2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * Abstract: Contain all routines that are required for FSA host/adapter
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <scsi/scsi_host.h>
44 #include <scsi/scsi_device.h>
45 #include <asm/semaphore.h>
50 * fib_map_alloc - allocate the fib objects
51 * @dev: Adapter to allocate for
53 * Allocate and map the shared PCI space for the FIB blocks used to
54 * talk to the Adaptec firmware.
57 static int fib_map_alloc(struct aac_dev *dev)
60 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
61 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
62 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
63 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
64 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
65 &dev->hw_fib_pa))==NULL)
71 * aac_fib_map_free - free the fib objects
72 * @dev: Adapter to free
74 * Free the PCI mappings and the memory allocated for FIB blocks
78 void aac_fib_map_free(struct aac_dev *dev)
80 pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
84 * aac_fib_setup - setup the fibs
85 * @dev: Adapter to set up
87 * Allocate the PCI space for the fibs, map it and then intialise the
88 * fib area, the unmapped fib data and also the free list
91 int aac_fib_setup(struct aac_dev * dev)
94 struct hw_fib *hw_fib_va;
98 while (((i = fib_map_alloc(dev)) == -ENOMEM)
99 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
100 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
101 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
106 hw_fib_va = dev->hw_fib_va;
107 hw_fib_pa = dev->hw_fib_pa;
108 memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
110 * Initialise the fibs
112 for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
115 fibptr->hw_fib = hw_fib_va;
116 fibptr->data = (void *) fibptr->hw_fib->data;
117 fibptr->next = fibptr+1; /* Forward chain the fibs */
118 init_MUTEX_LOCKED(&fibptr->event_wait);
119 spin_lock_init(&fibptr->event_lock);
120 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
121 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
122 fibptr->hw_fib_pa = hw_fib_pa;
123 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
124 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
127 * Add the fib chain to the free list
129 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
131 * Enable this to debug out of queue space
133 dev->free_fib = &dev->fibs[0];
138 * aac_fib_alloc - allocate a fib
139 * @dev: Adapter to allocate the fib for
141 * Allocate a fib from the adapter fib pool. If the pool is empty we
145 struct fib *aac_fib_alloc(struct aac_dev *dev)
149 spin_lock_irqsave(&dev->fib_lock, flags);
150 fibptr = dev->free_fib;
152 spin_unlock_irqrestore(&dev->fib_lock, flags);
155 dev->free_fib = fibptr->next;
156 spin_unlock_irqrestore(&dev->fib_lock, flags);
158 * Set the proper node type code and node byte size
160 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
161 fibptr->size = sizeof(struct fib);
163 * Null out fields that depend on being zero at the start of
166 fibptr->hw_fib->header.XferState = 0;
167 fibptr->callback = NULL;
168 fibptr->callback_data = NULL;
174 * aac_fib_free - free a fib
175 * @fibptr: fib to free up
177 * Frees up a fib and places it on the appropriate queue
178 * (either free or timed out)
181 void aac_fib_free(struct fib *fibptr)
185 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
186 if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
187 aac_config.fib_timeouts++;
188 fibptr->next = fibptr->dev->timeout_fib;
189 fibptr->dev->timeout_fib = fibptr;
191 if (fibptr->hw_fib->header.XferState != 0) {
192 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
194 le32_to_cpu(fibptr->hw_fib->header.XferState));
196 fibptr->next = fibptr->dev->free_fib;
197 fibptr->dev->free_fib = fibptr;
199 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
203 * aac_fib_init - initialise a fib
204 * @fibptr: The fib to initialize
206 * Set up the generic fib fields ready for use
209 void aac_fib_init(struct fib *fibptr)
211 struct hw_fib *hw_fib = fibptr->hw_fib;
213 hw_fib->header.StructType = FIB_MAGIC;
214 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
215 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
216 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
217 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
218 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
222 * fib_deallocate - deallocate a fib
223 * @fibptr: fib to deallocate
225 * Will deallocate and return to the free pool the FIB pointed to by the
229 static void fib_dealloc(struct fib * fibptr)
231 struct hw_fib *hw_fib = fibptr->hw_fib;
232 if(hw_fib->header.StructType != FIB_MAGIC)
234 hw_fib->header.XferState = 0;
238 * Commuication primitives define and support the queuing method we use to
239 * support host to adapter commuication. All queue accesses happen through
240 * these routines and are the only routines which have a knowledge of the
241 * how these queues are implemented.
245 * aac_get_entry - get a queue entry
248 * @entry: Entry return
249 * @index: Index return
250 * @nonotify: notification control
252 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
253 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
257 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
259 struct aac_queue * q;
263 * All of the queues wrap when they reach the end, so we check
264 * to see if they have reached the end and if they have we just
265 * set the index back to zero. This is a wrap. You could or off
266 * the high bits in all updates but this is a bit faster I think.
269 q = &dev->queues->queue[qid];
271 idx = *index = le32_to_cpu(*(q->headers.producer));
272 /* Interrupt Moderation, only interrupt for first two entries */
273 if (idx != le32_to_cpu(*(q->headers.consumer))) {
275 if (qid == AdapNormCmdQueue)
276 idx = ADAP_NORM_CMD_ENTRIES;
278 idx = ADAP_NORM_RESP_ENTRIES;
280 if (idx != le32_to_cpu(*(q->headers.consumer)))
284 if (qid == AdapNormCmdQueue) {
285 if (*index >= ADAP_NORM_CMD_ENTRIES)
286 *index = 0; /* Wrap to front of the Producer Queue. */
288 if (*index >= ADAP_NORM_RESP_ENTRIES)
289 *index = 0; /* Wrap to front of the Producer Queue. */
292 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
293 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
297 *entry = q->base + *index;
303 * aac_queue_get - get the next free QE
305 * @index: Returned index
306 * @priority: Priority of fib
307 * @fib: Fib to associate with the queue entry
308 * @wait: Wait if queue full
309 * @fibptr: Driver fib object to go with fib
310 * @nonotify: Don't notify the adapter
312 * Gets the next free QE off the requested priorty adapter command
313 * queue and associates the Fib with the QE. The QE represented by
314 * index is ready to insert on the queue when this routine returns
318 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
320 struct aac_entry * entry = NULL;
323 if (qid == AdapNormCmdQueue) {
324 /* if no entries wait for some if caller wants to */
325 while (!aac_get_entry(dev, qid, &entry, index, nonotify))
327 printk(KERN_ERR "GetEntries failed\n");
330 * Setup queue entry with a command, status and fib mapped
332 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
335 while(!aac_get_entry(dev, qid, &entry, index, nonotify))
337 /* if no entries wait for some if caller wants to */
340 * Setup queue entry with command, status and fib mapped
342 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
343 entry->addr = hw_fib->header.SenderFibAddress;
344 /* Restore adapters pointer to the FIB */
345 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
349 * If MapFib is true than we need to map the Fib and put pointers
350 * in the queue entry.
353 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
358 * Define the highest level of host to adapter communication routines.
359 * These routines will support host to adapter FS commuication. These
360 * routines have no knowledge of the commuication method used. This level
361 * sends and receives FIBs. This level has no knowledge of how these FIBs
362 * get passed back and forth.
366 * aac_fib_send - send a fib to the adapter
367 * @command: Command to send
369 * @size: Size of fib data area
370 * @priority: Priority of Fib
371 * @wait: Async/sync select
372 * @reply: True if a reply is wanted
373 * @callback: Called with reply
374 * @callback_data: Passed to callback
376 * Sends the requested FIB to the adapter and optionally will wait for a
377 * response FIB. If the caller does not wish to wait for a response than
378 * an event to wait on must be supplied. This event will be set when a
379 * response FIB is received from the adapter.
382 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
383 int priority, int wait, int reply, fib_callback callback,
386 struct aac_dev * dev = fibptr->dev;
387 struct hw_fib * hw_fib = fibptr->hw_fib;
388 struct aac_queue * q;
389 unsigned long flags = 0;
390 unsigned long qflags;
392 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
395 * There are 5 cases with the wait and reponse requested flags.
396 * The only invalid cases are if the caller requests to wait and
397 * does not request a response and if the caller does not want a
398 * response and the Fib is not allocated from pool. If a response
399 * is not requesed the Fib will just be deallocaed by the DPC
400 * routine when the response comes back from the adapter. No
401 * further processing will be done besides deleting the Fib. We
402 * will have a debug mode where the adapter can notify the host
403 * it had a problem and the host can log that fact.
405 if (wait && !reply) {
407 } else if (!wait && reply) {
408 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
409 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
410 } else if (!wait && !reply) {
411 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
412 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
413 } else if (wait && reply) {
414 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
415 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
418 * Map the fib into 32bits by using the fib number
421 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
422 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
424 * Set FIB state to indicate where it came from and if we want a
425 * response from the adapter. Also load the command from the
428 * Map the hw fib pointer as a 32bit value
430 hw_fib->header.Command = cpu_to_le16(command);
431 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
432 fibptr->hw_fib->header.Flags = 0; /* 0 the flags field - internal only*/
434 * Set the size of the Fib we want to send to the adapter
436 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
437 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
441 * Get a queue entry connect the FIB to it and send an notify
442 * the adapter a command is ready.
444 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
447 * Fill in the Callback and CallbackContext if we are not
451 fibptr->callback = callback;
452 fibptr->callback_data = callback_data;
458 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
460 dprintk((KERN_DEBUG "Fib contents:.\n"));
461 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
462 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
463 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
464 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib));
465 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
466 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
468 q = &dev->queues->queue[AdapNormCmdQueue];
471 spin_lock_irqsave(&fibptr->event_lock, flags);
472 spin_lock_irqsave(q->lock, qflags);
473 if (dev->new_comm_interface) {
474 unsigned long count = 10000000L; /* 50 seconds */
475 list_add_tail(&fibptr->queue, &q->pendingq);
477 spin_unlock_irqrestore(q->lock, qflags);
478 while (aac_adapter_send(fibptr) != 0) {
481 spin_unlock_irqrestore(&fibptr->event_lock, flags);
482 spin_lock_irqsave(q->lock, qflags);
484 list_del(&fibptr->queue);
485 spin_unlock_irqrestore(q->lock, qflags);
492 unsigned long nointr = 0;
493 aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
495 list_add_tail(&fibptr->queue, &q->pendingq);
497 *(q->headers.producer) = cpu_to_le32(index + 1);
498 spin_unlock_irqrestore(q->lock, qflags);
499 dprintk((KERN_DEBUG "aac_fib_send: inserting a queue entry at index %d.\n",index));
500 if (!(nointr & aac_config.irq_mod))
501 aac_adapter_notify(dev, AdapNormCmdQueue);
505 * If the caller wanted us to wait for response wait now.
509 spin_unlock_irqrestore(&fibptr->event_lock, flags);
510 /* Only set for first known interruptable command */
513 * *VERY* Dangerous to time out a command, the
514 * assumption is made that we have no hope of
515 * functioning because an interrupt routing or other
516 * hardware failure has occurred.
518 unsigned long count = 36000000L; /* 3 minutes */
519 while (down_trylock(&fibptr->event_wait)) {
521 spin_lock_irqsave(q->lock, qflags);
523 list_del(&fibptr->queue);
524 spin_unlock_irqrestore(q->lock, qflags);
526 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
527 "Usually a result of a PCI interrupt routing problem;\n"
528 "update mother board BIOS or consider utilizing one of\n"
529 "the SAFE mode kernel options (acpi, apic etc)\n");
536 down(&fibptr->event_wait);
537 if(fibptr->done == 0)
540 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
547 * If the user does not want a response than return success otherwise
557 * aac_consumer_get - get the top of the queue
560 * @entry: Return entry
562 * Will return a pointer to the entry on the top of the queue requested that
563 * we are a consumer of, and return the address of the queue entry. It does
564 * not change the state of the queue.
567 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
571 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
575 * The consumer index must be wrapped if we have reached
576 * the end of the queue, else we just use the entry
577 * pointed to by the header index
579 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
582 index = le32_to_cpu(*q->headers.consumer);
583 *entry = q->base + index;
590 * aac_consumer_free - free consumer entry
595 * Frees up the current top of the queue we are a consumer of. If the
596 * queue was full notify the producer that the queue is no longer full.
599 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
604 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
607 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
608 *q->headers.consumer = cpu_to_le32(1);
610 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
615 case HostNormCmdQueue:
616 notify = HostNormCmdNotFull;
618 case HostNormRespQueue:
619 notify = HostNormRespNotFull;
625 aac_adapter_notify(dev, notify);
630 * aac_fib_adapter_complete - complete adapter issued fib
631 * @fibptr: fib to complete
634 * Will do all necessary work to complete a FIB that was sent from
638 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
640 struct hw_fib * hw_fib = fibptr->hw_fib;
641 struct aac_dev * dev = fibptr->dev;
642 struct aac_queue * q;
643 unsigned long nointr = 0;
644 unsigned long qflags;
646 if (hw_fib->header.XferState == 0) {
647 if (dev->new_comm_interface)
652 * If we plan to do anything check the structure type first.
654 if ( hw_fib->header.StructType != FIB_MAGIC ) {
655 if (dev->new_comm_interface)
660 * This block handles the case where the adapter had sent us a
661 * command and we have finished processing the command. We
662 * call completeFib when we are done processing the command
663 * and want to send a response back to the adapter. This will
664 * send the completed cdb to the adapter.
666 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
667 if (dev->new_comm_interface) {
671 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
673 size += sizeof(struct aac_fibhdr);
674 if (size > le16_to_cpu(hw_fib->header.SenderSize))
676 hw_fib->header.Size = cpu_to_le16(size);
678 q = &dev->queues->queue[AdapNormRespQueue];
679 spin_lock_irqsave(q->lock, qflags);
680 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
681 *(q->headers.producer) = cpu_to_le32(index + 1);
682 spin_unlock_irqrestore(q->lock, qflags);
683 if (!(nointr & (int)aac_config.irq_mod))
684 aac_adapter_notify(dev, AdapNormRespQueue);
689 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
696 * aac_fib_complete - fib completion handler
697 * @fib: FIB to complete
699 * Will do all necessary work to complete a FIB.
702 int aac_fib_complete(struct fib *fibptr)
704 struct hw_fib * hw_fib = fibptr->hw_fib;
707 * Check for a fib which has already been completed
710 if (hw_fib->header.XferState == 0)
713 * If we plan to do anything check the structure type first.
716 if (hw_fib->header.StructType != FIB_MAGIC)
719 * This block completes a cdb which orginated on the host and we
720 * just need to deallocate the cdb or reinit it. At this point the
721 * command is complete that we had sent to the adapter and this
722 * cdb could be reused.
724 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
725 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
729 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
732 * This handles the case when the host has aborted the I/O
733 * to the adapter because the adapter is not responding
736 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
745 * aac_printf - handle printf from firmware
749 * Print a message passed to us by the controller firmware on the
753 void aac_printf(struct aac_dev *dev, u32 val)
755 char *cp = dev->printfbuf;
756 if (dev->printf_enabled)
758 int length = val & 0xffff;
759 int level = (val >> 16) & 0xffff;
762 * The size of the printfbuf is set in port.c
763 * There is no variable or define for it
769 if (level == LOG_AAC_HIGH_ERROR)
770 printk(KERN_WARNING "%s:%s", dev->name, cp);
772 printk(KERN_INFO "%s:%s", dev->name, cp);
779 * aac_handle_aif - Handle a message from the firmware
780 * @dev: Which adapter this fib is from
781 * @fibptr: Pointer to fibptr from adapter
783 * This routine handles a driver notify fib from the adapter and
784 * dispatches it to the appropriate routine for handling.
787 #define AIF_SNIFF_TIMEOUT (30*HZ)
788 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
790 struct hw_fib * hw_fib = fibptr->hw_fib;
791 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
794 struct scsi_device *device;
800 } device_config_needed;
802 /* Sniff for container changes */
809 * We have set this up to try and minimize the number of
810 * re-configures that take place. As a result of this when
811 * certain AIF's come in we will set a flag waiting for another
812 * type of AIF before setting the re-config flag.
814 switch (le32_to_cpu(aifcmd->command)) {
815 case AifCmdDriverNotify:
816 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
818 * Morph or Expand complete
820 case AifDenMorphComplete:
821 case AifDenVolumeExtendComplete:
822 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
823 if (container >= dev->maximum_num_containers)
827 * Find the scsi_device associated with the SCSI
828 * address. Make sure we have the right array, and if
829 * so set the flag to initiate a new re-config once we
830 * see an AifEnConfigChange AIF come through.
833 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
834 device = scsi_device_lookup(dev->scsi_host_ptr,
835 CONTAINER_TO_CHANNEL(container),
836 CONTAINER_TO_ID(container),
837 CONTAINER_TO_LUN(container));
839 dev->fsa_dev[container].config_needed = CHANGE;
840 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
841 dev->fsa_dev[container].config_waiting_stamp = jiffies;
842 scsi_device_put(device);
848 * If we are waiting on something and this happens to be
849 * that thing then set the re-configure flag.
851 if (container != (u32)-1) {
852 if (container >= dev->maximum_num_containers)
854 if ((dev->fsa_dev[container].config_waiting_on ==
855 le32_to_cpu(*(u32 *)aifcmd->data)) &&
856 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
857 dev->fsa_dev[container].config_waiting_on = 0;
858 } else for (container = 0;
859 container < dev->maximum_num_containers; ++container) {
860 if ((dev->fsa_dev[container].config_waiting_on ==
861 le32_to_cpu(*(u32 *)aifcmd->data)) &&
862 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
863 dev->fsa_dev[container].config_waiting_on = 0;
867 case AifCmdEventNotify:
868 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
872 case AifEnAddContainer:
873 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
874 if (container >= dev->maximum_num_containers)
876 dev->fsa_dev[container].config_needed = ADD;
877 dev->fsa_dev[container].config_waiting_on =
879 dev->fsa_dev[container].config_waiting_stamp = jiffies;
885 case AifEnDeleteContainer:
886 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
887 if (container >= dev->maximum_num_containers)
889 dev->fsa_dev[container].config_needed = DELETE;
890 dev->fsa_dev[container].config_waiting_on =
892 dev->fsa_dev[container].config_waiting_stamp = jiffies;
896 * Container change detected. If we currently are not
897 * waiting on something else, setup to wait on a Config Change.
899 case AifEnContainerChange:
900 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
901 if (container >= dev->maximum_num_containers)
903 if (dev->fsa_dev[container].config_waiting_on &&
904 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
906 dev->fsa_dev[container].config_needed = CHANGE;
907 dev->fsa_dev[container].config_waiting_on =
909 dev->fsa_dev[container].config_waiting_stamp = jiffies;
912 case AifEnConfigChange:
918 * If we are waiting on something and this happens to be
919 * that thing then set the re-configure flag.
921 if (container != (u32)-1) {
922 if (container >= dev->maximum_num_containers)
924 if ((dev->fsa_dev[container].config_waiting_on ==
925 le32_to_cpu(*(u32 *)aifcmd->data)) &&
926 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
927 dev->fsa_dev[container].config_waiting_on = 0;
928 } else for (container = 0;
929 container < dev->maximum_num_containers; ++container) {
930 if ((dev->fsa_dev[container].config_waiting_on ==
931 le32_to_cpu(*(u32 *)aifcmd->data)) &&
932 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
933 dev->fsa_dev[container].config_waiting_on = 0;
937 case AifCmdJobProgress:
939 * These are job progress AIF's. When a Clear is being
940 * done on a container it is initially created then hidden from
941 * the OS. When the clear completes we don't get a config
942 * change so we monitor the job status complete on a clear then
943 * wait for a container change.
946 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
947 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
948 || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
950 container < dev->maximum_num_containers;
953 * Stomp on all config sequencing for all
956 dev->fsa_dev[container].config_waiting_on =
957 AifEnContainerChange;
958 dev->fsa_dev[container].config_needed = ADD;
959 dev->fsa_dev[container].config_waiting_stamp =
963 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
964 && (((u32 *)aifcmd->data)[6] == 0)
965 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
967 container < dev->maximum_num_containers;
970 * Stomp on all config sequencing for all
973 dev->fsa_dev[container].config_waiting_on =
974 AifEnContainerChange;
975 dev->fsa_dev[container].config_needed = DELETE;
976 dev->fsa_dev[container].config_waiting_stamp =
983 device_config_needed = NOTHING;
984 for (container = 0; container < dev->maximum_num_containers;
986 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
987 (dev->fsa_dev[container].config_needed != NOTHING) &&
988 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
989 device_config_needed =
990 dev->fsa_dev[container].config_needed;
991 dev->fsa_dev[container].config_needed = NOTHING;
995 if (device_config_needed == NOTHING)
999 * If we decided that a re-configuration needs to be done,
1000 * schedule it here on the way out the door, please close the door
1008 * Find the scsi_device associated with the SCSI address,
1009 * and mark it as changed, invalidating the cache. This deals
1010 * with changes to existing device IDs.
1013 if (!dev || !dev->scsi_host_ptr)
1016 * force reload of disk info via aac_probe_container
1018 if ((device_config_needed == CHANGE)
1019 && (dev->fsa_dev[container].valid == 1))
1020 dev->fsa_dev[container].valid = 2;
1021 if ((device_config_needed == CHANGE) ||
1022 (device_config_needed == ADD))
1023 aac_probe_container(dev, container);
1024 device = scsi_device_lookup(dev->scsi_host_ptr,
1025 CONTAINER_TO_CHANNEL(container),
1026 CONTAINER_TO_ID(container),
1027 CONTAINER_TO_LUN(container));
1029 switch (device_config_needed) {
1031 scsi_remove_device(device);
1034 if (!dev->fsa_dev[container].valid) {
1035 scsi_remove_device(device);
1038 scsi_rescan_device(&device->sdev_gendev);
1043 scsi_device_put(device);
1045 if (device_config_needed == ADD) {
1046 scsi_add_device(dev->scsi_host_ptr,
1047 CONTAINER_TO_CHANNEL(container),
1048 CONTAINER_TO_ID(container),
1049 CONTAINER_TO_LUN(container));
1055 * aac_command_thread - command processing thread
1056 * @dev: Adapter to monitor
1058 * Waits on the commandready event in it's queue. When the event gets set
1059 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1060 * until the queue is empty. When the queue is empty it will wait for
1064 int aac_command_thread(void *data)
1066 struct aac_dev *dev = data;
1067 struct hw_fib *hw_fib, *hw_newfib;
1068 struct fib *fib, *newfib;
1069 struct aac_fib_context *fibctx;
1070 unsigned long flags;
1071 DECLARE_WAITQUEUE(wait, current);
1074 * We can only have one thread per adapter for AIF's.
1076 if (dev->aif_thread)
1080 * Let the DPC know it has a place to send the AIF's to.
1082 dev->aif_thread = 1;
1083 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1084 set_current_state(TASK_INTERRUPTIBLE);
1085 dprintk ((KERN_INFO "aac_command_thread start\n"));
1088 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1089 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1090 struct list_head *entry;
1091 struct aac_aifcmd * aifcmd;
1093 set_current_state(TASK_RUNNING);
1095 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1098 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1099 fib = list_entry(entry, struct fib, fiblink);
1101 * We will process the FIB here or pass it to a
1102 * worker thread that is TBD. We Really can't
1103 * do anything at this point since we don't have
1104 * anything defined for this thread to do.
1106 hw_fib = fib->hw_fib;
1107 memset(fib, 0, sizeof(struct fib));
1108 fib->type = FSAFS_NTC_FIB_CONTEXT;
1109 fib->size = sizeof( struct fib );
1110 fib->hw_fib = hw_fib;
1111 fib->data = hw_fib->data;
1114 * We only handle AifRequest fibs from the adapter.
1116 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1117 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1118 /* Handle Driver Notify Events */
1119 aac_handle_aif(dev, fib);
1120 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1121 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1123 struct list_head *entry;
1124 /* The u32 here is important and intended. We are using
1125 32bit wrapping time to fit the adapter field */
1127 u32 time_now, time_last;
1128 unsigned long flagv;
1130 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1131 struct fib ** fib_pool, ** fib_p;
1134 if ((aifcmd->command ==
1135 cpu_to_le32(AifCmdEventNotify)) ||
1137 cpu_to_le32(AifCmdJobProgress))) {
1138 aac_handle_aif(dev, fib);
1141 time_now = jiffies/HZ;
1144 * Warning: no sleep allowed while
1145 * holding spinlock. We take the estimate
1146 * and pre-allocate a set of fibs outside the
1149 num = le32_to_cpu(dev->init->AdapterFibsSize)
1150 / sizeof(struct hw_fib); /* some extra */
1151 spin_lock_irqsave(&dev->fib_lock, flagv);
1152 entry = dev->fib_list.next;
1153 while (entry != &dev->fib_list) {
1154 entry = entry->next;
1157 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1161 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1162 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1163 hw_fib_p = hw_fib_pool;
1165 while (hw_fib_p < &hw_fib_pool[num]) {
1166 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1170 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1171 kfree(*(--hw_fib_p));
1175 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1185 spin_lock_irqsave(&dev->fib_lock, flagv);
1186 entry = dev->fib_list.next;
1188 * For each Context that is on the
1189 * fibctxList, make a copy of the
1190 * fib, and then set the event to wake up the
1191 * thread that is waiting for it.
1193 hw_fib_p = hw_fib_pool;
1195 while (entry != &dev->fib_list) {
1197 * Extract the fibctx
1199 fibctx = list_entry(entry, struct aac_fib_context, next);
1201 * Check if the queue is getting
1204 if (fibctx->count > 20)
1207 * It's *not* jiffies folks,
1208 * but jiffies / HZ so do not
1211 time_last = fibctx->jiffies;
1213 * Has it been > 2 minutes
1214 * since the last read off
1217 if ((time_now - time_last) > 120) {
1218 entry = entry->next;
1219 aac_close_fib_context(dev, fibctx);
1224 * Warning: no sleep allowed while
1227 if (hw_fib_p < &hw_fib_pool[num]) {
1228 hw_newfib = *hw_fib_p;
1229 *(hw_fib_p++) = NULL;
1233 * Make the copy of the FIB
1235 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1236 memcpy(newfib, fib, sizeof(struct fib));
1237 newfib->hw_fib = hw_newfib;
1239 * Put the FIB onto the
1242 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1245 * Set the event to wake up the
1246 * thread that is waiting.
1248 up(&fibctx->wait_sem);
1250 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1252 entry = entry->next;
1255 * Set the status of this FIB
1257 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1258 aac_fib_adapter_complete(fib, sizeof(u32));
1259 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1260 /* Free up the remaining resources */
1261 hw_fib_p = hw_fib_pool;
1263 while (hw_fib_p < &hw_fib_pool[num]) {
1273 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1276 * There are no more AIF's
1278 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1281 if (kthread_should_stop())
1283 set_current_state(TASK_INTERRUPTIBLE);
1286 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1287 dev->aif_thread = 0;