4 * @remark Copyright 2002 OProfile authors
5 * @remark Read the file COPYING
7 * @author John Levon <levon@movementarian.org>
9 * This is the core of the buffer management. Each
10 * CPU buffer is processed and entered into the
11 * global event buffer. Such processing is necessary
12 * in several circumstances, mentioned below.
14 * The processing does the job of converting the
15 * transitory EIP value into a persistent dentry/offset
16 * value that the profiler can record at its leisure.
18 * See fs/dcookies.c for a description of the dentry/offset
23 #include <linux/workqueue.h>
24 #include <linux/notifier.h>
25 #include <linux/dcookies.h>
26 #include <linux/profile.h>
27 #include <linux/module.h>
30 #include "oprofile_stats.h"
31 #include "event_buffer.h"
32 #include "cpu_buffer.h"
33 #include "buffer_sync.h"
35 static LIST_HEAD(dying_tasks);
36 static LIST_HEAD(dead_tasks);
37 static cpumask_t marked_cpus = CPU_MASK_NONE;
38 static DEFINE_SPINLOCK(task_mortuary);
39 static void process_task_mortuary(void);
42 /* Take ownership of the task struct and place it on the
43 * list for processing. Only after two full buffer syncs
44 * does the task eventually get freed, because by then
45 * we are sure we will not reference it again.
46 * Can be invoked from softirq via RCU callback due to
47 * call_rcu() of the task struct, hence the _irqsave.
49 static int task_free_notify(struct notifier_block * self, unsigned long val, void * data)
52 struct task_struct * task = data;
53 spin_lock_irqsave(&task_mortuary, flags);
54 list_add(&task->tasks, &dying_tasks);
55 spin_unlock_irqrestore(&task_mortuary, flags);
60 /* The task is on its way out. A sync of the buffer means we can catch
61 * any remaining samples for this task.
63 static int task_exit_notify(struct notifier_block * self, unsigned long val, void * data)
65 /* To avoid latency problems, we only process the current CPU,
66 * hoping that most samples for the task are on this CPU
68 sync_buffer(raw_smp_processor_id());
73 /* The task is about to try a do_munmap(). We peek at what it's going to
74 * do, and if it's an executable region, process the samples first, so
75 * we don't lose any. This does not have to be exact, it's a QoI issue
78 static int munmap_notify(struct notifier_block * self, unsigned long val, void * data)
80 unsigned long addr = (unsigned long)data;
81 struct mm_struct * mm = current->mm;
82 struct vm_area_struct * mpnt;
84 down_read(&mm->mmap_sem);
86 mpnt = find_vma(mm, addr);
87 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
88 up_read(&mm->mmap_sem);
89 /* To avoid latency problems, we only process the current CPU,
90 * hoping that most samples for the task are on this CPU
92 sync_buffer(raw_smp_processor_id());
96 up_read(&mm->mmap_sem);
101 /* We need to be told about new modules so we don't attribute to a previously
102 * loaded module, or drop the samples on the floor.
104 static int module_load_notify(struct notifier_block * self, unsigned long val, void * data)
106 #ifdef CONFIG_MODULES
107 if (val != MODULE_STATE_COMING)
110 /* FIXME: should we process all CPU buffers ? */
112 add_event_entry(ESCAPE_CODE);
113 add_event_entry(MODULE_LOADED_CODE);
120 static struct notifier_block task_free_nb = {
121 .notifier_call = task_free_notify,
124 static struct notifier_block task_exit_nb = {
125 .notifier_call = task_exit_notify,
128 static struct notifier_block munmap_nb = {
129 .notifier_call = munmap_notify,
132 static struct notifier_block module_load_nb = {
133 .notifier_call = module_load_notify,
137 static void end_sync(void)
140 /* make sure we don't leak task structs */
141 process_task_mortuary();
142 process_task_mortuary();
152 err = task_handoff_register(&task_free_nb);
155 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
158 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
161 err = register_module_notifier(&module_load_nb);
168 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
170 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
172 task_handoff_unregister(&task_free_nb);
181 unregister_module_notifier(&module_load_nb);
182 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
183 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
184 task_handoff_unregister(&task_free_nb);
189 /* Optimisation. We can manage without taking the dcookie sem
190 * because we cannot reach this code without at least one
191 * dcookie user still being registered (namely, the reader
192 * of the event buffer). */
193 static inline unsigned long fast_get_dcookie(struct dentry * dentry,
194 struct vfsmount * vfsmnt)
196 unsigned long cookie;
198 if (dentry->d_cookie)
199 return (unsigned long)dentry;
200 get_dcookie(dentry, vfsmnt, &cookie);
205 /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
206 * which corresponds loosely to "application name". This is
207 * not strictly necessary but allows oprofile to associate
208 * shared-library samples with particular applications
210 static unsigned long get_exec_dcookie(struct mm_struct * mm)
212 unsigned long cookie = NO_COOKIE;
213 struct vm_area_struct * vma;
218 for (vma = mm->mmap; vma; vma = vma->vm_next) {
221 if (!(vma->vm_flags & VM_EXECUTABLE))
223 cookie = fast_get_dcookie(vma->vm_file->f_dentry,
224 vma->vm_file->f_vfsmnt);
233 /* Convert the EIP value of a sample into a persistent dentry/offset
234 * pair that can then be added to the global event buffer. We make
235 * sure to do this lookup before a mm->mmap modification happens so
236 * we don't lose track.
238 static unsigned long lookup_dcookie(struct mm_struct * mm, unsigned long addr, off_t * offset)
240 unsigned long cookie = NO_COOKIE;
241 struct vm_area_struct * vma;
243 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
245 if (addr < vma->vm_start || addr >= vma->vm_end)
249 cookie = fast_get_dcookie(vma->vm_file->f_dentry,
250 vma->vm_file->f_vfsmnt);
251 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
254 /* must be an anonymous map */
262 cookie = INVALID_COOKIE;
268 static unsigned long last_cookie = INVALID_COOKIE;
270 static void add_cpu_switch(int i)
272 add_event_entry(ESCAPE_CODE);
273 add_event_entry(CPU_SWITCH_CODE);
275 last_cookie = INVALID_COOKIE;
278 static void add_kernel_ctx_switch(unsigned int in_kernel)
280 add_event_entry(ESCAPE_CODE);
282 add_event_entry(KERNEL_ENTER_SWITCH_CODE);
284 add_event_entry(KERNEL_EXIT_SWITCH_CODE);
288 add_user_ctx_switch(struct task_struct const * task, unsigned long cookie)
290 add_event_entry(ESCAPE_CODE);
291 add_event_entry(CTX_SWITCH_CODE);
292 add_event_entry(task->pid);
293 add_event_entry(cookie);
294 /* Another code for daemon back-compat */
295 add_event_entry(ESCAPE_CODE);
296 add_event_entry(CTX_TGID_CODE);
297 add_event_entry(task->tgid);
301 static void add_cookie_switch(unsigned long cookie)
303 add_event_entry(ESCAPE_CODE);
304 add_event_entry(COOKIE_SWITCH_CODE);
305 add_event_entry(cookie);
309 static void add_trace_begin(void)
311 add_event_entry(ESCAPE_CODE);
312 add_event_entry(TRACE_BEGIN_CODE);
316 static void add_sample_entry(unsigned long offset, unsigned long event)
318 add_event_entry(offset);
319 add_event_entry(event);
323 static int add_us_sample(struct mm_struct * mm, struct op_sample * s)
325 unsigned long cookie;
328 cookie = lookup_dcookie(mm, s->eip, &offset);
330 if (cookie == INVALID_COOKIE) {
331 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
335 if (cookie != last_cookie) {
336 add_cookie_switch(cookie);
337 last_cookie = cookie;
340 add_sample_entry(offset, s->event);
346 /* Add a sample to the global event buffer. If possible the
347 * sample is converted into a persistent dentry/offset pair
348 * for later lookup from userspace.
351 add_sample(struct mm_struct * mm, struct op_sample * s, int in_kernel)
354 add_sample_entry(s->eip, s->event);
357 return add_us_sample(mm, s);
359 atomic_inc(&oprofile_stats.sample_lost_no_mm);
365 static void release_mm(struct mm_struct * mm)
369 up_read(&mm->mmap_sem);
374 static struct mm_struct * take_tasks_mm(struct task_struct * task)
376 struct mm_struct * mm = get_task_mm(task);
378 down_read(&mm->mmap_sem);
383 static inline int is_code(unsigned long val)
385 return val == ESCAPE_CODE;
389 /* "acquire" as many cpu buffer slots as we can */
390 static unsigned long get_slots(struct oprofile_cpu_buffer * b)
392 unsigned long head = b->head_pos;
393 unsigned long tail = b->tail_pos;
396 * Subtle. This resets the persistent last_task
397 * and in_kernel values used for switching notes.
398 * BUT, there is a small window between reading
399 * head_pos, and this call, that means samples
400 * can appear at the new head position, but not
401 * be prefixed with the notes for switching
402 * kernel mode or a task switch. This small hole
403 * can lead to mis-attribution or samples where
404 * we don't know if it's in the kernel or not,
405 * at the start of an event buffer.
412 return head + (b->buffer_size - tail);
416 static void increment_tail(struct oprofile_cpu_buffer * b)
418 unsigned long new_tail = b->tail_pos + 1;
422 if (new_tail < b->buffer_size)
423 b->tail_pos = new_tail;
429 /* Move tasks along towards death. Any tasks on dead_tasks
430 * will definitely have no remaining references in any
431 * CPU buffers at this point, because we use two lists,
432 * and to have reached the list, it must have gone through
433 * one full sync already.
435 static void process_task_mortuary(void)
438 LIST_HEAD(local_dead_tasks);
439 struct task_struct * task;
440 struct task_struct * ttask;
442 spin_lock_irqsave(&task_mortuary, flags);
444 list_splice_init(&dead_tasks, &local_dead_tasks);
445 list_splice_init(&dying_tasks, &dead_tasks);
447 spin_unlock_irqrestore(&task_mortuary, flags);
449 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
450 list_del(&task->tasks);
456 static void mark_done(int cpu)
460 cpu_set(cpu, marked_cpus);
462 for_each_online_cpu(i) {
463 if (!cpu_isset(i, marked_cpus))
467 /* All CPUs have been processed at least once,
468 * we can process the mortuary once
470 process_task_mortuary();
472 cpus_clear(marked_cpus);
476 /* FIXME: this is not sufficient if we implement syscall barrier backtrace
477 * traversal, the code switch to sb_sample_start at first kernel enter/exit
478 * switch so we need a fifth state and some special handling in sync_buffer()
487 /* Sync one of the CPU's buffers into the global event buffer.
488 * Here we need to go through each batch of samples punctuated
489 * by context switch notes, taking the task's mmap_sem and doing
490 * lookup in task->mm->mmap to convert EIP into dcookie/offset
493 void sync_buffer(int cpu)
495 struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[cpu];
496 struct mm_struct *mm = NULL;
497 struct task_struct * new;
498 unsigned long cookie = 0;
501 sync_buffer_state state = sb_buffer_start;
502 unsigned long available;
508 /* Remember, only we can modify tail_pos */
510 available = get_slots(cpu_buf);
512 for (i = 0; i < available; ++i) {
513 struct op_sample * s = &cpu_buf->buffer[cpu_buf->tail_pos];
515 if (is_code(s->eip)) {
516 if (s->event <= CPU_IS_KERNEL) {
517 /* kernel/userspace switch */
518 in_kernel = s->event;
519 if (state == sb_buffer_start)
520 state = sb_sample_start;
521 add_kernel_ctx_switch(s->event);
522 } else if (s->event == CPU_TRACE_BEGIN) {
526 struct mm_struct * oldmm = mm;
528 /* userspace context switch */
529 new = (struct task_struct *)s->event;
532 mm = take_tasks_mm(new);
534 cookie = get_exec_dcookie(mm);
535 add_user_ctx_switch(new, cookie);
538 if (state >= sb_bt_start &&
539 !add_sample(mm, s, in_kernel)) {
540 if (state == sb_bt_start) {
541 state = sb_bt_ignore;
542 atomic_inc(&oprofile_stats.bt_lost_no_mapping);
547 increment_tail(cpu_buf);