[NET]: Add common helper functions to convert IPv6/IPv4 address string to network...
[linux-2.6] / net / 8021q / vlan_dev.c
1 /* -*- linux-c -*-
2  * INET         802.1Q VLAN
3  *              Ethernet-type device handling.
4  *
5  * Authors:     Ben Greear <greearb@candelatech.com>
6  *              Please send support related email to: vlan@scry.wanfear.com
7  *              VLAN Home Page: http://www.candelatech.com/~greear/vlan.html
8  * 
9  * Fixes:       Mar 22 2001: Martin Bokaemper <mbokaemper@unispherenetworks.com>
10  *                - reset skb->pkt_type on incoming packets when MAC was changed
11  *                - see that changed MAC is saddr for outgoing packets
12  *              Oct 20, 2001:  Ard van Breeman:
13  *                - Fix MC-list, finally.
14  *                - Flush MC-list on VLAN destroy.
15  *                
16  *
17  *              This program is free software; you can redistribute it and/or
18  *              modify it under the terms of the GNU General Public License
19  *              as published by the Free Software Foundation; either version
20  *              2 of the License, or (at your option) any later version.
21  */
22
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/in.h>
26 #include <linux/init.h>
27 #include <asm/uaccess.h> /* for copy_from_user */
28 #include <linux/skbuff.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <net/datalink.h>
32 #include <net/p8022.h>
33 #include <net/arp.h>
34
35 #include "vlan.h"
36 #include "vlanproc.h"
37 #include <linux/if_vlan.h>
38 #include <net/ip.h>
39
40 /*
41  *      Rebuild the Ethernet MAC header. This is called after an ARP
42  *      (or in future other address resolution) has completed on this
43  *      sk_buff. We now let ARP fill in the other fields.
44  *
45  *      This routine CANNOT use cached dst->neigh!
46  *      Really, it is used only when dst->neigh is wrong.
47  *
48  * TODO:  This needs a checkup, I'm ignorant here. --BLG
49  */
50 int vlan_dev_rebuild_header(struct sk_buff *skb)
51 {
52         struct net_device *dev = skb->dev;
53         struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
54
55         switch (veth->h_vlan_encapsulated_proto) {
56 #ifdef CONFIG_INET
57         case __constant_htons(ETH_P_IP):
58
59                 /* TODO:  Confirm this will work with VLAN headers... */
60                 return arp_find(veth->h_dest, skb);
61 #endif  
62         default:
63                 printk(VLAN_DBG
64                        "%s: unable to resolve type %X addresses.\n", 
65                        dev->name, (int)veth->h_vlan_encapsulated_proto);
66          
67                 memcpy(veth->h_source, dev->dev_addr, ETH_ALEN);
68                 break;
69         };
70
71         return 0;
72 }
73
74 static inline struct sk_buff *vlan_check_reorder_header(struct sk_buff *skb)
75 {
76         if (VLAN_DEV_INFO(skb->dev)->flags & 1) {
77                 if (skb_shared(skb) || skb_cloned(skb)) {
78                         struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
79                         kfree_skb(skb);
80                         skb = nskb;
81                 }
82                 if (skb) {
83                         /* Lifted from Gleb's VLAN code... */
84                         memmove(skb->data - ETH_HLEN,
85                                 skb->data - VLAN_ETH_HLEN, 12);
86                         skb->mac.raw += VLAN_HLEN;
87                 }
88         }
89
90         return skb;
91 }
92
93 /*
94  *      Determine the packet's protocol ID. The rule here is that we 
95  *      assume 802.3 if the type field is short enough to be a length.
96  *      This is normal practice and works for any 'now in use' protocol.
97  *
98  *  Also, at this point we assume that we ARE dealing exclusively with
99  *  VLAN packets, or packets that should be made into VLAN packets based
100  *  on a default VLAN ID.
101  *
102  *  NOTE:  Should be similar to ethernet/eth.c.
103  *
104  *  SANITY NOTE:  This method is called when a packet is moving up the stack
105  *                towards userland.  To get here, it would have already passed
106  *                through the ethernet/eth.c eth_type_trans() method.
107  *  SANITY NOTE 2: We are referencing to the VLAN_HDR frields, which MAY be
108  *                 stored UNALIGNED in the memory.  RISC systems don't like
109  *                 such cases very much...
110  *  SANITY NOTE 2a:  According to Dave Miller & Alexey, it will always be aligned,
111  *                 so there doesn't need to be any of the unaligned stuff.  It has
112  *                 been commented out now...  --Ben
113  *
114  */
115 int vlan_skb_recv(struct sk_buff *skb, struct net_device *dev,
116                   struct packet_type* ptype, struct net_device *orig_dev)
117 {
118         unsigned char *rawp = NULL;
119         struct vlan_hdr *vhdr = (struct vlan_hdr *)(skb->data);
120         unsigned short vid;
121         struct net_device_stats *stats;
122         unsigned short vlan_TCI;
123         __be16 proto;
124
125         /* vlan_TCI = ntohs(get_unaligned(&vhdr->h_vlan_TCI)); */
126         vlan_TCI = ntohs(vhdr->h_vlan_TCI);
127
128         vid = (vlan_TCI & VLAN_VID_MASK);
129
130 #ifdef VLAN_DEBUG
131         printk(VLAN_DBG "%s: skb: %p vlan_id: %hx\n",
132                 __FUNCTION__, skb, vid);
133 #endif
134
135         /* Ok, we will find the correct VLAN device, strip the header,
136          * and then go on as usual.
137          */
138
139         /* We have 12 bits of vlan ID.
140          *
141          * We must not drop allow preempt until we hold a
142          * reference to the device (netif_rx does that) or we
143          * fail.
144          */
145
146         rcu_read_lock();
147         skb->dev = __find_vlan_dev(dev, vid);
148         if (!skb->dev) {
149                 rcu_read_unlock();
150
151 #ifdef VLAN_DEBUG
152                 printk(VLAN_DBG "%s: ERROR: No net_device for VID: %i on dev: %s [%i]\n",
153                         __FUNCTION__, (unsigned int)(vid), dev->name, dev->ifindex);
154 #endif
155                 kfree_skb(skb);
156                 return -1;
157         }
158
159         skb->dev->last_rx = jiffies;
160
161         /* Bump the rx counters for the VLAN device. */
162         stats = vlan_dev_get_stats(skb->dev);
163         stats->rx_packets++;
164         stats->rx_bytes += skb->len;
165
166         /* Take off the VLAN header (4 bytes currently) */
167         skb_pull_rcsum(skb, VLAN_HLEN);
168
169         /* Ok, lets check to make sure the device (dev) we
170          * came in on is what this VLAN is attached to.
171          */
172
173         if (dev != VLAN_DEV_INFO(skb->dev)->real_dev) {
174                 rcu_read_unlock();
175
176 #ifdef VLAN_DEBUG
177                 printk(VLAN_DBG "%s: dropping skb: %p because came in on wrong device, dev: %s  real_dev: %s, skb_dev: %s\n",
178                         __FUNCTION__, skb, dev->name, 
179                         VLAN_DEV_INFO(skb->dev)->real_dev->name, 
180                         skb->dev->name);
181 #endif
182                 kfree_skb(skb);
183                 stats->rx_errors++;
184                 return -1;
185         }
186
187         /*
188          * Deal with ingress priority mapping.
189          */
190         skb->priority = vlan_get_ingress_priority(skb->dev, ntohs(vhdr->h_vlan_TCI));
191
192 #ifdef VLAN_DEBUG
193         printk(VLAN_DBG "%s: priority: %lu  for TCI: %hu (hbo)\n",
194                 __FUNCTION__, (unsigned long)(skb->priority), 
195                 ntohs(vhdr->h_vlan_TCI));
196 #endif
197
198         /* The ethernet driver already did the pkt_type calculations
199          * for us...
200          */
201         switch (skb->pkt_type) {
202         case PACKET_BROADCAST: /* Yeah, stats collect these together.. */
203                 // stats->broadcast ++; // no such counter :-(
204                 break;
205
206         case PACKET_MULTICAST:
207                 stats->multicast++;
208                 break;
209
210         case PACKET_OTHERHOST: 
211                 /* Our lower layer thinks this is not local, let's make sure.
212                  * This allows the VLAN to have a different MAC than the underlying
213                  * device, and still route correctly.
214                  */
215                 if (!compare_ether_addr(eth_hdr(skb)->h_dest, skb->dev->dev_addr)) {
216                         /* It is for our (changed) MAC-address! */
217                         skb->pkt_type = PACKET_HOST;
218                 }
219                 break;
220         default:
221                 break;
222         };
223
224         /*  Was a VLAN packet, grab the encapsulated protocol, which the layer
225          * three protocols care about.
226          */
227         /* proto = get_unaligned(&vhdr->h_vlan_encapsulated_proto); */
228         proto = vhdr->h_vlan_encapsulated_proto;
229
230         skb->protocol = proto;
231         if (ntohs(proto) >= 1536) {
232                 /* place it back on the queue to be handled by
233                  * true layer 3 protocols.
234                  */
235
236                 /* See if we are configured to re-write the VLAN header
237                  * to make it look like ethernet...
238                  */
239                 skb = vlan_check_reorder_header(skb);
240
241                 /* Can be null if skb-clone fails when re-ordering */
242                 if (skb) {
243                         netif_rx(skb);
244                 } else {
245                         /* TODO:  Add a more specific counter here. */
246                         stats->rx_errors++;
247                 }
248                 rcu_read_unlock();
249                 return 0;
250         }
251
252         rawp = skb->data;
253
254         /*
255          * This is a magic hack to spot IPX packets. Older Novell breaks
256          * the protocol design and runs IPX over 802.3 without an 802.2 LLC
257          * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
258          * won't work for fault tolerant netware but does for the rest.
259          */
260         if (*(unsigned short *)rawp == 0xFFFF) {
261                 skb->protocol = __constant_htons(ETH_P_802_3);
262                 /* place it back on the queue to be handled by true layer 3 protocols.
263                  */
264
265                 /* See if we are configured to re-write the VLAN header
266                  * to make it look like ethernet...
267                  */
268                 skb = vlan_check_reorder_header(skb);
269
270                 /* Can be null if skb-clone fails when re-ordering */
271                 if (skb) {
272                         netif_rx(skb);
273                 } else {
274                         /* TODO:  Add a more specific counter here. */
275                         stats->rx_errors++;
276                 }
277                 rcu_read_unlock();
278                 return 0;
279         }
280
281         /*
282          *      Real 802.2 LLC
283          */
284         skb->protocol = __constant_htons(ETH_P_802_2);
285         /* place it back on the queue to be handled by upper layer protocols.
286          */
287
288         /* See if we are configured to re-write the VLAN header
289          * to make it look like ethernet...
290          */
291         skb = vlan_check_reorder_header(skb);
292
293         /* Can be null if skb-clone fails when re-ordering */
294         if (skb) {
295                 netif_rx(skb);
296         } else {
297                 /* TODO:  Add a more specific counter here. */
298                 stats->rx_errors++;
299         }
300         rcu_read_unlock();
301         return 0;
302 }
303
304 static inline unsigned short vlan_dev_get_egress_qos_mask(struct net_device* dev,
305                                                           struct sk_buff* skb)
306 {
307         struct vlan_priority_tci_mapping *mp =
308                 VLAN_DEV_INFO(dev)->egress_priority_map[(skb->priority & 0xF)];
309
310         while (mp) {
311                 if (mp->priority == skb->priority) {
312                         return mp->vlan_qos; /* This should already be shifted to mask
313                                               * correctly with the VLAN's TCI
314                                               */
315                 }
316                 mp = mp->next;
317         }
318         return 0;
319 }
320
321 /*
322  *      Create the VLAN header for an arbitrary protocol layer 
323  *
324  *      saddr=NULL      means use device source address
325  *      daddr=NULL      means leave destination address (eg unresolved arp)
326  *
327  *  This is called when the SKB is moving down the stack towards the
328  *  physical devices.
329  */
330 int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev,
331                          unsigned short type, void *daddr, void *saddr,
332                          unsigned len)
333 {
334         struct vlan_hdr *vhdr;
335         unsigned short veth_TCI = 0;
336         int rc = 0;
337         int build_vlan_header = 0;
338         struct net_device *vdev = dev; /* save this for the bottom of the method */
339
340 #ifdef VLAN_DEBUG
341         printk(VLAN_DBG "%s: skb: %p type: %hx len: %x vlan_id: %hx, daddr: %p\n",
342                 __FUNCTION__, skb, type, len, VLAN_DEV_INFO(dev)->vlan_id, daddr);
343 #endif
344
345         /* build vlan header only if re_order_header flag is NOT set.  This
346          * fixes some programs that get confused when they see a VLAN device
347          * sending a frame that is VLAN encoded (the consensus is that the VLAN
348          * device should look completely like an Ethernet device when the
349          * REORDER_HEADER flag is set)  The drawback to this is some extra 
350          * header shuffling in the hard_start_xmit.  Users can turn off this
351          * REORDER behaviour with the vconfig tool.
352          */
353         build_vlan_header = ((VLAN_DEV_INFO(dev)->flags & 1) == 0);
354
355         if (build_vlan_header) {
356                 vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN);
357
358                 /* build the four bytes that make this a VLAN header. */
359
360                 /* Now, construct the second two bytes. This field looks something
361                  * like:
362                  * usr_priority: 3 bits  (high bits)
363                  * CFI           1 bit
364                  * VLAN ID       12 bits (low bits)
365                  *
366                  */
367                 veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
368                 veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
369
370                 vhdr->h_vlan_TCI = htons(veth_TCI);
371
372                 /*
373                  *  Set the protocol type.
374                  *  For a packet of type ETH_P_802_3 we put the length in here instead.
375                  *  It is up to the 802.2 layer to carry protocol information.
376                  */
377
378                 if (type != ETH_P_802_3) {
379                         vhdr->h_vlan_encapsulated_proto = htons(type);
380                 } else {
381                         vhdr->h_vlan_encapsulated_proto = htons(len);
382                 }
383         }
384
385         /* Before delegating work to the lower layer, enter our MAC-address */
386         if (saddr == NULL)
387                 saddr = dev->dev_addr;
388
389         dev = VLAN_DEV_INFO(dev)->real_dev;
390
391         /* MPLS can send us skbuffs w/out enough space.  This check will grow the
392          * skb if it doesn't have enough headroom.  Not a beautiful solution, so
393          * I'll tick a counter so that users can know it's happening...  If they
394          * care...
395          */
396
397         /* NOTE:  This may still break if the underlying device is not the final
398          * device (and thus there are more headers to add...)  It should work for
399          * good-ole-ethernet though.
400          */
401         if (skb_headroom(skb) < dev->hard_header_len) {
402                 struct sk_buff *sk_tmp = skb;
403                 skb = skb_realloc_headroom(sk_tmp, dev->hard_header_len);
404                 kfree_skb(sk_tmp);
405                 if (skb == NULL) {
406                         struct net_device_stats *stats = vlan_dev_get_stats(vdev);
407                         stats->tx_dropped++;
408                         return -ENOMEM;
409                 }
410                 VLAN_DEV_INFO(vdev)->cnt_inc_headroom_on_tx++;
411 #ifdef VLAN_DEBUG
412                 printk(VLAN_DBG "%s: %s: had to grow skb.\n", __FUNCTION__, vdev->name);
413 #endif
414         }
415
416         if (build_vlan_header) {
417                 /* Now make the underlying real hard header */
418                 rc = dev->hard_header(skb, dev, ETH_P_8021Q, daddr, saddr, len + VLAN_HLEN);
419
420                 if (rc > 0) {
421                         rc += VLAN_HLEN;
422                 } else if (rc < 0) {
423                         rc -= VLAN_HLEN;
424                 }
425         } else {
426                 /* If here, then we'll just make a normal looking ethernet frame,
427                  * but, the hard_start_xmit method will insert the tag (it has to
428                  * be able to do this for bridged and other skbs that don't come
429                  * down the protocol stack in an orderly manner.
430                  */
431                 rc = dev->hard_header(skb, dev, type, daddr, saddr, len);
432         }
433
434         return rc;
435 }
436
437 int vlan_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
438 {
439         struct net_device_stats *stats = vlan_dev_get_stats(dev);
440         struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
441
442         /* Handle non-VLAN frames if they are sent to us, for example by DHCP.
443          *
444          * NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING
445          * OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs...
446          */
447
448         if (veth->h_vlan_proto != __constant_htons(ETH_P_8021Q)) {
449                 int orig_headroom = skb_headroom(skb);
450                 unsigned short veth_TCI;
451
452                 /* This is not a VLAN frame...but we can fix that! */
453                 VLAN_DEV_INFO(dev)->cnt_encap_on_xmit++;
454
455 #ifdef VLAN_DEBUG
456                 printk(VLAN_DBG "%s: proto to encap: 0x%hx (hbo)\n",
457                         __FUNCTION__, htons(veth->h_vlan_proto));
458 #endif
459                 /* Construct the second two bytes. This field looks something
460                  * like:
461                  * usr_priority: 3 bits  (high bits)
462                  * CFI           1 bit
463                  * VLAN ID       12 bits (low bits)
464                  */
465                 veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
466                 veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
467
468                 skb = __vlan_put_tag(skb, veth_TCI);
469                 if (!skb) {
470                         stats->tx_dropped++;
471                         return 0;
472                 }
473
474                 if (orig_headroom < VLAN_HLEN) {
475                         VLAN_DEV_INFO(dev)->cnt_inc_headroom_on_tx++;
476                 }
477         }
478
479 #ifdef VLAN_DEBUG
480         printk(VLAN_DBG "%s: about to send skb: %p to dev: %s\n",
481                 __FUNCTION__, skb, skb->dev->name);
482         printk(VLAN_DBG "  %2hx.%2hx.%2hx.%2xh.%2hx.%2hx %2hx.%2hx.%2hx.%2hx.%2hx.%2hx %4hx %4hx %4hx\n",
483                veth->h_dest[0], veth->h_dest[1], veth->h_dest[2], veth->h_dest[3], veth->h_dest[4], veth->h_dest[5],
484                veth->h_source[0], veth->h_source[1], veth->h_source[2], veth->h_source[3], veth->h_source[4], veth->h_source[5],
485                veth->h_vlan_proto, veth->h_vlan_TCI, veth->h_vlan_encapsulated_proto);
486 #endif
487
488         stats->tx_packets++; /* for statics only */
489         stats->tx_bytes += skb->len;
490
491         skb->dev = VLAN_DEV_INFO(dev)->real_dev;
492         dev_queue_xmit(skb);
493
494         return 0;
495 }
496
497 int vlan_dev_hwaccel_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
498 {
499         struct net_device_stats *stats = vlan_dev_get_stats(dev);
500         unsigned short veth_TCI;
501
502         /* Construct the second two bytes. This field looks something
503          * like:
504          * usr_priority: 3 bits  (high bits)
505          * CFI           1 bit
506          * VLAN ID       12 bits (low bits)
507          */
508         veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
509         veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
510         skb = __vlan_hwaccel_put_tag(skb, veth_TCI);
511
512         stats->tx_packets++;
513         stats->tx_bytes += skb->len;
514
515         skb->dev = VLAN_DEV_INFO(dev)->real_dev;
516         dev_queue_xmit(skb);
517
518         return 0;
519 }
520
521 int vlan_dev_change_mtu(struct net_device *dev, int new_mtu)
522 {
523         /* TODO: gotta make sure the underlying layer can handle it,
524          * maybe an IFF_VLAN_CAPABLE flag for devices?
525          */
526         if (VLAN_DEV_INFO(dev)->real_dev->mtu < new_mtu)
527                 return -ERANGE;
528
529         dev->mtu = new_mtu;
530
531         return 0;
532 }
533
534 int vlan_dev_set_ingress_priority(char *dev_name, __u32 skb_prio, short vlan_prio)
535 {
536         struct net_device *dev = dev_get_by_name(dev_name);
537
538         if (dev) {
539                 if (dev->priv_flags & IFF_802_1Q_VLAN) {
540                         /* see if a priority mapping exists.. */
541                         VLAN_DEV_INFO(dev)->ingress_priority_map[vlan_prio & 0x7] = skb_prio;
542                         dev_put(dev);
543                         return 0;
544                 }
545
546                 dev_put(dev);
547         }
548         return -EINVAL;
549 }
550
551 int vlan_dev_set_egress_priority(char *dev_name, __u32 skb_prio, short vlan_prio)
552 {
553         struct net_device *dev = dev_get_by_name(dev_name);
554         struct vlan_priority_tci_mapping *mp = NULL;
555         struct vlan_priority_tci_mapping *np;
556    
557         if (dev) {
558                 if (dev->priv_flags & IFF_802_1Q_VLAN) {
559                         /* See if a priority mapping exists.. */
560                         mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF];
561                         while (mp) {
562                                 if (mp->priority == skb_prio) {
563                                         mp->vlan_qos = ((vlan_prio << 13) & 0xE000);
564                                         dev_put(dev);
565                                         return 0;
566                                 }
567                                 mp = mp->next;
568                         }
569
570                         /* Create a new mapping then. */
571                         mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF];
572                         np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL);
573                         if (np) {
574                                 np->next = mp;
575                                 np->priority = skb_prio;
576                                 np->vlan_qos = ((vlan_prio << 13) & 0xE000);
577                                 VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF] = np;
578                                 dev_put(dev);
579                                 return 0;
580                         } else {
581                                 dev_put(dev);
582                                 return -ENOBUFS;
583                         }
584                 }
585                 dev_put(dev);
586         }
587         return -EINVAL;
588 }
589
590 /* Flags are defined in the vlan_dev_info class in include/linux/if_vlan.h file. */
591 int vlan_dev_set_vlan_flag(char *dev_name, __u32 flag, short flag_val)
592 {
593         struct net_device *dev = dev_get_by_name(dev_name);
594
595         if (dev) {
596                 if (dev->priv_flags & IFF_802_1Q_VLAN) {
597                         /* verify flag is supported */
598                         if (flag == 1) {
599                                 if (flag_val) {
600                                         VLAN_DEV_INFO(dev)->flags |= 1;
601                                 } else {
602                                         VLAN_DEV_INFO(dev)->flags &= ~1;
603                                 }
604                                 dev_put(dev);
605                                 return 0;
606                         } else {
607                                 printk(KERN_ERR  "%s: flag %i is not valid.\n",
608                                         __FUNCTION__, (int)(flag));
609                                 dev_put(dev);
610                                 return -EINVAL;
611                         }
612                 } else {
613                         printk(KERN_ERR 
614                                "%s: %s is not a vlan device, priv_flags: %hX.\n",
615                                __FUNCTION__, dev->name, dev->priv_flags);
616                         dev_put(dev);
617                 }
618         } else {
619                 printk(KERN_ERR  "%s: Could not find device: %s\n", 
620                         __FUNCTION__, dev_name);
621         }
622
623         return -EINVAL;
624 }
625
626
627 int vlan_dev_get_realdev_name(const char *dev_name, char* result)
628 {
629         struct net_device *dev = dev_get_by_name(dev_name);
630         int rv = 0;
631         if (dev) {
632                 if (dev->priv_flags & IFF_802_1Q_VLAN) {
633                         strncpy(result, VLAN_DEV_INFO(dev)->real_dev->name, 23);
634                         rv = 0;
635                 } else {
636                         rv = -EINVAL;
637                 }
638                 dev_put(dev);
639         } else {
640                 rv = -ENODEV;
641         }
642         return rv;
643 }
644
645 int vlan_dev_get_vid(const char *dev_name, unsigned short* result)
646 {
647         struct net_device *dev = dev_get_by_name(dev_name);
648         int rv = 0;
649         if (dev) {
650                 if (dev->priv_flags & IFF_802_1Q_VLAN) {
651                         *result = VLAN_DEV_INFO(dev)->vlan_id;
652                         rv = 0;
653                 } else {
654                         rv = -EINVAL;
655                 }
656                 dev_put(dev);
657         } else {
658                 rv = -ENODEV;
659         }
660         return rv;
661 }
662
663
664 int vlan_dev_set_mac_address(struct net_device *dev, void *addr_struct_p)
665 {
666         struct sockaddr *addr = (struct sockaddr *)(addr_struct_p);
667         int i;
668
669         if (netif_running(dev))
670                 return -EBUSY;
671
672         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
673
674         printk("%s: Setting MAC address to ", dev->name);
675         for (i = 0; i < 6; i++)
676                 printk(" %2.2x", dev->dev_addr[i]);
677         printk(".\n");
678
679         if (memcmp(VLAN_DEV_INFO(dev)->real_dev->dev_addr,
680                    dev->dev_addr,
681                    dev->addr_len) != 0) {
682                 if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_PROMISC)) {
683                         int flgs = VLAN_DEV_INFO(dev)->real_dev->flags;
684
685                         /* Increment our in-use promiscuity counter */
686                         dev_set_promiscuity(VLAN_DEV_INFO(dev)->real_dev, 1);
687
688                         /* Make PROMISC visible to the user. */
689                         flgs |= IFF_PROMISC;
690                         printk("VLAN (%s):  Setting underlying device (%s) to promiscious mode.\n",
691                                dev->name, VLAN_DEV_INFO(dev)->real_dev->name);
692                         dev_change_flags(VLAN_DEV_INFO(dev)->real_dev, flgs);
693                 }
694         } else {
695                 printk("VLAN (%s):  Underlying device (%s) has same MAC, not checking promiscious mode.\n",
696                        dev->name, VLAN_DEV_INFO(dev)->real_dev->name);
697         }
698
699         return 0;
700 }
701
702 static inline int vlan_dmi_equals(struct dev_mc_list *dmi1,
703                                   struct dev_mc_list *dmi2)
704 {
705         return ((dmi1->dmi_addrlen == dmi2->dmi_addrlen) &&
706                 (memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0));
707 }
708
709 /** dmi is a single entry into a dev_mc_list, a single node.  mc_list is
710  *  an entire list, and we'll iterate through it.
711  */
712 static int vlan_should_add_mc(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
713 {
714         struct dev_mc_list *idmi;
715
716         for (idmi = mc_list; idmi != NULL; ) {
717                 if (vlan_dmi_equals(dmi, idmi)) {
718                         if (dmi->dmi_users > idmi->dmi_users)
719                                 return 1;
720                         else
721                                 return 0;
722                 } else {
723                         idmi = idmi->next;
724                 }
725         }
726
727         return 1;
728 }
729
730 static inline void vlan_destroy_mc_list(struct dev_mc_list *mc_list)
731 {
732         struct dev_mc_list *dmi = mc_list;
733         struct dev_mc_list *next;
734
735         while(dmi) {
736                 next = dmi->next;
737                 kfree(dmi);
738                 dmi = next;
739         }
740 }
741
742 static void vlan_copy_mc_list(struct dev_mc_list *mc_list, struct vlan_dev_info *vlan_info)
743 {
744         struct dev_mc_list *dmi, *new_dmi;
745
746         vlan_destroy_mc_list(vlan_info->old_mc_list);
747         vlan_info->old_mc_list = NULL;
748
749         for (dmi = mc_list; dmi != NULL; dmi = dmi->next) {
750                 new_dmi = kmalloc(sizeof(*new_dmi), GFP_ATOMIC);
751                 if (new_dmi == NULL) {
752                         printk(KERN_ERR "vlan: cannot allocate memory. "
753                                "Multicast may not work properly from now.\n");
754                         return;
755                 }
756
757                 /* Copy whole structure, then make new 'next' pointer */
758                 *new_dmi = *dmi;
759                 new_dmi->next = vlan_info->old_mc_list;
760                 vlan_info->old_mc_list = new_dmi;
761         }
762 }
763
764 static void vlan_flush_mc_list(struct net_device *dev)
765 {
766         struct dev_mc_list *dmi = dev->mc_list;
767
768         while (dmi) {
769                 printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from vlan interface\n",
770                        dev->name,
771                        dmi->dmi_addr[0],
772                        dmi->dmi_addr[1],
773                        dmi->dmi_addr[2],
774                        dmi->dmi_addr[3],
775                        dmi->dmi_addr[4],
776                        dmi->dmi_addr[5]);
777                 dev_mc_delete(dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
778                 dmi = dev->mc_list;
779         }
780
781         /* dev->mc_list is NULL by the time we get here. */
782         vlan_destroy_mc_list(VLAN_DEV_INFO(dev)->old_mc_list);
783         VLAN_DEV_INFO(dev)->old_mc_list = NULL;
784 }
785
786 int vlan_dev_open(struct net_device *dev)
787 {
788         if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_UP))
789                 return -ENETDOWN;
790
791         return 0;
792 }
793
794 int vlan_dev_stop(struct net_device *dev)
795 {
796         vlan_flush_mc_list(dev);
797         return 0;
798 }
799
800 int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
801 {
802         struct net_device *real_dev = VLAN_DEV_INFO(dev)->real_dev;
803         struct ifreq ifrr;
804         int err = -EOPNOTSUPP;
805
806         strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ);
807         ifrr.ifr_ifru = ifr->ifr_ifru;
808
809         switch(cmd) {
810         case SIOCGMIIPHY:
811         case SIOCGMIIREG:
812         case SIOCSMIIREG:
813                 if (real_dev->do_ioctl && netif_device_present(real_dev)) 
814                         err = real_dev->do_ioctl(real_dev, &ifrr, cmd);
815                 break;
816
817         case SIOCETHTOOL:
818                 err = dev_ethtool(&ifrr);
819         }
820
821         if (!err) 
822                 ifr->ifr_ifru = ifrr.ifr_ifru;
823
824         return err;
825 }
826
827 /** Taken from Gleb + Lennert's VLAN code, and modified... */
828 void vlan_dev_set_multicast_list(struct net_device *vlan_dev)
829 {
830         struct dev_mc_list *dmi;
831         struct net_device *real_dev;
832         int inc;
833
834         if (vlan_dev && (vlan_dev->priv_flags & IFF_802_1Q_VLAN)) {
835                 /* Then it's a real vlan device, as far as we can tell.. */
836                 real_dev = VLAN_DEV_INFO(vlan_dev)->real_dev;
837
838                 /* compare the current promiscuity to the last promisc we had.. */
839                 inc = vlan_dev->promiscuity - VLAN_DEV_INFO(vlan_dev)->old_promiscuity;
840                 if (inc) {
841                         printk(KERN_INFO "%s: dev_set_promiscuity(master, %d)\n",
842                                vlan_dev->name, inc);
843                         dev_set_promiscuity(real_dev, inc); /* found in dev.c */
844                         VLAN_DEV_INFO(vlan_dev)->old_promiscuity = vlan_dev->promiscuity;
845                 }
846
847                 inc = vlan_dev->allmulti - VLAN_DEV_INFO(vlan_dev)->old_allmulti;
848                 if (inc) {
849                         printk(KERN_INFO "%s: dev_set_allmulti(master, %d)\n",
850                                vlan_dev->name, inc);
851                         dev_set_allmulti(real_dev, inc); /* dev.c */
852                         VLAN_DEV_INFO(vlan_dev)->old_allmulti = vlan_dev->allmulti;
853                 }
854
855                 /* looking for addresses to add to master's list */
856                 for (dmi = vlan_dev->mc_list; dmi != NULL; dmi = dmi->next) {
857                         if (vlan_should_add_mc(dmi, VLAN_DEV_INFO(vlan_dev)->old_mc_list)) {
858                                 dev_mc_add(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
859                                 printk(KERN_DEBUG "%s: add %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address to master interface\n",
860                                        vlan_dev->name,
861                                        dmi->dmi_addr[0],
862                                        dmi->dmi_addr[1],
863                                        dmi->dmi_addr[2],
864                                        dmi->dmi_addr[3],
865                                        dmi->dmi_addr[4],
866                                        dmi->dmi_addr[5]);
867                         }
868                 }
869
870                 /* looking for addresses to delete from master's list */
871                 for (dmi = VLAN_DEV_INFO(vlan_dev)->old_mc_list; dmi != NULL; dmi = dmi->next) {
872                         if (vlan_should_add_mc(dmi, vlan_dev->mc_list)) {
873                                 /* if we think we should add it to the new list, then we should really
874                                  * delete it from the real list on the underlying device.
875                                  */
876                                 dev_mc_delete(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
877                                 printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from master interface\n",
878                                        vlan_dev->name,
879                                        dmi->dmi_addr[0],
880                                        dmi->dmi_addr[1],
881                                        dmi->dmi_addr[2],
882                                        dmi->dmi_addr[3],
883                                        dmi->dmi_addr[4],
884                                        dmi->dmi_addr[5]);
885                         }
886                 }
887
888                 /* save multicast list */
889                 vlan_copy_mc_list(vlan_dev->mc_list, VLAN_DEV_INFO(vlan_dev));
890         }
891 }