;
3248
3249                 read_register(dev, IPW_REG_INTA, &tmp);
3250                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3251                            IPW2100_INTA_PARITY_ERROR)) {
3252                         write_register(dev, IPW_REG_INTA,
3253                                        IPW2100_INTA_FATAL_ERROR |
3254                                        IPW2100_INTA_PARITY_ERROR);
3255                 }
3256
3257                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3258         }
3259
3260         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3261                 IPW_DEBUG_ISR("Status change interrupt\n");
3262                 priv->inta_other++;
3263                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3264         }
3265
3266         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3267                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3268                 priv->inta_other++;
3269                 write_register(dev, IPW_REG_INTA,
3270                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3271         }
3272
3273         priv->in_isr--;
3274         ipw2100_enable_interrupts(priv);
3275
3276         spin_unlock_irqrestore(&priv->low_lock, flags);
3277
3278         IPW_DEBUG_ISR("exit\n");
3279 }
3280
3281 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3282 {
3283         struct ipw2100_priv *priv = data;
3284         u32 inta, inta_mask;
3285
3286         if (!data)
3287                 return IRQ_NONE;
3288
3289         spin_lock(&priv->low_lock);
3290
3291         /* We check to see if we should be ignoring interrupts before
3292          * we touch the hardware.  During ucode load if we try and handle
3293          * an interrupt we can cause keyboard problems as well as cause
3294          * the ucode to fail to initialize */
3295         if (!(priv->status & STATUS_INT_ENABLED)) {
3296                 /* Shared IRQ */
3297                 goto none;
3298         }
3299
3300         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3301         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3302
3303         if (inta == 0xFFFFFFFF) {
3304                 /* Hardware disappeared */
3305                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3306                 goto none;
3307         }
3308
3309         inta &= IPW_INTERRUPT_MASK;
3310
3311         if (!(inta & inta_mask)) {
3312                 /* Shared interrupt */
3313                 goto none;
3314         }
3315
3316         /* We disable the hardware interrupt here just to prevent unneeded
3317          * calls to be made.  We disable this again within the actual
3318          * work tasklet, so if another part of the code re-enables the
3319          * interrupt, that is fine */
3320         ipw2100_disable_interrupts(priv);
3321
3322         tasklet_schedule(&priv->irq_tasklet);
3323         spin_unlock(&priv->low_lock);
3324
3325         return IRQ_HANDLED;
3326       none:
3327         spin_unlock(&priv->low_lock);
3328         return IRQ_NONE;
3329 }
3330
3331 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3332                       int pri)
3333 {
3334         struct ipw2100_priv *priv = ieee80211_priv(dev);
3335         struct list_head *element;
3336         struct ipw2100_tx_packet *packet;
3337         unsigned long flags;
3338
3339         spin_lock_irqsave(&priv->low_lock, flags);
3340
3341         if (!(priv->status & STATUS_ASSOCIATED)) {
3342                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3343                 priv->ieee->stats.tx_carrier_errors++;
3344                 netif_stop_queue(dev);
3345                 goto fail_unlock;
3346         }
3347
3348         if (list_empty(&priv->tx_free_list))
3349                 goto fail_unlock;
3350
3351         element = priv->tx_free_list.next;
3352         packet = list_entry(element, struct ipw2100_tx_packet, list);
3353
3354         packet->info.d_struct.txb = txb;
3355
3356         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3357         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3358
3359         packet->jiffy_start = jiffies;
3360
3361         list_del(element);
3362         DEC_STAT(&priv->tx_free_stat);
3363
3364         list_add_tail(element, &priv->tx_pend_list);
3365         INC_STAT(&priv->tx_pend_stat);
3366
3367         ipw2100_tx_send_data(priv);
3368
3369         spin_unlock_irqrestore(&priv->low_lock, flags);
3370         return 0;
3371
3372       fail_unlock:
3373         netif_stop_queue(dev);
3374         spin_unlock_irqrestore(&priv->low_lock, flags);
3375         return 1;
3376 }
3377
3378 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3379 {
3380         int i, j, err = -EINVAL;
3381         void *v;
3382         dma_addr_t p;
3383
3384         priv->msg_buffers =
3385             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3386                                                 sizeof(struct
3387                                                        ipw2100_tx_packet),
3388                                                 GFP_KERNEL);
3389         if (!priv->msg_buffers) {
3390                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3391                        "buffers.\n", priv->net_dev->name);
3392                 return -ENOMEM;
3393         }
3394
3395         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3396                 v = pci_alloc_consistent(priv->pci_dev,
3397                                          sizeof(struct ipw2100_cmd_header), &p);
3398                 if (!v) {
3399                         printk(KERN_ERR DRV_NAME ": "
3400                                "%s: PCI alloc failed for msg "
3401                                "buffers.\n", priv->net_dev->name);
3402                         err = -ENOMEM;
3403                         break;
3404                 }
3405
3406                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3407
3408                 priv->msg_buffers[i].type = COMMAND;
3409                 priv->msg_buffers[i].info.c_struct.cmd =
3410                     (struct ipw2100_cmd_header *)v;
3411                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3412         }
3413
3414         if (i == IPW_COMMAND_POOL_SIZE)
3415                 return 0;
3416
3417         for (j = 0; j < i; j++) {
3418                 pci_free_consistent(priv->pci_dev,
3419                                     sizeof(struct ipw2100_cmd_header),
3420                                     priv->msg_buffers[j].info.c_struct.cmd,
3421                                     priv->msg_buffers[j].info.c_struct.
3422                                     cmd_phys);
3423         }
3424
3425         kfree(priv->msg_buffers);
3426         priv->msg_buffers = NULL;
3427
3428         return err;
3429 }
3430
3431 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3432 {
3433         int i;
3434
3435         INIT_LIST_HEAD(&priv->msg_free_list);
3436         INIT_LIST_HEAD(&priv->msg_pend_list);
3437
3438         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3439                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3440         SET_STAT(&priv->msg_free_stat, i);
3441
3442         return 0;
3443 }
3444
3445 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3446 {
3447         int i;
3448
3449         if (!priv->msg_buffers)
3450                 return;
3451
3452         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3453                 pci_free_consistent(priv->pci_dev,
3454                                     sizeof(struct ipw2100_cmd_header),
3455                                     priv->msg_buffers[i].info.c_struct.cmd,
3456                                     priv->msg_buffers[i].info.c_struct.
3457                                     cmd_phys);
3458         }
3459
3460         kfree(priv->msg_buffers);
3461         priv->msg_buffers = NULL;
3462 }
3463
3464 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3465                         char *buf)
3466 {
3467         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3468         char *out = buf;
3469         int i, j;
3470         u32 val;
3471
3472         for (i = 0; i < 16; i++) {
3473                 out += sprintf(out, "[%08X] ", i * 16);
3474                 for (j = 0; j < 16; j += 4) {
3475                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3476                         out += sprintf(out, "%08X ", val);
3477                 }
3478                 out += sprintf(out, "\n");
3479         }
3480
3481         return out - buf;
3482 }
3483
3484 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3485
3486 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3487                         char *buf)
3488 {
3489         struct ipw2100_priv *p = d->driver_data;
3490         return sprintf(buf, "0x%08x\n", (int)p->config);
3491 }
3492
3493 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3494
3495 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3496                            char *buf)
3497 {
3498         struct ipw2100_priv *p = d->driver_data;
3499         return sprintf(buf, "0x%08x\n", (int)p->status);
3500 }
3501
3502 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3503
3504 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3505                                char *buf)
3506 {
3507         struct ipw2100_priv *p = d->driver_data;
3508         return sprintf(buf, "0x%08x\n", (int)p->capability);
3509 }
3510
3511 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3512
3513 #define IPW2100_REG(x) { IPW_ ##x, #x }
3514 static const struct {
3515         u32 addr;
3516         const char *name;
3517 } hw_data[] = {
3518 IPW2100_REG(REG_GP_CNTRL),
3519             IPW2100_REG(REG_GPIO),
3520             IPW2100_REG(REG_INTA),
3521             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3522 #define IPW2100_NIC(x, s) { x, #x, s }
3523 static const struct {
3524         u32 addr;
3525         const char *name;
3526         size_t size;
3527 } nic_data[] = {
3528 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3529             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3530 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3531 static const struct {
3532         u8 index;
3533         const char *name;
3534         const char *desc;
3535 } ord_data[] = {
3536 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3537             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3538                                 "successful Host Tx's (MSDU)"),
3539             IPW2100_ORD(STAT_TX_DIR_DATA,
3540                                 "successful Directed Tx's (MSDU)"),
3541             IPW2100_ORD(STAT_TX_DIR_DATA1,
3542                                 "successful Directed Tx's (MSDU) @ 1MB"),
3543             IPW2100_ORD(STAT_TX_DIR_DATA2,
3544                                 "successful Directed Tx's (MSDU) @ 2MB"),
3545             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3546                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3547             IPW2100_ORD(STAT_TX_DIR_DATA11,
3548                                 "successful Directed Tx's (MSDU) @ 11MB"),
3549             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3550                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3551             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3552                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3553             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3554                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3555             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3556                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3557             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3558             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3559             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3560             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3561             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3562             IPW2100_ORD(STAT_TX_ASSN_RESP,
3563                                 "successful Association response Tx's"),
3564             IPW2100_ORD(STAT_TX_REASSN,
3565                                 "successful Reassociation Tx's"),
3566             IPW2100_ORD(STAT_TX_REASSN_RESP,
3567                                 "successful Reassociation response Tx's"),
3568             IPW2100_ORD(STAT_TX_PROBE,
3569                                 "probes successfully transmitted"),
3570             IPW2100_ORD(STAT_TX_PROBE_RESP,
3571                                 "probe responses successfully transmitted"),
3572             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3573             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3574             IPW2100_ORD(STAT_TX_DISASSN,
3575                                 "successful Disassociation TX"),
3576             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3577             IPW2100_ORD(STAT_TX_DEAUTH,
3578                                 "successful Deauthentication TX"),
3579             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3580                                 "Total successful Tx data bytes"),
3581             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3582             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3583             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3584             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3585             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3586             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3587             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3588                                 "times max tries in a hop failed"),
3589             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3590                                 "times disassociation failed"),
3591             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3592             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3593             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3594             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3595             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3596             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3597             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3598                                 "directed packets at 5.5MB"),
3599             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3600             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3601             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3602                                 "nondirected packets at 1MB"),
3603             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3604                                 "nondirected packets at 2MB"),
3605             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3606                                 "nondirected packets at 5.5MB"),
3607             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3608                                 "nondirected packets at 11MB"),
3609             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3610             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3611                                                                     "Rx CTS"),
3612             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3613             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3614             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3615             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3616             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3617             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3618             IPW2100_ORD(STAT_RX_REASSN_RESP,
3619                                 "Reassociation response Rx's"),
3620             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3621             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3622             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3623             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3624             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3625             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3626             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3627             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3628                                 "Total rx data bytes received"),
3629             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3630             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3631             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3632             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3633             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3634             IPW2100_ORD(STAT_RX_DUPLICATE1,
3635                                 "duplicate rx packets at 1MB"),
3636             IPW2100_ORD(STAT_RX_DUPLICATE2,
3637                                 "duplicate rx packets at 2MB"),
3638             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3639                                 "duplicate rx packets at 5.5MB"),
3640             IPW2100_ORD(STAT_RX_DUPLICATE11,
3641                                 "duplicate rx packets at 11MB"),
3642             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3643             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3644             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3645             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3646             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3647                                 "rx frames with invalid protocol"),
3648             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3649             IPW2100_ORD(STAT_RX_NO_BUFFER,
3650                                 "rx frames rejected due to no buffer"),
3651             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3652                                 "rx frames dropped due to missing fragment"),
3653             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3654                                 "rx frames dropped due to non-sequential fragment"),
3655             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3656                                 "rx frames dropped due to unmatched 1st frame"),
3657             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3658                                 "rx frames dropped due to uncompleted frame"),
3659             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3660                                 "ICV errors during decryption"),
3661             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3662             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3663             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3664                                 "poll response timeouts"),
3665             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3666                                 "timeouts waiting for last {broad,multi}cast pkt"),
3667             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3668             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3669             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3670             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3671             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3672                                 "current calculation of % missed beacons"),
3673             IPW2100_ORD(STAT_PERCENT_RETRIES,
3674                                 "current calculation of % missed tx retries"),
3675             IPW2100_ORD(ASSOCIATED_AP_PTR,
3676                                 "0 if not associated, else pointer to AP table entry"),
3677             IPW2100_ORD(AVAILABLE_AP_CNT,
3678                                 "AP's decsribed in the AP table"),
3679             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3680             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3681             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3682             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3683                                 "failures due to response fail"),
3684             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3685             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3686             IPW2100_ORD(STAT_ROAM_INHIBIT,
3687                                 "times roaming was inhibited due to activity"),
3688             IPW2100_ORD(RSSI_AT_ASSN,
3689                                 "RSSI of associated AP at time of association"),
3690             IPW2100_ORD(STAT_ASSN_CAUSE1,
3691                                 "reassociation: no probe response or TX on hop"),
3692             IPW2100_ORD(STAT_ASSN_CAUSE2,
3693                                 "reassociation: poor tx/rx quality"),
3694             IPW2100_ORD(STAT_ASSN_CAUSE3,
3695                                 "reassociation: tx/rx quality (excessive AP load"),
3696             IPW2100_ORD(STAT_ASSN_CAUSE4,
3697                                 "reassociation: AP RSSI level"),
3698             IPW2100_ORD(STAT_ASSN_CAUSE5,
3699                                 "reassociations due to load leveling"),
3700             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3701             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3702                                 "times authentication response failed"),
3703             IPW2100_ORD(STATION_TABLE_CNT,
3704                                 "entries in association table"),
3705             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3706             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3707             IPW2100_ORD(COUNTRY_CODE,
3708                                 "IEEE country code as recv'd from beacon"),
3709             IPW2100_ORD(COUNTRY_CHANNELS,
3710                                 "channels suported by country"),
3711             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3712             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3713             IPW2100_ORD(ANTENNA_DIVERSITY,
3714                                 "TRUE if antenna diversity is disabled"),
3715             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3716             IPW2100_ORD(OUR_FREQ,
3717                                 "current radio freq lower digits - channel ID"),
3718             IPW2100_ORD(RTC_TIME, "current RTC time"),
3719             IPW2100_ORD(PORT_TYPE, "operating mode"),
3720             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3721             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3722             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3723             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3724             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3725             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3726             IPW2100_ORD(CAPABILITIES,
3727                                 "Management frame capability field"),
3728             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3729             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3730             IPW2100_ORD(RTS_THRESHOLD,
3731                                 "Min packet length for RTS handshaking"),
3732             IPW2100_ORD(INT_MODE, "International mode"),
3733             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3734                                 "protocol frag threshold"),
3735             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3736                                 "EEPROM offset in SRAM"),
3737             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3738                                 "EEPROM size in SRAM"),
3739             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3740             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3741                                 "EEPROM IBSS 11b channel set"),
3742             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3743             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3744             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3745             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3746             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3747
3748 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3749                               char *buf)
3750 {
3751         int i;
3752         struct ipw2100_priv *priv = dev_get_drvdata(d);
3753         struct net_device *dev = priv->net_dev;
3754         char *out = buf;
3755         u32 val = 0;
3756
3757         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3758
3759         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3760                 read_register(dev, hw_data[i].addr, &val);
3761                 out += sprintf(out, "%30s [%08X] : %08X\n",
3762                                hw_data[i].name, hw_data[i].addr, val);
3763         }
3764
3765         return out - buf;
3766 }
3767
3768 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3769
3770 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3771                              char *buf)
3772 {
3773         struct ipw2100_priv *priv = dev_get_drvdata(d);
3774         struct net_device *dev = priv->net_dev;
3775         char *out = buf;
3776         int i;
3777
3778         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3779
3780         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3781                 u8 tmp8;
3782                 u16 tmp16;
3783                 u32 tmp32;
3784
3785                 switch (nic_data[i].size) {
3786                 case 1:
3787                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3788                         out += sprintf(out, "%30s [%08X] : %02X\n",
3789                                        nic_data[i].name, nic_data[i].addr,
3790                                        tmp8);
3791                         break;
3792                 case 2:
3793                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3794                         out += sprintf(out, "%30s [%08X] : %04X\n",
3795                                        nic_data[i].name, nic_data[i].addr,
3796                                        tmp16);
3797                         break;
3798                 case 4:
3799                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3800                         out += sprintf(out, "%30s [%08X] : %08X\n",
3801                                        nic_data[i].name, nic_data[i].addr,
3802                                        tmp32);
3803                         break;
3804                 }
3805         }
3806         return out - buf;
3807 }
3808
3809 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3810
3811 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3812                            char *buf)
3813 {
3814         struct ipw2100_priv *priv = dev_get_drvdata(d);
3815         struct net_device *dev = priv->net_dev;
3816         static unsigned long loop = 0;
3817         int len = 0;
3818         u32 buffer[4];
3819         int i;
3820         char line[81];
3821
3822         if (loop >= 0x30000)
3823                 loop = 0;
3824
3825         /* sysfs provides us PAGE_SIZE buffer */
3826         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3827
3828                 if (priv->snapshot[0])
3829                         for (i = 0; i < 4; i++)
3830                                 buffer[i] =
3831                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3832                 else
3833                         for (i = 0; i < 4; i++)
3834                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3835
3836                 if (priv->dump_raw)
3837                         len += sprintf(buf + len,
3838                                        "%c%c%c%c"
3839                                        "%c%c%c%c"
3840                                        "%c%c%c%c"
3841                                        "%c%c%c%c",
3842                                        ((u8 *) buffer)[0x0],
3843                                        ((u8 *) buffer)[0x1],
3844                                        ((u8 *) buffer)[0x2],
3845                                        ((u8 *) buffer)[0x3],
3846                                        ((u8 *) buffer)[0x4],
3847                                        ((u8 *) buffer)[0x5],
3848                                        ((u8 *) buffer)[0x6],
3849                                        ((u8 *) buffer)[0x7],
3850                                        ((u8 *) buffer)[0x8],
3851                                        ((u8 *) buffer)[0x9],
3852                                        ((u8 *) buffer)[0xa],
3853                                        ((u8 *) buffer)[0xb],
3854                                        ((u8 *) buffer)[0xc],
3855                                        ((u8 *) buffer)[0xd],
3856                                        ((u8 *) buffer)[0xe],
3857                                        ((u8 *) buffer)[0xf]);
3858                 else
3859                         len += sprintf(buf + len, "%s\n",
3860                                        snprint_line(line, sizeof(line),
3861                                                     (u8 *) buffer, 16, loop));
3862                 loop += 16;
3863         }
3864
3865         return len;
3866 }
3867
3868 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3869                             const char *buf, size_t count)
3870 {
3871         struct ipw2100_priv *priv = dev_get_drvdata(d);
3872         struct net_device *dev = priv->net_dev;
3873         const char *p = buf;
3874
3875         (void)dev;              /* kill unused-var warning for debug-only code */
3876
3877         if (count < 1)
3878                 return count;
3879
3880         if (p[0] == '1' ||
3881             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3882                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3883                                dev->name);
3884                 priv->dump_raw = 1;
3885
3886         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3887                                    tolower(p[1]) == 'f')) {
3888                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3889                                dev->name);
3890                 priv->dump_raw = 0;
3891
3892         } else if (tolower(p[0]) == 'r') {
3893                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3894                 ipw2100_snapshot_free(priv);
3895
3896         } else
3897                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3898                                "reset = clear memory snapshot\n", dev->name);
3899
3900         return count;
3901 }
3902
3903 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3904
3905 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3906                              char *buf)
3907 {
3908         struct ipw2100_priv *priv = dev_get_drvdata(d);
3909         u32 val = 0;
3910         int len = 0;
3911         u32 val_len;
3912         static int loop = 0;
3913
3914         if (priv->status & STATUS_RF_KILL_MASK)
3915                 return 0;
3916
3917         if (loop >= ARRAY_SIZE(ord_data))
3918                 loop = 0;
3919
3920         /* sysfs provides us PAGE_SIZE buffer */
3921         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3922                 val_len = sizeof(u32);
3923
3924                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3925                                         &val_len))
3926                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3927                                        ord_data[loop].index,
3928                                        ord_data[loop].desc);
3929                 else
3930                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3931                                        ord_data[loop].index, val,
3932                                        ord_data[loop].desc);
3933                 loop++;
3934         }
3935
3936         return len;
3937 }
3938
3939 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3940
3941 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3942                           char *buf)
3943 {
3944         struct ipw2100_priv *priv = dev_get_drvdata(d);
3945         char *out = buf;
3946
3947         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3948                        priv->interrupts, priv->tx_interrupts,
3949                        priv->rx_interrupts, priv->inta_other);
3950         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3951         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3952 #ifdef CONFIG_IPW2100_DEBUG
3953         out += sprintf(out, "packet mismatch image: %s\n",
3954                        priv->snapshot[0] ? "YES" : "NO");
3955 #endif
3956
3957         return out - buf;
3958 }
3959
3960 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3961
3962 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3963 {
3964         int err;
3965
3966         if (mode == priv->ieee->iw_mode)
3967                 return 0;
3968
3969         err = ipw2100_disable_adapter(priv);
3970         if (err) {
3971                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3972                        priv->net_dev->name, err);
3973                 return err;
3974         }
3975
3976         switch (mode) {
3977         case IW_MODE_INFRA:
3978                 priv->net_dev->type = ARPHRD_ETHER;
3979                 break;
3980         case IW_MODE_ADHOC:
3981                 priv->net_dev->type = ARPHRD_ETHER;
3982                 break;
3983 #ifdef CONFIG_IPW2100_MONITOR
3984         case IW_MODE_MONITOR:
3985                 priv->last_mode = priv->ieee->iw_mode;
3986                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3987                 break;
3988 #endif                          /* CONFIG_IPW2100_MONITOR */
3989         }
3990
3991         priv->ieee->iw_mode = mode;
3992
3993 #ifdef CONFIG_PM
3994         /* Indicate ipw2100_download_firmware download firmware
3995          * from disk instead of memory. */
3996         ipw2100_firmware.version = 0;
3997 #endif
3998
3999         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
4000         priv->reset_backoff = 0;
4001         schedule_reset(priv);
4002
4003         return 0;
4004 }
4005
4006 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4007                               char *buf)
4008 {
4009         struct ipw2100_priv *priv = dev_get_drvdata(d);
4010         int len = 0;
4011
4012 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4013
4014         if (priv->status & STATUS_ASSOCIATED)
4015                 len += sprintf(buf + len, "connected: %lu\n",
4016                                get_seconds() - priv->connect_start);
4017         else
4018                 len += sprintf(buf + len, "not connected\n");
4019
4020         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4021         DUMP_VAR(status, "08lx");
4022         DUMP_VAR(config, "08lx");
4023         DUMP_VAR(capability, "08lx");
4024
4025         len +=
4026             sprintf(buf + len, "last_rtc: %lu\n",
4027                     (unsigned long)priv->last_rtc);
4028
4029         DUMP_VAR(fatal_error, "d");
4030         DUMP_VAR(stop_hang_check, "d");
4031         DUMP_VAR(stop_rf_kill, "d");
4032         DUMP_VAR(messages_sent, "d");
4033
4034         DUMP_VAR(tx_pend_stat.value, "d");
4035         DUMP_VAR(tx_pend_stat.hi, "d");
4036
4037         DUMP_VAR(tx_free_stat.value, "d");
4038         DUMP_VAR(tx_free_stat.lo, "d");
4039
4040         DUMP_VAR(msg_free_stat.value, "d");
4041         DUMP_VAR(msg_free_stat.lo, "d");
4042
4043         DUMP_VAR(msg_pend_stat.value, "d");
4044         DUMP_VAR(msg_pend_stat.hi, "d");
4045
4046         DUMP_VAR(fw_pend_stat.value, "d");
4047         DUMP_VAR(fw_pend_stat.hi, "d");
4048
4049         DUMP_VAR(txq_stat.value, "d");
4050         DUMP_VAR(txq_stat.lo, "d");
4051
4052         DUMP_VAR(ieee->scans, "d");
4053         DUMP_VAR(reset_backoff, "d");
4054
4055         return len;
4056 }
4057
4058 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4059
4060 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4061                             char *buf)
4062 {
4063         struct ipw2100_priv *priv = dev_get_drvdata(d);
4064         char essid[IW_ESSID_MAX_SIZE + 1];
4065         u8 bssid[ETH_ALEN];
4066         u32 chan = 0;
4067         char *out = buf;
4068         unsigned int length;
4069         int ret;
4070
4071         if (priv->status & STATUS_RF_KILL_MASK)
4072                 return 0;
4073
4074         memset(essid, 0, sizeof(essid));
4075         memset(bssid, 0, sizeof(bssid));
4076
4077         length = IW_ESSID_MAX_SIZE;
4078         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4079         if (ret)
4080                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4081                                __LINE__);
4082
4083         length = sizeof(bssid);
4084         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4085                                   bssid, &length);
4086         if (ret)
4087                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4088                                __LINE__);
4089
4090         length = sizeof(u32);
4091         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4092         if (ret)
4093                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4094                                __LINE__);
4095
4096         out += sprintf(out, "ESSID: %s\n", essid);
4097         out += sprintf(out, "BSSID:   %pM\n", bssid);
4098         out += sprintf(out, "Channel: %d\n", chan);
4099
4100         return out - buf;
4101 }
4102
4103 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4104
4105 #ifdef CONFIG_IPW2100_DEBUG
4106 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4107 {
4108         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4109 }
4110
4111 static ssize_t store_debug_level(struct device_driver *d,
4112                                  const char *buf, size_t count)
4113 {
4114         char *p = (char *)buf;
4115         u32 val;
4116
4117         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4118                 p++;
4119                 if (p[0] == 'x' || p[0] == 'X')
4120                         p++;
4121                 val = simple_strtoul(p, &p, 16);
4122         } else
4123                 val = simple_strtoul(p, &p, 10);
4124         if (p == buf)
4125                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4126         else
4127                 ipw2100_debug_level = val;
4128
4129         return strnlen(buf, count);
4130 }
4131
4132 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4133                    store_debug_level);
4134 #endif                          /* CONFIG_IPW2100_DEBUG */
4135
4136 static ssize_t show_fatal_error(struct device *d,
4137                                 struct device_attribute *attr, char *buf)
4138 {
4139         struct ipw2100_priv *priv = dev_get_drvdata(d);
4140         char *out = buf;
4141         int i;
4142
4143         if (priv->fatal_error)
4144                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4145         else
4146                 out += sprintf(out, "0\n");
4147
4148         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4149                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4150                                         IPW2100_ERROR_QUEUE])
4151                         continue;
4152
4153                 out += sprintf(out, "%d. 0x%08X\n", i,
4154                                priv->fatal_errors[(priv->fatal_index - i) %
4155                                                   IPW2100_ERROR_QUEUE]);
4156         }
4157
4158         return out - buf;
4159 }
4160
4161 static ssize_t store_fatal_error(struct device *d,
4162                                  struct device_attribute *attr, const char *buf,
4163                                  size_t count)
4164 {
4165         struct ipw2100_priv *priv = dev_get_drvdata(d);
4166         schedule_reset(priv);
4167         return count;
4168 }
4169
4170 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4171                    store_fatal_error);
4172
4173 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4174                              char *buf)
4175 {
4176         struct ipw2100_priv *priv = dev_get_drvdata(d);
4177         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4178 }
4179
4180 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4181                               const char *buf, size_t count)
4182 {
4183         struct ipw2100_priv *priv = dev_get_drvdata(d);
4184         struct net_device *dev = priv->net_dev;
4185         char buffer[] = "00000000";
4186         unsigned long len =
4187             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4188         unsigned long val;
4189         char *p = buffer;
4190
4191         (void)dev;              /* kill unused-var warning for debug-only code */
4192
4193         IPW_DEBUG_INFO("enter\n");
4194
4195         strncpy(buffer, buf, len);
4196         buffer[len] = 0;
4197
4198         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4199                 p++;
4200                 if (p[0] == 'x' || p[0] == 'X')
4201                         p++;
4202                 val = simple_strtoul(p, &p, 16);
4203         } else
4204                 val = simple_strtoul(p, &p, 10);
4205         if (p == buffer) {
4206                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4207         } else {
4208                 priv->ieee->scan_age = val;
4209                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4210         }
4211
4212         IPW_DEBUG_INFO("exit\n");
4213         return len;
4214 }
4215
4216 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4217
4218 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4219                             char *buf)
4220 {
4221         /* 0 - RF kill not enabled
4222            1 - SW based RF kill active (sysfs)
4223            2 - HW based RF kill active
4224            3 - Both HW and SW baed RF kill active */
4225         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4226         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4227             (rf_kill_active(priv) ? 0x2 : 0x0);
4228         return sprintf(buf, "%i\n", val);
4229 }
4230
4231 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4232 {
4233         if ((disable_radio ? 1 : 0) ==
4234             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4235                 return 0;
4236
4237         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4238                           disable_radio ? "OFF" : "ON");
4239
4240         mutex_lock(&priv->action_mutex);
4241
4242         if (disable_radio) {
4243                 priv->status |= STATUS_RF_KILL_SW;
4244                 ipw2100_down(priv);
4245         } else {
4246                 priv->status &= ~STATUS_RF_KILL_SW;
4247                 if (rf_kill_active(priv)) {
4248                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4249                                           "disabled by HW switch\n");
4250                         /* Make sure the RF_KILL check timer is running */
4251                         priv->stop_rf_kill = 0;
4252                         cancel_delayed_work(&priv->rf_kill);
4253                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
4254                                            round_jiffies_relative(HZ));
4255                 } else
4256                         schedule_reset(priv);
4257         }
4258
4259         mutex_unlock(&priv->action_mutex);
4260         return 1;
4261 }
4262
4263 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4264                              const char *buf, size_t count)
4265 {
4266         struct ipw2100_priv *priv = dev_get_drvdata(d);
4267         ipw_radio_kill_sw(priv, buf[0] == '1');
4268         return count;
4269 }
4270
4271 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4272
4273 static struct attribute *ipw2100_sysfs_entries[] = {
4274         &dev_attr_hardware.attr,
4275         &dev_attr_registers.attr,
4276         &dev_attr_ordinals.attr,
4277         &dev_attr_pci.attr,
4278         &dev_attr_stats.attr,
4279         &dev_attr_internals.attr,
4280         &dev_attr_bssinfo.attr,
4281         &dev_attr_memory.attr,
4282         &dev_attr_scan_age.attr,
4283         &dev_attr_fatal_error.attr,
4284         &dev_attr_rf_kill.attr,
4285         &dev_attr_cfg.attr,
4286         &dev_attr_status.attr,
4287         &dev_attr_capability.attr,
4288         NULL,
4289 };
4290
4291 static struct attribute_group ipw2100_attribute_group = {
4292         .attrs = ipw2100_sysfs_entries,
4293 };
4294
4295 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4296 {
4297         struct ipw2100_status_queue *q = &priv->status_queue;
4298
4299         IPW_DEBUG_INFO("enter\n");
4300
4301         q->size = entries * sizeof(struct ipw2100_status);
4302         q->drv =
4303             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4304                                                           q->size, &q->nic);
4305         if (!q->drv) {
4306                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4307                 return -ENOMEM;
4308         }
4309
4310         memset(q->drv, 0, q->size);
4311
4312         IPW_DEBUG_INFO("exit\n");
4313
4314         return 0;
4315 }
4316
4317 static void status_queue_free(struct ipw2100_priv *priv)
4318 {
4319         IPW_DEBUG_INFO("enter\n");
4320
4321         if (priv->status_queue.drv) {
4322                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4323                                     priv->status_queue.drv,
4324                                     priv->status_queue.nic);
4325                 priv->status_queue.drv = NULL;
4326         }
4327
4328         IPW_DEBUG_INFO("exit\n");
4329 }
4330
4331 static int bd_queue_allocate(struct ipw2100_priv *priv,
4332                              struct ipw2100_bd_queue *q, int entries)
4333 {
4334         IPW_DEBUG_INFO("enter\n");
4335
4336         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4337
4338         q->entries = entries;
4339         q->size = entries * sizeof(struct ipw2100_bd);
4340         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4341         if (!q->drv) {
4342                 IPW_DEBUG_INFO
4343                     ("can't allocate shared memory for buffer descriptors\n");
4344                 return -ENOMEM;
4345         }
4346         memset(q->drv, 0, q->size);
4347
4348         IPW_DEBUG_INFO("exit\n");
4349
4350         return 0;
4351 }
4352
4353 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4354 {
4355         IPW_DEBUG_INFO("enter\n");
4356
4357         if (!q)
4358                 return;
4359
4360         if (q->drv) {
4361                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4362                 q->drv = NULL;
4363         }
4364
4365         IPW_DEBUG_INFO("exit\n");
4366 }
4367
4368 static void bd_queue_initialize(struct ipw2100_priv *priv,
4369                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4370                                 u32 r, u32 w)
4371 {
4372         IPW_DEBUG_INFO("enter\n");
4373
4374         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4375                        (u32) q->nic);
4376
4377         write_register(priv->net_dev, base, q->nic);
4378         write_register(priv->net_dev, size, q->entries);
4379         write_register(priv->net_dev, r, q->oldest);
4380         write_register(priv->net_dev, w, q->next);
4381
4382         IPW_DEBUG_INFO("exit\n");
4383 }
4384
4385 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4386 {
4387         if (priv->workqueue) {
4388                 priv->stop_rf_kill = 1;
4389                 priv->stop_hang_check = 1;
4390                 cancel_delayed_work(&priv->reset_work);
4391                 cancel_delayed_work(&priv->security_work);
4392                 cancel_delayed_work(&priv->wx_event_work);
4393                 cancel_delayed_work(&priv->hang_check);
4394                 cancel_delayed_work(&priv->rf_kill);
4395                 cancel_delayed_work(&priv->scan_event_later);
4396                 destroy_workqueue(priv->workqueue);
4397                 priv->workqueue = NULL;
4398         }
4399 }
4400
4401 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4402 {
4403         int i, j, err = -EINVAL;
4404         void *v;
4405         dma_addr_t p;
4406
4407         IPW_DEBUG_INFO("enter\n");
4408
4409         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4410         if (err) {
4411                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4412                                 priv->net_dev->name);
4413                 return err;
4414         }
4415
4416         priv->tx_buffers =
4417             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4418                                                 sizeof(struct
4419                                                        ipw2100_tx_packet),
4420                                                 GFP_ATOMIC);
4421         if (!priv->tx_buffers) {
4422                 printk(KERN_ERR DRV_NAME
4423                        ": %s: alloc failed form tx buffers.\n",
4424                        priv->net_dev->name);
4425                 bd_queue_free(priv, &priv->tx_queue);
4426                 return -ENOMEM;
4427         }
4428
4429         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4430                 v = pci_alloc_consistent(priv->pci_dev,
4431                                          sizeof(struct ipw2100_data_header),
4432                                          &p);
4433                 if (!v) {
4434                         printk(KERN_ERR DRV_NAME
4435                                ": %s: PCI alloc failed for tx " "buffers.\n",
4436                                priv->net_dev->name);
4437                         err = -ENOMEM;
4438                         break;
4439                 }
4440
4441                 priv->tx_buffers[i].type = DATA;
4442                 priv->tx_buffers[i].info.d_struct.data =
4443                     (struct ipw2100_data_header *)v;
4444                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4445                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4446         }
4447
4448         if (i == TX_PENDED_QUEUE_LENGTH)
4449                 return 0;
4450
4451         for (j = 0; j < i; j++) {
4452                 pci_free_consistent(priv->pci_dev,
4453                                     sizeof(struct ipw2100_data_header),
4454                                     priv->tx_buffers[j].info.d_struct.data,
4455                                     priv->tx_buffers[j].info.d_struct.
4456                                     data_phys);
4457         }
4458
4459         kfree(priv->tx_buffers);
4460         priv->tx_buffers = NULL;
4461
4462         return err;
4463 }
4464
4465 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4466 {
4467         int i;
4468
4469         IPW_DEBUG_INFO("enter\n");
4470
4471         /*
4472          * reinitialize packet info lists
4473          */
4474         INIT_LIST_HEAD(&priv->fw_pend_list);
4475         INIT_STAT(&priv->fw_pend_stat);
4476
4477         /*
4478          * reinitialize lists
4479          */
4480         INIT_LIST_HEAD(&priv->tx_pend_list);
4481         INIT_LIST_HEAD(&priv->tx_free_list);
4482         INIT_STAT(&priv->tx_pend_stat);
4483         INIT_STAT(&priv->tx_free_stat);
4484
4485         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4486                 /* We simply drop any SKBs that have been queued for
4487                  * transmit */
4488                 if (priv->tx_buffers[i].info.d_struct.txb) {
4489                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4490                                            txb);
4491                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4492                 }
4493
4494                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4495         }
4496
4497         SET_STAT(&priv->tx_free_stat, i);
4498
4499         priv->tx_queue.oldest = 0;
4500         priv->tx_queue.available = priv->tx_queue.entries;
4501         priv->tx_queue.next = 0;
4502         INIT_STAT(&priv->txq_stat);
4503         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4504
4505         bd_queue_initialize(priv, &priv->tx_queue,
4506                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4507                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4508                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4509                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4510
4511         IPW_DEBUG_INFO("exit\n");
4512
4513 }
4514
4515 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4516 {
4517         int i;
4518
4519         IPW_DEBUG_INFO("enter\n");
4520
4521         bd_queue_free(priv, &priv->tx_queue);
4522
4523         if (!priv->tx_buffers)
4524                 return;
4525
4526         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4527                 if (priv->tx_buffers[i].info.d_struct.txb) {
4528                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4529                                            txb);
4530                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4531                 }
4532                 if (priv->tx_buffers[i].info.d_struct.data)
4533                         pci_free_consistent(priv->pci_dev,
4534                                             sizeof(struct ipw2100_data_header),
4535                                             priv->tx_buffers[i].info.d_struct.
4536                                             data,
4537                                             priv->tx_buffers[i].info.d_struct.
4538                                             data_phys);
4539         }
4540
4541         kfree(priv->tx_buffers);
4542         priv->tx_buffers = NULL;
4543
4544         IPW_DEBUG_INFO("exit\n");
4545 }
4546
4547 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4548 {
4549         int i, j, err = -EINVAL;
4550
4551         IPW_DEBUG_INFO("enter\n");
4552
4553         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4554         if (err) {
4555                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4556                 return err;
4557         }
4558
4559         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4560         if (err) {
4561                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4562                 bd_queue_free(priv, &priv->rx_queue);
4563                 return err;
4564         }
4565
4566         /*
4567          * allocate packets
4568          */
4569         priv->rx_buffers = (struct ipw2100_rx_packet *)
4570             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4571                     GFP_KERNEL);
4572         if (!priv->rx_buffers) {
4573                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4574
4575                 bd_queue_free(priv, &priv->rx_queue);
4576
4577                 status_queue_free(priv);
4578
4579                 return -ENOMEM;
4580         }
4581
4582         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4583                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4584
4585                 err = ipw2100_alloc_skb(priv, packet);
4586                 if (unlikely(err)) {
4587                         err = -ENOMEM;
4588                         break;
4589                 }
4590
4591                 /* The BD holds the cache aligned address */
4592                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4593                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4594                 priv->status_queue.drv[i].status_fields = 0;
4595         }
4596
4597         if (i == RX_QUEUE_LENGTH)
4598                 return 0;
4599
4600         for (j = 0; j < i; j++) {
4601                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4602                                  sizeof(struct ipw2100_rx_packet),
4603                                  PCI_DMA_FROMDEVICE);
4604                 dev_kfree_skb(priv->rx_buffers[j].skb);
4605         }
4606
4607         kfree(priv->rx_buffers);
4608         priv->rx_buffers = NULL;
4609
4610         bd_queue_free(priv, &priv->rx_queue);
4611
4612         status_queue_free(priv);
4613
4614         return err;
4615 }
4616
4617 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4618 {
4619         IPW_DEBUG_INFO("enter\n");
4620
4621         priv->rx_queue.oldest = 0;
4622         priv->rx_queue.available = priv->rx_queue.entries - 1;
4623         priv->rx_queue.next = priv->rx_queue.entries - 1;
4624
4625         INIT_STAT(&priv->rxq_stat);
4626         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4627
4628         bd_queue_initialize(priv, &priv->rx_queue,
4629                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4630                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4631                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4632                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4633
4634         /* set up the status queue */
4635         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4636                        priv->status_queue.nic);
4637
4638         IPW_DEBUG_INFO("exit\n");
4639 }
4640
4641 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4642 {
4643         int i;
4644
4645         IPW_DEBUG_INFO("enter\n");
4646
4647         bd_queue_free(priv, &priv->rx_queue);
4648         status_queue_free(priv);
4649
4650         if (!priv->rx_buffers)
4651                 return;
4652
4653         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4654                 if (priv->rx_buffers[i].rxp) {
4655                         pci_unmap_single(priv->pci_dev,
4656                                          priv->rx_buffers[i].dma_addr,
4657                                          sizeof(struct ipw2100_rx),
4658                                          PCI_DMA_FROMDEVICE);
4659                         dev_kfree_skb(priv->rx_buffers[i].skb);
4660                 }
4661         }
4662
4663         kfree(priv->rx_buffers);
4664         priv->rx_buffers = NULL;
4665
4666         IPW_DEBUG_INFO("exit\n");
4667 }
4668
4669 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4670 {
4671         u32 length = ETH_ALEN;
4672         u8 addr[ETH_ALEN];
4673
4674         int err;
4675
4676         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4677         if (err) {
4678                 IPW_DEBUG_INFO("MAC address read failed\n");
4679                 return -EIO;
4680         }
4681
4682         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4683         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4684
4685         return 0;
4686 }
4687
4688 /********************************************************************
4689  *
4690  * Firmware Commands
4691  *
4692  ********************************************************************/
4693
4694 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4695 {
4696         struct host_command cmd = {
4697                 .host_command = ADAPTER_ADDRESS,
4698                 .host_command_sequence = 0,
4699                 .host_command_length = ETH_ALEN
4700         };
4701         int err;
4702
4703         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4704
4705         IPW_DEBUG_INFO("enter\n");
4706
4707         if (priv->config & CFG_CUSTOM_MAC) {
4708                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4709                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4710         } else
4711                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4712                        ETH_ALEN);
4713
4714         err = ipw2100_hw_send_command(priv, &cmd);
4715
4716         IPW_DEBUG_INFO("exit\n");
4717         return err;
4718 }
4719
4720 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4721                                  int batch_mode)
4722 {
4723         struct host_command cmd = {
4724                 .host_command = PORT_TYPE,
4725                 .host_command_sequence = 0,
4726                 .host_command_length = sizeof(u32)
4727         };
4728         int err;
4729
4730         switch (port_type) {
4731         case IW_MODE_INFRA:
4732                 cmd.host_command_parameters[0] = IPW_BSS;
4733                 break;
4734         case IW_MODE_ADHOC:
4735                 cmd.host_command_parameters[0] = IPW_IBSS;
4736                 break;
4737         }
4738
4739         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4740                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4741
4742         if (!batch_mode) {
4743                 err = ipw2100_disable_adapter(priv);
4744                 if (err) {
4745                         printk(KERN_ERR DRV_NAME
4746                                ": %s: Could not disable adapter %d\n",
4747                                priv->net_dev->name, err);
4748                         return err;
4749                 }
4750         }
4751
4752         /* send cmd to firmware */
4753         err = ipw2100_hw_send_command(priv, &cmd);
4754
4755         if (!batch_mode)
4756                 ipw2100_enable_adapter(priv);
4757
4758         return err;
4759 }
4760
4761 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4762                                int batch_mode)
4763 {
4764         struct host_command cmd = {
4765                 .host_command = CHANNEL,
4766                 .host_command_sequence = 0,
4767                 .host_command_length = sizeof(u32)
4768         };
4769         int err;
4770
4771         cmd.host_command_parameters[0] = channel;
4772
4773         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4774
4775         /* If BSS then we don't support channel selection */
4776         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4777                 return 0;
4778
4779         if ((channel != 0) &&
4780             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4781                 return -EINVAL;
4782
4783         if (!batch_mode) {
4784                 err = ipw2100_disable_adapter(priv);
4785                 if (err)
4786                         return err;
4787         }
4788
4789         err = ipw2100_hw_send_command(priv, &cmd);
4790         if (err) {
4791                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4792                 return err;
4793         }
4794
4795         if (channel)
4796                 priv->config |= CFG_STATIC_CHANNEL;
4797         else
4798                 priv->config &= ~CFG_STATIC_CHANNEL;
4799
4800         priv->channel = channel;
4801
4802         if (!batch_mode) {
4803                 err = ipw2100_enable_adapter(priv);
4804                 if (err)
4805                         return err;
4806         }
4807
4808         return 0;
4809 }
4810
4811 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4812 {
4813         struct host_command cmd = {
4814                 .host_command = SYSTEM_CONFIG,
4815                 .host_command_sequence = 0,
4816                 .host_command_length = 12,
4817         };
4818         u32 ibss_mask, len = sizeof(u32);
4819         int err;
4820
4821         /* Set system configuration */
4822
4823         if (!batch_mode) {
4824                 err = ipw2100_disable_adapter(priv);
4825                 if (err)
4826                         return err;
4827         }
4828
4829         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4830                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4831
4832         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4833             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4834
4835         if (!(priv->config & CFG_LONG_PREAMBLE))
4836                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4837
4838         err = ipw2100_get_ordinal(priv,
4839                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4840                                   &ibss_mask, &len);
4841         if (err)
4842                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4843
4844         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4845         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4846
4847         /* 11b only */
4848         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4849
4850         err = ipw2100_hw_send_command(priv, &cmd);
4851         if (err)
4852                 return err;
4853
4854 /* If IPv6 is configured in the kernel then we don't want to filter out all
4855  * of the multicast packets as IPv6 needs some. */
4856 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4857         cmd.host_command = ADD_MULTICAST;
4858         cmd.host_command_sequence = 0;
4859         cmd.host_command_length = 0;
4860
4861         ipw2100_hw_send_command(priv, &cmd);
4862 #endif
4863         if (!batch_mode) {
4864                 err = ipw2100_enable_adapter(priv);
4865                 if (err)
4866                         return err;
4867         }
4868
4869         return 0;
4870 }
4871
4872 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4873                                 int batch_mode)
4874 {
4875         struct host_command cmd = {
4876                 .host_command = BASIC_TX_RATES,
4877                 .host_command_sequence = 0,
4878                 .host_command_length = 4
4879         };
4880         int err;
4881
4882         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4883
4884         if (!batch_mode) {
4885                 err = ipw2100_disable_adapter(priv);
4886                 if (err)
4887                         return err;
4888         }
4889
4890         /* Set BASIC TX Rate first */
4891         ipw2100_hw_send_command(priv, &cmd);
4892
4893         /* Set TX Rate */
4894         cmd.host_command = TX_RATES;
4895         ipw2100_hw_send_command(priv, &cmd);
4896
4897         /* Set MSDU TX Rate */
4898         cmd.host_command = MSDU_TX_RATES;
4899         ipw2100_hw_send_command(priv, &cmd);
4900
4901         if (!batch_mode) {
4902                 err = ipw2100_enable_adapter(priv);
4903                 if (err)
4904                         return err;
4905         }
4906
4907         priv->tx_rates = rate;
4908
4909         return 0;
4910 }
4911
4912 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4913 {
4914         struct host_command cmd = {
4915                 .host_command = POWER_MODE,
4916                 .host_command_sequence = 0,
4917                 .host_command_length = 4
4918         };
4919         int err;
4920
4921         cmd.host_command_parameters[0] = power_level;
4922
4923         err = ipw2100_hw_send_command(priv, &cmd);
4924         if (err)
4925                 return err;
4926
4927         if (power_level == IPW_POWER_MODE_CAM)
4928                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4929         else
4930                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4931
4932 #ifdef IPW2100_TX_POWER
4933         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4934                 /* Set beacon interval */
4935                 cmd.host_command = TX_POWER_INDEX;
4936                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4937
4938                 err = ipw2100_hw_send_command(priv, &cmd);
4939                 if (err)
4940                         return err;
4941         }
4942 #endif
4943
4944         return 0;
4945 }
4946
4947 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4948 {
4949         struct host_command cmd = {
4950                 .host_command = RTS_THRESHOLD,
4951                 .host_command_sequence = 0,
4952                 .host_command_length = 4
4953         };
4954         int err;
4955
4956         if (threshold & RTS_DISABLED)
4957                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4958         else
4959                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4960
4961         err = ipw2100_hw_send_command(priv, &cmd);
4962         if (err)
4963                 return err;
4964
4965         priv->rts_threshold = threshold;
4966
4967         return 0;
4968 }
4969
4970 #if 0
4971 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4972                                         u32 threshold, int batch_mode)
4973 {
4974         struct host_command cmd = {
4975                 .host_command = FRAG_THRESHOLD,
4976                 .host_command_sequence = 0,
4977                 .host_command_length = 4,
4978                 .host_command_parameters[0] = 0,
4979         };
4980         int err;
4981
4982         if (!batch_mode) {
4983                 err = ipw2100_disable_adapter(priv);
4984                 if (err)
4985                         return err;
4986         }
4987
4988         if (threshold == 0)
4989                 threshold = DEFAULT_FRAG_THRESHOLD;
4990         else {
4991                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4992                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4993         }
4994
4995         cmd.host_command_parameters[0] = threshold;
4996
4997         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4998
4999         err = ipw2100_hw_send_command(priv, &cmd);
5000
5001         if (!batch_mode)
5002                 ipw2100_enable_adapter(priv);
5003
5004         if (!err)
5005                 priv->frag_threshold = threshold;
5006
5007         return err;
5008 }
5009 #endif
5010
5011 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5012 {
5013         struct host_command cmd = {
5014                 .host_command = SHORT_RETRY_LIMIT,
5015                 .host_command_sequence = 0,
5016                 .host_command_length = 4
5017         };
5018         int err;
5019
5020         cmd.host_command_parameters[0] = retry;
5021
5022         err = ipw2100_hw_send_command(priv, &cmd);
5023         if (err)
5024                 return err;
5025
5026         priv->short_retry_limit = retry;
5027
5028         return 0;
5029 }
5030
5031 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5032 {
5033         struct host_command cmd = {
5034                 .host_command = LONG_RETRY_LIMIT,
5035                 .host_command_sequence = 0,
5036                 .host_command_length = 4
5037         };
5038         int err;
5039
5040         cmd.host_command_parameters[0] = retry;
5041
5042         err = ipw2100_hw_send_command(priv, &cmd);
5043         if (err)
5044                 return err;
5045
5046         priv->long_retry_limit = retry;
5047
5048         return 0;
5049 }
5050
5051 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5052                                        int batch_mode)
5053 {
5054         struct host_command cmd = {
5055                 .host_command = MANDATORY_BSSID,
5056                 .host_command_sequence = 0,
5057                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5058         };
5059         int err;
5060
5061 #ifdef CONFIG_IPW2100_DEBUG
5062         if (bssid != NULL)
5063                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5064         else
5065                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5066 #endif
5067         /* if BSSID is empty then we disable mandatory bssid mode */
5068         if (bssid != NULL)
5069                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5070
5071         if (!batch_mode) {
5072                 err = ipw2100_disable_adapter(priv);
5073                 if (err)
5074                         return err;
5075         }
5076
5077         err = ipw2100_hw_send_command(priv, &cmd);
5078
5079         if (!batch_mode)
5080                 ipw2100_enable_adapter(priv);
5081
5082         return err;
5083 }
5084
5085 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5086 {
5087         struct host_command cmd = {
5088                 .host_command = DISASSOCIATION_BSSID,
5089                 .host_command_sequence = 0,
5090                 .host_command_length = ETH_ALEN
5091         };
5092         int err;
5093         int len;
5094
5095         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5096
5097         len = ETH_ALEN;
5098         /* The Firmware currently ignores the BSSID and just disassociates from
5099          * the currently associated AP -- but in the off chance that a future
5100          * firmware does use the BSSID provided here, we go ahead and try and
5101          * set it to the currently associated AP's BSSID */
5102         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5103
5104         err = ipw2100_hw_send_command(priv, &cmd);
5105
5106         return err;
5107 }
5108
5109 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5110                               struct ipw2100_wpa_assoc_frame *, int)
5111     __attribute__ ((unused));
5112
5113 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5114                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5115                               int batch_mode)
5116 {
5117         struct host_command cmd = {
5118                 .host_command = SET_WPA_IE,
5119                 .host_command_sequence = 0,
5120                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5121         };
5122         int err;
5123
5124         IPW_DEBUG_HC("SET_WPA_IE\n");
5125
5126         if (!batch_mode) {
5127                 err = ipw2100_disable_adapter(priv);
5128                 if (err)
5129                         return err;
5130         }
5131
5132         memcpy(cmd.host_command_parameters, wpa_frame,
5133                sizeof(struct ipw2100_wpa_assoc_frame));
5134
5135         err = ipw2100_hw_send_command(priv, &cmd);
5136
5137         if (!batch_mode) {
5138                 if (ipw2100_enable_adapter(priv))
5139                         err = -EIO;
5140         }
5141
5142         return err;
5143 }
5144
5145 struct security_info_params {
5146         u32 allowed_ciphers;
5147         u16 version;
5148         u8 auth_mode;
5149         u8 replay_counters_number;
5150         u8 unicast_using_group;
5151 } __attribute__ ((packed));
5152
5153 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5154                                             int auth_mode,
5155                                             int security_level,
5156                                             int unicast_using_group,
5157                                             int batch_mode)
5158 {
5159         struct host_command cmd = {
5160                 .host_command = SET_SECURITY_INFORMATION,
5161                 .host_command_sequence = 0,
5162                 .host_command_length = sizeof(struct security_info_params)
5163         };
5164         struct security_info_params *security =
5165             (struct security_info_params *)&cmd.host_command_parameters;
5166         int err;
5167         memset(security, 0, sizeof(*security));
5168
5169         /* If shared key AP authentication is turned on, then we need to
5170          * configure the firmware to try and use it.
5171          *
5172          * Actual data encryption/decryption is handled by the host. */
5173         security->auth_mode = auth_mode;
5174         security->unicast_using_group = unicast_using_group;
5175
5176         switch (security_level) {
5177         default:
5178         case SEC_LEVEL_0:
5179                 security->allowed_ciphers = IPW_NONE_CIPHER;
5180                 break;
5181         case SEC_LEVEL_1:
5182                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5183                     IPW_WEP104_CIPHER;
5184                 break;
5185         case SEC_LEVEL_2:
5186                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5187                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5188                 break;
5189         case SEC_LEVEL_2_CKIP:
5190                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5191                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5192                 break;
5193         case SEC_LEVEL_3:
5194                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5195                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5196                 break;
5197         }
5198
5199         IPW_DEBUG_HC
5200             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5201              security->auth_mode, security->allowed_ciphers, security_level);
5202
5203         security->replay_counters_number = 0;
5204
5205         if (!batch_mode) {
5206                 err = ipw2100_disable_adapter(priv);
5207                 if (err)
5208                         return err;
5209         }
5210
5211         err = ipw2100_hw_send_command(priv, &cmd);
5212
5213         if (!batch_mode)
5214                 ipw2100_enable_adapter(priv);
5215
5216         return err;
5217 }
5218
5219 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5220 {
5221         struct host_command cmd = {
5222                 .host_command = TX_POWER_INDEX,
5223                 .host_command_sequence = 0,
5224                 .host_command_length = 4
5225         };
5226         int err = 0;
5227         u32 tmp = tx_power;
5228
5229         if (tx_power != IPW_TX_POWER_DEFAULT)
5230                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5231                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5232
5233         cmd.host_command_parameters[0] = tmp;
5234
5235         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5236                 err = ipw2100_hw_send_command(priv, &cmd);
5237         if (!err)
5238                 priv->tx_power = tx_power;
5239
5240         return 0;
5241 }
5242
5243 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5244                                             u32 interval, int batch_mode)
5245 {
5246         struct host_command cmd = {
5247                 .host_command = BEACON_INTERVAL,
5248                 .host_command_sequence = 0,
5249                 .host_command_length = 4
5250         };
5251         int err;
5252
5253         cmd.host_command_parameters[0] = interval;
5254
5255         IPW_DEBUG_INFO("enter\n");
5256
5257         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5258                 if (!batch_mode) {
5259                         err = ipw2100_disable_adapter(priv);
5260                         if (err)
5261                                 return err;
5262                 }
5263
5264                 ipw2100_hw_send_command(priv, &cmd);
5265
5266                 if (!batch_mode) {
5267                         err = ipw2100_enable_adapter(priv);
5268                         if (err)
5269                                 return err;
5270                 }
5271         }
5272
5273         IPW_DEBUG_INFO("exit\n");
5274
5275         return 0;
5276 }
5277
5278 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5279 {
5280         ipw2100_tx_initialize(priv);
5281         ipw2100_rx_initialize(priv);
5282         ipw2100_msg_initialize(priv);
5283 }
5284
5285 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5286 {
5287         ipw2100_tx_free(priv);
5288         ipw2100_rx_free(priv);
5289         ipw2100_msg_free(priv);
5290 }
5291
5292 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5293 {
5294         if (ipw2100_tx_allocate(priv) ||
5295             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5296                 goto fail;
5297
5298         return 0;
5299
5300       fail:
5301         ipw2100_tx_free(priv);
5302         ipw2100_rx_free(priv);
5303         ipw2100_msg_free(priv);
5304         return -ENOMEM;
5305 }
5306
5307 #define IPW_PRIVACY_CAPABLE 0x0008
5308
5309 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5310                                  int batch_mode)
5311 {
5312         struct host_command cmd = {
5313                 .host_command = WEP_FLAGS,
5314                 .host_command_sequence = 0,
5315                 .host_command_length = 4
5316         };
5317         int err;
5318
5319         cmd.host_command_parameters[0] = flags;
5320
5321         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5322
5323         if (!batch_mode) {
5324                 err = ipw2100_disable_adapter(priv);
5325                 if (err) {
5326                         printk(KERN_ERR DRV_NAME
5327                                ": %s: Could not disable adapter %d\n",
5328                                priv->net_dev->name, err);
5329                         return err;
5330                 }
5331         }
5332
5333         /* send cmd to firmware */
5334         err = ipw2100_hw_send_command(priv, &cmd);
5335
5336         if (!batch_mode)
5337                 ipw2100_enable_adapter(priv);
5338
5339         return err;
5340 }
5341
5342 struct ipw2100_wep_key {
5343         u8 idx;
5344         u8 len;
5345         u8 key[13];
5346 };
5347
5348 /* Macros to ease up priting WEP keys */
5349 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5350 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5351 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5352 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5353
5354 /**
5355  * Set a the wep key
5356  *
5357  * @priv: struct to work on
5358  * @idx: index of the key we want to set
5359  * @key: ptr to the key data to set
5360  * @len: length of the buffer at @key
5361  * @batch_mode: FIXME perform the operation in batch mode, not
5362  *              disabling the device.
5363  *
5364  * @returns 0 if OK, < 0 errno code on error.
5365  *
5366  * Fill out a command structure with the new wep key, length an
5367  * index and send it down the wire.
5368  */
5369 static int ipw2100_set_key(struct ipw2100_priv *priv,
5370                            int idx, char *key, int len, int batch_mode)
5371 {
5372         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5373         struct host_command cmd = {
5374                 .host_command = WEP_KEY_INFO,
5375                 .host_command_sequence = 0,
5376                 .host_command_length = sizeof(struct ipw2100_wep_key),
5377         };
5378         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5379         int err;
5380
5381         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5382                      idx, keylen, len);
5383
5384         /* NOTE: We don't check cached values in case the firmware was reset
5385          * or some other problem is occurring.  If the user is setting the key,
5386          * then we push the change */
5387
5388         wep_key->idx = idx;
5389         wep_key->len = keylen;
5390
5391         if (keylen) {
5392                 memcpy(wep_key->key, key, len);
5393                 memset(wep_key->key + len, 0, keylen - len);
5394         }
5395
5396         /* Will be optimized out on debug not being configured in */
5397         if (keylen == 0)
5398                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5399                               priv->net_dev->name, wep_key->idx);
5400         else if (keylen == 5)
5401                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5402                               priv->net_dev->name, wep_key->idx, wep_key->len,
5403                               WEP_STR_64(wep_key->key));
5404         else
5405                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5406                               "\n",
5407                               priv->net_dev->name, wep_key->idx, wep_key->len,
5408                               WEP_STR_128(wep_key->key));
5409
5410         if (!batch_mode) {
5411                 err = ipw2100_disable_adapter(priv);
5412                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5413                 if (err) {
5414                         printk(KERN_ERR DRV_NAME
5415                                ": %s: Could not disable adapter %d\n",
5416                                priv->net_dev->name, err);
5417                         return err;
5418                 }
5419         }
5420
5421         /* send cmd to firmware */
5422         err = ipw2100_hw_send_command(priv, &cmd);
5423
5424         if (!batch_mode) {
5425                 int err2 = ipw2100_enable_adapter(priv);
5426                 if (err == 0)
5427                         err = err2;
5428         }
5429         return err;
5430 }
5431
5432 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5433                                  int idx, int batch_mode)
5434 {
5435         struct host_command cmd = {
5436                 .host_command = WEP_KEY_INDEX,
5437                 .host_command_sequence = 0,
5438                 .host_command_length = 4,
5439                 .host_command_parameters = {idx},
5440         };
5441         int err;
5442
5443         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5444
5445         if (idx < 0 || idx > 3)
5446                 return -EINVAL;
5447
5448         if (!batch_mode) {
5449                 err = ipw2100_disable_adapter(priv);
5450                 if (err) {
5451                         printk(KERN_ERR DRV_NAME
5452                                ": %s: Could not disable adapter %d\n",
5453                                priv->net_dev->name, err);
5454                         return err;
5455                 }
5456         }
5457
5458         /* send cmd to firmware */
5459         err = ipw2100_hw_send_command(priv, &cmd);
5460
5461         if (!batch_mode)
5462                 ipw2100_enable_adapter(priv);
5463
5464         return err;
5465 }
5466
5467 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5468 {
5469         int i, err, auth_mode, sec_level, use_group;
5470
5471         if (!(priv->status & STATUS_RUNNING))
5472                 return 0;
5473
5474         if (!batch_mode) {
5475                 err = ipw2100_disable_adapter(priv);
5476                 if (err)
5477                         return err;
5478         }
5479
5480         if (!priv->ieee->sec.enabled) {
5481                 err =
5482                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5483                                                      SEC_LEVEL_0, 0, 1);
5484         } else {
5485                 auth_mode = IPW_AUTH_OPEN;
5486                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5487                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5488                                 auth_mode = IPW_AUTH_SHARED;
5489                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5490                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5491                 }
5492
5493                 sec_level = SEC_LEVEL_0;
5494                 if (priv->ieee->sec.flags & SEC_LEVEL)
5495                         sec_level = priv->ieee->sec.level;
5496
5497                 use_group = 0;
5498                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5499                         use_group = priv->ieee->sec.unicast_uses_group;
5500
5501                 err =
5502                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5503                                                      use_group, 1);
5504         }
5505
5506         if (err)
5507                 goto exit;
5508
5509         if (priv->ieee->sec.enabled) {
5510                 for (i = 0; i < 4; i++) {
5511                         if (!(priv->ieee->sec.flags & (1 << i))) {
5512                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5513                                 priv->ieee->sec.key_sizes[i] = 0;
5514                         } else {
5515                                 err = ipw2100_set_key(priv, i,
5516                                                       priv->ieee->sec.keys[i],
5517                                                       priv->ieee->sec.
5518                                                       key_sizes[i], 1);
5519                                 if (err)
5520                                         goto exit;
5521                         }
5522                 }
5523
5524                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5525         }
5526
5527         /* Always enable privacy so the Host can filter WEP packets if
5528          * encrypted data is sent up */
5529         err =
5530             ipw2100_set_wep_flags(priv,
5531                                   priv->ieee->sec.
5532                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5533         if (err)
5534                 goto exit;
5535
5536         priv->status &= ~STATUS_SECURITY_UPDATED;
5537
5538       exit:
5539         if (!batch_mode)
5540                 ipw2100_enable_adapter(priv);
5541
5542         return err;
5543 }
5544
5545 static void ipw2100_security_work(struct work_struct *work)
5546 {
5547         struct ipw2100_priv *priv =
5548                 container_of(work, struct ipw2100_priv, security_work.work);
5549
5550         /* If we happen to have reconnected before we get a chance to
5551          * process this, then update the security settings--which causes
5552          * a disassociation to occur */
5553         if (!(priv->status & STATUS_ASSOCIATED) &&
5554             priv->status & STATUS_SECURITY_UPDATED)
5555                 ipw2100_configure_security(priv, 0);
5556 }
5557
5558 static void shim__set_security(struct net_device *dev,
5559                                struct ieee80211_security *sec)
5560 {
5561         struct ipw2100_priv *priv = ieee80211_priv(dev);
5562         int i, force_update = 0;
5563
5564         mutex_lock(&priv->action_mutex);
5565         if (!(priv->status & STATUS_INITIALIZED))
5566                 goto done;
5567
5568         for (i = 0; i < 4; i++) {
5569                 if (sec->flags & (1 << i)) {
5570                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5571                         if (sec->key_sizes[i] == 0)
5572                                 priv->ieee->sec.flags &= ~(1 << i);
5573                         else
5574                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5575                                        sec->key_sizes[i]);
5576                         if (sec->level == SEC_LEVEL_1) {
5577                                 priv->ieee->sec.flags |= (1 << i);
5578                                 priv->status |= STATUS_SECURITY_UPDATED;
5579                         } else
5580                                 priv->ieee->sec.flags &= ~(1 << i);
5581                 }
5582         }
5583
5584         if ((sec->flags & SEC_ACTIVE_KEY) &&
5585             priv->ieee->sec.active_key != sec->active_key) {
5586                 if (sec->active_key <= 3) {
5587                         priv->ieee->sec.active_key = sec->active_key;
5588                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5589                 } else
5590                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5591
5592                 priv->status |= STATUS_SECURITY_UPDATED;
5593         }
5594
5595         if ((sec->flags & SEC_AUTH_MODE) &&
5596             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5597                 priv->ieee->sec.auth_mode = sec->auth_mode;
5598                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5599                 priv->status |= STATUS_SECURITY_UPDATED;
5600         }
5601
5602         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5603                 priv->ieee->sec.flags |= SEC_ENABLED;
5604                 priv->ieee->sec.enabled = sec->enabled;
5605                 priv->status |= STATUS_SECURITY_UPDATED;
5606                 force_update = 1;
5607         }
5608
5609         if (sec->flags & SEC_ENCRYPT)
5610                 priv->ieee->sec.encrypt = sec->encrypt;
5611
5612         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5613                 priv->ieee->sec.level = sec->level;
5614                 priv->ieee->sec.flags |= SEC_LEVEL;
5615                 priv->status |= STATUS_SECURITY_UPDATED;
5616         }
5617
5618         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5619                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5620                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5621                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5622                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5623                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5624                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5625                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5626                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5627                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5628
5629 /* As a temporary work around to enable WPA until we figure out why
5630  * wpa_supplicant toggles the security capability of the driver, which
5631  * forces a disassocation with force_update...
5632  *
5633  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5634         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5635                 ipw2100_configure_security(priv, 0);
5636       done:
5637         mutex_unlock(&priv->action_mutex);
5638 }
5639
5640 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5641 {
5642         int err;
5643         int batch_mode = 1;
5644         u8 *bssid;
5645
5646         IPW_DEBUG_INFO("enter\n");
5647
5648         err = ipw2100_disable_adapter(priv);
5649         if (err)
5650                 return err;
5651 #ifdef CONFIG_IPW2100_MONITOR
5652         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5653                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5654                 if (err)
5655                         return err;
5656
5657                 IPW_DEBUG_INFO("exit\n");
5658
5659                 return 0;
5660         }
5661 #endif                          /* CONFIG_IPW2100_MONITOR */
5662
5663         err = ipw2100_read_mac_address(priv);
5664         if (err)
5665                 return -EIO;
5666
5667         err = ipw2100_set_mac_address(priv, batch_mode);
5668         if (err)
5669                 return err;
5670
5671         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5672         if (err)
5673                 return err;
5674
5675         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5676                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5677                 if (err)
5678                         return err;
5679         }
5680
5681         err = ipw2100_system_config(priv, batch_mode);
5682         if (err)
5683                 return err;
5684
5685         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5686         if (err)
5687                 return err;
5688
5689         /* Default to power mode OFF */
5690         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5691         if (err)
5692                 return err;
5693
5694         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5695         if (err)
5696                 return err;
5697
5698         if (priv->config & CFG_STATIC_BSSID)
5699                 bssid = priv->bssid;
5700         else
5701                 bssid = NULL;
5702         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5703         if (err)
5704                 return err;
5705
5706         if (priv->config & CFG_STATIC_ESSID)
5707                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5708                                         batch_mode);
5709         else
5710                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5711         if (err)
5712                 return err;
5713
5714         err = ipw2100_configure_security(priv, batch_mode);
5715         if (err)
5716                 return err;
5717
5718         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5719                 err =
5720                     ipw2100_set_ibss_beacon_interval(priv,
5721                                                      priv->beacon_interval,
5722                                                      batch_mode);
5723                 if (err)
5724                         return err;
5725
5726                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5727                 if (err)
5728                         return err;
5729         }
5730
5731         /*
5732            err = ipw2100_set_fragmentation_threshold(
5733            priv, priv->frag_threshold, batch_mode);
5734            if (err)
5735            return err;
5736          */
5737
5738         IPW_DEBUG_INFO("exit\n");
5739
5740         return 0;
5741 }
5742
5743 /*************************************************************************
5744  *
5745  * EXTERNALLY CALLED METHODS
5746  *
5747  *************************************************************************/
5748
5749 /* This method is called by the network layer -- not to be confused with
5750  * ipw2100_set_mac_address() declared above called by this driver (and this
5751  * method as well) to talk to the firmware */
5752 static int ipw2100_set_address(struct net_device *dev, void *p)
5753 {
5754         struct ipw2100_priv *priv = ieee80211_priv(dev);
5755         struct sockaddr *addr = p;
5756         int err = 0;
5757
5758         if (!is_valid_ether_addr(addr->sa_data))
5759                 return -EADDRNOTAVAIL;
5760
5761         mutex_lock(&priv->action_mutex);
5762
5763         priv->config |= CFG_CUSTOM_MAC;
5764         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5765
5766         err = ipw2100_set_mac_address(priv, 0);
5767         if (err)
5768                 goto done;
5769
5770         priv->reset_backoff = 0;
5771         mutex_unlock(&priv->action_mutex);
5772         ipw2100_reset_adapter(&priv->reset_work.work);
5773         return 0;
5774
5775       done:
5776         mutex_unlock(&priv->action_mutex);
5777         return err;
5778 }
5779
5780 static int ipw2100_open(struct net_device *dev)
5781 {
5782         struct ipw2100_priv *priv = ieee80211_priv(dev);
5783         unsigned long flags;
5784         IPW_DEBUG_INFO("dev->open\n");
5785
5786         spin_lock_irqsave(&priv->low_lock, flags);
5787         if (priv->status & STATUS_ASSOCIATED) {
5788                 netif_carrier_on(dev);
5789                 netif_start_queue(dev);
5790         }
5791         spin_unlock_irqrestore(&priv->low_lock, flags);
5792
5793         return 0;
5794 }
5795
5796 static int ipw2100_close(struct net_device *dev)
5797 {
5798         struct ipw2100_priv *priv = ieee80211_priv(dev);
5799         unsigned long flags;
5800         struct list_head *element;
5801         struct ipw2100_tx_packet *packet;
5802
5803         IPW_DEBUG_INFO("enter\n");
5804
5805         spin_lock_irqsave(&priv->low_lock, flags);
5806
5807         if (priv->status & STATUS_ASSOCIATED)
5808                 netif_carrier_off(dev);
5809         netif_stop_queue(dev);
5810
5811         /* Flush the TX queue ... */
5812         while (!list_empty(&priv->tx_pend_list)) {
5813                 element = priv->tx_pend_list.next;
5814                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5815
5816                 list_del(element);
5817                 DEC_STAT(&priv->tx_pend_stat);
5818
5819                 ieee80211_txb_free(packet->info.d_struct.txb);
5820                 packet->info.d_struct.txb = NULL;
5821
5822                 list_add_tail(element, &priv->tx_free_list);
5823                 INC_STAT(&priv->tx_free_stat);
5824         }
5825         spin_unlock_irqrestore(&priv->low_lock, flags);
5826
5827         IPW_DEBUG_INFO("exit\n");
5828
5829         return 0;
5830 }
5831
5832 /*
5833  * TODO:  Fix this function... its just wrong
5834  */
5835 static void ipw2100_tx_timeout(struct net_device *dev)
5836 {
5837         struct ipw2100_priv *priv = ieee80211_priv(dev);
5838
5839         priv->ieee->stats.tx_errors++;
5840
5841 #ifdef CONFIG_IPW2100_MONITOR
5842         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5843                 return;
5844 #endif
5845
5846         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5847                        dev->name);
5848         schedule_reset(priv);
5849 }
5850
5851 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5852 {
5853         /* This is called when wpa_supplicant loads and closes the driver
5854          * interface. */
5855         priv->ieee->wpa_enabled = value;
5856         return 0;
5857 }
5858
5859 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5860 {
5861
5862         struct ieee80211_device *ieee = priv->ieee;
5863         struct ieee80211_security sec = {
5864                 .flags = SEC_AUTH_MODE,
5865         };
5866         int ret = 0;
5867
5868         if (value & IW_AUTH_ALG_SHARED_KEY) {
5869                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5870                 ieee->open_wep = 0;
5871         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5872                 sec.auth_mode = WLAN_AUTH_OPEN;
5873                 ieee->open_wep = 1;
5874         } else if (value & IW_AUTH_ALG_LEAP) {
5875                 sec.auth_mode = WLAN_AUTH_LEAP;
5876                 ieee->open_wep = 1;
5877         } else
5878                 return -EINVAL;
5879
5880         if (ieee->set_security)
5881                 ieee->set_security(ieee->dev, &sec);
5882         else
5883                 ret = -EOPNOTSUPP;
5884
5885         return ret;
5886 }
5887
5888 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5889                                     char *wpa_ie, int wpa_ie_len)
5890 {
5891
5892         struct ipw2100_wpa_assoc_frame frame;
5893
5894         frame.fixed_ie_mask = 0;
5895
5896         /* copy WPA IE */
5897         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5898         frame.var_ie_len = wpa_ie_len;
5899
5900         /* make sure WPA is enabled */
5901         ipw2100_wpa_enable(priv, 1);
5902         ipw2100_set_wpa_ie(priv, &frame, 0);
5903 }
5904
5905 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5906                                     struct ethtool_drvinfo *info)
5907 {
5908         struct ipw2100_priv *priv = ieee80211_priv(dev);
5909         char fw_ver[64], ucode_ver[64];
5910
5911         strcpy(info->driver, DRV_NAME);
5912         strcpy(info->version, DRV_VERSION);
5913
5914         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5915         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5916
5917         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5918                  fw_ver, priv->eeprom_version, ucode_ver);
5919
5920         strcpy(info->bus_info, pci_name(priv->pci_dev));
5921 }
5922
5923 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5924 {
5925         struct ipw2100_priv *priv = ieee80211_priv(dev);
5926         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5927 }
5928
5929 static const struct ethtool_ops ipw2100_ethtool_ops = {
5930         .get_link = ipw2100_ethtool_get_link,
5931         .get_drvinfo = ipw_ethtool_get_drvinfo,
5932 };
5933
5934 static void ipw2100_hang_check(struct work_struct *work)
5935 {
5936         struct ipw2100_priv *priv =
5937                 container_of(work, struct ipw2100_priv, hang_check.work);
5938         unsigned long flags;
5939         u32 rtc = 0xa5a5a5a5;
5940         u32 len = sizeof(rtc);
5941         int restart = 0;
5942
5943         spin_lock_irqsave(&priv->low_lock, flags);
5944
5945         if (priv->fatal_error != 0) {
5946                 /* If fatal_error is set then we need to restart */
5947                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5948                                priv->net_dev->name);
5949
5950                 restart = 1;
5951         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5952                    (rtc == priv->last_rtc)) {
5953                 /* Check if firmware is hung */
5954                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5955                                priv->net_dev->name);
5956
5957                 restart = 1;
5958         }
5959
5960         if (restart) {
5961                 /* Kill timer */
5962                 priv->stop_hang_check = 1;
5963                 priv->hangs++;
5964
5965                 /* Restart the NIC */
5966                 schedule_reset(priv);
5967         }
5968
5969         priv->last_rtc = rtc;
5970
5971         if (!priv->stop_hang_check)
5972                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5973
5974         spin_unlock_irqrestore(&priv->low_lock, flags);
5975 }
5976
5977 static void ipw2100_rf_kill(struct work_struct *work)
5978 {
5979         struct ipw2100_priv *priv =
5980                 container_of(work, struct ipw2100_priv, rf_kill.work);
5981         unsigned long flags;
5982
5983         spin_lock_irqsave(&priv->low_lock, flags);
5984
5985         if (rf_kill_active(priv)) {
5986                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5987                 if (!priv->stop_rf_kill)
5988                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
5989                                            round_jiffies_relative(HZ));
5990                 goto exit_unlock;
5991         }
5992
5993         /* RF Kill is now disabled, so bring the device back up */
5994
5995         if (!(priv->status & STATUS_RF_KILL_MASK)) {
5996                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5997                                   "device\n");
5998                 schedule_reset(priv);
5999         } else
6000                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6001                                   "enabled\n");
6002
6003       exit_unlock:
6004         spin_unlock_irqrestore(&priv->low_lock, flags);
6005 }
6006
6007 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6008
6009 /* Look into using netdev destructor to shutdown ieee80211? */
6010
6011 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6012                                                void __iomem * base_addr,
6013                                                unsigned long mem_start,
6014                                                unsigned long mem_len)
6015 {
6016         struct ipw2100_priv *priv;
6017         struct net_device *dev;
6018
6019         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6020         if (!dev)
6021                 return NULL;
6022         priv = ieee80211_priv(dev);
6023         priv->ieee = netdev_priv(dev);
6024         priv->pci_dev = pci_dev;
6025         priv->net_dev = dev;
6026
6027         priv->ieee->hard_start_xmit = ipw2100_tx;
6028         priv->ieee->set_security = shim__set_security;
6029
6030         priv->ieee->perfect_rssi = -20;
6031         priv->ieee->worst_rssi = -85;
6032
6033         dev->open = ipw2100_open;
6034         dev->stop = ipw2100_close;
6035         dev->init = ipw2100_net_init;
6036         dev->ethtool_ops = &ipw2100_ethtool_ops;
6037         dev->tx_timeout = ipw2100_tx_timeout;
6038         dev->wireless_handlers = &ipw2100_wx_handler_def;
6039         priv->wireless_data.ieee80211 = priv->ieee;
6040         dev->wireless_data = &priv->wireless_data;
6041         dev->set_mac_address = ipw2100_set_address;
6042         dev->watchdog_timeo = 3 * HZ;
6043         dev->irq = 0;
6044
6045         dev->base_addr = (unsigned long)base_addr;
6046         dev->mem_start = mem_start;
6047         dev->mem_end = dev->mem_start + mem_len - 1;
6048
6049         /* NOTE: We don't use the wireless_handlers hook
6050          * in dev as the system will start throwing WX requests
6051          * to us before we're actually initialized and it just
6052          * ends up causing problems.  So, we just handle
6053          * the WX extensions through the ipw2100_ioctl interface */
6054
6055         /* memset() puts everything to 0, so we only have explicitly set
6056          * those values that need to be something else */
6057
6058         /* If power management is turned on, default to AUTO mode */
6059         priv->power_mode = IPW_POWER_AUTO;
6060
6061 #ifdef CONFIG_IPW2100_MONITOR
6062         priv->config |= CFG_CRC_CHECK;
6063 #endif
6064         priv->ieee->wpa_enabled = 0;
6065         priv->ieee->drop_unencrypted = 0;
6066         priv->ieee->privacy_invoked = 0;
6067         priv->ieee->ieee802_1x = 1;
6068
6069         /* Set module parameters */
6070         switch (mode) {
6071         case 1:
6072                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6073                 break;
6074 #ifdef CONFIG_IPW2100_MONITOR
6075         case 2:
6076                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6077                 break;
6078 #endif
6079         default:
6080         case 0:
6081                 priv->ieee->iw_mode = IW_MODE_INFRA;
6082                 break;
6083         }
6084
6085         if (disable == 1)
6086                 priv->status |= STATUS_RF_KILL_SW;
6087
6088         if (channel != 0 &&
6089             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6090                 priv->config |= CFG_STATIC_CHANNEL;
6091                 priv->channel = channel;
6092         }
6093
6094         if (associate)
6095                 priv->config |= CFG_ASSOCIATE;
6096
6097         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6098         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6099         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6100         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6101         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6102         priv->tx_power = IPW_TX_POWER_DEFAULT;
6103         priv->tx_rates = DEFAULT_TX_RATES;
6104
6105         strcpy(priv->nick, "ipw2100");
6106
6107         spin_lock_init(&priv->low_lock);
6108         mutex_init(&priv->action_mutex);
6109         mutex_init(&priv->adapter_mutex);
6110
6111         init_waitqueue_head(&priv->wait_command_queue);
6112
6113         netif_carrier_off(dev);
6114
6115         INIT_LIST_HEAD(&priv->msg_free_list);
6116         INIT_LIST_HEAD(&priv->msg_pend_list);
6117         INIT_STAT(&priv->msg_free_stat);
6118         INIT_STAT(&priv->msg_pend_stat);
6119
6120         INIT_LIST_HEAD(&priv->tx_free_list);
6121         INIT_LIST_HEAD(&priv->tx_pend_list);
6122         INIT_STAT(&priv->tx_free_stat);
6123         INIT_STAT(&priv->tx_pend_stat);
6124
6125         INIT_LIST_HEAD(&priv->fw_pend_list);
6126         INIT_STAT(&priv->fw_pend_stat);
6127
6128         priv->workqueue = create_workqueue(DRV_NAME);
6129
6130         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6131         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6132         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6133         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6134         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6135         INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6136         INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6137
6138         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6139                      ipw2100_irq_tasklet, (unsigned long)priv);
6140
6141         /* NOTE:  We do not start the deferred work for status checks yet */
6142         priv->stop_rf_kill = 1;
6143         priv->stop_hang_check = 1;
6144
6145         return dev;
6146 }
6147
6148 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6149                                 const struct pci_device_id *ent)
6150 {
6151         unsigned long mem_start, mem_len, mem_flags;
6152         void __iomem *base_addr = NULL;
6153         struct net_device *dev = NULL;
6154         struct ipw2100_priv *priv = NULL;
6155         int err = 0;
6156         int registered = 0;
6157         u32 val;
6158
6159         IPW_DEBUG_INFO("enter\n");
6160
6161         mem_start = pci_resource_start(pci_dev, 0);
6162         mem_len = pci_resource_len(pci_dev, 0);
6163         mem_flags = pci_resource_flags(pci_dev, 0);
6164
6165         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6166                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6167                 err = -ENODEV;
6168                 goto fail;
6169         }
6170
6171         base_addr = ioremap_nocache(mem_start, mem_len);
6172         if (!base_addr) {
6173                 printk(KERN_WARNING DRV_NAME
6174                        "Error calling ioremap_nocache.\n");
6175                 err = -EIO;
6176                 goto fail;
6177         }
6178
6179         /* allocate and initialize our net_device */
6180         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6181         if (!dev) {
6182                 printk(KERN_WARNING DRV_NAME
6183                        "Error calling ipw2100_alloc_device.\n");
6184                 err = -ENOMEM;
6185                 goto fail;
6186         }
6187
6188         /* set up PCI mappings for device */
6189         err = pci_enable_device(pci_dev);
6190         if (err) {
6191                 printk(KERN_WARNING DRV_NAME
6192                        "Error calling pci_enable_device.\n");
6193                 return err;
6194         }
6195
6196         priv = ieee80211_priv(dev);
6197
6198         pci_set_master(pci_dev);
6199         pci_set_drvdata(pci_dev, priv);
6200
6201         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6202         if (err) {
6203                 printk(KERN_WARNING DRV_NAME
6204                        "Error calling pci_set_dma_mask.\n");
6205                 pci_disable_device(pci_dev);
6206                 return err;
6207         }
6208
6209         err = pci_request_regions(pci_dev, DRV_NAME);
6210         if (err) {
6211                 printk(KERN_WARNING DRV_NAME
6212                        "Error calling pci_request_regions.\n");
6213                 pci_disable_device(pci_dev);
6214                 return err;
6215         }
6216
6217         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6218          * PCI Tx retries from interfering with C3 CPU state */
6219         pci_read_config_dword(pci_dev, 0x40, &val);
6220         if ((val & 0x0000ff00) != 0)
6221                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6222
6223         pci_set_power_state(pci_dev, PCI_D0);
6224
6225         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6226                 printk(KERN_WARNING DRV_NAME
6227                        "Device not found via register read.\n");
6228                 err = -ENODEV;
6229                 goto fail;
6230         }
6231
6232         SET_NETDEV_DEV(dev, &pci_dev->dev);
6233
6234         /* Force interrupts to be shut off on the device */
6235         priv->status |= STATUS_INT_ENABLED;
6236         ipw2100_disable_interrupts(priv);
6237
6238         /* Allocate and initialize the Tx/Rx queues and lists */
6239         if (ipw2100_queues_allocate(priv)) {
6240                 printk(KERN_WARNING DRV_NAME
6241                        "Error calling ipw2100_queues_allocate.\n");
6242                 err = -ENOMEM;
6243                 goto fail;
6244         }
6245         ipw2100_queues_initialize(priv);
6246
6247         err = request_irq(pci_dev->irq,
6248                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6249         if (err) {
6250                 printk(KERN_WARNING DRV_NAME
6251                        "Error calling request_irq: %d.\n", pci_dev->irq);
6252                 goto fail;
6253         }
6254         dev->irq = pci_dev->irq;
6255
6256         IPW_DEBUG_INFO("Attempting to register device...\n");
6257
6258         printk(KERN_INFO DRV_NAME
6259                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6260
6261         /* Bring up the interface.  Pre 0.46, after we registered the
6262          * network device we would call ipw2100_up.  This introduced a race
6263          * condition with newer hotplug configurations (network was coming
6264          * up and making calls before the device was initialized).
6265          *
6266          * If we called ipw2100_up before we registered the device, then the
6267          * device name wasn't registered.  So, we instead use the net_dev->init
6268          * member to call a function that then just turns and calls ipw2100_up.
6269          * net_dev->init is called after name allocation but before the
6270          * notifier chain is called */
6271         err = register_netdev(dev);
6272         if (err) {
6273                 printk(KERN_WARNING DRV_NAME
6274                        "Error calling register_netdev.\n");
6275                 goto fail;
6276         }
6277
6278         mutex_lock(&priv->action_mutex);
6279         registered = 1;
6280
6281         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6282
6283         /* perform this after register_netdev so that dev->name is set */
6284         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6285         if (err)
6286                 goto fail_unlock;
6287
6288         /* If the RF Kill switch is disabled, go ahead and complete the
6289          * startup sequence */
6290         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6291                 /* Enable the adapter - sends HOST_COMPLETE */
6292                 if (ipw2100_enable_adapter(priv)) {
6293                         printk(KERN_WARNING DRV_NAME
6294                                ": %s: failed in call to enable adapter.\n",
6295                                priv->net_dev->name);
6296                         ipw2100_hw_stop_adapter(priv);
6297                         err = -EIO;
6298                         goto fail_unlock;
6299                 }
6300
6301                 /* Start a scan . . . */
6302                 ipw2100_set_scan_options(priv);
6303                 ipw2100_start_scan(priv);
6304         }
6305
6306         IPW_DEBUG_INFO("exit\n");
6307
6308         priv->status |= STATUS_INITIALIZED;
6309
6310         mutex_unlock(&priv->action_mutex);
6311
6312         return 0;
6313
6314       fail_unlock:
6315         mutex_unlock(&priv->action_mutex);
6316
6317       fail:
6318         if (dev) {
6319                 if (registered)
6320                         unregister_netdev(dev);
6321
6322                 ipw2100_hw_stop_adapter(priv);
6323
6324                 ipw2100_disable_interrupts(priv);
6325
6326                 if (dev->irq)
6327                         free_irq(dev->irq, priv);
6328
6329                 ipw2100_kill_workqueue(priv);
6330
6331                 /* These are safe to call even if they weren't allocated */
6332                 ipw2100_queues_free(priv);
6333                 sysfs_remove_group(&pci_dev->dev.kobj,
6334                                    &ipw2100_attribute_group);
6335
6336                 free_ieee80211(dev);
6337                 pci_set_drvdata(pci_dev, NULL);
6338         }
6339
6340         if (base_addr)
6341                 iounmap(base_addr);
6342
6343         pci_release_regions(pci_dev);
6344         pci_disable_device(pci_dev);
6345
6346         return err;
6347 }
6348
6349 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6350 {
6351         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6352         struct net_device *dev;
6353
6354         if (priv) {
6355                 mutex_lock(&priv->action_mutex);
6356
6357                 priv->status &= ~STATUS_INITIALIZED;
6358
6359                 dev = priv->net_dev;
6360                 sysfs_remove_group(&pci_dev->dev.kobj,
6361                                    &ipw2100_attribute_group);
6362
6363 #ifdef CONFIG_PM
6364                 if (ipw2100_firmware.version)
6365                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6366 #endif
6367                 /* Take down the hardware */
6368                 ipw2100_down(priv);
6369
6370                 /* Release the mutex so that the network subsystem can
6371                  * complete any needed calls into the driver... */
6372                 mutex_unlock(&priv->action_mutex);
6373
6374                 /* Unregister the device first - this results in close()
6375                  * being called if the device is open.  If we free storage
6376                  * first, then close() will crash. */
6377                 unregister_netdev(dev);
6378
6379                 /* ipw2100_down will ensure that there is no more pending work
6380                  * in the workqueue's, so we can safely remove them now. */
6381                 ipw2100_kill_workqueue(priv);
6382
6383                 ipw2100_queues_free(priv);
6384
6385                 /* Free potential debugging firmware snapshot */
6386                 ipw2100_snapshot_free(priv);
6387
6388                 if (dev->irq)
6389                         free_irq(dev->irq, priv);
6390
6391                 if (dev->base_addr)
6392                         iounmap((void __iomem *)dev->base_addr);
6393
6394                 free_ieee80211(dev);
6395         }
6396
6397         pci_release_regions(pci_dev);
6398         pci_disable_device(pci_dev);
6399
6400         IPW_DEBUG_INFO("exit\n");
6401 }
6402
6403 #ifdef CONFIG_PM
6404 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6405 {
6406         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6407         struct net_device *dev = priv->net_dev;
6408
6409         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6410
6411         mutex_lock(&priv->action_mutex);
6412         if (priv->status & STATUS_INITIALIZED) {
6413                 /* Take down the device; powers it off, etc. */
6414                 ipw2100_down(priv);
6415         }
6416
6417         /* Remove the PRESENT state of the device */
6418         netif_device_detach(dev);
6419
6420         pci_save_state(pci_dev);
6421         pci_disable_device(pci_dev);
6422         pci_set_power_state(pci_dev, PCI_D3hot);
6423
6424         priv->suspend_at = get_seconds();
6425
6426         mutex_unlock(&priv->action_mutex);
6427
6428         return 0;
6429 }
6430
6431 static int ipw2100_resume(struct pci_dev *pci_dev)
6432 {
6433         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6434         struct net_device *dev = priv->net_dev;
6435         int err;
6436         u32 val;
6437
6438         if (IPW2100_PM_DISABLED)
6439                 return 0;
6440
6441         mutex_lock(&priv->action_mutex);
6442
6443         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6444
6445         pci_set_power_state(pci_dev, PCI_D0);
6446         err = pci_enable_device(pci_dev);
6447         if (err) {
6448                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6449                        dev->name);
6450                 mutex_unlock(&priv->action_mutex);
6451                 return err;
6452         }
6453         pci_restore_state(pci_dev);
6454
6455         /*
6456          * Suspend/Resume resets the PCI configuration space, so we have to
6457          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6458          * from interfering with C3 CPU state. pci_restore_state won't help
6459          * here since it only restores the first 64 bytes pci config header.
6460          */
6461         pci_read_config_dword(pci_dev, 0x40, &val);
6462         if ((val & 0x0000ff00) != 0)
6463                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6464
6465         /* Set the device back into the PRESENT state; this will also wake
6466          * the queue of needed */
6467         netif_device_attach(dev);
6468
6469         priv->suspend_time = get_seconds() - priv->suspend_at;
6470
6471         /* Bring the device back up */
6472         if (!(priv->status & STATUS_RF_KILL_SW))
6473                 ipw2100_up(priv, 0);
6474
6475         mutex_unlock(&priv->action_mutex);
6476
6477         return 0;
6478 }
6479 #endif
6480
6481 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6482
6483 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6484         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6485         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6486         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6487         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6488         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6489         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6490         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6491         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6492         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6493         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6494         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6495         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6496         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6497
6498         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6499         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6500         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6501         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6502         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6503
6504         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6505         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6506         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6507         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6508         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6509         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6510         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6511
6512         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6513
6514         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6515         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6516         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6517         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6518         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6519         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6520         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6521
6522         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6523         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6524         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6525         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6526         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6527         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6528
6529         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6530         {0,},
6531 };
6532
6533 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6534
6535 static struct pci_driver ipw2100_pci_driver = {
6536         .name = DRV_NAME,
6537         .id_table = ipw2100_pci_id_table,
6538         .probe = ipw2100_pci_init_one,
6539         .remove = __devexit_p(ipw2100_pci_remove_one),
6540 #ifdef CONFIG_PM
6541         .suspend = ipw2100_suspend,
6542         .resume = ipw2100_resume,
6543 #endif
6544 };
6545
6546 /**
6547  * Initialize the ipw2100 driver/module
6548  *
6549  * @returns 0 if ok, < 0 errno node con error.
6550  *
6551  * Note: we cannot init the /proc stuff until the PCI driver is there,
6552  * or we risk an unlikely race condition on someone accessing
6553  * uninitialized data in the PCI dev struct through /proc.
6554  */
6555 static int __init ipw2100_init(void)
6556 {
6557         int ret;
6558
6559         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6560         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6561
6562         ret = pci_register_driver(&ipw2100_pci_driver);
6563         if (ret)
6564                 goto out;
6565
6566         pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100",
6567                         PM_QOS_DEFAULT_VALUE);
6568 #ifdef CONFIG_IPW2100_DEBUG
6569         ipw2100_debug_level = debug;
6570         ret = driver_create_file(&ipw2100_pci_driver.driver,
6571                                  &driver_attr_debug_level);
6572 #endif
6573
6574 out:
6575         return ret;
6576 }
6577
6578 /**
6579  * Cleanup ipw2100 driver registration
6580  */
6581 static void __exit ipw2100_exit(void)
6582 {
6583         /* FIXME: IPG: check that we have no instances of the devices open */
6584 #ifdef CONFIG_IPW2100_DEBUG
6585         driver_remove_file(&ipw2100_pci_driver.driver,
6586                            &driver_attr_debug_level);
6587 #endif
6588         pci_unregister_driver(&ipw2100_pci_driver);
6589         pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100");
6590 }
6591
6592 module_init(ipw2100_init);
6593 module_exit(ipw2100_exit);
6594
6595 #define WEXT_USECHANNELS 1
6596
6597 static const long ipw2100_frequencies[] = {
6598         2412, 2417, 2422, 2427,
6599         2432, 2437, 2442, 2447,
6600         2452, 2457, 2462, 2467,
6601         2472, 2484
6602 };
6603
6604 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
6605
6606 static const long ipw2100_rates_11b[] = {
6607         1000000,
6608         2000000,
6609         5500000,
6610         11000000
6611 };
6612
6613 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6614
6615 static int ipw2100_wx_get_name(struct net_device *dev,
6616                                struct iw_request_info *info,
6617                                union iwreq_data *wrqu, char *extra)
6618 {
6619         /*
6620          * This can be called at any time.  No action lock required
6621          */
6622
6623         struct ipw2100_priv *priv = ieee80211_priv(dev);
6624         if (!(priv->status & STATUS_ASSOCIATED))
6625                 strcpy(wrqu->name, "unassociated");
6626         else
6627                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6628
6629         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6630         return 0;
6631 }
6632
6633 static int ipw2100_wx_set_freq(struct net_device *dev,
6634                                struct iw_request_info *info,
6635                                union iwreq_data *wrqu, char *extra)
6636 {
6637         struct ipw2100_priv *priv = ieee80211_priv(dev);
6638         struct iw_freq *fwrq = &wrqu->freq;
6639         int err = 0;
6640
6641         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6642                 return -EOPNOTSUPP;
6643
6644         mutex_lock(&priv->action_mutex);
6645         if (!(priv->status & STATUS_INITIALIZED)) {
6646                 err = -EIO;
6647                 goto done;
6648         }
6649
6650         /* if setting by freq convert to channel */
6651         if (fwrq->e == 1) {
6652                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6653                         int f = fwrq->m / 100000;
6654                         int c = 0;
6655
6656                         while ((c < REG_MAX_CHANNEL) &&
6657                                (f != ipw2100_frequencies[c]))
6658                                 c++;
6659
6660                         /* hack to fall through */
6661                         fwrq->e = 0;
6662                         fwrq->m = c + 1;
6663                 }
6664         }
6665
6666         if (fwrq->e > 0 || fwrq->m > 1000) {
6667                 err = -EOPNOTSUPP;
6668                 goto done;
6669         } else {                /* Set the channel */
6670                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6671                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6672         }
6673
6674       done:
6675         mutex_unlock(&priv->action_mutex);
6676         return err;
6677 }
6678
6679 static int ipw2100_wx_get_freq(struct net_device *dev,
6680                                struct iw_request_info *info,
6681                                union iwreq_data *wrqu, char *extra)
6682 {
6683         /*
6684          * This can be called at any time.  No action lock required
6685          */
6686
6687         struct ipw2100_priv *priv = ieee80211_priv(dev);
6688
6689         wrqu->freq.e = 0;
6690
6691         /* If we are associated, trying to associate, or have a statically
6692          * configured CHANNEL then return that; otherwise return ANY */
6693         if (priv->config & CFG_STATIC_CHANNEL ||
6694             priv->status & STATUS_ASSOCIATED)
6695                 wrqu->freq.m = priv->channel;
6696         else
6697                 wrqu->freq.m = 0;
6698
6699         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6700         return 0;
6701
6702 }
6703
6704 static int ipw2100_wx_set_mode(struct net_device *dev,
6705                                struct iw_request_info *info,
6706                                union iwreq_data *wrqu, char *extra)
6707 {
6708         struct ipw2100_priv *priv = ieee80211_priv(dev);
6709         int err = 0;
6710
6711         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6712
6713         if (wrqu->mode == priv->ieee->iw_mode)
6714                 return 0;
6715
6716         mutex_lock(&priv->action_mutex);
6717         if (!(priv->status & STATUS_INITIALIZED)) {
6718                 err = -EIO;
6719                 goto done;
6720         }
6721
6722         switch (wrqu->mode) {
6723 #ifdef CONFIG_IPW2100_MONITOR
6724         case IW_MODE_MONITOR:
6725                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6726                 break;
6727 #endif                          /* CONFIG_IPW2100_MONITOR */
6728         case IW_MODE_ADHOC:
6729                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6730                 break;
6731         case IW_MODE_INFRA:
6732         case IW_MODE_AUTO:
6733         default:
6734                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6735                 break;
6736         }
6737
6738       done:
6739         mutex_unlock(&priv->action_mutex);
6740         return err;
6741 }
6742
6743 static int ipw2100_wx_get_mode(struct net_device *dev,
6744                                struct iw_request_info *info,
6745                                union iwreq_data *wrqu, char *extra)
6746 {
6747         /*
6748          * This can be called at any time.  No action lock required
6749          */
6750
6751         struct ipw2100_priv *priv = ieee80211_priv(dev);
6752
6753         wrqu->mode = priv->ieee->iw_mode;
6754         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6755
6756         return 0;
6757 }
6758
6759 #define POWER_MODES 5
6760
6761 /* Values are in microsecond */
6762 static const s32 timeout_duration[POWER_MODES] = {
6763         350000,
6764         250000,
6765         75000,
6766         37000,
6767         25000,
6768 };
6769
6770 static const s32 period_duration[POWER_MODES] = {
6771         400000,
6772         700000,
6773         1000000,
6774         1000000,
6775         1000000
6776 };
6777
6778 static int ipw2100_wx_get_range(struct net_device *dev,
6779                                 struct iw_request_info *info,
6780                                 union iwreq_data *wrqu, char *extra)
6781 {
6782         /*
6783          * This can be called at any time.  No action lock required
6784          */
6785
6786         struct ipw2100_priv *priv = ieee80211_priv(dev);
6787         struct iw_range *range = (struct iw_range *)extra;
6788         u16 val;
6789         int i, level;
6790
6791         wrqu->data.length = sizeof(*range);
6792         memset(range, 0, sizeof(*range));
6793
6794         /* Let's try to keep this struct in the same order as in
6795          * linux/include/wireless.h
6796          */
6797
6798         /* TODO: See what values we can set, and remove the ones we can't
6799          * set, or fill them with some default data.
6800          */
6801
6802         /* ~5 Mb/s real (802.11b) */
6803         range->throughput = 5 * 1000 * 1000;
6804
6805 //      range->sensitivity;     /* signal level threshold range */
6806
6807         range->max_qual.qual = 100;
6808         /* TODO: Find real max RSSI and stick here */
6809         range->max_qual.level = 0;
6810         range->max_qual.noise = 0;
6811         range->max_qual.updated = 7;    /* Updated all three */
6812
6813         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6814         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6815         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6816         range->avg_qual.noise = 0;
6817         range->avg_qual.updated = 7;    /* Updated all three */
6818
6819         range->num_bitrates = RATE_COUNT;
6820
6821         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6822                 range->bitrate[i] = ipw2100_rates_11b[i];
6823         }
6824
6825         range->min_rts = MIN_RTS_THRESHOLD;
6826         range->max_rts = MAX_RTS_THRESHOLD;
6827         range->min_frag = MIN_FRAG_THRESHOLD;
6828         range->max_frag = MAX_FRAG_THRESHOLD;
6829
6830         range->min_pmp = period_duration[0];    /* Minimal PM period */
6831         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6832         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6833         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6834
6835         /* How to decode max/min PM period */
6836         range->pmp_flags = IW_POWER_PERIOD;
6837         /* How to decode max/min PM period */
6838         range->pmt_flags = IW_POWER_TIMEOUT;
6839         /* What PM options are supported */
6840         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6841
6842         range->encoding_size[0] = 5;
6843         range->encoding_size[1] = 13;   /* Different token sizes */
6844         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6845         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6846 //      range->encoding_login_index;            /* token index for login token */
6847
6848         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6849                 range->txpower_capa = IW_TXPOW_DBM;
6850                 range->num_txpower = IW_MAX_TXPOWER;
6851                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6852                      i < IW_MAX_TXPOWER;
6853                      i++, level -=
6854                      ((IPW_TX_POWER_MAX_DBM -
6855                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6856                         range->txpower[i] = level / 16;
6857         } else {
6858                 range->txpower_capa = 0;
6859                 range->num_txpower = 0;
6860         }
6861
6862         /* Set the Wireless Extension versions */
6863         range->we_version_compiled = WIRELESS_EXT;
6864         range->we_version_source = 18;
6865
6866 //      range->retry_capa;      /* What retry options are supported */
6867 //      range->retry_flags;     /* How to decode max/min retry limit */
6868 //      range->r_time_flags;    /* How to decode max/min retry life */
6869 //      range->min_retry;       /* Minimal number of retries */
6870 //      range->max_retry;       /* Maximal number of retries */
6871 //      range->min_r_time;      /* Minimal retry lifetime */
6872 //      range->max_r_time;      /* Maximal retry lifetime */
6873
6874         range->num_channels = FREQ_COUNT;
6875
6876         val = 0;
6877         for (i = 0; i < FREQ_COUNT; i++) {
6878                 // TODO: Include only legal frequencies for some countries
6879 //              if (local->channel_mask & (1 << i)) {
6880                 range->freq[val].i = i + 1;
6881                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6882                 range->freq[val].e = 1;
6883                 val++;
6884 //              }
6885                 if (val == IW_MAX_FREQUENCIES)
6886                         break;
6887         }
6888         range->num_frequency = val;
6889
6890         /* Event capability (kernel + driver) */
6891         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6892                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6893         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6894
6895         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6896                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6897
6898         IPW_DEBUG_WX("GET Range\n");
6899
6900         return 0;
6901 }
6902
6903 static int ipw2100_wx_set_wap(struct net_device *dev,
6904                               struct iw_request_info *info,
6905                               union iwreq_data *wrqu, char *extra)
6906 {
6907         struct ipw2100_priv *priv = ieee80211_priv(dev);
6908         int err = 0;
6909
6910         static const unsigned char any[] = {
6911                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6912         };
6913         static const unsigned char off[] = {
6914                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6915         };
6916
6917         // sanity checks
6918         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6919                 return -EINVAL;
6920
6921         mutex_lock(&priv->action_mutex);
6922         if (!(priv->status & STATUS_INITIALIZED)) {
6923                 err = -EIO;
6924                 goto done;
6925         }
6926
6927         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6928             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6929                 /* we disable mandatory BSSID association */
6930                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6931                 priv->config &= ~CFG_STATIC_BSSID;
6932                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6933                 goto done;
6934         }
6935
6936         priv->config |= CFG_STATIC_BSSID;
6937         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6938
6939         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6940
6941         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6942
6943       done:
6944         mutex_unlock(&priv->action_mutex);
6945         return err;
6946 }
6947
6948 static int ipw2100_wx_get_wap(struct net_device *dev,
6949                               struct iw_request_info *info,
6950                               union iwreq_data *wrqu, char *extra)
6951 {
6952         /*
6953          * This can be called at any time.  No action lock required
6954          */
6955
6956         struct ipw2100_priv *priv = ieee80211_priv(dev);
6957
6958         /* If we are associated, trying to associate, or have a statically
6959          * configured BSSID then return that; otherwise return ANY */
6960         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6961                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6962                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6963         } else
6964                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6965
6966         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6967         return 0;
6968 }
6969
6970 static int ipw2100_wx_set_essid(struct net_device *dev,
6971                                 struct iw_request_info *info,
6972                                 union iwreq_data *wrqu, char *extra)
6973 {
6974         struct ipw2100_priv *priv = ieee80211_priv(dev);
6975         char *essid = "";       /* ANY */
6976         int length = 0;
6977         int err = 0;
6978         DECLARE_SSID_BUF(ssid);
6979
6980         mutex_lock(&priv->action_mutex);
6981         if (!(priv->status & STATUS_INITIALIZED)) {
6982                 err = -EIO;
6983                 goto done;
6984         }
6985
6986         if (wrqu->essid.flags && wrqu->essid.length) {
6987                 length = wrqu->essid.length;
6988                 essid = extra;
6989         }
6990
6991         if (length == 0) {
6992                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6993                 priv->config &= ~CFG_STATIC_ESSID;
6994                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6995                 goto done;
6996         }
6997
6998         length = min(length, IW_ESSID_MAX_SIZE);
6999
7000         priv->config |= CFG_STATIC_ESSID;
7001
7002         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7003                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7004                 err = 0;
7005                 goto done;
7006         }
7007
7008         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7009                      print_ssid(ssid, essid, length), length);
7010
7011         priv->essid_len = length;
7012         memcpy(priv->essid, essid, priv->essid_len);
7013
7014         err = ipw2100_set_essid(priv, essid, length, 0);
7015
7016       done:
7017         mutex_unlock(&priv->action_mutex);
7018         return err;
7019 }
7020
7021 static int ipw2100_wx_get_essid(struct net_device *dev,
7022                                 struct iw_request_info *info,
7023                                 union iwreq_data *wrqu, char *extra)
7024 {
7025         /*
7026          * This can be called at any time.  No action lock required
7027          */
7028
7029         struct ipw2100_priv *priv = ieee80211_priv(dev);
7030         DECLARE_SSID_BUF(ssid);
7031
7032         /* If we are associated, trying to associate, or have a statically
7033          * configured ESSID then return that; otherwise return ANY */
7034         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7035                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7036                              print_ssid(ssid, priv->essid, priv->essid_len));
7037                 memcpy(extra, priv->essid, priv->essid_len);
7038                 wrqu->essid.length = priv->essid_len;
7039                 wrqu->essid.flags = 1;  /* active */
7040         } else {
7041                 IPW_DEBUG_WX("Getting essid: ANY\n");
7042                 wrqu->essid.length = 0;
7043                 wrqu->essid.flags = 0;  /* active */
7044         }
7045
7046         return 0;
7047 }
7048
7049 static int ipw2100_wx_set_nick(struct net_device *dev,
7050                                struct iw_request_info *info,
7051                                union iwreq_data *wrqu, char *extra)
7052 {
7053         /*
7054          * This can be called at any time.  No action lock required
7055          */
7056
7057         struct ipw2100_priv *priv = ieee80211_priv(dev);
7058
7059         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7060                 return -E2BIG;
7061
7062         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7063         memset(priv->nick, 0, sizeof(priv->nick));
7064         memcpy(priv->nick, extra, wrqu->data.length);
7065
7066         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7067
7068         return 0;
7069 }
7070
7071 static int ipw2100_wx_get_nick(struct net_device *dev,
7072                                struct iw_request_info *info,
7073                                union iwreq_data *wrqu, char *extra)
7074 {
7075         /*
7076          * This can be called at any time.  No action lock required
7077          */
7078
7079         struct ipw2100_priv *priv = ieee80211_priv(dev);
7080
7081         wrqu->data.length = strlen(priv->nick);
7082         memcpy(extra, priv->nick, wrqu->data.length);
7083         wrqu->data.flags = 1;   /* active */
7084
7085         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7086
7087         return 0;
7088 }
7089
7090 static int ipw2100_wx_set_rate(struct net_device *dev,
7091                                struct iw_request_info *info,
7092                                union iwreq_data *wrqu, char *extra)
7093 {
7094         struct ipw2100_priv *priv = ieee80211_priv(dev);
7095         u32 target_rate = wrqu->bitrate.value;
7096         u32 rate;
7097         int err = 0;
7098
7099         mutex_lock(&priv->action_mutex);
7100         if (!(priv->status & STATUS_INITIALIZED)) {
7101                 err = -EIO;
7102                 goto done;
7103         }
7104
7105         rate = 0;
7106
7107         if (target_rate == 1000000 ||
7108             (!wrqu->bitrate.fixed && target_rate > 1000000))
7109                 rate |= TX_RATE_1_MBIT;
7110         if (target_rate == 2000000 ||
7111             (!wrqu->bitrate.fixed && target_rate > 2000000))
7112                 rate |= TX_RATE_2_MBIT;
7113         if (target_rate == 5500000 ||
7114             (!wrqu->bitrate.fixed && target_rate > 5500000))
7115                 rate |= TX_RATE_5_5_MBIT;
7116         if (target_rate == 11000000 ||
7117             (!wrqu->bitrate.fixed && target_rate > 11000000))
7118                 rate |= TX_RATE_11_MBIT;
7119         if (rate == 0)
7120                 rate = DEFAULT_TX_RATES;
7121
7122         err = ipw2100_set_tx_rates(priv, rate, 0);
7123
7124         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7125       done:
7126         mutex_unlock(&priv->action_mutex);
7127         return err;
7128 }
7129
7130 static int ipw2100_wx_get_rate(struct net_device *dev,
7131                                struct iw_request_info *info,
7132                                union iwreq_data *wrqu, char *extra)
7133 {
7134         struct ipw2100_priv *priv = ieee80211_priv(dev);
7135         int val;
7136         unsigned int len = sizeof(val);
7137         int err = 0;
7138
7139         if (!(priv->status & STATUS_ENABLED) ||
7140             priv->status & STATUS_RF_KILL_MASK ||
7141             !(priv->status & STATUS_ASSOCIATED)) {
7142                 wrqu->bitrate.value = 0;
7143                 return 0;
7144         }
7145
7146         mutex_lock(&priv->action_mutex);
7147         if (!(priv->status & STATUS_INITIALIZED)) {
7148                 err = -EIO;
7149                 goto done;
7150         }
7151
7152         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7153         if (err) {
7154                 IPW_DEBUG_WX("failed querying ordinals.\n");
7155                 goto done;
7156         }
7157
7158         switch (val & TX_RATE_MASK) {
7159         case TX_RATE_1_MBIT:
7160                 wrqu->bitrate.value = 1000000;
7161                 break;
7162         case TX_RATE_2_MBIT:
7163                 wrqu->bitrate.value = 2000000;
7164                 break;
7165         case TX_RATE_5_5_MBIT:
7166                 wrqu->bitrate.value = 5500000;
7167                 break;
7168         case TX_RATE_11_MBIT:
7169                 wrqu->bitrate.value = 11000000;
7170                 break;
7171         default:
7172                 wrqu->bitrate.value = 0;
7173         }
7174
7175         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7176
7177       done:
7178         mutex_unlock(&priv->action_mutex);
7179         return err;
7180 }
7181
7182 static int ipw2100_wx_set_rts(struct net_device *dev,
7183                               struct iw_request_info *info,
7184                               union iwreq_data *wrqu, char *extra)
7185 {
7186         struct ipw2100_priv *priv = ieee80211_priv(dev);
7187         int value, err;
7188
7189         /* Auto RTS not yet supported */
7190         if (wrqu->rts.fixed == 0)
7191                 return -EINVAL;
7192
7193         mutex_lock(&priv->action_mutex);
7194         if (!(priv->status & STATUS_INITIALIZED)) {
7195                 err = -EIO;
7196                 goto done;
7197         }
7198
7199         if (wrqu->rts.disabled)
7200                 value = priv->rts_threshold | RTS_DISABLED;
7201         else {
7202                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7203                         err = -EINVAL;
7204                         goto done;
7205                 }
7206                 value = wrqu->rts.value;
7207         }
7208
7209         err = ipw2100_set_rts_threshold(priv, value);
7210
7211         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7212       done:
7213         mutex_unlock(&priv->action_mutex);
7214         return err;
7215 }
7216
7217 static int ipw2100_wx_get_rts(struct net_device *dev,
7218                               struct iw_request_info *info,
7219                               union iwreq_data *wrqu, char *extra)
7220 {
7221         /*
7222          * This can be called at any time.  No action lock required
7223          */
7224
7225         struct ipw2100_priv *priv = ieee80211_priv(dev);
7226
7227         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7228         wrqu->rts.fixed = 1;    /* no auto select */
7229
7230         /* If RTS is set to the default value, then it is disabled */
7231         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7232
7233         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7234
7235         return 0;
7236 }
7237
7238 static int ipw2100_wx_set_txpow(struct net_device *dev,
7239                                 struct iw_request_info *info,
7240                                 union iwreq_data *wrqu, char *extra)
7241 {
7242         struct ipw2100_priv *priv = ieee80211_priv(dev);
7243         int err = 0, value;
7244         
7245         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7246                 return -EINPROGRESS;
7247
7248         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7249                 return 0;
7250
7251         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7252                 return -EINVAL;
7253
7254         if (wrqu->txpower.fixed == 0)
7255                 value = IPW_TX_POWER_DEFAULT;
7256         else {
7257                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7258                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7259                         return -EINVAL;
7260
7261                 value = wrqu->txpower.value;
7262         }
7263
7264         mutex_lock(&priv->action_mutex);
7265         if (!(priv->status & STATUS_INITIALIZED)) {
7266                 err = -EIO;
7267                 goto done;
7268         }
7269
7270         err = ipw2100_set_tx_power(priv, value);
7271
7272         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7273
7274       done:
7275         mutex_unlock(&priv->action_mutex);
7276         return err;
7277 }
7278
7279 static int ipw2100_wx_get_txpow(struct net_device *dev,
7280                                 struct iw_request_info *info,
7281                                 union iwreq_data *wrqu, char *extra)
7282 {
7283         /*
7284          * This can be called at any time.  No action lock required
7285          */
7286
7287         struct ipw2100_priv *priv = ieee80211_priv(dev);
7288
7289         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7290
7291         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7292                 wrqu->txpower.fixed = 0;
7293                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7294         } else {
7295                 wrqu->txpower.fixed = 1;
7296                 wrqu->txpower.value = priv->tx_power;
7297         }
7298
7299         wrqu->txpower.flags = IW_TXPOW_DBM;
7300
7301         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7302
7303         return 0;
7304 }
7305
7306 static int ipw2100_wx_set_frag(struct net_device *dev,
7307                                struct iw_request_info *info,
7308                                union iwreq_data *wrqu, char *extra)
7309 {
7310         /*
7311          * This can be called at any time.  No action lock required
7312          */
7313
7314         struct ipw2100_priv *priv = ieee80211_priv(dev);
7315
7316         if (!wrqu->frag.fixed)
7317                 return -EINVAL;
7318
7319         if (wrqu->frag.disabled) {
7320                 priv->frag_threshold |= FRAG_DISABLED;
7321                 priv->ieee->fts = DEFAULT_FTS;
7322         } else {
7323                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7324                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7325                         return -EINVAL;
7326
7327                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7328                 priv->frag_threshold = priv->ieee->fts;
7329         }
7330
7331         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7332
7333         return 0;
7334 }
7335
7336 static int ipw2100_wx_get_frag(struct net_device *dev,
7337                                struct iw_request_info *info,
7338                                union iwreq_data *wrqu, char *extra)
7339 {
7340         /*
7341          * This can be called at any time.  No action lock required
7342          */
7343
7344         struct ipw2100_priv *priv = ieee80211_priv(dev);
7345         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7346         wrqu->frag.fixed = 0;   /* no auto select */
7347         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7348
7349         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7350
7351         return 0;
7352 }
7353
7354 static int ipw2100_wx_set_retry(struct net_device *dev,
7355                                 struct iw_request_info *info,
7356                                 union iwreq_data *wrqu, char *extra)
7357 {
7358         struct ipw2100_priv *priv = ieee80211_priv(dev);
7359         int err = 0;
7360
7361         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7362                 return -EINVAL;
7363
7364         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7365                 return 0;
7366
7367         mutex_lock(&priv->action_mutex);
7368         if (!(priv->status & STATUS_INITIALIZED)) {
7369                 err = -EIO;
7370                 goto done;
7371         }
7372
7373         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7374                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7375                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7376                              wrqu->retry.value);
7377                 goto done;
7378         }
7379
7380         if (wrqu->retry.flags & IW_RETRY_LONG) {
7381                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7382                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7383                              wrqu->retry.value);
7384                 goto done;
7385         }
7386
7387         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7388         if (!err)
7389                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7390
7391         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7392
7393       done:
7394         mutex_unlock(&priv->action_mutex);
7395         return err;
7396 }
7397
7398 static int ipw2100_wx_get_retry(struct net_device *dev,
7399                                 struct iw_request_info *info,
7400                                 union iwreq_data *wrqu, char *extra)
7401 {
7402         /*
7403          * This can be called at any time.  No action lock required
7404          */
7405
7406         struct ipw2100_priv *priv = ieee80211_priv(dev);
7407
7408         wrqu->retry.disabled = 0;       /* can't be disabled */
7409
7410         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7411                 return -EINVAL;
7412
7413         if (wrqu->retry.flags & IW_RETRY_LONG) {
7414                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7415                 wrqu->retry.value = priv->long_retry_limit;
7416         } else {
7417                 wrqu->retry.flags =
7418                     (priv->short_retry_limit !=
7419                      priv->long_retry_limit) ?
7420                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7421
7422                 wrqu->retry.value = priv->short_retry_limit;
7423         }
7424
7425         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7426
7427         return 0;
7428 }
7429
7430 static int ipw2100_wx_set_scan(struct net_device *dev,
7431                                struct iw_request_info *info,
7432                                union iwreq_data *wrqu, char *extra)
7433 {
7434         struct ipw2100_priv *priv = ieee80211_priv(dev);
7435         int err = 0;
7436
7437         mutex_lock(&priv->action_mutex);
7438         if (!(priv->status & STATUS_INITIALIZED)) {
7439                 err = -EIO;
7440                 goto done;
7441         }
7442
7443         IPW_DEBUG_WX("Initiating scan...\n");
7444
7445         priv->user_requested_scan = 1;
7446         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7447                 IPW_DEBUG_WX("Start scan failed.\n");
7448
7449                 /* TODO: Mark a scan as pending so when hardware initialized
7450                  *       a scan starts */
7451         }
7452
7453       done:
7454         mutex_unlock(&priv->action_mutex);
7455         return err;
7456 }
7457
7458 static int ipw2100_wx_get_scan(struct net_device *dev,
7459                                struct iw_request_info *info,
7460                                union iwreq_data *wrqu, char *extra)
7461 {
7462         /*
7463          * This can be called at any time.  No action lock required
7464          */
7465
7466         struct ipw2100_priv *priv = ieee80211_priv(dev);
7467         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7468 }
7469
7470 /*
7471  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7472  */
7473 static int ipw2100_wx_set_encode(struct net_device *dev,
7474                                  struct iw_request_info *info,
7475                                  union iwreq_data *wrqu, char *key)
7476 {
7477         /*
7478          * No check of STATUS_INITIALIZED required
7479          */
7480
7481         struct ipw2100_priv *priv = ieee80211_priv(dev);
7482         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7483 }
7484
7485 static int ipw2100_wx_get_encode(struct net_device *dev,
7486                                  struct iw_request_info *info,
7487                                  union iwreq_data *wrqu, char *key)
7488 {
7489         /*
7490          * This can be called at any time.  No action lock required
7491          */
7492
7493         struct ipw2100_priv *priv = ieee80211_priv(dev);
7494         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7495 }
7496
7497 static int ipw2100_wx_set_power(struct net_device *dev,
7498                                 struct iw_request_info *info,
7499                                 union iwreq_data *wrqu, char *extra)
7500 {
7501         struct ipw2100_priv *priv = ieee80211_priv(dev);
7502         int err = 0;
7503
7504         mutex_lock(&priv->action_mutex);
7505         if (!(priv->status & STATUS_INITIALIZED)) {
7506                 err = -EIO;
7507                 goto done;
7508         }
7509
7510         if (wrqu->power.disabled) {
7511                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7512                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7513                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7514                 goto done;
7515         }
7516
7517         switch (wrqu->power.flags & IW_POWER_MODE) {
7518         case IW_POWER_ON:       /* If not specified */
7519         case IW_POWER_MODE:     /* If set all mask */
7520         case IW_POWER_ALL_R:    /* If explicitly state all */
7521                 break;
7522         default:                /* Otherwise we don't support it */
7523                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7524                              wrqu->power.flags);
7525                 err = -EOPNOTSUPP;
7526                 goto done;
7527         }
7528
7529         /* If the user hasn't specified a power management mode yet, default
7530          * to BATTERY */
7531         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7532         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7533
7534         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7535
7536       done:
7537         mutex_unlock(&priv->action_mutex);
7538         return err;
7539
7540 }
7541
7542 static int ipw2100_wx_get_power(struct net_device *dev,
7543                                 struct iw_request_info *info,
7544                                 union iwreq_data *wrqu, char *extra)
7545 {
7546         /*
7547          * This can be called at any time.  No action lock required
7548          */
7549
7550         struct ipw2100_priv *priv = ieee80211_priv(dev);
7551
7552         if (!(priv->power_mode & IPW_POWER_ENABLED))
7553                 wrqu->power.disabled = 1;
7554         else {
7555                 wrqu->power.disabled = 0;
7556                 wrqu->power.flags = 0;
7557         }
7558
7559         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7560
7561         return 0;
7562 }
7563
7564 /*
7565  * WE-18 WPA support
7566  */
7567
7568 /* SIOCSIWGENIE */
7569 static int ipw2100_wx_set_genie(struct net_device *dev,
7570                                 struct iw_request_info *info,
7571                                 union iwreq_data *wrqu, char *extra)
7572 {
7573
7574         struct ipw2100_priv *priv = ieee80211_priv(dev);
7575         struct ieee80211_device *ieee = priv->ieee;
7576         u8 *buf;
7577
7578         if (!ieee->wpa_enabled)
7579                 return -EOPNOTSUPP;
7580
7581         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7582             (wrqu->data.length && extra == NULL))
7583                 return -EINVAL;
7584
7585         if (wrqu->data.length) {
7586                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7587                 if (buf == NULL)
7588                         return -ENOMEM;
7589
7590                 kfree(ieee->wpa_ie);
7591                 ieee->wpa_ie = buf;
7592                 ieee->wpa_ie_len = wrqu->data.length;
7593         } else {
7594                 kfree(ieee->wpa_ie);
7595                 ieee->wpa_ie = NULL;
7596                 ieee->wpa_ie_len = 0;
7597         }
7598
7599         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7600
7601         return 0;
7602 }
7603
7604 /* SIOCGIWGENIE */
7605 static int ipw2100_wx_get_genie(struct net_device *dev,
7606                                 struct iw_request_info *info,
7607                                 union iwreq_data *wrqu, char *extra)
7608 {
7609         struct ipw2100_priv *priv = ieee80211_priv(dev);
7610         struct ieee80211_device *ieee = priv->ieee;
7611
7612         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7613                 wrqu->data.length = 0;
7614                 return 0;
7615         }
7616
7617         if (wrqu->data.length < ieee->wpa_ie_len)
7618                 return -E2BIG;
7619
7620         wrqu->data.length = ieee->wpa_ie_len;
7621         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7622
7623         return 0;
7624 }
7625
7626 /* SIOCSIWAUTH */
7627 static int ipw2100_wx_set_auth(struct net_device *dev,
7628                                struct iw_request_info *info,
7629                                union iwreq_data *wrqu, char *extra)
7630 {
7631         struct ipw2100_priv *priv = ieee80211_priv(dev);
7632         struct ieee80211_device *ieee = priv->ieee;
7633         struct iw_param *param = &wrqu->param;
7634         struct lib80211_crypt_data *crypt;
7635         unsigned long flags;
7636         int ret = 0;
7637
7638         switch (param->flags & IW_AUTH_INDEX) {
7639         case IW_AUTH_WPA_VERSION:
7640         case IW_AUTH_CIPHER_PAIRWISE:
7641         case IW_AUTH_CIPHER_GROUP:
7642         case IW_AUTH_KEY_MGMT:
7643                 /*
7644                  * ipw2200 does not use these parameters
7645                  */
7646                 break;
7647
7648         case IW_AUTH_TKIP_COUNTERMEASURES:
7649                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7650                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7651                         break;
7652
7653                 flags = crypt->ops->get_flags(crypt->priv);
7654
7655                 if (param->value)
7656                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7657                 else
7658                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7659
7660                 crypt->ops->set_flags(flags, crypt->priv);
7661
7662                 break;
7663
7664         case IW_AUTH_DROP_UNENCRYPTED:{
7665                         /* HACK:
7666                          *
7667                          * wpa_supplicant calls set_wpa_enabled when the driver
7668                          * is loaded and unloaded, regardless of if WPA is being
7669                          * used.  No other calls are made which can be used to
7670                          * determine if encryption will be used or not prior to
7671                          * association being expected.  If encryption is not being
7672                          * used, drop_unencrypted is set to false, else true -- we
7673                          * can use this to determine if the CAP_PRIVACY_ON bit should
7674                          * be set.
7675                          */
7676                         struct ieee80211_security sec = {
7677                                 .flags = SEC_ENABLED,
7678                                 .enabled = param->value,
7679                         };
7680                         priv->ieee->drop_unencrypted = param->value;
7681                         /* We only change SEC_LEVEL for open mode. Others
7682                          * are set by ipw_wpa_set_encryption.
7683                          */
7684                         if (!param->value) {
7685                                 sec.flags |= SEC_LEVEL;
7686                                 sec.level = SEC_LEVEL_0;
7687                         } else {
7688                                 sec.flags |= SEC_LEVEL;
7689                                 sec.level = SEC_LEVEL_1;
7690                         }
7691                         if (priv->ieee->set_security)
7692                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7693                         break;
7694                 }
7695
7696         case IW_AUTH_80211_AUTH_ALG:
7697                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7698                 break;
7699
7700         case IW_AUTH_WPA_ENABLED:
7701                 ret = ipw2100_wpa_enable(priv, param->value);
7702                 break;
7703
7704         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7705                 ieee->ieee802_1x = param->value;
7706                 break;
7707
7708                 //case IW_AUTH_ROAMING_CONTROL:
7709         case IW_AUTH_PRIVACY_INVOKED:
7710                 ieee->privacy_invoked = param->value;
7711                 break;
7712
7713         default:
7714                 return -EOPNOTSUPP;
7715         }
7716         return ret;
7717 }
7718
7719 /* SIOCGIWAUTH */
7720 static int ipw2100_wx_get_auth(struct net_device *dev,
7721                                struct iw_request_info *info,
7722                                union iwreq_data *wrqu, char *extra)
7723 {
7724         struct ipw2100_priv *priv = ieee80211_priv(dev);
7725         struct ieee80211_device *ieee = priv->ieee;
7726         struct lib80211_crypt_data *crypt;
7727         struct iw_param *param = &wrqu->param;
7728         int ret = 0;
7729
7730         switch (param->flags & IW_AUTH_INDEX) {
7731         case IW_AUTH_WPA_VERSION:
7732         case IW_AUTH_CIPHER_PAIRWISE:
7733         case IW_AUTH_CIPHER_GROUP:
7734         case IW_AUTH_KEY_MGMT:
7735                 /*
7736                  * wpa_supplicant will control these internally
7737                  */
7738                 ret = -EOPNOTSUPP;
7739                 break;
7740
7741         case IW_AUTH_TKIP_COUNTERMEASURES:
7742                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7743                 if (!crypt || !crypt->ops->get_flags) {
7744                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7745                                           "crypt not set!\n");
7746                         break;
7747                 }
7748
7749                 param->value = (crypt->ops->get_flags(crypt->priv) &
7750                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7751
7752                 break;
7753
7754         case IW_AUTH_DROP_UNENCRYPTED:
7755                 param->value = ieee->drop_unencrypted;
7756                 break;
7757
7758         case IW_AUTH_80211_AUTH_ALG:
7759                 param->value = priv->ieee->sec.auth_mode;
7760                 break;
7761
7762         case IW_AUTH_WPA_ENABLED:
7763                 param->value = ieee->wpa_enabled;
7764                 break;
7765
7766         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7767                 param->value = ieee->ieee802_1x;
7768                 break;
7769
7770         case IW_AUTH_ROAMING_CONTROL:
7771         case IW_AUTH_PRIVACY_INVOKED:
7772                 param->value = ieee->privacy_invoked;
7773                 break;
7774
7775         default:
7776                 return -EOPNOTSUPP;
7777         }
7778         return 0;
7779 }
7780
7781 /* SIOCSIWENCODEEXT */
7782 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7783                                     struct iw_request_info *info,
7784                                     union iwreq_data *wrqu, char *extra)
7785 {
7786         struct ipw2100_priv *priv = ieee80211_priv(dev);
7787         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7788 }
7789
7790 /* SIOCGIWENCODEEXT */
7791 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7792                                     struct iw_request_info *info,
7793                                     union iwreq_data *wrqu, char *extra)
7794 {
7795         struct ipw2100_priv *priv = ieee80211_priv(dev);
7796         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7797 }
7798
7799 /* SIOCSIWMLME */
7800 static int ipw2100_wx_set_mlme(struct net_device *dev,
7801                                struct iw_request_info *info,
7802                                union iwreq_data *wrqu, char *extra)
7803 {
7804         struct ipw2100_priv *priv = ieee80211_priv(dev);
7805         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7806         __le16 reason;
7807
7808         reason = cpu_to_le16(mlme->reason_code);
7809
7810         switch (mlme->cmd) {
7811         case IW_MLME_DEAUTH:
7812                 // silently ignore
7813                 break;
7814
7815         case IW_MLME_DISASSOC:
7816                 ipw2100_disassociate_bssid(priv);
7817                 break;
7818
7819         default:
7820                 return -EOPNOTSUPP;
7821         }
7822         return 0;
7823 }
7824
7825 /*
7826  *
7827  * IWPRIV handlers
7828  *
7829  */
7830 #ifdef CONFIG_IPW2100_MONITOR
7831 static int ipw2100_wx_set_promisc(struct net_device *dev,
7832                                   struct iw_request_info *info,
7833                                   union iwreq_data *wrqu, char *extra)
7834 {
7835         struct ipw2100_priv *priv = ieee80211_priv(dev);
7836         int *parms = (int *)extra;
7837         int enable = (parms[0] > 0);
7838         int err = 0;
7839
7840         mutex_lock(&priv->action_mutex);
7841         if (!(priv->status & STATUS_INITIALIZED)) {
7842                 err = -EIO;
7843                 goto done;
7844         }
7845
7846         if (enable) {
7847                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7848                         err = ipw2100_set_channel(priv, parms[1], 0);
7849                         goto done;
7850                 }
7851                 priv->channel = parms[1];
7852                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7853         } else {
7854                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7855                         err = ipw2100_switch_mode(priv, priv->last_mode);
7856         }
7857       done:
7858         mutex_unlock(&priv->action_mutex);
7859         return err;
7860 }
7861
7862 static int ipw2100_wx_reset(struct net_device *dev,
7863                             struct iw_request_info *info,
7864                             union iwreq_data *wrqu, char *extra)
7865 {
7866         struct ipw2100_priv *priv = ieee80211_priv(dev);
7867         if (priv->status & STATUS_INITIALIZED)
7868                 schedule_reset(priv);
7869         return 0;
7870 }
7871
7872 #endif
7873
7874 static int ipw2100_wx_set_powermode(struct net_device *dev,
7875                                     struct iw_request_info *info,
7876                                     union iwreq_data *wrqu, char *extra)
7877 {
7878         struct ipw2100_priv *priv = ieee80211_priv(dev);
7879         int err = 0, mode = *(int *)extra;
7880
7881         mutex_lock(&priv->action_mutex);
7882         if (!(priv->status & STATUS_INITIALIZED)) {
7883                 err = -EIO;
7884                 goto done;
7885         }
7886
7887         if ((mode < 0) || (mode > POWER_MODES))
7888                 mode = IPW_POWER_AUTO;
7889
7890         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7891                 err = ipw2100_set_power_mode(priv, mode);
7892       done:
7893         mutex_unlock(&priv->action_mutex);
7894         return err;
7895 }
7896
7897 #define MAX_POWER_STRING 80
7898 static int ipw2100_wx_get_powermode(struct net_device *dev,
7899                                     struct iw_request_info *info,
7900                                     union iwreq_data *wrqu, char *extra)
7901 {
7902         /*
7903          * This can be called at any time.  No action lock required
7904          */
7905
7906         struct ipw2100_priv *priv = ieee80211_priv(dev);
7907         int level = IPW_POWER_LEVEL(priv->power_mode);
7908         s32 timeout, period;
7909
7910         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7911                 snprintf(extra, MAX_POWER_STRING,
7912                          "Power save level: %d (Off)", level);
7913         } else {
7914                 switch (level) {
7915                 case IPW_POWER_MODE_CAM:
7916                         snprintf(extra, MAX_POWER_STRING,
7917                                  "Power save level: %d (None)", level);
7918                         break;
7919                 case IPW_POWER_AUTO:
7920                         snprintf(extra, MAX_POWER_STRING,
7921                                  "Power save level: %d (Auto)", level);
7922                         break;
7923                 default:
7924                         timeout = timeout_duration[level - 1] / 1000;
7925                         period = period_duration[level - 1] / 1000;
7926                         snprintf(extra, MAX_POWER_STRING,
7927                                  "Power save level: %d "
7928                                  "(Timeout %dms, Period %dms)",
7929                                  level, timeout, period);
7930                 }
7931         }
7932
7933         wrqu->data.length = strlen(extra) + 1;
7934
7935         return 0;
7936 }
7937
7938 static int ipw2100_wx_set_preamble(struct net_device *dev,
7939                                    struct iw_request_info *info,
7940                                    union iwreq_data *wrqu, char *extra)
7941 {
7942         struct ipw2100_priv *priv = ieee80211_priv(dev);
7943         int err, mode = *(int *)extra;
7944
7945         mutex_lock(&priv->action_mutex);
7946         if (!(priv->status & STATUS_INITIALIZED)) {
7947                 err = -EIO;
7948                 goto done;
7949         }
7950
7951         if (mode == 1)
7952                 priv->config |= CFG_LONG_PREAMBLE;
7953         else if (mode == 0)
7954                 priv->config &= ~CFG_LONG_PREAMBLE;
7955         else {
7956                 err = -EINVAL;
7957                 goto done;
7958         }
7959
7960         err = ipw2100_system_config(priv, 0);
7961
7962       done:
7963         mutex_unlock(&priv->action_mutex);
7964         return err;
7965 }
7966
7967 static int ipw2100_wx_get_preamble(struct net_device *dev,
7968                                    struct iw_request_info *info,
7969                                    union iwreq_data *wrqu, char *extra)
7970 {
7971         /*
7972          * This can be called at any time.  No action lock required
7973          */
7974
7975         struct ipw2100_priv *priv = ieee80211_priv(dev);
7976
7977         if (priv->config & CFG_LONG_PREAMBLE)
7978                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7979         else
7980                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7981
7982         return 0;
7983 }
7984
7985 #ifdef CONFIG_IPW2100_MONITOR
7986 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7987                                     struct iw_request_info *info,
7988                                     union iwreq_data *wrqu, char *extra)
7989 {
7990         struct ipw2100_priv *priv = ieee80211_priv(dev);
7991         int err, mode = *(int *)extra;
7992
7993         mutex_lock(&priv->action_mutex);
7994         if (!(priv->status & STATUS_INITIALIZED)) {
7995                 err = -EIO;
7996                 goto done;
7997         }
7998
7999         if (mode == 1)
8000                 priv->config |= CFG_CRC_CHECK;
8001         else if (mode == 0)
8002                 priv->config &= ~CFG_CRC_CHECK;
8003         else {
8004                 err = -EINVAL;
8005                 goto done;
8006         }
8007         err = 0;
8008
8009       done:
8010         mutex_unlock(&priv->action_mutex);
8011         return err;
8012 }
8013
8014 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8015                                     struct iw_request_info *info,
8016                                     union iwreq_data *wrqu, char *extra)
8017 {
8018         /*
8019          * This can be called at any time.  No action lock required
8020          */
8021
8022         struct ipw2100_priv *priv = ieee80211_priv(dev);
8023
8024         if (priv->config & CFG_CRC_CHECK)
8025                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8026         else
8027                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8028
8029         return 0;
8030 }
8031 #endif                          /* CONFIG_IPW2100_MONITOR */
8032
8033 static iw_handler ipw2100_wx_handlers[] = {
8034         NULL,                   /* SIOCSIWCOMMIT */
8035         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8036         NULL,                   /* SIOCSIWNWID */
8037         NULL,                   /* SIOCGIWNWID */
8038         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8039         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8040         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8041         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8042         NULL,                   /* SIOCSIWSENS */
8043         NULL,                   /* SIOCGIWSENS */
8044         NULL,                   /* SIOCSIWRANGE */
8045         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8046         NULL,                   /* SIOCSIWPRIV */
8047         NULL,                   /* SIOCGIWPRIV */
8048         NULL,                   /* SIOCSIWSTATS */
8049         NULL,                   /* SIOCGIWSTATS */
8050         NULL,                   /* SIOCSIWSPY */
8051         NULL,                   /* SIOCGIWSPY */
8052         NULL,                   /* SIOCGIWTHRSPY */
8053         NULL,                   /* SIOCWIWTHRSPY */
8054         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8055         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8056         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8057         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8058         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8059         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8060         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8061         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8062         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8063         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8064         NULL,                   /* -- hole -- */
8065         NULL,                   /* -- hole -- */
8066         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8067         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8068         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8069         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8070         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8071         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8072         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8073         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8074         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8075         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8076         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8077         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8078         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8079         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8080         NULL,                   /* -- hole -- */
8081         NULL,                   /* -- hole -- */
8082         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8083         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8084         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8085         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8086         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8087         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8088         NULL,                   /* SIOCSIWPMKSA */
8089 };
8090
8091 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8092 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8093 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8094 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8095 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8096 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8097 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8098 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8099
8100 static const struct iw_priv_args ipw2100_private_args[] = {
8101
8102 #ifdef CONFIG_IPW2100_MONITOR
8103         {
8104          IPW2100_PRIV_SET_MONITOR,
8105          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8106         {
8107          IPW2100_PRIV_RESET,
8108          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8109 #endif                          /* CONFIG_IPW2100_MONITOR */
8110
8111         {
8112          IPW2100_PRIV_SET_POWER,
8113          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8114         {
8115          IPW2100_PRIV_GET_POWER,
8116          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8117          "get_power"},
8118         {
8119          IPW2100_PRIV_SET_LONGPREAMBLE,
8120          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8121         {
8122          IPW2100_PRIV_GET_LONGPREAMBLE,
8123          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8124 #ifdef CONFIG_IPW2100_MONITOR
8125         {
8126          IPW2100_PRIV_SET_CRC_CHECK,
8127          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8128         {
8129          IPW2100_PRIV_GET_CRC_CHECK,
8130          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8131 #endif                          /* CONFIG_IPW2100_MONITOR */
8132 };
8133
8134 static iw_handler ipw2100_private_handler[] = {
8135 #ifdef CONFIG_IPW2100_MONITOR
8136         ipw2100_wx_set_promisc,
8137         ipw2100_wx_reset,
8138 #else                           /* CONFIG_IPW2100_MONITOR */
8139         NULL,
8140         NULL,
8141 #endif                          /* CONFIG_IPW2100_MONITOR */
8142         ipw2100_wx_set_powermode,
8143         ipw2100_wx_get_powermode,
8144         ipw2100_wx_set_preamble,
8145         ipw2100_wx_get_preamble,
8146 #ifdef CONFIG_IPW2100_MONITOR
8147         ipw2100_wx_set_crc_check,
8148         ipw2100_wx_get_crc_check,
8149 #else                           /* CONFIG_IPW2100_MONITOR */
8150         NULL,
8151         NULL,
8152 #endif                          /* CONFIG_IPW2100_MONITOR */
8153 };
8154
8155 /*
8156  * Get wireless statistics.
8157  * Called by /proc/net/wireless
8158  * Also called by SIOCGIWSTATS
8159  */
8160 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8161 {
8162         enum {
8163                 POOR = 30,
8164                 FAIR = 60,
8165                 GOOD = 80,
8166                 VERY_GOOD = 90,
8167                 EXCELLENT = 95,
8168                 PERFECT = 100
8169         };
8170         int rssi_qual;
8171         int tx_qual;
8172         int beacon_qual;
8173
8174         struct ipw2100_priv *priv = ieee80211_priv(dev);
8175         struct iw_statistics *wstats;
8176         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8177         u32 ord_len = sizeof(u32);
8178
8179         if (!priv)
8180                 return (struct iw_statistics *)NULL;
8181
8182         wstats = &priv->wstats;
8183
8184         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8185          * ipw2100_wx_wireless_stats seems to be called before fw is
8186          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8187          * and associated; if not associcated, the values are all meaningless
8188          * anyway, so set them all to NULL and INVALID */
8189         if (!(priv->status & STATUS_ASSOCIATED)) {
8190                 wstats->miss.beacon = 0;
8191                 wstats->discard.retries = 0;
8192                 wstats->qual.qual = 0;
8193                 wstats->qual.level = 0;
8194                 wstats->qual.noise = 0;
8195                 wstats->qual.updated = 7;
8196                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8197                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8198                 return wstats;
8199         }
8200
8201         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8202                                 &missed_beacons, &ord_len))
8203                 goto fail_get_ordinal;
8204
8205         /* If we don't have a connection the quality and level is 0 */
8206         if (!(priv->status & STATUS_ASSOCIATED)) {
8207                 wstats->qual.qual = 0;
8208                 wstats->qual.level = 0;
8209         } else {
8210                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8211                                         &rssi, &ord_len))
8212                         goto fail_get_ordinal;
8213                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8214                 if (rssi < 10)
8215                         rssi_qual = rssi * POOR / 10;
8216                 else if (rssi < 15)
8217                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8218                 else if (rssi < 20)
8219                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8220                 else if (rssi < 30)
8221                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8222                             10 + GOOD;
8223                 else
8224                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8225                             10 + VERY_GOOD;
8226
8227                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8228                                         &tx_retries, &ord_len))
8229                         goto fail_get_ordinal;
8230
8231                 if (tx_retries > 75)
8232                         tx_qual = (90 - tx_retries) * POOR / 15;
8233                 else if (tx_retries > 70)
8234                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8235                 else if (tx_retries > 65)
8236                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8237                 else if (tx_retries > 50)
8238                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8239                             15 + GOOD;
8240                 else
8241                         tx_qual = (50 - tx_retries) *
8242                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8243
8244                 if (missed_beacons > 50)
8245                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8246                 else if (missed_beacons > 40)
8247                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8248                             10 + POOR;
8249                 else if (missed_beacons > 32)
8250                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8251                             18 + FAIR;
8252                 else if (missed_beacons > 20)
8253                         beacon_qual = (32 - missed_beacons) *
8254                             (VERY_GOOD - GOOD) / 20 + GOOD;
8255                 else
8256                         beacon_qual = (20 - missed_beacons) *
8257                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8258
8259                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8260
8261 #ifdef CONFIG_IPW2100_DEBUG
8262                 if (beacon_qual == quality)
8263                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8264                 else if (tx_qual == quality)
8265                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8266                 else if (quality != 100)
8267                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8268                 else
8269                         IPW_DEBUG_WX("Quality not clamped.\n");
8270 #endif
8271
8272                 wstats->qual.qual = quality;
8273                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8274         }
8275
8276         wstats->qual.noise = 0;
8277         wstats->qual.updated = 7;
8278         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8279
8280         /* FIXME: this is percent and not a # */
8281         wstats->miss.beacon = missed_beacons;
8282
8283         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8284                                 &tx_failures, &ord_len))
8285                 goto fail_get_ordinal;
8286         wstats->discard.retries = tx_failures;
8287
8288         return wstats;
8289
8290       fail_get_ordinal:
8291         IPW_DEBUG_WX("failed querying ordinals.\n");
8292
8293         return (struct iw_statistics *)NULL;
8294 }
8295
8296 static struct iw_handler_def ipw2100_wx_handler_def = {
8297         .standard = ipw2100_wx_handlers,
8298         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8299         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8300         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8301         .private = (iw_handler *) ipw2100_private_handler,
8302         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8303         .get_wireless_stats = ipw2100_wx_wireless_stats,
8304 };
8305
8306 static void ipw2100_wx_event_work(struct work_struct *work)
8307 {
8308         struct ipw2100_priv *priv =
8309                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8310         union iwreq_data wrqu;
8311         unsigned int len = ETH_ALEN;
8312
8313         if (priv->status & STATUS_STOPPING)
8314                 return;
8315
8316         mutex_lock(&priv->action_mutex);
8317
8318         IPW_DEBUG_WX("enter\n");
8319
8320         mutex_unlock(&priv->action_mutex);
8321
8322         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8323
8324         /* Fetch BSSID from the hardware */
8325         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8326             priv->status & STATUS_RF_KILL_MASK ||
8327             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8328                                 &priv->bssid, &len)) {
8329                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8330         } else {
8331                 /* We now have the BSSID, so can finish setting to the full
8332                  * associated state */
8333                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8334                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8335                 priv->status &= ~STATUS_ASSOCIATING;
8336                 priv->status |= STATUS_ASSOCIATED;
8337                 netif_carrier_on(priv->net_dev);
8338                 netif_wake_queue(priv->net_dev);
8339         }
8340
8341         if (!(priv->status & STATUS_ASSOCIATED)) {
8342                 IPW_DEBUG_WX("Configuring ESSID\n");
8343                 mutex_lock(&priv->action_mutex);
8344                 /* This is a disassociation event, so kick the firmware to
8345                  * look for another AP */
8346                 if (priv->config & CFG_STATIC_ESSID)
8347                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8348                                           0);
8349                 else
8350                         ipw2100_set_essid(priv, NULL, 0, 0);
8351                 mutex_unlock(&priv->action_mutex);
8352         }
8353
8354         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8355 }
8356
8357 #define IPW2100_FW_MAJOR_VERSION 1
8358 #define IPW2100_FW_MINOR_VERSION 3
8359
8360 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8361 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8362
8363 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8364                              IPW2100_FW_MAJOR_VERSION)
8365
8366 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8367 "." __stringify(IPW2100_FW_MINOR_VERSION)
8368
8369 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8370
8371 /*
8372
8373 BINARY FIRMWARE HEADER FORMAT
8374
8375 offset      length   desc
8376 0           2        version
8377 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8378 4           4        fw_len
8379 8           4        uc_len
8380 C           fw_len   firmware data
8381 12 + fw_len uc_len   microcode data
8382
8383 */
8384
8385 struct ipw2100_fw_header {
8386         short version;
8387         short mode;
8388         unsigned int fw_size;
8389         unsigned int uc_size;
8390 } __attribute__ ((packed));
8391
8392 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8393 {
8394         struct ipw2100_fw_header *h =
8395             (struct ipw2100_fw_header *)fw->fw_entry->data;
8396
8397         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8398                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8399                        "(detected version id of %u). "
8400                        "See Documentation/networking/README.ipw2100\n",
8401                        h->version);
8402                 return 1;
8403         }
8404
8405         fw->version = h->version;
8406         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8407         fw->fw.size = h->fw_size;
8408         fw->uc.data = fw->fw.data + h->fw_size;
8409         fw->uc.size = h->uc_size;
8410
8411         return 0;
8412 }
8413
8414 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8415                                 struct ipw2100_fw *fw)
8416 {
8417         char *fw_name;
8418         int rc;
8419
8420         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8421                        priv->net_dev->name);
8422
8423         switch (priv->ieee->iw_mode) {
8424         case IW_MODE_ADHOC:
8425                 fw_name = IPW2100_FW_NAME("-i");
8426                 break;
8427 #ifdef CONFIG_IPW2100_MONITOR
8428         case IW_MODE_MONITOR:
8429                 fw_name = IPW2100_FW_NAME("-p");
8430                 break;
8431 #endif
8432         case IW_MODE_INFRA:
8433         default:
8434                 fw_name = IPW2100_FW_NAME("");
8435                 break;
8436         }
8437
8438         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8439
8440         if (rc < 0) {
8441                 printk(KERN_ERR DRV_NAME ": "
8442                        "%s: Firmware '%s' not available or load failed.\n",
8443                        priv->net_dev->name, fw_name);
8444                 return rc;
8445         }
8446         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8447                        fw->fw_entry->size);
8448
8449         ipw2100_mod_firmware_load(fw);
8450
8451         return 0;
8452 }
8453
8454 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8455                                      struct ipw2100_fw *fw)
8456 {
8457         fw->version = 0;
8458         if (fw->fw_entry)
8459                 release_firmware(fw->fw_entry);
8460         fw->fw_entry = NULL;
8461 }
8462
8463 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8464                                  size_t max)
8465 {
8466         char ver[MAX_FW_VERSION_LEN];
8467         u32 len = MAX_FW_VERSION_LEN;
8468         u32 tmp;
8469         int i;
8470         /* firmware version is an ascii string (max len of 14) */
8471         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8472                 return -EIO;
8473         tmp = max;
8474         if (len >= max)
8475                 len = max - 1;
8476         for (i = 0; i < len; i++)
8477                 buf[i] = ver[i];
8478         buf[i] = '\0';
8479         return tmp;
8480 }
8481
8482 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8483                                     size_t max)
8484 {
8485         u32 ver;
8486         u32 len = sizeof(ver);
8487         /* microcode version is a 32 bit integer */
8488         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8489                 return -EIO;
8490         return snprintf(buf, max, "%08X", ver);
8491 }
8492
8493 /*
8494  * On exit, the firmware will have been freed from the fw list
8495  */
8496 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8497 {
8498         /* firmware is constructed of N contiguous entries, each entry is
8499          * structured as:
8500          *
8501          * offset    sie         desc
8502          * 0         4           address to write to
8503          * 4         2           length of data run
8504          * 6         length      data
8505          */
8506         unsigned int addr;
8507         unsigned short len;
8508
8509         const unsigned char *firmware_data = fw->fw.data;
8510         unsigned int firmware_data_left = fw->fw.size;
8511
8512         while (firmware_data_left > 0) {
8513                 addr = *(u32 *) (firmware_data);
8514                 firmware_data += 4;
8515                 firmware_data_left -= 4;
8516
8517                 len = *(u16 *) (firmware_data);
8518                 firmware_data += 2;
8519                 firmware_data_left -= 2;
8520
8521                 if (len > 32) {
8522                         printk(KERN_ERR DRV_NAME ": "
8523                                "Invalid firmware run-length of %d bytes\n",
8524                                len);
8525                         return -EINVAL;
8526                 }
8527
8528                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8529                 firmware_data += len;
8530                 firmware_data_left -= len;
8531         }
8532
8533         return 0;
8534 }
8535
8536 struct symbol_alive_response {
8537         u8 cmd_id;
8538         u8 seq_num;
8539         u8 ucode_rev;
8540         u8 eeprom_valid;
8541         u16 valid_flags;
8542         u8 IEEE_addr[6];
8543         u16 flags;
8544         u16 pcb_rev;
8545         u16 clock_settle_time;  // 1us LSB
8546         u16 powerup_settle_time;        // 1us LSB
8547         u16 hop_settle_time;    // 1us LSB
8548         u8 date[3];             // month, day, year
8549         u8 time[2];             // hours, minutes
8550         u8 ucode_valid;
8551 };
8552
8553 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8554                                   struct ipw2100_fw *fw)
8555 {
8556         struct net_device *dev = priv->net_dev;
8557         const unsigned char *microcode_data = fw->uc.data;
8558         unsigned int microcode_data_left = fw->uc.size;
8559         void __iomem *reg = (void __iomem *)dev->base_addr;
8560
8561         struct symbol_alive_response response;
8562         int i, j;
8563         u8 data;
8564
8565         /* Symbol control */
8566         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8567         readl(reg);
8568         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8569         readl(reg);
8570
8571         /* HW config */
8572         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8573         readl(reg);
8574         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8575         readl(reg);
8576
8577         /* EN_CS_ACCESS bit to reset control store pointer */
8578         write_nic_byte(dev, 0x210000, 0x40);
8579         readl(reg);
8580         write_nic_byte(dev, 0x210000, 0x0);
8581         readl(reg);
8582         write_nic_byte(dev, 0x210000, 0x40);
8583         readl(reg);
8584
8585         /* copy microcode from buffer into Symbol */
8586
8587         while (microcode_data_left > 0) {
8588                 write_nic_byte(dev, 0x210010, *microcode_data++);
8589                 write_nic_byte(dev, 0x210010, *microcode_data++);
8590                 microcode_data_left -= 2;
8591         }
8592
8593         /* EN_CS_ACCESS bit to reset the control store pointer */
8594         write_nic_byte(dev, 0x210000, 0x0);
8595         readl(reg);
8596
8597         /* Enable System (Reg 0)
8598          * first enable causes garbage in RX FIFO */
8599         write_nic_byte(dev, 0x210000, 0x0);
8600         readl(reg);
8601         write_nic_byte(dev, 0x210000, 0x80);
8602         readl(reg);
8603
8604         /* Reset External Baseband Reg */
8605         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8606         readl(reg);
8607         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8608         readl(reg);
8609
8610         /* HW Config (Reg 5) */
8611         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8612         readl(reg);
8613         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8614         readl(reg);
8615
8616         /* Enable System (Reg 0)
8617          * second enable should be OK */
8618         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8619         readl(reg);
8620         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8621
8622         /* check Symbol is enabled - upped this from 5 as it wasn't always
8623          * catching the update */
8624         for (i = 0; i < 10; i++) {
8625                 udelay(10);
8626
8627                 /* check Dino is enabled bit */
8628                 read_nic_byte(dev, 0x210000, &data);
8629                 if (data & 0x1)
8630                         break;
8631         }
8632
8633         if (i == 10) {
8634                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8635                        dev->name);
8636                 return -EIO;
8637         }
8638
8639         /* Get Symbol alive response */
8640         for (i = 0; i < 30; i++) {
8641                 /* Read alive response structure */
8642                 for (j = 0;
8643                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8644                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8645
8646                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8647                         break;
8648                 udelay(10);
8649         }
8650
8651         if (i == 30) {
8652                 printk(KERN_ERR DRV_NAME
8653                        ": %s: No response from Symbol - hw not alive\n",
8654                        dev->name);
8655                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8656                 return -EIO;
8657         }
8658
8659         return 0;
8660 }