ia64/xen: introduce sync bitops which is necessary for ia64/xen support.
[linux-2.6] / security / commoncap.c
1 /* Common capabilities, needed by capability.o and root_plug.o
2  *
3  *      This program is free software; you can redistribute it and/or modify
4  *      it under the terms of the GNU General Public License as published by
5  *      the Free Software Foundation; either version 2 of the License, or
6  *      (at your option) any later version.
7  *
8  */
9
10 #include <linux/capability.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/security.h>
15 #include <linux/file.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/skbuff.h>
21 #include <linux/netlink.h>
22 #include <linux/ptrace.h>
23 #include <linux/xattr.h>
24 #include <linux/hugetlb.h>
25 #include <linux/mount.h>
26 #include <linux/sched.h>
27 #include <linux/prctl.h>
28 #include <linux/securebits.h>
29
30 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
31 {
32         NETLINK_CB(skb).eff_cap = current->cap_effective;
33         return 0;
34 }
35
36 int cap_netlink_recv(struct sk_buff *skb, int cap)
37 {
38         if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
39                 return -EPERM;
40         return 0;
41 }
42
43 EXPORT_SYMBOL(cap_netlink_recv);
44
45 /*
46  * NOTE WELL: cap_capable() cannot be used like the kernel's capable()
47  * function.  That is, it has the reverse semantics: cap_capable()
48  * returns 0 when a task has a capability, but the kernel's capable()
49  * returns 1 for this case.
50  */
51 int cap_capable (struct task_struct *tsk, int cap)
52 {
53         /* Derived from include/linux/sched.h:capable. */
54         if (cap_raised(tsk->cap_effective, cap))
55                 return 0;
56         return -EPERM;
57 }
58
59 int cap_settime(struct timespec *ts, struct timezone *tz)
60 {
61         if (!capable(CAP_SYS_TIME))
62                 return -EPERM;
63         return 0;
64 }
65
66 int cap_ptrace_may_access(struct task_struct *child, unsigned int mode)
67 {
68         /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
69         if (cap_issubset(child->cap_permitted, current->cap_permitted))
70                 return 0;
71         if (capable(CAP_SYS_PTRACE))
72                 return 0;
73         return -EPERM;
74 }
75
76 int cap_ptrace_traceme(struct task_struct *parent)
77 {
78         /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
79         if (cap_issubset(current->cap_permitted, parent->cap_permitted))
80                 return 0;
81         if (has_capability(parent, CAP_SYS_PTRACE))
82                 return 0;
83         return -EPERM;
84 }
85
86 int cap_capget (struct task_struct *target, kernel_cap_t *effective,
87                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
88 {
89         /* Derived from kernel/capability.c:sys_capget. */
90         *effective = target->cap_effective;
91         *inheritable = target->cap_inheritable;
92         *permitted = target->cap_permitted;
93         return 0;
94 }
95
96 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
97
98 static inline int cap_block_setpcap(struct task_struct *target)
99 {
100         /*
101          * No support for remote process capability manipulation with
102          * filesystem capability support.
103          */
104         return (target != current);
105 }
106
107 static inline int cap_inh_is_capped(void)
108 {
109         /*
110          * Return 1 if changes to the inheritable set are limited
111          * to the old permitted set. That is, if the current task
112          * does *not* possess the CAP_SETPCAP capability.
113          */
114         return (cap_capable(current, CAP_SETPCAP) != 0);
115 }
116
117 static inline int cap_limit_ptraced_target(void) { return 1; }
118
119 #else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */
120
121 static inline int cap_block_setpcap(struct task_struct *t) { return 0; }
122 static inline int cap_inh_is_capped(void) { return 1; }
123 static inline int cap_limit_ptraced_target(void)
124 {
125         return !capable(CAP_SETPCAP);
126 }
127
128 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
129
130 int cap_capset_check (struct task_struct *target, kernel_cap_t *effective,
131                       kernel_cap_t *inheritable, kernel_cap_t *permitted)
132 {
133         if (cap_block_setpcap(target)) {
134                 return -EPERM;
135         }
136         if (cap_inh_is_capped()
137             && !cap_issubset(*inheritable,
138                              cap_combine(target->cap_inheritable,
139                                          current->cap_permitted))) {
140                 /* incapable of using this inheritable set */
141                 return -EPERM;
142         }
143         if (!cap_issubset(*inheritable,
144                            cap_combine(target->cap_inheritable,
145                                        current->cap_bset))) {
146                 /* no new pI capabilities outside bounding set */
147                 return -EPERM;
148         }
149
150         /* verify restrictions on target's new Permitted set */
151         if (!cap_issubset (*permitted,
152                            cap_combine (target->cap_permitted,
153                                         current->cap_permitted))) {
154                 return -EPERM;
155         }
156
157         /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
158         if (!cap_issubset (*effective, *permitted)) {
159                 return -EPERM;
160         }
161
162         return 0;
163 }
164
165 void cap_capset_set (struct task_struct *target, kernel_cap_t *effective,
166                      kernel_cap_t *inheritable, kernel_cap_t *permitted)
167 {
168         target->cap_effective = *effective;
169         target->cap_inheritable = *inheritable;
170         target->cap_permitted = *permitted;
171 }
172
173 static inline void bprm_clear_caps(struct linux_binprm *bprm)
174 {
175         cap_clear(bprm->cap_post_exec_permitted);
176         bprm->cap_effective = false;
177 }
178
179 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
180
181 int cap_inode_need_killpriv(struct dentry *dentry)
182 {
183         struct inode *inode = dentry->d_inode;
184         int error;
185
186         if (!inode->i_op || !inode->i_op->getxattr)
187                return 0;
188
189         error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
190         if (error <= 0)
191                 return 0;
192         return 1;
193 }
194
195 int cap_inode_killpriv(struct dentry *dentry)
196 {
197         struct inode *inode = dentry->d_inode;
198
199         if (!inode->i_op || !inode->i_op->removexattr)
200                return 0;
201
202         return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
203 }
204
205 static inline int cap_from_disk(struct vfs_cap_data *caps,
206                                 struct linux_binprm *bprm, unsigned size)
207 {
208         __u32 magic_etc;
209         unsigned tocopy, i;
210         int ret;
211
212         if (size < sizeof(magic_etc))
213                 return -EINVAL;
214
215         magic_etc = le32_to_cpu(caps->magic_etc);
216
217         switch ((magic_etc & VFS_CAP_REVISION_MASK)) {
218         case VFS_CAP_REVISION_1:
219                 if (size != XATTR_CAPS_SZ_1)
220                         return -EINVAL;
221                 tocopy = VFS_CAP_U32_1;
222                 break;
223         case VFS_CAP_REVISION_2:
224                 if (size != XATTR_CAPS_SZ_2)
225                         return -EINVAL;
226                 tocopy = VFS_CAP_U32_2;
227                 break;
228         default:
229                 return -EINVAL;
230         }
231
232         if (magic_etc & VFS_CAP_FLAGS_EFFECTIVE) {
233                 bprm->cap_effective = true;
234         } else {
235                 bprm->cap_effective = false;
236         }
237
238         ret = 0;
239
240         CAP_FOR_EACH_U32(i) {
241                 __u32 value_cpu;
242
243                 if (i >= tocopy) {
244                         /*
245                          * Legacy capability sets have no upper bits
246                          */
247                         bprm->cap_post_exec_permitted.cap[i] = 0;
248                         continue;
249                 }
250                 /*
251                  * pP' = (X & fP) | (pI & fI)
252                  */
253                 value_cpu = le32_to_cpu(caps->data[i].permitted);
254                 bprm->cap_post_exec_permitted.cap[i] =
255                         (current->cap_bset.cap[i] & value_cpu) |
256                         (current->cap_inheritable.cap[i] &
257                                 le32_to_cpu(caps->data[i].inheritable));
258                 if (value_cpu & ~bprm->cap_post_exec_permitted.cap[i]) {
259                         /*
260                          * insufficient to execute correctly
261                          */
262                         ret = -EPERM;
263                 }
264         }
265
266         /*
267          * For legacy apps, with no internal support for recognizing they
268          * do not have enough capabilities, we return an error if they are
269          * missing some "forced" (aka file-permitted) capabilities.
270          */
271         return bprm->cap_effective ? ret : 0;
272 }
273
274 /* Locate any VFS capabilities: */
275 static int get_file_caps(struct linux_binprm *bprm)
276 {
277         struct dentry *dentry;
278         int rc = 0;
279         struct vfs_cap_data vcaps;
280         struct inode *inode;
281
282         if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID) {
283                 bprm_clear_caps(bprm);
284                 return 0;
285         }
286
287         dentry = dget(bprm->file->f_dentry);
288         inode = dentry->d_inode;
289         if (!inode->i_op || !inode->i_op->getxattr)
290                 goto out;
291
292         rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, &vcaps,
293                                    XATTR_CAPS_SZ);
294         if (rc == -ENODATA || rc == -EOPNOTSUPP) {
295                 /* no data, that's ok */
296                 rc = 0;
297                 goto out;
298         }
299         if (rc < 0)
300                 goto out;
301
302         rc = cap_from_disk(&vcaps, bprm, rc);
303         if (rc == -EINVAL)
304                 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
305                        __func__, rc, bprm->filename);
306
307 out:
308         dput(dentry);
309         if (rc)
310                 bprm_clear_caps(bprm);
311
312         return rc;
313 }
314
315 #else
316 int cap_inode_need_killpriv(struct dentry *dentry)
317 {
318         return 0;
319 }
320
321 int cap_inode_killpriv(struct dentry *dentry)
322 {
323         return 0;
324 }
325
326 static inline int get_file_caps(struct linux_binprm *bprm)
327 {
328         bprm_clear_caps(bprm);
329         return 0;
330 }
331 #endif
332
333 int cap_bprm_set_security (struct linux_binprm *bprm)
334 {
335         int ret;
336
337         ret = get_file_caps(bprm);
338
339         if (!issecure(SECURE_NOROOT)) {
340                 /*
341                  * To support inheritance of root-permissions and suid-root
342                  * executables under compatibility mode, we override the
343                  * capability sets for the file.
344                  *
345                  * If only the real uid is 0, we do not set the effective
346                  * bit.
347                  */
348                 if (bprm->e_uid == 0 || current->uid == 0) {
349                         /* pP' = (cap_bset & ~0) | (pI & ~0) */
350                         bprm->cap_post_exec_permitted = cap_combine(
351                                 current->cap_bset, current->cap_inheritable
352                                 );
353                         bprm->cap_effective = (bprm->e_uid == 0);
354                         ret = 0;
355                 }
356         }
357
358         return ret;
359 }
360
361 void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
362 {
363         if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
364             !cap_issubset(bprm->cap_post_exec_permitted,
365                           current->cap_permitted)) {
366                 set_dumpable(current->mm, suid_dumpable);
367                 current->pdeath_signal = 0;
368
369                 if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
370                         if (!capable(CAP_SETUID)) {
371                                 bprm->e_uid = current->uid;
372                                 bprm->e_gid = current->gid;
373                         }
374                         if (cap_limit_ptraced_target()) {
375                                 bprm->cap_post_exec_permitted = cap_intersect(
376                                         bprm->cap_post_exec_permitted,
377                                         current->cap_permitted);
378                         }
379                 }
380         }
381
382         current->suid = current->euid = current->fsuid = bprm->e_uid;
383         current->sgid = current->egid = current->fsgid = bprm->e_gid;
384
385         /* For init, we want to retain the capabilities set
386          * in the init_task struct. Thus we skip the usual
387          * capability rules */
388         if (!is_global_init(current)) {
389                 current->cap_permitted = bprm->cap_post_exec_permitted;
390                 if (bprm->cap_effective)
391                         current->cap_effective = bprm->cap_post_exec_permitted;
392                 else
393                         cap_clear(current->cap_effective);
394         }
395
396         /* AUD: Audit candidate if current->cap_effective is set */
397
398         current->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
399 }
400
401 int cap_bprm_secureexec (struct linux_binprm *bprm)
402 {
403         if (current->uid != 0) {
404                 if (bprm->cap_effective)
405                         return 1;
406                 if (!cap_isclear(bprm->cap_post_exec_permitted))
407                         return 1;
408         }
409
410         return (current->euid != current->uid ||
411                 current->egid != current->gid);
412 }
413
414 int cap_inode_setxattr(struct dentry *dentry, const char *name,
415                        const void *value, size_t size, int flags)
416 {
417         if (!strcmp(name, XATTR_NAME_CAPS)) {
418                 if (!capable(CAP_SETFCAP))
419                         return -EPERM;
420                 return 0;
421         } else if (!strncmp(name, XATTR_SECURITY_PREFIX,
422                      sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
423             !capable(CAP_SYS_ADMIN))
424                 return -EPERM;
425         return 0;
426 }
427
428 int cap_inode_removexattr(struct dentry *dentry, const char *name)
429 {
430         if (!strcmp(name, XATTR_NAME_CAPS)) {
431                 if (!capable(CAP_SETFCAP))
432                         return -EPERM;
433                 return 0;
434         } else if (!strncmp(name, XATTR_SECURITY_PREFIX,
435                      sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
436             !capable(CAP_SYS_ADMIN))
437                 return -EPERM;
438         return 0;
439 }
440
441 /* moved from kernel/sys.c. */
442 /* 
443  * cap_emulate_setxuid() fixes the effective / permitted capabilities of
444  * a process after a call to setuid, setreuid, or setresuid.
445  *
446  *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
447  *  {r,e,s}uid != 0, the permitted and effective capabilities are
448  *  cleared.
449  *
450  *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
451  *  capabilities of the process are cleared.
452  *
453  *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
454  *  capabilities are set to the permitted capabilities.
455  *
456  *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should 
457  *  never happen.
458  *
459  *  -astor 
460  *
461  * cevans - New behaviour, Oct '99
462  * A process may, via prctl(), elect to keep its capabilities when it
463  * calls setuid() and switches away from uid==0. Both permitted and
464  * effective sets will be retained.
465  * Without this change, it was impossible for a daemon to drop only some
466  * of its privilege. The call to setuid(!=0) would drop all privileges!
467  * Keeping uid 0 is not an option because uid 0 owns too many vital
468  * files..
469  * Thanks to Olaf Kirch and Peter Benie for spotting this.
470  */
471 static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
472                                         int old_suid)
473 {
474         if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
475             (current->uid != 0 && current->euid != 0 && current->suid != 0) &&
476             !issecure(SECURE_KEEP_CAPS)) {
477                 cap_clear (current->cap_permitted);
478                 cap_clear (current->cap_effective);
479         }
480         if (old_euid == 0 && current->euid != 0) {
481                 cap_clear (current->cap_effective);
482         }
483         if (old_euid != 0 && current->euid == 0) {
484                 current->cap_effective = current->cap_permitted;
485         }
486 }
487
488 int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
489                           int flags)
490 {
491         switch (flags) {
492         case LSM_SETID_RE:
493         case LSM_SETID_ID:
494         case LSM_SETID_RES:
495                 /* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
496                 if (!issecure (SECURE_NO_SETUID_FIXUP)) {
497                         cap_emulate_setxuid (old_ruid, old_euid, old_suid);
498                 }
499                 break;
500         case LSM_SETID_FS:
501                 {
502                         uid_t old_fsuid = old_ruid;
503
504                         /* Copied from kernel/sys.c:setfsuid. */
505
506                         /*
507                          * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
508                          *          if not, we might be a bit too harsh here.
509                          */
510
511                         if (!issecure (SECURE_NO_SETUID_FIXUP)) {
512                                 if (old_fsuid == 0 && current->fsuid != 0) {
513                                         current->cap_effective =
514                                                 cap_drop_fs_set(
515                                                     current->cap_effective);
516                                 }
517                                 if (old_fsuid != 0 && current->fsuid == 0) {
518                                         current->cap_effective =
519                                                 cap_raise_fs_set(
520                                                     current->cap_effective,
521                                                     current->cap_permitted);
522                                 }
523                         }
524                         break;
525                 }
526         default:
527                 return -EINVAL;
528         }
529
530         return 0;
531 }
532
533 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
534 /*
535  * Rationale: code calling task_setscheduler, task_setioprio, and
536  * task_setnice, assumes that
537  *   . if capable(cap_sys_nice), then those actions should be allowed
538  *   . if not capable(cap_sys_nice), but acting on your own processes,
539  *      then those actions should be allowed
540  * This is insufficient now since you can call code without suid, but
541  * yet with increased caps.
542  * So we check for increased caps on the target process.
543  */
544 static int cap_safe_nice(struct task_struct *p)
545 {
546         if (!cap_issubset(p->cap_permitted, current->cap_permitted) &&
547             !capable(CAP_SYS_NICE))
548                 return -EPERM;
549         return 0;
550 }
551
552 int cap_task_setscheduler (struct task_struct *p, int policy,
553                            struct sched_param *lp)
554 {
555         return cap_safe_nice(p);
556 }
557
558 int cap_task_setioprio (struct task_struct *p, int ioprio)
559 {
560         return cap_safe_nice(p);
561 }
562
563 int cap_task_setnice (struct task_struct *p, int nice)
564 {
565         return cap_safe_nice(p);
566 }
567
568 /*
569  * called from kernel/sys.c for prctl(PR_CABSET_DROP)
570  * done without task_capability_lock() because it introduces
571  * no new races - i.e. only another task doing capget() on
572  * this task could get inconsistent info.  There can be no
573  * racing writer bc a task can only change its own caps.
574  */
575 static long cap_prctl_drop(unsigned long cap)
576 {
577         if (!capable(CAP_SETPCAP))
578                 return -EPERM;
579         if (!cap_valid(cap))
580                 return -EINVAL;
581         cap_lower(current->cap_bset, cap);
582         return 0;
583 }
584
585 #else
586 int cap_task_setscheduler (struct task_struct *p, int policy,
587                            struct sched_param *lp)
588 {
589         return 0;
590 }
591 int cap_task_setioprio (struct task_struct *p, int ioprio)
592 {
593         return 0;
594 }
595 int cap_task_setnice (struct task_struct *p, int nice)
596 {
597         return 0;
598 }
599 #endif
600
601 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
602                    unsigned long arg4, unsigned long arg5, long *rc_p)
603 {
604         long error = 0;
605
606         switch (option) {
607         case PR_CAPBSET_READ:
608                 if (!cap_valid(arg2))
609                         error = -EINVAL;
610                 else
611                         error = !!cap_raised(current->cap_bset, arg2);
612                 break;
613 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
614         case PR_CAPBSET_DROP:
615                 error = cap_prctl_drop(arg2);
616                 break;
617
618         /*
619          * The next four prctl's remain to assist with transitioning a
620          * system from legacy UID=0 based privilege (when filesystem
621          * capabilities are not in use) to a system using filesystem
622          * capabilities only - as the POSIX.1e draft intended.
623          *
624          * Note:
625          *
626          *  PR_SET_SECUREBITS =
627          *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
628          *    | issecure_mask(SECURE_NOROOT)
629          *    | issecure_mask(SECURE_NOROOT_LOCKED)
630          *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
631          *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
632          *
633          * will ensure that the current process and all of its
634          * children will be locked into a pure
635          * capability-based-privilege environment.
636          */
637         case PR_SET_SECUREBITS:
638                 if ((((current->securebits & SECURE_ALL_LOCKS) >> 1)
639                      & (current->securebits ^ arg2))                  /*[1]*/
640                     || ((current->securebits & SECURE_ALL_LOCKS
641                          & ~arg2))                                    /*[2]*/
642                     || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
643                     || (cap_capable(current, CAP_SETPCAP) != 0)) {    /*[4]*/
644                         /*
645                          * [1] no changing of bits that are locked
646                          * [2] no unlocking of locks
647                          * [3] no setting of unsupported bits
648                          * [4] doing anything requires privilege (go read about
649                          *     the "sendmail capabilities bug")
650                          */
651                         error = -EPERM;  /* cannot change a locked bit */
652                 } else {
653                         current->securebits = arg2;
654                 }
655                 break;
656         case PR_GET_SECUREBITS:
657                 error = current->securebits;
658                 break;
659
660 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
661
662         case PR_GET_KEEPCAPS:
663                 if (issecure(SECURE_KEEP_CAPS))
664                         error = 1;
665                 break;
666         case PR_SET_KEEPCAPS:
667                 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
668                         error = -EINVAL;
669                 else if (issecure(SECURE_KEEP_CAPS_LOCKED))
670                         error = -EPERM;
671                 else if (arg2)
672                         current->securebits |= issecure_mask(SECURE_KEEP_CAPS);
673                 else
674                         current->securebits &=
675                                 ~issecure_mask(SECURE_KEEP_CAPS);
676                 break;
677
678         default:
679                 /* No functionality available - continue with default */
680                 return 0;
681         }
682
683         /* Functionality provided */
684         *rc_p = error;
685         return 1;
686 }
687
688 void cap_task_reparent_to_init (struct task_struct *p)
689 {
690         cap_set_init_eff(p->cap_effective);
691         cap_clear(p->cap_inheritable);
692         cap_set_full(p->cap_permitted);
693         p->securebits = SECUREBITS_DEFAULT;
694         return;
695 }
696
697 int cap_syslog (int type)
698 {
699         if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
700                 return -EPERM;
701         return 0;
702 }
703
704 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
705 {
706         int cap_sys_admin = 0;
707
708         if (cap_capable(current, CAP_SYS_ADMIN) == 0)
709                 cap_sys_admin = 1;
710         return __vm_enough_memory(mm, pages, cap_sys_admin);
711 }
712