Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/interrupt.h>
43 #include <linux/if_ether.h>
44
45 #include "igb.h"
46
47 #define DRV_VERSION "1.0.8-k2"
48 char igb_driver_name[] = "igb";
49 char igb_driver_version[] = DRV_VERSION;
50 static const char igb_driver_string[] =
51                                 "Intel(R) Gigabit Ethernet Network Driver";
52 static const char igb_copyright[] = "Copyright (c) 2007 Intel Corporation.";
53
54
55 static const struct e1000_info *igb_info_tbl[] = {
56         [board_82575] = &e1000_82575_info,
57 };
58
59 static struct pci_device_id igb_pci_tbl[] = {
60         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
61         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
62         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
63         /* required last entry */
64         {0, }
65 };
66
67 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
68
69 void igb_reset(struct igb_adapter *);
70 static int igb_setup_all_tx_resources(struct igb_adapter *);
71 static int igb_setup_all_rx_resources(struct igb_adapter *);
72 static void igb_free_all_tx_resources(struct igb_adapter *);
73 static void igb_free_all_rx_resources(struct igb_adapter *);
74 static void igb_free_tx_resources(struct igb_adapter *, struct igb_ring *);
75 static void igb_free_rx_resources(struct igb_adapter *, struct igb_ring *);
76 void igb_update_stats(struct igb_adapter *);
77 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
78 static void __devexit igb_remove(struct pci_dev *pdev);
79 static int igb_sw_init(struct igb_adapter *);
80 static int igb_open(struct net_device *);
81 static int igb_close(struct net_device *);
82 static void igb_configure_tx(struct igb_adapter *);
83 static void igb_configure_rx(struct igb_adapter *);
84 static void igb_setup_rctl(struct igb_adapter *);
85 static void igb_clean_all_tx_rings(struct igb_adapter *);
86 static void igb_clean_all_rx_rings(struct igb_adapter *);
87 static void igb_clean_tx_ring(struct igb_adapter *, struct igb_ring *);
88 static void igb_clean_rx_ring(struct igb_adapter *, struct igb_ring *);
89 static void igb_set_multi(struct net_device *);
90 static void igb_update_phy_info(unsigned long);
91 static void igb_watchdog(unsigned long);
92 static void igb_watchdog_task(struct work_struct *);
93 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
94                                   struct igb_ring *);
95 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
96 static struct net_device_stats *igb_get_stats(struct net_device *);
97 static int igb_change_mtu(struct net_device *, int);
98 static int igb_set_mac(struct net_device *, void *);
99 static irqreturn_t igb_intr(int irq, void *);
100 static irqreturn_t igb_intr_msi(int irq, void *);
101 static irqreturn_t igb_msix_other(int irq, void *);
102 static irqreturn_t igb_msix_rx(int irq, void *);
103 static irqreturn_t igb_msix_tx(int irq, void *);
104 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
105 static bool igb_clean_tx_irq(struct igb_adapter *, struct igb_ring *);
106 static int igb_clean(struct napi_struct *, int);
107 static bool igb_clean_rx_irq_adv(struct igb_adapter *,
108                                  struct igb_ring *, int *, int);
109 static void igb_alloc_rx_buffers_adv(struct igb_adapter *,
110                                      struct igb_ring *, int);
111 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
112 static void igb_tx_timeout(struct net_device *);
113 static void igb_reset_task(struct work_struct *);
114 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
115 static void igb_vlan_rx_add_vid(struct net_device *, u16);
116 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
117 static void igb_restore_vlan(struct igb_adapter *);
118
119 static int igb_suspend(struct pci_dev *, pm_message_t);
120 #ifdef CONFIG_PM
121 static int igb_resume(struct pci_dev *);
122 #endif
123 static void igb_shutdown(struct pci_dev *);
124
125 #ifdef CONFIG_NET_POLL_CONTROLLER
126 /* for netdump / net console */
127 static void igb_netpoll(struct net_device *);
128 #endif
129
130 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
131                      pci_channel_state_t);
132 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
133 static void igb_io_resume(struct pci_dev *);
134
135 static struct pci_error_handlers igb_err_handler = {
136         .error_detected = igb_io_error_detected,
137         .slot_reset = igb_io_slot_reset,
138         .resume = igb_io_resume,
139 };
140
141
142 static struct pci_driver igb_driver = {
143         .name     = igb_driver_name,
144         .id_table = igb_pci_tbl,
145         .probe    = igb_probe,
146         .remove   = __devexit_p(igb_remove),
147 #ifdef CONFIG_PM
148         /* Power Managment Hooks */
149         .suspend  = igb_suspend,
150         .resume   = igb_resume,
151 #endif
152         .shutdown = igb_shutdown,
153         .err_handler = &igb_err_handler
154 };
155
156 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
157 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
158 MODULE_LICENSE("GPL");
159 MODULE_VERSION(DRV_VERSION);
160
161 #ifdef DEBUG
162 /**
163  * igb_get_hw_dev_name - return device name string
164  * used by hardware layer to print debugging information
165  **/
166 char *igb_get_hw_dev_name(struct e1000_hw *hw)
167 {
168         struct igb_adapter *adapter = hw->back;
169         return adapter->netdev->name;
170 }
171 #endif
172
173 /**
174  * igb_init_module - Driver Registration Routine
175  *
176  * igb_init_module is the first routine called when the driver is
177  * loaded. All it does is register with the PCI subsystem.
178  **/
179 static int __init igb_init_module(void)
180 {
181         int ret;
182         printk(KERN_INFO "%s - version %s\n",
183                igb_driver_string, igb_driver_version);
184
185         printk(KERN_INFO "%s\n", igb_copyright);
186
187         ret = pci_register_driver(&igb_driver);
188         return ret;
189 }
190
191 module_init(igb_init_module);
192
193 /**
194  * igb_exit_module - Driver Exit Cleanup Routine
195  *
196  * igb_exit_module is called just before the driver is removed
197  * from memory.
198  **/
199 static void __exit igb_exit_module(void)
200 {
201         pci_unregister_driver(&igb_driver);
202 }
203
204 module_exit(igb_exit_module);
205
206 /**
207  * igb_alloc_queues - Allocate memory for all rings
208  * @adapter: board private structure to initialize
209  *
210  * We allocate one ring per queue at run-time since we don't know the
211  * number of queues at compile-time.
212  **/
213 static int igb_alloc_queues(struct igb_adapter *adapter)
214 {
215         int i;
216
217         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
218                                    sizeof(struct igb_ring), GFP_KERNEL);
219         if (!adapter->tx_ring)
220                 return -ENOMEM;
221
222         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
223                                    sizeof(struct igb_ring), GFP_KERNEL);
224         if (!adapter->rx_ring) {
225                 kfree(adapter->tx_ring);
226                 return -ENOMEM;
227         }
228
229         for (i = 0; i < adapter->num_rx_queues; i++) {
230                 struct igb_ring *ring = &(adapter->rx_ring[i]);
231                 ring->adapter = adapter;
232                 ring->itr_register = E1000_ITR;
233
234                 if (!ring->napi.poll)
235                         netif_napi_add(adapter->netdev, &ring->napi, igb_clean,
236                                        adapter->napi.weight /
237                                        adapter->num_rx_queues);
238         }
239         return 0;
240 }
241
242 #define IGB_N0_QUEUE -1
243 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
244                               int tx_queue, int msix_vector)
245 {
246         u32 msixbm = 0;
247         struct e1000_hw *hw = &adapter->hw;
248                 /* The 82575 assigns vectors using a bitmask, which matches the
249                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
250                    or more queues to a vector, we write the appropriate bits
251                    into the MSIXBM register for that vector. */
252                 if (rx_queue > IGB_N0_QUEUE) {
253                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
254                         adapter->rx_ring[rx_queue].eims_value = msixbm;
255                 }
256                 if (tx_queue > IGB_N0_QUEUE) {
257                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
258                         adapter->tx_ring[tx_queue].eims_value =
259                                   E1000_EICR_TX_QUEUE0 << tx_queue;
260                 }
261                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
262 }
263
264 /**
265  * igb_configure_msix - Configure MSI-X hardware
266  *
267  * igb_configure_msix sets up the hardware to properly
268  * generate MSI-X interrupts.
269  **/
270 static void igb_configure_msix(struct igb_adapter *adapter)
271 {
272         u32 tmp;
273         int i, vector = 0;
274         struct e1000_hw *hw = &adapter->hw;
275
276         adapter->eims_enable_mask = 0;
277
278         for (i = 0; i < adapter->num_tx_queues; i++) {
279                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
280                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
281                 adapter->eims_enable_mask |= tx_ring->eims_value;
282                 if (tx_ring->itr_val)
283                         writel(1000000000 / (tx_ring->itr_val * 256),
284                                hw->hw_addr + tx_ring->itr_register);
285                 else
286                         writel(1, hw->hw_addr + tx_ring->itr_register);
287         }
288
289         for (i = 0; i < adapter->num_rx_queues; i++) {
290                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
291                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
292                 adapter->eims_enable_mask |= rx_ring->eims_value;
293                 if (rx_ring->itr_val)
294                         writel(1000000000 / (rx_ring->itr_val * 256),
295                                hw->hw_addr + rx_ring->itr_register);
296                 else
297                         writel(1, hw->hw_addr + rx_ring->itr_register);
298         }
299
300
301         /* set vector for other causes, i.e. link changes */
302                 array_wr32(E1000_MSIXBM(0), vector++,
303                                       E1000_EIMS_OTHER);
304
305                 /* disable IAM for ICR interrupt bits */
306                 wr32(E1000_IAM, 0);
307
308                 tmp = rd32(E1000_CTRL_EXT);
309                 /* enable MSI-X PBA support*/
310                 tmp |= E1000_CTRL_EXT_PBA_CLR;
311
312                 /* Auto-Mask interrupts upon ICR read. */
313                 tmp |= E1000_CTRL_EXT_EIAME;
314                 tmp |= E1000_CTRL_EXT_IRCA;
315
316                 wr32(E1000_CTRL_EXT, tmp);
317                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
318
319         wrfl();
320 }
321
322 /**
323  * igb_request_msix - Initialize MSI-X interrupts
324  *
325  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
326  * kernel.
327  **/
328 static int igb_request_msix(struct igb_adapter *adapter)
329 {
330         struct net_device *netdev = adapter->netdev;
331         int i, err = 0, vector = 0;
332
333         vector = 0;
334
335         for (i = 0; i < adapter->num_tx_queues; i++) {
336                 struct igb_ring *ring = &(adapter->tx_ring[i]);
337                 sprintf(ring->name, "%s-tx%d", netdev->name, i);
338                 err = request_irq(adapter->msix_entries[vector].vector,
339                                   &igb_msix_tx, 0, ring->name,
340                                   &(adapter->tx_ring[i]));
341                 if (err)
342                         goto out;
343                 ring->itr_register = E1000_EITR(0) + (vector << 2);
344                 ring->itr_val = adapter->itr;
345                 vector++;
346         }
347         for (i = 0; i < adapter->num_rx_queues; i++) {
348                 struct igb_ring *ring = &(adapter->rx_ring[i]);
349                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
350                         sprintf(ring->name, "%s-rx%d", netdev->name, i);
351                 else
352                         memcpy(ring->name, netdev->name, IFNAMSIZ);
353                 err = request_irq(adapter->msix_entries[vector].vector,
354                                   &igb_msix_rx, 0, ring->name,
355                                   &(adapter->rx_ring[i]));
356                 if (err)
357                         goto out;
358                 ring->itr_register = E1000_EITR(0) + (vector << 2);
359                 ring->itr_val = adapter->itr;
360                 vector++;
361         }
362
363         err = request_irq(adapter->msix_entries[vector].vector,
364                           &igb_msix_other, 0, netdev->name, netdev);
365         if (err)
366                 goto out;
367
368         adapter->napi.poll = igb_clean_rx_ring_msix;
369         for (i = 0; i < adapter->num_rx_queues; i++)
370                 adapter->rx_ring[i].napi.poll = adapter->napi.poll;
371         igb_configure_msix(adapter);
372         return 0;
373 out:
374         return err;
375 }
376
377 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
378 {
379         if (adapter->msix_entries) {
380                 pci_disable_msix(adapter->pdev);
381                 kfree(adapter->msix_entries);
382                 adapter->msix_entries = NULL;
383         } else if (adapter->msi_enabled)
384                 pci_disable_msi(adapter->pdev);
385         return;
386 }
387
388
389 /**
390  * igb_set_interrupt_capability - set MSI or MSI-X if supported
391  *
392  * Attempt to configure interrupts using the best available
393  * capabilities of the hardware and kernel.
394  **/
395 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
396 {
397         int err;
398         int numvecs, i;
399
400         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
401         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
402                                         GFP_KERNEL);
403         if (!adapter->msix_entries)
404                 goto msi_only;
405
406         for (i = 0; i < numvecs; i++)
407                 adapter->msix_entries[i].entry = i;
408
409         err = pci_enable_msix(adapter->pdev,
410                               adapter->msix_entries,
411                               numvecs);
412         if (err == 0)
413                 return;
414
415         igb_reset_interrupt_capability(adapter);
416
417         /* If we can't do MSI-X, try MSI */
418 msi_only:
419         adapter->num_rx_queues = 1;
420         if (!pci_enable_msi(adapter->pdev))
421                 adapter->msi_enabled = 1;
422         return;
423 }
424
425 /**
426  * igb_request_irq - initialize interrupts
427  *
428  * Attempts to configure interrupts using the best available
429  * capabilities of the hardware and kernel.
430  **/
431 static int igb_request_irq(struct igb_adapter *adapter)
432 {
433         struct net_device *netdev = adapter->netdev;
434         struct e1000_hw *hw = &adapter->hw;
435         int err = 0;
436
437         if (adapter->msix_entries) {
438                 err = igb_request_msix(adapter);
439                 if (!err) {
440                         /* enable IAM, auto-mask,
441                          * DO NOT USE EIAM or IAM in legacy mode */
442                         wr32(E1000_IAM, IMS_ENABLE_MASK);
443                         goto request_done;
444                 }
445                 /* fall back to MSI */
446                 igb_reset_interrupt_capability(adapter);
447                 if (!pci_enable_msi(adapter->pdev))
448                         adapter->msi_enabled = 1;
449                 igb_free_all_tx_resources(adapter);
450                 igb_free_all_rx_resources(adapter);
451                 adapter->num_rx_queues = 1;
452                 igb_alloc_queues(adapter);
453         }
454         if (adapter->msi_enabled) {
455                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
456                                   netdev->name, netdev);
457                 if (!err)
458                         goto request_done;
459                 /* fall back to legacy interrupts */
460                 igb_reset_interrupt_capability(adapter);
461                 adapter->msi_enabled = 0;
462         }
463
464         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
465                           netdev->name, netdev);
466
467         if (err)
468                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
469                         err);
470
471 request_done:
472         return err;
473 }
474
475 static void igb_free_irq(struct igb_adapter *adapter)
476 {
477         struct net_device *netdev = adapter->netdev;
478
479         if (adapter->msix_entries) {
480                 int vector = 0, i;
481
482                 for (i = 0; i < adapter->num_tx_queues; i++)
483                         free_irq(adapter->msix_entries[vector++].vector,
484                                 &(adapter->tx_ring[i]));
485                 for (i = 0; i < adapter->num_rx_queues; i++)
486                         free_irq(adapter->msix_entries[vector++].vector,
487                                 &(adapter->rx_ring[i]));
488
489                 free_irq(adapter->msix_entries[vector++].vector, netdev);
490                 return;
491         }
492
493         free_irq(adapter->pdev->irq, netdev);
494 }
495
496 /**
497  * igb_irq_disable - Mask off interrupt generation on the NIC
498  * @adapter: board private structure
499  **/
500 static void igb_irq_disable(struct igb_adapter *adapter)
501 {
502         struct e1000_hw *hw = &adapter->hw;
503
504         if (adapter->msix_entries) {
505                 wr32(E1000_EIMC, ~0);
506                 wr32(E1000_EIAC, 0);
507         }
508         wr32(E1000_IMC, ~0);
509         wrfl();
510         synchronize_irq(adapter->pdev->irq);
511 }
512
513 /**
514  * igb_irq_enable - Enable default interrupt generation settings
515  * @adapter: board private structure
516  **/
517 static void igb_irq_enable(struct igb_adapter *adapter)
518 {
519         struct e1000_hw *hw = &adapter->hw;
520
521         if (adapter->msix_entries) {
522                 wr32(E1000_EIMS,
523                                 adapter->eims_enable_mask);
524                 wr32(E1000_EIAC,
525                                 adapter->eims_enable_mask);
526                 wr32(E1000_IMS, E1000_IMS_LSC);
527         } else
528         wr32(E1000_IMS, IMS_ENABLE_MASK);
529 }
530
531 static void igb_update_mng_vlan(struct igb_adapter *adapter)
532 {
533         struct net_device *netdev = adapter->netdev;
534         u16 vid = adapter->hw.mng_cookie.vlan_id;
535         u16 old_vid = adapter->mng_vlan_id;
536         if (adapter->vlgrp) {
537                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
538                         if (adapter->hw.mng_cookie.status &
539                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
540                                 igb_vlan_rx_add_vid(netdev, vid);
541                                 adapter->mng_vlan_id = vid;
542                         } else
543                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
544
545                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
546                                         (vid != old_vid) &&
547                             !vlan_group_get_device(adapter->vlgrp, old_vid))
548                                 igb_vlan_rx_kill_vid(netdev, old_vid);
549                 } else
550                         adapter->mng_vlan_id = vid;
551         }
552 }
553
554 /**
555  * igb_release_hw_control - release control of the h/w to f/w
556  * @adapter: address of board private structure
557  *
558  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
559  * For ASF and Pass Through versions of f/w this means that the
560  * driver is no longer loaded.
561  *
562  **/
563 static void igb_release_hw_control(struct igb_adapter *adapter)
564 {
565         struct e1000_hw *hw = &adapter->hw;
566         u32 ctrl_ext;
567
568         /* Let firmware take over control of h/w */
569         ctrl_ext = rd32(E1000_CTRL_EXT);
570         wr32(E1000_CTRL_EXT,
571                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
572 }
573
574
575 /**
576  * igb_get_hw_control - get control of the h/w from f/w
577  * @adapter: address of board private structure
578  *
579  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
580  * For ASF and Pass Through versions of f/w this means that
581  * the driver is loaded.
582  *
583  **/
584 static void igb_get_hw_control(struct igb_adapter *adapter)
585 {
586         struct e1000_hw *hw = &adapter->hw;
587         u32 ctrl_ext;
588
589         /* Let firmware know the driver has taken over */
590         ctrl_ext = rd32(E1000_CTRL_EXT);
591         wr32(E1000_CTRL_EXT,
592                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
593 }
594
595 static void igb_init_manageability(struct igb_adapter *adapter)
596 {
597         struct e1000_hw *hw = &adapter->hw;
598
599         if (adapter->en_mng_pt) {
600                 u32 manc2h = rd32(E1000_MANC2H);
601                 u32 manc = rd32(E1000_MANC);
602
603                 /* enable receiving management packets to the host */
604                 /* this will probably generate destination unreachable messages
605                  * from the host OS, but the packets will be handled on SMBUS */
606                 manc |= E1000_MANC_EN_MNG2HOST;
607 #define E1000_MNG2HOST_PORT_623 (1 << 5)
608 #define E1000_MNG2HOST_PORT_664 (1 << 6)
609                 manc2h |= E1000_MNG2HOST_PORT_623;
610                 manc2h |= E1000_MNG2HOST_PORT_664;
611                 wr32(E1000_MANC2H, manc2h);
612
613                 wr32(E1000_MANC, manc);
614         }
615 }
616
617 /**
618  * igb_configure - configure the hardware for RX and TX
619  * @adapter: private board structure
620  **/
621 static void igb_configure(struct igb_adapter *adapter)
622 {
623         struct net_device *netdev = adapter->netdev;
624         int i;
625
626         igb_get_hw_control(adapter);
627         igb_set_multi(netdev);
628
629         igb_restore_vlan(adapter);
630         igb_init_manageability(adapter);
631
632         igb_configure_tx(adapter);
633         igb_setup_rctl(adapter);
634         igb_configure_rx(adapter);
635         /* call IGB_DESC_UNUSED which always leaves
636          * at least 1 descriptor unused to make sure
637          * next_to_use != next_to_clean */
638         for (i = 0; i < adapter->num_rx_queues; i++) {
639                 struct igb_ring *ring = &adapter->rx_ring[i];
640                 igb_alloc_rx_buffers_adv(adapter, ring, IGB_DESC_UNUSED(ring));
641         }
642
643
644         adapter->tx_queue_len = netdev->tx_queue_len;
645 }
646
647
648 /**
649  * igb_up - Open the interface and prepare it to handle traffic
650  * @adapter: board private structure
651  **/
652
653 int igb_up(struct igb_adapter *adapter)
654 {
655         struct e1000_hw *hw = &adapter->hw;
656         int i;
657
658         /* hardware has been reset, we need to reload some things */
659         igb_configure(adapter);
660
661         clear_bit(__IGB_DOWN, &adapter->state);
662
663         napi_enable(&adapter->napi);
664
665         if (adapter->msix_entries) {
666                 for (i = 0; i < adapter->num_rx_queues; i++)
667                         napi_enable(&adapter->rx_ring[i].napi);
668                 igb_configure_msix(adapter);
669         }
670
671         /* Clear any pending interrupts. */
672         rd32(E1000_ICR);
673         igb_irq_enable(adapter);
674
675         /* Fire a link change interrupt to start the watchdog. */
676         wr32(E1000_ICS, E1000_ICS_LSC);
677         return 0;
678 }
679
680 void igb_down(struct igb_adapter *adapter)
681 {
682         struct e1000_hw *hw = &adapter->hw;
683         struct net_device *netdev = adapter->netdev;
684         u32 tctl, rctl;
685         int i;
686
687         /* signal that we're down so the interrupt handler does not
688          * reschedule our watchdog timer */
689         set_bit(__IGB_DOWN, &adapter->state);
690
691         /* disable receives in the hardware */
692         rctl = rd32(E1000_RCTL);
693         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
694         /* flush and sleep below */
695
696         netif_stop_queue(netdev);
697
698         /* disable transmits in the hardware */
699         tctl = rd32(E1000_TCTL);
700         tctl &= ~E1000_TCTL_EN;
701         wr32(E1000_TCTL, tctl);
702         /* flush both disables and wait for them to finish */
703         wrfl();
704         msleep(10);
705
706         napi_disable(&adapter->napi);
707
708         if (adapter->msix_entries)
709                 for (i = 0; i < adapter->num_rx_queues; i++)
710                         napi_disable(&adapter->rx_ring[i].napi);
711         igb_irq_disable(adapter);
712
713         del_timer_sync(&adapter->watchdog_timer);
714         del_timer_sync(&adapter->phy_info_timer);
715
716         netdev->tx_queue_len = adapter->tx_queue_len;
717         netif_carrier_off(netdev);
718         adapter->link_speed = 0;
719         adapter->link_duplex = 0;
720
721         if (!pci_channel_offline(adapter->pdev))
722                 igb_reset(adapter);
723         igb_clean_all_tx_rings(adapter);
724         igb_clean_all_rx_rings(adapter);
725 }
726
727 void igb_reinit_locked(struct igb_adapter *adapter)
728 {
729         WARN_ON(in_interrupt());
730         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
731                 msleep(1);
732         igb_down(adapter);
733         igb_up(adapter);
734         clear_bit(__IGB_RESETTING, &adapter->state);
735 }
736
737 void igb_reset(struct igb_adapter *adapter)
738 {
739         struct e1000_hw *hw = &adapter->hw;
740         struct e1000_fc_info *fc = &adapter->hw.fc;
741         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
742         u16 hwm;
743
744         /* Repartition Pba for greater than 9k mtu
745          * To take effect CTRL.RST is required.
746          */
747         pba = E1000_PBA_34K;
748
749         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
750                 /* adjust PBA for jumbo frames */
751                 wr32(E1000_PBA, pba);
752
753                 /* To maintain wire speed transmits, the Tx FIFO should be
754                  * large enough to accommodate two full transmit packets,
755                  * rounded up to the next 1KB and expressed in KB.  Likewise,
756                  * the Rx FIFO should be large enough to accommodate at least
757                  * one full receive packet and is similarly rounded up and
758                  * expressed in KB. */
759                 pba = rd32(E1000_PBA);
760                 /* upper 16 bits has Tx packet buffer allocation size in KB */
761                 tx_space = pba >> 16;
762                 /* lower 16 bits has Rx packet buffer allocation size in KB */
763                 pba &= 0xffff;
764                 /* the tx fifo also stores 16 bytes of information about the tx
765                  * but don't include ethernet FCS because hardware appends it */
766                 min_tx_space = (adapter->max_frame_size +
767                                 sizeof(struct e1000_tx_desc) -
768                                 ETH_FCS_LEN) * 2;
769                 min_tx_space = ALIGN(min_tx_space, 1024);
770                 min_tx_space >>= 10;
771                 /* software strips receive CRC, so leave room for it */
772                 min_rx_space = adapter->max_frame_size;
773                 min_rx_space = ALIGN(min_rx_space, 1024);
774                 min_rx_space >>= 10;
775
776                 /* If current Tx allocation is less than the min Tx FIFO size,
777                  * and the min Tx FIFO size is less than the current Rx FIFO
778                  * allocation, take space away from current Rx allocation */
779                 if (tx_space < min_tx_space &&
780                     ((min_tx_space - tx_space) < pba)) {
781                         pba = pba - (min_tx_space - tx_space);
782
783                         /* if short on rx space, rx wins and must trump tx
784                          * adjustment */
785                         if (pba < min_rx_space)
786                                 pba = min_rx_space;
787                 }
788         }
789         wr32(E1000_PBA, pba);
790
791         /* flow control settings */
792         /* The high water mark must be low enough to fit one full frame
793          * (or the size used for early receive) above it in the Rx FIFO.
794          * Set it to the lower of:
795          * - 90% of the Rx FIFO size, or
796          * - the full Rx FIFO size minus one full frame */
797         hwm = min(((pba << 10) * 9 / 10),
798                   ((pba << 10) - adapter->max_frame_size));
799
800         fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
801         fc->low_water = fc->high_water - 8;
802         fc->pause_time = 0xFFFF;
803         fc->send_xon = 1;
804         fc->type = fc->original_type;
805
806         /* Allow time for pending master requests to run */
807         adapter->hw.mac.ops.reset_hw(&adapter->hw);
808         wr32(E1000_WUC, 0);
809
810         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
811                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
812
813         igb_update_mng_vlan(adapter);
814
815         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
816         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
817
818         igb_reset_adaptive(&adapter->hw);
819         if (adapter->hw.phy.ops.get_phy_info)
820                 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
821 }
822
823 /**
824  * igb_probe - Device Initialization Routine
825  * @pdev: PCI device information struct
826  * @ent: entry in igb_pci_tbl
827  *
828  * Returns 0 on success, negative on failure
829  *
830  * igb_probe initializes an adapter identified by a pci_dev structure.
831  * The OS initialization, configuring of the adapter private structure,
832  * and a hardware reset occur.
833  **/
834 static int __devinit igb_probe(struct pci_dev *pdev,
835                                const struct pci_device_id *ent)
836 {
837         struct net_device *netdev;
838         struct igb_adapter *adapter;
839         struct e1000_hw *hw;
840         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
841         unsigned long mmio_start, mmio_len;
842         static int cards_found;
843         int i, err, pci_using_dac;
844         u16 eeprom_data = 0;
845         u16 eeprom_apme_mask = IGB_EEPROM_APME;
846         u32 part_num;
847
848         err = pci_enable_device(pdev);
849         if (err)
850                 return err;
851
852         pci_using_dac = 0;
853         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
854         if (!err) {
855                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
856                 if (!err)
857                         pci_using_dac = 1;
858         } else {
859                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
860                 if (err) {
861                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
862                         if (err) {
863                                 dev_err(&pdev->dev, "No usable DMA "
864                                         "configuration, aborting\n");
865                                 goto err_dma;
866                         }
867                 }
868         }
869
870         err = pci_request_regions(pdev, igb_driver_name);
871         if (err)
872                 goto err_pci_reg;
873
874         pci_set_master(pdev);
875         pci_save_state(pdev);
876
877         err = -ENOMEM;
878         netdev = alloc_etherdev(sizeof(struct igb_adapter));
879         if (!netdev)
880                 goto err_alloc_etherdev;
881
882         SET_NETDEV_DEV(netdev, &pdev->dev);
883
884         pci_set_drvdata(pdev, netdev);
885         adapter = netdev_priv(netdev);
886         adapter->netdev = netdev;
887         adapter->pdev = pdev;
888         hw = &adapter->hw;
889         hw->back = adapter;
890         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
891
892         mmio_start = pci_resource_start(pdev, 0);
893         mmio_len = pci_resource_len(pdev, 0);
894
895         err = -EIO;
896         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
897         if (!adapter->hw.hw_addr)
898                 goto err_ioremap;
899
900         netdev->open = &igb_open;
901         netdev->stop = &igb_close;
902         netdev->get_stats = &igb_get_stats;
903         netdev->set_multicast_list = &igb_set_multi;
904         netdev->set_mac_address = &igb_set_mac;
905         netdev->change_mtu = &igb_change_mtu;
906         netdev->do_ioctl = &igb_ioctl;
907         igb_set_ethtool_ops(netdev);
908         netdev->tx_timeout = &igb_tx_timeout;
909         netdev->watchdog_timeo = 5 * HZ;
910         netif_napi_add(netdev, &adapter->napi, igb_clean, 64);
911         netdev->vlan_rx_register = igb_vlan_rx_register;
912         netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
913         netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
914 #ifdef CONFIG_NET_POLL_CONTROLLER
915         netdev->poll_controller = igb_netpoll;
916 #endif
917         netdev->hard_start_xmit = &igb_xmit_frame_adv;
918
919         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
920
921         netdev->mem_start = mmio_start;
922         netdev->mem_end = mmio_start + mmio_len;
923
924         adapter->bd_number = cards_found;
925
926         /* PCI config space info */
927         hw->vendor_id = pdev->vendor;
928         hw->device_id = pdev->device;
929         hw->revision_id = pdev->revision;
930         hw->subsystem_vendor_id = pdev->subsystem_vendor;
931         hw->subsystem_device_id = pdev->subsystem_device;
932
933         /* setup the private structure */
934         hw->back = adapter;
935         /* Copy the default MAC, PHY and NVM function pointers */
936         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
937         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
938         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
939         /* Initialize skew-specific constants */
940         err = ei->get_invariants(hw);
941         if (err)
942                 goto err_hw_init;
943
944         err = igb_sw_init(adapter);
945         if (err)
946                 goto err_sw_init;
947
948         igb_get_bus_info_pcie(hw);
949
950         hw->phy.autoneg_wait_to_complete = false;
951         hw->mac.adaptive_ifs = true;
952
953         /* Copper options */
954         if (hw->phy.media_type == e1000_media_type_copper) {
955                 hw->phy.mdix = AUTO_ALL_MODES;
956                 hw->phy.disable_polarity_correction = false;
957                 hw->phy.ms_type = e1000_ms_hw_default;
958         }
959
960         if (igb_check_reset_block(hw))
961                 dev_info(&pdev->dev,
962                         "PHY reset is blocked due to SOL/IDER session.\n");
963
964         netdev->features = NETIF_F_SG |
965                            NETIF_F_HW_CSUM |
966                            NETIF_F_HW_VLAN_TX |
967                            NETIF_F_HW_VLAN_RX |
968                            NETIF_F_HW_VLAN_FILTER;
969
970         netdev->features |= NETIF_F_TSO;
971         netdev->features |= NETIF_F_TSO6;
972
973         netdev->vlan_features |= NETIF_F_TSO;
974         netdev->vlan_features |= NETIF_F_TSO6;
975         netdev->vlan_features |= NETIF_F_HW_CSUM;
976         netdev->vlan_features |= NETIF_F_SG;
977
978         if (pci_using_dac)
979                 netdev->features |= NETIF_F_HIGHDMA;
980
981         netdev->features |= NETIF_F_LLTX;
982         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
983
984         /* before reading the NVM, reset the controller to put the device in a
985          * known good starting state */
986         hw->mac.ops.reset_hw(hw);
987
988         /* make sure the NVM is good */
989         if (igb_validate_nvm_checksum(hw) < 0) {
990                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
991                 err = -EIO;
992                 goto err_eeprom;
993         }
994
995         /* copy the MAC address out of the NVM */
996         if (hw->mac.ops.read_mac_addr(hw))
997                 dev_err(&pdev->dev, "NVM Read Error\n");
998
999         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1000         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1001
1002         if (!is_valid_ether_addr(netdev->perm_addr)) {
1003                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1004                 err = -EIO;
1005                 goto err_eeprom;
1006         }
1007
1008         init_timer(&adapter->watchdog_timer);
1009         adapter->watchdog_timer.function = &igb_watchdog;
1010         adapter->watchdog_timer.data = (unsigned long) adapter;
1011
1012         init_timer(&adapter->phy_info_timer);
1013         adapter->phy_info_timer.function = &igb_update_phy_info;
1014         adapter->phy_info_timer.data = (unsigned long) adapter;
1015
1016         INIT_WORK(&adapter->reset_task, igb_reset_task);
1017         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1018
1019         /* Initialize link & ring properties that are user-changeable */
1020         adapter->tx_ring->count = 256;
1021         for (i = 0; i < adapter->num_tx_queues; i++)
1022                 adapter->tx_ring[i].count = adapter->tx_ring->count;
1023         adapter->rx_ring->count = 256;
1024         for (i = 0; i < adapter->num_rx_queues; i++)
1025                 adapter->rx_ring[i].count = adapter->rx_ring->count;
1026
1027         adapter->fc_autoneg = true;
1028         hw->mac.autoneg = true;
1029         hw->phy.autoneg_advertised = 0x2f;
1030
1031         hw->fc.original_type = e1000_fc_default;
1032         hw->fc.type = e1000_fc_default;
1033
1034         adapter->itr_setting = 3;
1035         adapter->itr = IGB_START_ITR;
1036
1037         igb_validate_mdi_setting(hw);
1038
1039         adapter->rx_csum = 1;
1040
1041         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1042          * enable the ACPI Magic Packet filter
1043          */
1044
1045         if (hw->bus.func == 0 ||
1046             hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1047                 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1048                                      &eeprom_data);
1049
1050         if (eeprom_data & eeprom_apme_mask)
1051                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1052
1053         /* now that we have the eeprom settings, apply the special cases where
1054          * the eeprom may be wrong or the board simply won't support wake on
1055          * lan on a particular port */
1056         switch (pdev->device) {
1057         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1058                 adapter->eeprom_wol = 0;
1059                 break;
1060         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1061                 /* Wake events only supported on port A for dual fiber
1062                  * regardless of eeprom setting */
1063                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1064                         adapter->eeprom_wol = 0;
1065                 break;
1066         }
1067
1068         /* initialize the wol settings based on the eeprom settings */
1069         adapter->wol = adapter->eeprom_wol;
1070
1071         /* reset the hardware with the new settings */
1072         igb_reset(adapter);
1073
1074         /* let the f/w know that the h/w is now under the control of the
1075          * driver. */
1076         igb_get_hw_control(adapter);
1077
1078         /* tell the stack to leave us alone until igb_open() is called */
1079         netif_carrier_off(netdev);
1080         netif_stop_queue(netdev);
1081
1082         strcpy(netdev->name, "eth%d");
1083         err = register_netdev(netdev);
1084         if (err)
1085                 goto err_register;
1086
1087         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1088         /* print bus type/speed/width info */
1089         dev_info(&pdev->dev,
1090                  "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1091                  netdev->name,
1092                  ((hw->bus.speed == e1000_bus_speed_2500)
1093                   ? "2.5Gb/s" : "unknown"),
1094                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1095                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1096                   ? "Width x1" : "unknown"),
1097                  netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1098                  netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1099
1100         igb_read_part_num(hw, &part_num);
1101         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1102                 (part_num >> 8), (part_num & 0xff));
1103
1104         dev_info(&pdev->dev,
1105                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1106                 adapter->msix_entries ? "MSI-X" :
1107                 adapter->msi_enabled ? "MSI" : "legacy",
1108                 adapter->num_rx_queues, adapter->num_tx_queues);
1109
1110         cards_found++;
1111         return 0;
1112
1113 err_register:
1114         igb_release_hw_control(adapter);
1115 err_eeprom:
1116         if (!igb_check_reset_block(hw))
1117                 hw->phy.ops.reset_phy(hw);
1118
1119         if (hw->flash_address)
1120                 iounmap(hw->flash_address);
1121
1122         igb_remove_device(hw);
1123         kfree(adapter->tx_ring);
1124         kfree(adapter->rx_ring);
1125 err_sw_init:
1126 err_hw_init:
1127         iounmap(hw->hw_addr);
1128 err_ioremap:
1129         free_netdev(netdev);
1130 err_alloc_etherdev:
1131         pci_release_regions(pdev);
1132 err_pci_reg:
1133 err_dma:
1134         pci_disable_device(pdev);
1135         return err;
1136 }
1137
1138 /**
1139  * igb_remove - Device Removal Routine
1140  * @pdev: PCI device information struct
1141  *
1142  * igb_remove is called by the PCI subsystem to alert the driver
1143  * that it should release a PCI device.  The could be caused by a
1144  * Hot-Plug event, or because the driver is going to be removed from
1145  * memory.
1146  **/
1147 static void __devexit igb_remove(struct pci_dev *pdev)
1148 {
1149         struct net_device *netdev = pci_get_drvdata(pdev);
1150         struct igb_adapter *adapter = netdev_priv(netdev);
1151
1152         /* flush_scheduled work may reschedule our watchdog task, so
1153          * explicitly disable watchdog tasks from being rescheduled  */
1154         set_bit(__IGB_DOWN, &adapter->state);
1155         del_timer_sync(&adapter->watchdog_timer);
1156         del_timer_sync(&adapter->phy_info_timer);
1157
1158         flush_scheduled_work();
1159
1160         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1161          * would have already happened in close and is redundant. */
1162         igb_release_hw_control(adapter);
1163
1164         unregister_netdev(netdev);
1165
1166         if (!igb_check_reset_block(&adapter->hw))
1167                 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1168
1169         igb_remove_device(&adapter->hw);
1170         igb_reset_interrupt_capability(adapter);
1171
1172         kfree(adapter->tx_ring);
1173         kfree(adapter->rx_ring);
1174
1175         iounmap(adapter->hw.hw_addr);
1176         if (adapter->hw.flash_address)
1177                 iounmap(adapter->hw.flash_address);
1178         pci_release_regions(pdev);
1179
1180         free_netdev(netdev);
1181
1182         pci_disable_device(pdev);
1183 }
1184
1185 /**
1186  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1187  * @adapter: board private structure to initialize
1188  *
1189  * igb_sw_init initializes the Adapter private data structure.
1190  * Fields are initialized based on PCI device information and
1191  * OS network device settings (MTU size).
1192  **/
1193 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1194 {
1195         struct e1000_hw *hw = &adapter->hw;
1196         struct net_device *netdev = adapter->netdev;
1197         struct pci_dev *pdev = adapter->pdev;
1198
1199         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1200
1201         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1202         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1203         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1204         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1205
1206         /* Number of supported queues. */
1207         /* Having more queues than CPUs doesn't make sense. */
1208         adapter->num_tx_queues = 1;
1209         adapter->num_rx_queues = min(IGB_MAX_RX_QUEUES, num_online_cpus());
1210
1211         igb_set_interrupt_capability(adapter);
1212
1213         if (igb_alloc_queues(adapter)) {
1214                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1215                 return -ENOMEM;
1216         }
1217
1218         /* Explicitly disable IRQ since the NIC can be in any state. */
1219         igb_irq_disable(adapter);
1220
1221         set_bit(__IGB_DOWN, &adapter->state);
1222         return 0;
1223 }
1224
1225 /**
1226  * igb_open - Called when a network interface is made active
1227  * @netdev: network interface device structure
1228  *
1229  * Returns 0 on success, negative value on failure
1230  *
1231  * The open entry point is called when a network interface is made
1232  * active by the system (IFF_UP).  At this point all resources needed
1233  * for transmit and receive operations are allocated, the interrupt
1234  * handler is registered with the OS, the watchdog timer is started,
1235  * and the stack is notified that the interface is ready.
1236  **/
1237 static int igb_open(struct net_device *netdev)
1238 {
1239         struct igb_adapter *adapter = netdev_priv(netdev);
1240         struct e1000_hw *hw = &adapter->hw;
1241         int err;
1242         int i;
1243
1244         /* disallow open during test */
1245         if (test_bit(__IGB_TESTING, &adapter->state))
1246                 return -EBUSY;
1247
1248         /* allocate transmit descriptors */
1249         err = igb_setup_all_tx_resources(adapter);
1250         if (err)
1251                 goto err_setup_tx;
1252
1253         /* allocate receive descriptors */
1254         err = igb_setup_all_rx_resources(adapter);
1255         if (err)
1256                 goto err_setup_rx;
1257
1258         /* e1000_power_up_phy(adapter); */
1259
1260         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1261         if ((adapter->hw.mng_cookie.status &
1262              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1263                 igb_update_mng_vlan(adapter);
1264
1265         /* before we allocate an interrupt, we must be ready to handle it.
1266          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1267          * as soon as we call pci_request_irq, so we have to setup our
1268          * clean_rx handler before we do so.  */
1269         igb_configure(adapter);
1270
1271         err = igb_request_irq(adapter);
1272         if (err)
1273                 goto err_req_irq;
1274
1275         /* From here on the code is the same as igb_up() */
1276         clear_bit(__IGB_DOWN, &adapter->state);
1277
1278         napi_enable(&adapter->napi);
1279         if (adapter->msix_entries)
1280                 for (i = 0; i < adapter->num_rx_queues; i++)
1281                         napi_enable(&adapter->rx_ring[i].napi);
1282
1283         igb_irq_enable(adapter);
1284
1285         /* Clear any pending interrupts. */
1286         rd32(E1000_ICR);
1287         /* Fire a link status change interrupt to start the watchdog. */
1288         wr32(E1000_ICS, E1000_ICS_LSC);
1289
1290         return 0;
1291
1292 err_req_irq:
1293         igb_release_hw_control(adapter);
1294         /* e1000_power_down_phy(adapter); */
1295         igb_free_all_rx_resources(adapter);
1296 err_setup_rx:
1297         igb_free_all_tx_resources(adapter);
1298 err_setup_tx:
1299         igb_reset(adapter);
1300
1301         return err;
1302 }
1303
1304 /**
1305  * igb_close - Disables a network interface
1306  * @netdev: network interface device structure
1307  *
1308  * Returns 0, this is not allowed to fail
1309  *
1310  * The close entry point is called when an interface is de-activated
1311  * by the OS.  The hardware is still under the driver's control, but
1312  * needs to be disabled.  A global MAC reset is issued to stop the
1313  * hardware, and all transmit and receive resources are freed.
1314  **/
1315 static int igb_close(struct net_device *netdev)
1316 {
1317         struct igb_adapter *adapter = netdev_priv(netdev);
1318
1319         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1320         igb_down(adapter);
1321
1322         igb_free_irq(adapter);
1323
1324         igb_free_all_tx_resources(adapter);
1325         igb_free_all_rx_resources(adapter);
1326
1327         /* kill manageability vlan ID if supported, but not if a vlan with
1328          * the same ID is registered on the host OS (let 8021q kill it) */
1329         if ((adapter->hw.mng_cookie.status &
1330                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1331              !(adapter->vlgrp &&
1332                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1333                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1334
1335         return 0;
1336 }
1337
1338 /**
1339  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1340  * @adapter: board private structure
1341  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1342  *
1343  * Return 0 on success, negative on failure
1344  **/
1345
1346 int igb_setup_tx_resources(struct igb_adapter *adapter,
1347                            struct igb_ring *tx_ring)
1348 {
1349         struct pci_dev *pdev = adapter->pdev;
1350         int size;
1351
1352         size = sizeof(struct igb_buffer) * tx_ring->count;
1353         tx_ring->buffer_info = vmalloc(size);
1354         if (!tx_ring->buffer_info)
1355                 goto err;
1356         memset(tx_ring->buffer_info, 0, size);
1357
1358         /* round up to nearest 4K */
1359         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1360                         + sizeof(u32);
1361         tx_ring->size = ALIGN(tx_ring->size, 4096);
1362
1363         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1364                                              &tx_ring->dma);
1365
1366         if (!tx_ring->desc)
1367                 goto err;
1368
1369         tx_ring->adapter = adapter;
1370         tx_ring->next_to_use = 0;
1371         tx_ring->next_to_clean = 0;
1372         spin_lock_init(&tx_ring->tx_clean_lock);
1373         spin_lock_init(&tx_ring->tx_lock);
1374         return 0;
1375
1376 err:
1377         vfree(tx_ring->buffer_info);
1378         dev_err(&adapter->pdev->dev,
1379                 "Unable to allocate memory for the transmit descriptor ring\n");
1380         return -ENOMEM;
1381 }
1382
1383 /**
1384  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1385  *                                (Descriptors) for all queues
1386  * @adapter: board private structure
1387  *
1388  * Return 0 on success, negative on failure
1389  **/
1390 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1391 {
1392         int i, err = 0;
1393
1394         for (i = 0; i < adapter->num_tx_queues; i++) {
1395                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1396                 if (err) {
1397                         dev_err(&adapter->pdev->dev,
1398                                 "Allocation for Tx Queue %u failed\n", i);
1399                         for (i--; i >= 0; i--)
1400                                 igb_free_tx_resources(adapter,
1401                                                         &adapter->tx_ring[i]);
1402                         break;
1403                 }
1404         }
1405
1406         return err;
1407 }
1408
1409 /**
1410  * igb_configure_tx - Configure transmit Unit after Reset
1411  * @adapter: board private structure
1412  *
1413  * Configure the Tx unit of the MAC after a reset.
1414  **/
1415 static void igb_configure_tx(struct igb_adapter *adapter)
1416 {
1417         u64 tdba, tdwba;
1418         struct e1000_hw *hw = &adapter->hw;
1419         u32 tctl;
1420         u32 txdctl, txctrl;
1421         int i;
1422
1423         for (i = 0; i < adapter->num_tx_queues; i++) {
1424                 struct igb_ring *ring = &(adapter->tx_ring[i]);
1425
1426                 wr32(E1000_TDLEN(i),
1427                                 ring->count * sizeof(struct e1000_tx_desc));
1428                 tdba = ring->dma;
1429                 wr32(E1000_TDBAL(i),
1430                                 tdba & 0x00000000ffffffffULL);
1431                 wr32(E1000_TDBAH(i), tdba >> 32);
1432
1433                 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1434                 tdwba |= 1; /* enable head wb */
1435                 wr32(E1000_TDWBAL(i),
1436                                 tdwba & 0x00000000ffffffffULL);
1437                 wr32(E1000_TDWBAH(i), tdwba >> 32);
1438
1439                 ring->head = E1000_TDH(i);
1440                 ring->tail = E1000_TDT(i);
1441                 writel(0, hw->hw_addr + ring->tail);
1442                 writel(0, hw->hw_addr + ring->head);
1443                 txdctl = rd32(E1000_TXDCTL(i));
1444                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1445                 wr32(E1000_TXDCTL(i), txdctl);
1446
1447                 /* Turn off Relaxed Ordering on head write-backs.  The
1448                  * writebacks MUST be delivered in order or it will
1449                  * completely screw up our bookeeping.
1450                  */
1451                 txctrl = rd32(E1000_DCA_TXCTRL(i));
1452                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1453                 wr32(E1000_DCA_TXCTRL(i), txctrl);
1454         }
1455
1456
1457
1458         /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1459
1460         /* Program the Transmit Control Register */
1461
1462         tctl = rd32(E1000_TCTL);
1463         tctl &= ~E1000_TCTL_CT;
1464         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1465                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1466
1467         igb_config_collision_dist(hw);
1468
1469         /* Setup Transmit Descriptor Settings for eop descriptor */
1470         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1471
1472         /* Enable transmits */
1473         tctl |= E1000_TCTL_EN;
1474
1475         wr32(E1000_TCTL, tctl);
1476 }
1477
1478 /**
1479  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1480  * @adapter: board private structure
1481  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1482  *
1483  * Returns 0 on success, negative on failure
1484  **/
1485
1486 int igb_setup_rx_resources(struct igb_adapter *adapter,
1487                            struct igb_ring *rx_ring)
1488 {
1489         struct pci_dev *pdev = adapter->pdev;
1490         int size, desc_len;
1491
1492         size = sizeof(struct igb_buffer) * rx_ring->count;
1493         rx_ring->buffer_info = vmalloc(size);
1494         if (!rx_ring->buffer_info)
1495                 goto err;
1496         memset(rx_ring->buffer_info, 0, size);
1497
1498         desc_len = sizeof(union e1000_adv_rx_desc);
1499
1500         /* Round up to nearest 4K */
1501         rx_ring->size = rx_ring->count * desc_len;
1502         rx_ring->size = ALIGN(rx_ring->size, 4096);
1503
1504         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1505                                              &rx_ring->dma);
1506
1507         if (!rx_ring->desc)
1508                 goto err;
1509
1510         rx_ring->next_to_clean = 0;
1511         rx_ring->next_to_use = 0;
1512         rx_ring->pending_skb = NULL;
1513
1514         rx_ring->adapter = adapter;
1515         /* FIXME: do we want to setup ring->napi->poll here? */
1516         rx_ring->napi.poll = adapter->napi.poll;
1517
1518         return 0;
1519
1520 err:
1521         vfree(rx_ring->buffer_info);
1522         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1523                 "the receive descriptor ring\n");
1524         return -ENOMEM;
1525 }
1526
1527 /**
1528  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1529  *                                (Descriptors) for all queues
1530  * @adapter: board private structure
1531  *
1532  * Return 0 on success, negative on failure
1533  **/
1534 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1535 {
1536         int i, err = 0;
1537
1538         for (i = 0; i < adapter->num_rx_queues; i++) {
1539                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1540                 if (err) {
1541                         dev_err(&adapter->pdev->dev,
1542                                 "Allocation for Rx Queue %u failed\n", i);
1543                         for (i--; i >= 0; i--)
1544                                 igb_free_rx_resources(adapter,
1545                                                         &adapter->rx_ring[i]);
1546                         break;
1547                 }
1548         }
1549
1550         return err;
1551 }
1552
1553 /**
1554  * igb_setup_rctl - configure the receive control registers
1555  * @adapter: Board private structure
1556  **/
1557 static void igb_setup_rctl(struct igb_adapter *adapter)
1558 {
1559         struct e1000_hw *hw = &adapter->hw;
1560         u32 rctl;
1561         u32 srrctl = 0;
1562         int i;
1563
1564         rctl = rd32(E1000_RCTL);
1565
1566         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1567
1568         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1569                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1570                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1571
1572         /* disable the stripping of CRC because it breaks
1573          * BMC firmware connected over SMBUS
1574         rctl |= E1000_RCTL_SECRC;
1575         */
1576
1577         rctl &= ~E1000_RCTL_SBP;
1578
1579         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1580                 rctl &= ~E1000_RCTL_LPE;
1581         else
1582                 rctl |= E1000_RCTL_LPE;
1583         if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1584                 /* Setup buffer sizes */
1585                 rctl &= ~E1000_RCTL_SZ_4096;
1586                 rctl |= E1000_RCTL_BSEX;
1587                 switch (adapter->rx_buffer_len) {
1588                 case IGB_RXBUFFER_256:
1589                         rctl |= E1000_RCTL_SZ_256;
1590                         rctl &= ~E1000_RCTL_BSEX;
1591                         break;
1592                 case IGB_RXBUFFER_512:
1593                         rctl |= E1000_RCTL_SZ_512;
1594                         rctl &= ~E1000_RCTL_BSEX;
1595                         break;
1596                 case IGB_RXBUFFER_1024:
1597                         rctl |= E1000_RCTL_SZ_1024;
1598                         rctl &= ~E1000_RCTL_BSEX;
1599                         break;
1600                 case IGB_RXBUFFER_2048:
1601                 default:
1602                         rctl |= E1000_RCTL_SZ_2048;
1603                         rctl &= ~E1000_RCTL_BSEX;
1604                         break;
1605                 case IGB_RXBUFFER_4096:
1606                         rctl |= E1000_RCTL_SZ_4096;
1607                         break;
1608                 case IGB_RXBUFFER_8192:
1609                         rctl |= E1000_RCTL_SZ_8192;
1610                         break;
1611                 case IGB_RXBUFFER_16384:
1612                         rctl |= E1000_RCTL_SZ_16384;
1613                         break;
1614                 }
1615         } else {
1616                 rctl &= ~E1000_RCTL_BSEX;
1617                 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1618         }
1619
1620         /* 82575 and greater support packet-split where the protocol
1621          * header is placed in skb->data and the packet data is
1622          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1623          * In the case of a non-split, skb->data is linearly filled,
1624          * followed by the page buffers.  Therefore, skb->data is
1625          * sized to hold the largest protocol header.
1626          */
1627         /* allocations using alloc_page take too long for regular MTU
1628          * so only enable packet split for jumbo frames */
1629         if (rctl & E1000_RCTL_LPE) {
1630                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1631                 srrctl = adapter->rx_ps_hdr_size <<
1632                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1633                 /* buffer size is ALWAYS one page */
1634                 srrctl |= PAGE_SIZE >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1635                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1636         } else {
1637                 adapter->rx_ps_hdr_size = 0;
1638                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1639         }
1640
1641         for (i = 0; i < adapter->num_rx_queues; i++)
1642                 wr32(E1000_SRRCTL(i), srrctl);
1643
1644         wr32(E1000_RCTL, rctl);
1645 }
1646
1647 /**
1648  * igb_configure_rx - Configure receive Unit after Reset
1649  * @adapter: board private structure
1650  *
1651  * Configure the Rx unit of the MAC after a reset.
1652  **/
1653 static void igb_configure_rx(struct igb_adapter *adapter)
1654 {
1655         u64 rdba;
1656         struct e1000_hw *hw = &adapter->hw;
1657         u32 rctl, rxcsum;
1658         u32 rxdctl;
1659         int i;
1660
1661         /* disable receives while setting up the descriptors */
1662         rctl = rd32(E1000_RCTL);
1663         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1664         wrfl();
1665         mdelay(10);
1666
1667         if (adapter->itr_setting > 3)
1668                 wr32(E1000_ITR,
1669                                 1000000000 / (adapter->itr * 256));
1670
1671         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1672          * the Base and Length of the Rx Descriptor Ring */
1673         for (i = 0; i < adapter->num_rx_queues; i++) {
1674                 struct igb_ring *ring = &(adapter->rx_ring[i]);
1675                 rdba = ring->dma;
1676                 wr32(E1000_RDBAL(i),
1677                                 rdba & 0x00000000ffffffffULL);
1678                 wr32(E1000_RDBAH(i), rdba >> 32);
1679                 wr32(E1000_RDLEN(i),
1680                                ring->count * sizeof(union e1000_adv_rx_desc));
1681
1682                 ring->head = E1000_RDH(i);
1683                 ring->tail = E1000_RDT(i);
1684                 writel(0, hw->hw_addr + ring->tail);
1685                 writel(0, hw->hw_addr + ring->head);
1686
1687                 rxdctl = rd32(E1000_RXDCTL(i));
1688                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1689                 rxdctl &= 0xFFF00000;
1690                 rxdctl |= IGB_RX_PTHRESH;
1691                 rxdctl |= IGB_RX_HTHRESH << 8;
1692                 rxdctl |= IGB_RX_WTHRESH << 16;
1693                 wr32(E1000_RXDCTL(i), rxdctl);
1694         }
1695
1696         if (adapter->num_rx_queues > 1) {
1697                 u32 random[10];
1698                 u32 mrqc;
1699                 u32 j, shift;
1700                 union e1000_reta {
1701                         u32 dword;
1702                         u8  bytes[4];
1703                 } reta;
1704
1705                 get_random_bytes(&random[0], 40);
1706
1707                 shift = 6;
1708                 for (j = 0; j < (32 * 4); j++) {
1709                         reta.bytes[j & 3] =
1710                                 (j % adapter->num_rx_queues) << shift;
1711                         if ((j & 3) == 3)
1712                                 writel(reta.dword,
1713                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
1714                 }
1715                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1716
1717                 /* Fill out hash function seeds */
1718                 for (j = 0; j < 10; j++)
1719                         array_wr32(E1000_RSSRK(0), j, random[j]);
1720
1721                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1722                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1723                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1724                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
1725                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1726                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
1727                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1728                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1729
1730
1731                 wr32(E1000_MRQC, mrqc);
1732
1733                 /* Multiqueue and raw packet checksumming are mutually
1734                  * exclusive.  Note that this not the same as TCP/IP
1735                  * checksumming, which works fine. */
1736                 rxcsum = rd32(E1000_RXCSUM);
1737                 rxcsum |= E1000_RXCSUM_PCSD;
1738                 wr32(E1000_RXCSUM, rxcsum);
1739         } else {
1740                 /* Enable Receive Checksum Offload for TCP and UDP */
1741                 rxcsum = rd32(E1000_RXCSUM);
1742                 if (adapter->rx_csum) {
1743                         rxcsum |= E1000_RXCSUM_TUOFL;
1744
1745                         /* Enable IPv4 payload checksum for UDP fragments
1746                          * Must be used in conjunction with packet-split. */
1747                         if (adapter->rx_ps_hdr_size)
1748                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1749                 } else {
1750                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1751                         /* don't need to clear IPPCSE as it defaults to 0 */
1752                 }
1753                 wr32(E1000_RXCSUM, rxcsum);
1754         }
1755
1756         if (adapter->vlgrp)
1757                 wr32(E1000_RLPML,
1758                                 adapter->max_frame_size + VLAN_TAG_SIZE);
1759         else
1760                 wr32(E1000_RLPML, adapter->max_frame_size);
1761
1762         /* Enable Receives */
1763         wr32(E1000_RCTL, rctl);
1764 }
1765
1766 /**
1767  * igb_free_tx_resources - Free Tx Resources per Queue
1768  * @adapter: board private structure
1769  * @tx_ring: Tx descriptor ring for a specific queue
1770  *
1771  * Free all transmit software resources
1772  **/
1773 static void igb_free_tx_resources(struct igb_adapter *adapter,
1774                                   struct igb_ring *tx_ring)
1775 {
1776         struct pci_dev *pdev = adapter->pdev;
1777
1778         igb_clean_tx_ring(adapter, tx_ring);
1779
1780         vfree(tx_ring->buffer_info);
1781         tx_ring->buffer_info = NULL;
1782
1783         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1784
1785         tx_ring->desc = NULL;
1786 }
1787
1788 /**
1789  * igb_free_all_tx_resources - Free Tx Resources for All Queues
1790  * @adapter: board private structure
1791  *
1792  * Free all transmit software resources
1793  **/
1794 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1795 {
1796         int i;
1797
1798         for (i = 0; i < adapter->num_tx_queues; i++)
1799                 igb_free_tx_resources(adapter, &adapter->tx_ring[i]);
1800 }
1801
1802 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
1803                                            struct igb_buffer *buffer_info)
1804 {
1805         if (buffer_info->dma) {
1806                 pci_unmap_page(adapter->pdev,
1807                                 buffer_info->dma,
1808                                 buffer_info->length,
1809                                 PCI_DMA_TODEVICE);
1810                 buffer_info->dma = 0;
1811         }
1812         if (buffer_info->skb) {
1813                 dev_kfree_skb_any(buffer_info->skb);
1814                 buffer_info->skb = NULL;
1815         }
1816         buffer_info->time_stamp = 0;
1817         /* buffer_info must be completely set up in the transmit path */
1818 }
1819
1820 /**
1821  * igb_clean_tx_ring - Free Tx Buffers
1822  * @adapter: board private structure
1823  * @tx_ring: ring to be cleaned
1824  **/
1825 static void igb_clean_tx_ring(struct igb_adapter *adapter,
1826                               struct igb_ring *tx_ring)
1827 {
1828         struct igb_buffer *buffer_info;
1829         unsigned long size;
1830         unsigned int i;
1831
1832         if (!tx_ring->buffer_info)
1833                 return;
1834         /* Free all the Tx ring sk_buffs */
1835
1836         for (i = 0; i < tx_ring->count; i++) {
1837                 buffer_info = &tx_ring->buffer_info[i];
1838                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
1839         }
1840
1841         size = sizeof(struct igb_buffer) * tx_ring->count;
1842         memset(tx_ring->buffer_info, 0, size);
1843
1844         /* Zero out the descriptor ring */
1845
1846         memset(tx_ring->desc, 0, tx_ring->size);
1847
1848         tx_ring->next_to_use = 0;
1849         tx_ring->next_to_clean = 0;
1850
1851         writel(0, adapter->hw.hw_addr + tx_ring->head);
1852         writel(0, adapter->hw.hw_addr + tx_ring->tail);
1853 }
1854
1855 /**
1856  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
1857  * @adapter: board private structure
1858  **/
1859 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
1860 {
1861         int i;
1862
1863         for (i = 0; i < adapter->num_tx_queues; i++)
1864                 igb_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1865 }
1866
1867 /**
1868  * igb_free_rx_resources - Free Rx Resources
1869  * @adapter: board private structure
1870  * @rx_ring: ring to clean the resources from
1871  *
1872  * Free all receive software resources
1873  **/
1874 static void igb_free_rx_resources(struct igb_adapter *adapter,
1875                                   struct igb_ring *rx_ring)
1876 {
1877         struct pci_dev *pdev = adapter->pdev;
1878
1879         igb_clean_rx_ring(adapter, rx_ring);
1880
1881         vfree(rx_ring->buffer_info);
1882         rx_ring->buffer_info = NULL;
1883
1884         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1885
1886         rx_ring->desc = NULL;
1887 }
1888
1889 /**
1890  * igb_free_all_rx_resources - Free Rx Resources for All Queues
1891  * @adapter: board private structure
1892  *
1893  * Free all receive software resources
1894  **/
1895 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
1896 {
1897         int i;
1898
1899         for (i = 0; i < adapter->num_rx_queues; i++)
1900                 igb_free_rx_resources(adapter, &adapter->rx_ring[i]);
1901 }
1902
1903 /**
1904  * igb_clean_rx_ring - Free Rx Buffers per Queue
1905  * @adapter: board private structure
1906  * @rx_ring: ring to free buffers from
1907  **/
1908 static void igb_clean_rx_ring(struct igb_adapter *adapter,
1909                               struct igb_ring *rx_ring)
1910 {
1911         struct igb_buffer *buffer_info;
1912         struct pci_dev *pdev = adapter->pdev;
1913         unsigned long size;
1914         unsigned int i;
1915
1916         if (!rx_ring->buffer_info)
1917                 return;
1918         /* Free all the Rx ring sk_buffs */
1919         for (i = 0; i < rx_ring->count; i++) {
1920                 buffer_info = &rx_ring->buffer_info[i];
1921                 if (buffer_info->dma) {
1922                         if (adapter->rx_ps_hdr_size)
1923                                 pci_unmap_single(pdev, buffer_info->dma,
1924                                                  adapter->rx_ps_hdr_size,
1925                                                  PCI_DMA_FROMDEVICE);
1926                         else
1927                                 pci_unmap_single(pdev, buffer_info->dma,
1928                                                  adapter->rx_buffer_len,
1929                                                  PCI_DMA_FROMDEVICE);
1930                         buffer_info->dma = 0;
1931                 }
1932
1933                 if (buffer_info->skb) {
1934                         dev_kfree_skb(buffer_info->skb);
1935                         buffer_info->skb = NULL;
1936                 }
1937                 if (buffer_info->page) {
1938                         pci_unmap_page(pdev, buffer_info->page_dma,
1939                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
1940                         put_page(buffer_info->page);
1941                         buffer_info->page = NULL;
1942                         buffer_info->page_dma = 0;
1943                 }
1944         }
1945
1946         /* there also may be some cached data from a chained receive */
1947         if (rx_ring->pending_skb) {
1948                 dev_kfree_skb(rx_ring->pending_skb);
1949                 rx_ring->pending_skb = NULL;
1950         }
1951
1952         size = sizeof(struct igb_buffer) * rx_ring->count;
1953         memset(rx_ring->buffer_info, 0, size);
1954
1955         /* Zero out the descriptor ring */
1956         memset(rx_ring->desc, 0, rx_ring->size);
1957
1958         rx_ring->next_to_clean = 0;
1959         rx_ring->next_to_use = 0;
1960
1961         writel(0, adapter->hw.hw_addr + rx_ring->head);
1962         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1963 }
1964
1965 /**
1966  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
1967  * @adapter: board private structure
1968  **/
1969 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
1970 {
1971         int i;
1972
1973         for (i = 0; i < adapter->num_rx_queues; i++)
1974                 igb_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1975 }
1976
1977 /**
1978  * igb_set_mac - Change the Ethernet Address of the NIC
1979  * @netdev: network interface device structure
1980  * @p: pointer to an address structure
1981  *
1982  * Returns 0 on success, negative on failure
1983  **/
1984 static int igb_set_mac(struct net_device *netdev, void *p)
1985 {
1986         struct igb_adapter *adapter = netdev_priv(netdev);
1987         struct sockaddr *addr = p;
1988
1989         if (!is_valid_ether_addr(addr->sa_data))
1990                 return -EADDRNOTAVAIL;
1991
1992         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1993         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
1994
1995         adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1996
1997         return 0;
1998 }
1999
2000 /**
2001  * igb_set_multi - Multicast and Promiscuous mode set
2002  * @netdev: network interface device structure
2003  *
2004  * The set_multi entry point is called whenever the multicast address
2005  * list or the network interface flags are updated.  This routine is
2006  * responsible for configuring the hardware for proper multicast,
2007  * promiscuous mode, and all-multi behavior.
2008  **/
2009 static void igb_set_multi(struct net_device *netdev)
2010 {
2011         struct igb_adapter *adapter = netdev_priv(netdev);
2012         struct e1000_hw *hw = &adapter->hw;
2013         struct e1000_mac_info *mac = &hw->mac;
2014         struct dev_mc_list *mc_ptr;
2015         u8  *mta_list;
2016         u32 rctl;
2017         int i;
2018
2019         /* Check for Promiscuous and All Multicast modes */
2020
2021         rctl = rd32(E1000_RCTL);
2022
2023         if (netdev->flags & IFF_PROMISC)
2024                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2025         else if (netdev->flags & IFF_ALLMULTI) {
2026                 rctl |= E1000_RCTL_MPE;
2027                 rctl &= ~E1000_RCTL_UPE;
2028         } else
2029                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2030
2031         wr32(E1000_RCTL, rctl);
2032
2033         if (!netdev->mc_count) {
2034                 /* nothing to program, so clear mc list */
2035                 igb_update_mc_addr_list(hw, NULL, 0, 1,
2036                                           mac->rar_entry_count);
2037                 return;
2038         }
2039
2040         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2041         if (!mta_list)
2042                 return;
2043
2044         /* The shared function expects a packed array of only addresses. */
2045         mc_ptr = netdev->mc_list;
2046
2047         for (i = 0; i < netdev->mc_count; i++) {
2048                 if (!mc_ptr)
2049                         break;
2050                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2051                 mc_ptr = mc_ptr->next;
2052         }
2053         igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2054         kfree(mta_list);
2055 }
2056
2057 /* Need to wait a few seconds after link up to get diagnostic information from
2058  * the phy */
2059 static void igb_update_phy_info(unsigned long data)
2060 {
2061         struct igb_adapter *adapter = (struct igb_adapter *) data;
2062         if (adapter->hw.phy.ops.get_phy_info)
2063                 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
2064 }
2065
2066 /**
2067  * igb_watchdog - Timer Call-back
2068  * @data: pointer to adapter cast into an unsigned long
2069  **/
2070 static void igb_watchdog(unsigned long data)
2071 {
2072         struct igb_adapter *adapter = (struct igb_adapter *)data;
2073         /* Do the rest outside of interrupt context */
2074         schedule_work(&adapter->watchdog_task);
2075 }
2076
2077 static void igb_watchdog_task(struct work_struct *work)
2078 {
2079         struct igb_adapter *adapter = container_of(work,
2080                                         struct igb_adapter, watchdog_task);
2081         struct e1000_hw *hw = &adapter->hw;
2082
2083         struct net_device *netdev = adapter->netdev;
2084         struct igb_ring *tx_ring = adapter->tx_ring;
2085         struct e1000_mac_info *mac = &adapter->hw.mac;
2086         u32 link;
2087         s32 ret_val;
2088
2089         if ((netif_carrier_ok(netdev)) &&
2090             (rd32(E1000_STATUS) & E1000_STATUS_LU))
2091                 goto link_up;
2092
2093         ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2094         if ((ret_val == E1000_ERR_PHY) &&
2095             (hw->phy.type == e1000_phy_igp_3) &&
2096             (rd32(E1000_CTRL) &
2097              E1000_PHY_CTRL_GBE_DISABLE))
2098                 dev_info(&adapter->pdev->dev,
2099                          "Gigabit has been disabled, downgrading speed\n");
2100
2101         if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2102             !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2103                 link = mac->serdes_has_link;
2104         else
2105                 link = rd32(E1000_STATUS) &
2106                                       E1000_STATUS_LU;
2107
2108         if (link) {
2109                 if (!netif_carrier_ok(netdev)) {
2110                         u32 ctrl;
2111                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2112                                                    &adapter->link_speed,
2113                                                    &adapter->link_duplex);
2114
2115                         ctrl = rd32(E1000_CTRL);
2116                         dev_info(&adapter->pdev->dev,
2117                                  "NIC Link is Up %d Mbps %s, "
2118                                  "Flow Control: %s\n",
2119                                  adapter->link_speed,
2120                                  adapter->link_duplex == FULL_DUPLEX ?
2121                                  "Full Duplex" : "Half Duplex",
2122                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2123                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2124                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2125                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2126
2127                         /* tweak tx_queue_len according to speed/duplex and
2128                          * adjust the timeout factor */
2129                         netdev->tx_queue_len = adapter->tx_queue_len;
2130                         adapter->tx_timeout_factor = 1;
2131                         switch (adapter->link_speed) {
2132                         case SPEED_10:
2133                                 netdev->tx_queue_len = 10;
2134                                 adapter->tx_timeout_factor = 14;
2135                                 break;
2136                         case SPEED_100:
2137                                 netdev->tx_queue_len = 100;
2138                                 /* maybe add some timeout factor ? */
2139                                 break;
2140                         }
2141
2142                         netif_carrier_on(netdev);
2143                         netif_wake_queue(netdev);
2144
2145                         if (!test_bit(__IGB_DOWN, &adapter->state))
2146                                 mod_timer(&adapter->phy_info_timer,
2147                                           round_jiffies(jiffies + 2 * HZ));
2148                 }
2149         } else {
2150                 if (netif_carrier_ok(netdev)) {
2151                         adapter->link_speed = 0;
2152                         adapter->link_duplex = 0;
2153                         dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2154                         netif_carrier_off(netdev);
2155                         netif_stop_queue(netdev);
2156                         if (!test_bit(__IGB_DOWN, &adapter->state))
2157                                 mod_timer(&adapter->phy_info_timer,
2158                                           round_jiffies(jiffies + 2 * HZ));
2159                 }
2160         }
2161
2162 link_up:
2163         igb_update_stats(adapter);
2164
2165         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2166         adapter->tpt_old = adapter->stats.tpt;
2167         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2168         adapter->colc_old = adapter->stats.colc;
2169
2170         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2171         adapter->gorc_old = adapter->stats.gorc;
2172         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2173         adapter->gotc_old = adapter->stats.gotc;
2174
2175         igb_update_adaptive(&adapter->hw);
2176
2177         if (!netif_carrier_ok(netdev)) {
2178                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2179                         /* We've lost link, so the controller stops DMA,
2180                          * but we've got queued Tx work that's never going
2181                          * to get done, so reset controller to flush Tx.
2182                          * (Do the reset outside of interrupt context). */
2183                         adapter->tx_timeout_count++;
2184                         schedule_work(&adapter->reset_task);
2185                 }
2186         }
2187
2188         /* Cause software interrupt to ensure rx ring is cleaned */
2189         wr32(E1000_ICS, E1000_ICS_RXDMT0);
2190
2191         /* Force detection of hung controller every watchdog period */
2192         tx_ring->detect_tx_hung = true;
2193
2194         /* Reset the timer */
2195         if (!test_bit(__IGB_DOWN, &adapter->state))
2196                 mod_timer(&adapter->watchdog_timer,
2197                           round_jiffies(jiffies + 2 * HZ));
2198 }
2199
2200 enum latency_range {
2201         lowest_latency = 0,
2202         low_latency = 1,
2203         bulk_latency = 2,
2204         latency_invalid = 255
2205 };
2206
2207
2208 static void igb_lower_rx_eitr(struct igb_adapter *adapter,
2209                               struct igb_ring *rx_ring)
2210 {
2211         struct e1000_hw *hw = &adapter->hw;
2212         int new_val;
2213
2214         new_val = rx_ring->itr_val / 2;
2215         if (new_val < IGB_MIN_DYN_ITR)
2216                 new_val = IGB_MIN_DYN_ITR;
2217
2218         if (new_val != rx_ring->itr_val) {
2219                 rx_ring->itr_val = new_val;
2220                 wr32(rx_ring->itr_register,
2221                                 1000000000 / (new_val * 256));
2222         }
2223 }
2224
2225 static void igb_raise_rx_eitr(struct igb_adapter *adapter,
2226                               struct igb_ring *rx_ring)
2227 {
2228         struct e1000_hw *hw = &adapter->hw;
2229         int new_val;
2230
2231         new_val = rx_ring->itr_val * 2;
2232         if (new_val > IGB_MAX_DYN_ITR)
2233                 new_val = IGB_MAX_DYN_ITR;
2234
2235         if (new_val != rx_ring->itr_val) {
2236                 rx_ring->itr_val = new_val;
2237                 wr32(rx_ring->itr_register,
2238                                 1000000000 / (new_val * 256));
2239         }
2240 }
2241
2242 /**
2243  * igb_update_itr - update the dynamic ITR value based on statistics
2244  *      Stores a new ITR value based on packets and byte
2245  *      counts during the last interrupt.  The advantage of per interrupt
2246  *      computation is faster updates and more accurate ITR for the current
2247  *      traffic pattern.  Constants in this function were computed
2248  *      based on theoretical maximum wire speed and thresholds were set based
2249  *      on testing data as well as attempting to minimize response time
2250  *      while increasing bulk throughput.
2251  *      this functionality is controlled by the InterruptThrottleRate module
2252  *      parameter (see igb_param.c)
2253  *      NOTE:  These calculations are only valid when operating in a single-
2254  *             queue environment.
2255  * @adapter: pointer to adapter
2256  * @itr_setting: current adapter->itr
2257  * @packets: the number of packets during this measurement interval
2258  * @bytes: the number of bytes during this measurement interval
2259  **/
2260 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2261                                    int packets, int bytes)
2262 {
2263         unsigned int retval = itr_setting;
2264
2265         if (packets == 0)
2266                 goto update_itr_done;
2267
2268         switch (itr_setting) {
2269         case lowest_latency:
2270                 /* handle TSO and jumbo frames */
2271                 if (bytes/packets > 8000)
2272                         retval = bulk_latency;
2273                 else if ((packets < 5) && (bytes > 512))
2274                         retval = low_latency;
2275                 break;
2276         case low_latency:  /* 50 usec aka 20000 ints/s */
2277                 if (bytes > 10000) {
2278                         /* this if handles the TSO accounting */
2279                         if (bytes/packets > 8000) {
2280                                 retval = bulk_latency;
2281                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2282                                 retval = bulk_latency;
2283                         } else if ((packets > 35)) {
2284                                 retval = lowest_latency;
2285                         }
2286                 } else if (bytes/packets > 2000) {
2287                         retval = bulk_latency;
2288                 } else if (packets <= 2 && bytes < 512) {
2289                         retval = lowest_latency;
2290                 }
2291                 break;
2292         case bulk_latency: /* 250 usec aka 4000 ints/s */
2293                 if (bytes > 25000) {
2294                         if (packets > 35)
2295                                 retval = low_latency;
2296                 } else if (bytes < 6000) {
2297                         retval = low_latency;
2298                 }
2299                 break;
2300         }
2301
2302 update_itr_done:
2303         return retval;
2304 }
2305
2306 static void igb_set_itr(struct igb_adapter *adapter, u16 itr_register,
2307                         int rx_only)
2308 {
2309         u16 current_itr;
2310         u32 new_itr = adapter->itr;
2311
2312         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2313         if (adapter->link_speed != SPEED_1000) {
2314                 current_itr = 0;
2315                 new_itr = 4000;
2316                 goto set_itr_now;
2317         }
2318
2319         adapter->rx_itr = igb_update_itr(adapter,
2320                                     adapter->rx_itr,
2321                                     adapter->rx_ring->total_packets,
2322                                     adapter->rx_ring->total_bytes);
2323         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2324         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2325                 adapter->rx_itr = low_latency;
2326
2327         if (!rx_only) {
2328                 adapter->tx_itr = igb_update_itr(adapter,
2329                                             adapter->tx_itr,
2330                                             adapter->tx_ring->total_packets,
2331                                             adapter->tx_ring->total_bytes);
2332                 /* conservative mode (itr 3) eliminates the
2333                  * lowest_latency setting */
2334                 if (adapter->itr_setting == 3 &&
2335                     adapter->tx_itr == lowest_latency)
2336                         adapter->tx_itr = low_latency;
2337
2338                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2339         } else {
2340                 current_itr = adapter->rx_itr;
2341         }
2342
2343         switch (current_itr) {
2344         /* counts and packets in update_itr are dependent on these numbers */
2345         case lowest_latency:
2346                 new_itr = 70000;
2347                 break;
2348         case low_latency:
2349                 new_itr = 20000; /* aka hwitr = ~200 */
2350                 break;
2351         case bulk_latency:
2352                 new_itr = 4000;
2353                 break;
2354         default:
2355                 break;
2356         }
2357
2358 set_itr_now:
2359         if (new_itr != adapter->itr) {
2360                 /* this attempts to bias the interrupt rate towards Bulk
2361                  * by adding intermediate steps when interrupt rate is
2362                  * increasing */
2363                 new_itr = new_itr > adapter->itr ?
2364                              min(adapter->itr + (new_itr >> 2), new_itr) :
2365                              new_itr;
2366                 /* Don't write the value here; it resets the adapter's
2367                  * internal timer, and causes us to delay far longer than
2368                  * we should between interrupts.  Instead, we write the ITR
2369                  * value at the beginning of the next interrupt so the timing
2370                  * ends up being correct.
2371                  */
2372                 adapter->itr = new_itr;
2373                 adapter->set_itr = 1;
2374         }
2375
2376         return;
2377 }
2378
2379
2380 #define IGB_TX_FLAGS_CSUM               0x00000001
2381 #define IGB_TX_FLAGS_VLAN               0x00000002
2382 #define IGB_TX_FLAGS_TSO                0x00000004
2383 #define IGB_TX_FLAGS_IPV4               0x00000008
2384 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2385 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2386
2387 static inline int igb_tso_adv(struct igb_adapter *adapter,
2388                               struct igb_ring *tx_ring,
2389                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2390 {
2391         struct e1000_adv_tx_context_desc *context_desc;
2392         unsigned int i;
2393         int err;
2394         struct igb_buffer *buffer_info;
2395         u32 info = 0, tu_cmd = 0;
2396         u32 mss_l4len_idx, l4len;
2397         *hdr_len = 0;
2398
2399         if (skb_header_cloned(skb)) {
2400                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2401                 if (err)
2402                         return err;
2403         }
2404
2405         l4len = tcp_hdrlen(skb);
2406         *hdr_len += l4len;
2407
2408         if (skb->protocol == htons(ETH_P_IP)) {
2409                 struct iphdr *iph = ip_hdr(skb);
2410                 iph->tot_len = 0;
2411                 iph->check = 0;
2412                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2413                                                          iph->daddr, 0,
2414                                                          IPPROTO_TCP,
2415                                                          0);
2416         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2417                 ipv6_hdr(skb)->payload_len = 0;
2418                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2419                                                        &ipv6_hdr(skb)->daddr,
2420                                                        0, IPPROTO_TCP, 0);
2421         }
2422
2423         i = tx_ring->next_to_use;
2424
2425         buffer_info = &tx_ring->buffer_info[i];
2426         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2427         /* VLAN MACLEN IPLEN */
2428         if (tx_flags & IGB_TX_FLAGS_VLAN)
2429                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2430         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2431         *hdr_len += skb_network_offset(skb);
2432         info |= skb_network_header_len(skb);
2433         *hdr_len += skb_network_header_len(skb);
2434         context_desc->vlan_macip_lens = cpu_to_le32(info);
2435
2436         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2437         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2438
2439         if (skb->protocol == htons(ETH_P_IP))
2440                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2441         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2442
2443         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2444
2445         /* MSS L4LEN IDX */
2446         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2447         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2448
2449         /* Context index must be unique per ring.  Luckily, so is the interrupt
2450          * mask value. */
2451         mss_l4len_idx |= tx_ring->eims_value >> 4;
2452
2453         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2454         context_desc->seqnum_seed = 0;
2455
2456         buffer_info->time_stamp = jiffies;
2457         buffer_info->dma = 0;
2458         i++;
2459         if (i == tx_ring->count)
2460                 i = 0;
2461
2462         tx_ring->next_to_use = i;
2463
2464         return true;
2465 }
2466
2467 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2468                                         struct igb_ring *tx_ring,
2469                                         struct sk_buff *skb, u32 tx_flags)
2470 {
2471         struct e1000_adv_tx_context_desc *context_desc;
2472         unsigned int i;
2473         struct igb_buffer *buffer_info;
2474         u32 info = 0, tu_cmd = 0;
2475
2476         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2477             (tx_flags & IGB_TX_FLAGS_VLAN)) {
2478                 i = tx_ring->next_to_use;
2479                 buffer_info = &tx_ring->buffer_info[i];
2480                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2481
2482                 if (tx_flags & IGB_TX_FLAGS_VLAN)
2483                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2484                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2485                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2486                         info |= skb_network_header_len(skb);
2487
2488                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2489
2490                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2491
2492                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2493                         switch (skb->protocol) {
2494                         case __constant_htons(ETH_P_IP):
2495                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2496                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2497                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2498                                 break;
2499                         case __constant_htons(ETH_P_IPV6):
2500                                 /* XXX what about other V6 headers?? */
2501                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2502                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2503                                 break;
2504                         default:
2505                                 if (unlikely(net_ratelimit()))
2506                                         dev_warn(&adapter->pdev->dev,
2507                                             "partial checksum but proto=%x!\n",
2508                                             skb->protocol);
2509                                 break;
2510                         }
2511                 }
2512
2513                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2514                 context_desc->seqnum_seed = 0;
2515                 context_desc->mss_l4len_idx =
2516                                           cpu_to_le32(tx_ring->eims_value >> 4);
2517
2518                 buffer_info->time_stamp = jiffies;
2519                 buffer_info->dma = 0;
2520
2521                 i++;
2522                 if (i == tx_ring->count)
2523                         i = 0;
2524                 tx_ring->next_to_use = i;
2525
2526                 return true;
2527         }
2528
2529
2530         return false;
2531 }
2532
2533 #define IGB_MAX_TXD_PWR 16
2534 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
2535
2536 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2537                                  struct igb_ring *tx_ring,
2538                                  struct sk_buff *skb)
2539 {
2540         struct igb_buffer *buffer_info;
2541         unsigned int len = skb_headlen(skb);
2542         unsigned int count = 0, i;
2543         unsigned int f;
2544
2545         i = tx_ring->next_to_use;
2546
2547         buffer_info = &tx_ring->buffer_info[i];
2548         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2549         buffer_info->length = len;
2550         /* set time_stamp *before* dma to help avoid a possible race */
2551         buffer_info->time_stamp = jiffies;
2552         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2553                                           PCI_DMA_TODEVICE);
2554         count++;
2555         i++;
2556         if (i == tx_ring->count)
2557                 i = 0;
2558
2559         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2560                 struct skb_frag_struct *frag;
2561
2562                 frag = &skb_shinfo(skb)->frags[f];
2563                 len = frag->size;
2564
2565                 buffer_info = &tx_ring->buffer_info[i];
2566                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2567                 buffer_info->length = len;
2568                 buffer_info->time_stamp = jiffies;
2569                 buffer_info->dma = pci_map_page(adapter->pdev,
2570                                                 frag->page,
2571                                                 frag->page_offset,
2572                                                 len,
2573                                                 PCI_DMA_TODEVICE);
2574
2575                 count++;
2576                 i++;
2577                 if (i == tx_ring->count)
2578                         i = 0;
2579         }
2580
2581         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2582         tx_ring->buffer_info[i].skb = skb;
2583
2584         return count;
2585 }
2586
2587 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2588                                     struct igb_ring *tx_ring,
2589                                     int tx_flags, int count, u32 paylen,
2590                                     u8 hdr_len)
2591 {
2592         union e1000_adv_tx_desc *tx_desc = NULL;
2593         struct igb_buffer *buffer_info;
2594         u32 olinfo_status = 0, cmd_type_len;
2595         unsigned int i;
2596
2597         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2598                         E1000_ADVTXD_DCMD_DEXT);
2599
2600         if (tx_flags & IGB_TX_FLAGS_VLAN)
2601                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2602
2603         if (tx_flags & IGB_TX_FLAGS_TSO) {
2604                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2605
2606                 /* insert tcp checksum */
2607                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2608
2609                 /* insert ip checksum */
2610                 if (tx_flags & IGB_TX_FLAGS_IPV4)
2611                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2612
2613         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2614                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2615         }
2616
2617         if (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2618                         IGB_TX_FLAGS_VLAN))
2619                 olinfo_status |= tx_ring->eims_value >> 4;
2620
2621         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2622
2623         i = tx_ring->next_to_use;
2624         while (count--) {
2625                 buffer_info = &tx_ring->buffer_info[i];
2626                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2627                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2628                 tx_desc->read.cmd_type_len =
2629                         cpu_to_le32(cmd_type_len | buffer_info->length);
2630                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2631                 i++;
2632                 if (i == tx_ring->count)
2633                         i = 0;
2634         }
2635
2636         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2637         /* Force memory writes to complete before letting h/w
2638          * know there are new descriptors to fetch.  (Only
2639          * applicable for weak-ordered memory model archs,
2640          * such as IA-64). */
2641         wmb();
2642
2643         tx_ring->next_to_use = i;
2644         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2645         /* we need this if more than one processor can write to our tail
2646          * at a time, it syncronizes IO on IA64/Altix systems */
2647         mmiowb();
2648 }
2649
2650 static int __igb_maybe_stop_tx(struct net_device *netdev,
2651                                struct igb_ring *tx_ring, int size)
2652 {
2653         struct igb_adapter *adapter = netdev_priv(netdev);
2654
2655         netif_stop_queue(netdev);
2656         /* Herbert's original patch had:
2657          *  smp_mb__after_netif_stop_queue();
2658          * but since that doesn't exist yet, just open code it. */
2659         smp_mb();
2660
2661         /* We need to check again in a case another CPU has just
2662          * made room available. */
2663         if (IGB_DESC_UNUSED(tx_ring) < size)
2664                 return -EBUSY;
2665
2666         /* A reprieve! */
2667         netif_start_queue(netdev);
2668         ++adapter->restart_queue;
2669         return 0;
2670 }
2671
2672 static int igb_maybe_stop_tx(struct net_device *netdev,
2673                              struct igb_ring *tx_ring, int size)
2674 {
2675         if (IGB_DESC_UNUSED(tx_ring) >= size)
2676                 return 0;
2677         return __igb_maybe_stop_tx(netdev, tx_ring, size);
2678 }
2679
2680 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2681
2682 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2683                                    struct net_device *netdev,
2684                                    struct igb_ring *tx_ring)
2685 {
2686         struct igb_adapter *adapter = netdev_priv(netdev);
2687         unsigned int tx_flags = 0;
2688         unsigned int len;
2689         unsigned long irq_flags;
2690         u8 hdr_len = 0;
2691         int tso = 0;
2692
2693         len = skb_headlen(skb);
2694
2695         if (test_bit(__IGB_DOWN, &adapter->state)) {
2696                 dev_kfree_skb_any(skb);
2697                 return NETDEV_TX_OK;
2698         }
2699
2700         if (skb->len <= 0) {
2701                 dev_kfree_skb_any(skb);
2702                 return NETDEV_TX_OK;
2703         }
2704
2705         if (!spin_trylock_irqsave(&tx_ring->tx_lock, irq_flags))
2706                 /* Collision - tell upper layer to requeue */
2707                 return NETDEV_TX_LOCKED;
2708
2709         /* need: 1 descriptor per page,
2710          *       + 2 desc gap to keep tail from touching head,
2711          *       + 1 desc for skb->data,
2712          *       + 1 desc for context descriptor,
2713          * otherwise try next time */
2714         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2715                 /* this is a hard error */
2716                 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2717                 return NETDEV_TX_BUSY;
2718         }
2719
2720         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2721                 tx_flags |= IGB_TX_FLAGS_VLAN;
2722                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2723         }
2724
2725         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2726                                               &hdr_len) : 0;
2727
2728         if (tso < 0) {
2729                 dev_kfree_skb_any(skb);
2730                 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2731                 return NETDEV_TX_OK;
2732         }
2733
2734         if (tso)
2735                 tx_flags |= IGB_TX_FLAGS_TSO;
2736         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2737                         if (skb->ip_summed == CHECKSUM_PARTIAL)
2738                                 tx_flags |= IGB_TX_FLAGS_CSUM;
2739
2740         if (skb->protocol == htons(ETH_P_IP))
2741                 tx_flags |= IGB_TX_FLAGS_IPV4;
2742
2743         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2744                          igb_tx_map_adv(adapter, tx_ring, skb),
2745                          skb->len, hdr_len);
2746
2747         netdev->trans_start = jiffies;
2748
2749         /* Make sure there is space in the ring for the next send. */
2750         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
2751
2752         spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2753         return NETDEV_TX_OK;
2754 }
2755
2756 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
2757 {
2758         struct igb_adapter *adapter = netdev_priv(netdev);
2759         struct igb_ring *tx_ring = &adapter->tx_ring[0];
2760
2761         /* This goes back to the question of how to logically map a tx queue
2762          * to a flow.  Right now, performance is impacted slightly negatively
2763          * if using multiple tx queues.  If the stack breaks away from a
2764          * single qdisc implementation, we can look at this again. */
2765         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
2766 }
2767
2768 /**
2769  * igb_tx_timeout - Respond to a Tx Hang
2770  * @netdev: network interface device structure
2771  **/
2772 static void igb_tx_timeout(struct net_device *netdev)
2773 {
2774         struct igb_adapter *adapter = netdev_priv(netdev);
2775         struct e1000_hw *hw = &adapter->hw;
2776
2777         /* Do the reset outside of interrupt context */
2778         adapter->tx_timeout_count++;
2779         schedule_work(&adapter->reset_task);
2780         wr32(E1000_EICS, adapter->eims_enable_mask &
2781                 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
2782 }
2783
2784 static void igb_reset_task(struct work_struct *work)
2785 {
2786         struct igb_adapter *adapter;
2787         adapter = container_of(work, struct igb_adapter, reset_task);
2788
2789         igb_reinit_locked(adapter);
2790 }
2791
2792 /**
2793  * igb_get_stats - Get System Network Statistics
2794  * @netdev: network interface device structure
2795  *
2796  * Returns the address of the device statistics structure.
2797  * The statistics are actually updated from the timer callback.
2798  **/
2799 static struct net_device_stats *
2800 igb_get_stats(struct net_device *netdev)
2801 {
2802         struct igb_adapter *adapter = netdev_priv(netdev);
2803
2804         /* only return the current stats */
2805         return &adapter->net_stats;
2806 }
2807
2808 /**
2809  * igb_change_mtu - Change the Maximum Transfer Unit
2810  * @netdev: network interface device structure
2811  * @new_mtu: new value for maximum frame size
2812  *
2813  * Returns 0 on success, negative on failure
2814  **/
2815 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
2816 {
2817         struct igb_adapter *adapter = netdev_priv(netdev);
2818         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2819
2820         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2821             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2822                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2823                 return -EINVAL;
2824         }
2825
2826 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2827         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2828                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2829                 return -EINVAL;
2830         }
2831
2832         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2833                 msleep(1);
2834         /* igb_down has a dependency on max_frame_size */
2835         adapter->max_frame_size = max_frame;
2836         if (netif_running(netdev))
2837                 igb_down(adapter);
2838
2839         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2840          * means we reserve 2 more, this pushes us to allocate from the next
2841          * larger slab size.
2842          * i.e. RXBUFFER_2048 --> size-4096 slab
2843          */
2844
2845         if (max_frame <= IGB_RXBUFFER_256)
2846                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
2847         else if (max_frame <= IGB_RXBUFFER_512)
2848                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
2849         else if (max_frame <= IGB_RXBUFFER_1024)
2850                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
2851         else if (max_frame <= IGB_RXBUFFER_2048)
2852                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
2853         else
2854                 adapter->rx_buffer_len = IGB_RXBUFFER_4096;
2855         /* adjust allocation if LPE protects us, and we aren't using SBP */
2856         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2857              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
2858                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
2859
2860         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2861                  netdev->mtu, new_mtu);
2862         netdev->mtu = new_mtu;
2863
2864         if (netif_running(netdev))
2865                 igb_up(adapter);
2866         else
2867                 igb_reset(adapter);
2868
2869         clear_bit(__IGB_RESETTING, &adapter->state);
2870
2871         return 0;
2872 }
2873
2874 /**
2875  * igb_update_stats - Update the board statistics counters
2876  * @adapter: board private structure
2877  **/
2878
2879 void igb_update_stats(struct igb_adapter *adapter)
2880 {
2881         struct e1000_hw *hw = &adapter->hw;
2882         struct pci_dev *pdev = adapter->pdev;
2883         u16 phy_tmp;
2884
2885 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2886
2887         /*
2888          * Prevent stats update while adapter is being reset, or if the pci
2889          * connection is down.
2890          */
2891         if (adapter->link_speed == 0)
2892                 return;
2893         if (pci_channel_offline(pdev))
2894                 return;
2895
2896         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
2897         adapter->stats.gprc += rd32(E1000_GPRC);
2898         adapter->stats.gorc += rd32(E1000_GORCL);
2899         rd32(E1000_GORCH); /* clear GORCL */
2900         adapter->stats.bprc += rd32(E1000_BPRC);
2901         adapter->stats.mprc += rd32(E1000_MPRC);
2902         adapter->stats.roc += rd32(E1000_ROC);
2903
2904         adapter->stats.prc64 += rd32(E1000_PRC64);
2905         adapter->stats.prc127 += rd32(E1000_PRC127);
2906         adapter->stats.prc255 += rd32(E1000_PRC255);
2907         adapter->stats.prc511 += rd32(E1000_PRC511);
2908         adapter->stats.prc1023 += rd32(E1000_PRC1023);
2909         adapter->stats.prc1522 += rd32(E1000_PRC1522);
2910         adapter->stats.symerrs += rd32(E1000_SYMERRS);
2911         adapter->stats.sec += rd32(E1000_SEC);
2912
2913         adapter->stats.mpc += rd32(E1000_MPC);
2914         adapter->stats.scc += rd32(E1000_SCC);
2915         adapter->stats.ecol += rd32(E1000_ECOL);
2916         adapter->stats.mcc += rd32(E1000_MCC);
2917         adapter->stats.latecol += rd32(E1000_LATECOL);
2918         adapter->stats.dc += rd32(E1000_DC);
2919         adapter->stats.rlec += rd32(E1000_RLEC);
2920         adapter->stats.xonrxc += rd32(E1000_XONRXC);
2921         adapter->stats.xontxc += rd32(E1000_XONTXC);
2922         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
2923         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
2924         adapter->stats.fcruc += rd32(E1000_FCRUC);
2925         adapter->stats.gptc += rd32(E1000_GPTC);
2926         adapter->stats.gotc += rd32(E1000_GOTCL);
2927         rd32(E1000_GOTCH); /* clear GOTCL */
2928         adapter->stats.rnbc += rd32(E1000_RNBC);
2929         adapter->stats.ruc += rd32(E1000_RUC);
2930         adapter->stats.rfc += rd32(E1000_RFC);
2931         adapter->stats.rjc += rd32(E1000_RJC);
2932         adapter->stats.tor += rd32(E1000_TORH);
2933         adapter->stats.tot += rd32(E1000_TOTH);
2934         adapter->stats.tpr += rd32(E1000_TPR);
2935
2936         adapter->stats.ptc64 += rd32(E1000_PTC64);
2937         adapter->stats.ptc127 += rd32(E1000_PTC127);
2938         adapter->stats.ptc255 += rd32(E1000_PTC255);
2939         adapter->stats.ptc511 += rd32(E1000_PTC511);
2940         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
2941         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
2942
2943         adapter->stats.mptc += rd32(E1000_MPTC);
2944         adapter->stats.bptc += rd32(E1000_BPTC);
2945
2946         /* used for adaptive IFS */
2947
2948         hw->mac.tx_packet_delta = rd32(E1000_TPT);
2949         adapter->stats.tpt += hw->mac.tx_packet_delta;
2950         hw->mac.collision_delta = rd32(E1000_COLC);
2951         adapter->stats.colc += hw->mac.collision_delta;
2952
2953         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
2954         adapter->stats.rxerrc += rd32(E1000_RXERRC);
2955         adapter->stats.tncrs += rd32(E1000_TNCRS);
2956         adapter->stats.tsctc += rd32(E1000_TSCTC);
2957         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
2958
2959         adapter->stats.iac += rd32(E1000_IAC);
2960         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
2961         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
2962         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
2963         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
2964         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
2965         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
2966         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
2967         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
2968
2969         /* Fill out the OS statistics structure */
2970         adapter->net_stats.multicast = adapter->stats.mprc;
2971         adapter->net_stats.collisions = adapter->stats.colc;
2972
2973         /* Rx Errors */
2974
2975         /* RLEC on some newer hardware can be incorrect so build
2976         * our own version based on RUC and ROC */
2977         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2978                 adapter->stats.crcerrs + adapter->stats.algnerrc +
2979                 adapter->stats.ruc + adapter->stats.roc +
2980                 adapter->stats.cexterr;
2981         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2982                                               adapter->stats.roc;
2983         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2984         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2985         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2986
2987         /* Tx Errors */
2988         adapter->net_stats.tx_errors = adapter->stats.ecol +
2989                                        adapter->stats.latecol;
2990         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2991         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2992         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2993
2994         /* Tx Dropped needs to be maintained elsewhere */
2995
2996         /* Phy Stats */
2997         if (hw->phy.media_type == e1000_media_type_copper) {
2998                 if ((adapter->link_speed == SPEED_1000) &&
2999                    (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
3000                                               &phy_tmp))) {
3001                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3002                         adapter->phy_stats.idle_errors += phy_tmp;
3003                 }
3004         }
3005
3006         /* Management Stats */
3007         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3008         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3009         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3010 }
3011
3012
3013 static irqreturn_t igb_msix_other(int irq, void *data)
3014 {
3015         struct net_device *netdev = data;
3016         struct igb_adapter *adapter = netdev_priv(netdev);
3017         struct e1000_hw *hw = &adapter->hw;
3018         u32 eicr;
3019         /* disable interrupts from the "other" bit, avoid re-entry */
3020         wr32(E1000_EIMC, E1000_EIMS_OTHER);
3021
3022         eicr = rd32(E1000_EICR);
3023
3024         if (eicr & E1000_EIMS_OTHER) {
3025                 u32 icr = rd32(E1000_ICR);
3026                 /* reading ICR causes bit 31 of EICR to be cleared */
3027                 if (!(icr & E1000_ICR_LSC))
3028                         goto no_link_interrupt;
3029                 hw->mac.get_link_status = 1;
3030                 /* guard against interrupt when we're going down */
3031                 if (!test_bit(__IGB_DOWN, &adapter->state))
3032                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3033         }
3034
3035 no_link_interrupt:
3036         wr32(E1000_IMS, E1000_IMS_LSC);
3037         wr32(E1000_EIMS, E1000_EIMS_OTHER);
3038
3039         return IRQ_HANDLED;
3040 }
3041
3042 static irqreturn_t igb_msix_tx(int irq, void *data)
3043 {
3044         struct igb_ring *tx_ring = data;
3045         struct igb_adapter *adapter = tx_ring->adapter;
3046         struct e1000_hw *hw = &adapter->hw;
3047
3048         if (!tx_ring->itr_val)
3049                 wr32(E1000_EIMC, tx_ring->eims_value);
3050
3051         tx_ring->total_bytes = 0;
3052         tx_ring->total_packets = 0;
3053         if (!igb_clean_tx_irq(adapter, tx_ring))
3054                 /* Ring was not completely cleaned, so fire another interrupt */
3055                 wr32(E1000_EICS, tx_ring->eims_value);
3056
3057         if (!tx_ring->itr_val)
3058                 wr32(E1000_EIMS, tx_ring->eims_value);
3059         return IRQ_HANDLED;
3060 }
3061
3062 static irqreturn_t igb_msix_rx(int irq, void *data)
3063 {
3064         struct igb_ring *rx_ring = data;
3065         struct igb_adapter *adapter = rx_ring->adapter;
3066         struct e1000_hw *hw = &adapter->hw;
3067
3068         if (!rx_ring->itr_val)
3069                 wr32(E1000_EIMC, rx_ring->eims_value);
3070
3071         if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi)) {
3072                 rx_ring->total_bytes = 0;
3073                 rx_ring->total_packets = 0;
3074                 rx_ring->no_itr_adjust = 0;
3075                 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3076         } else {
3077                 if (!rx_ring->no_itr_adjust) {
3078                         igb_lower_rx_eitr(adapter, rx_ring);
3079                         rx_ring->no_itr_adjust = 1;
3080                 }
3081         }
3082
3083         return IRQ_HANDLED;
3084 }
3085
3086
3087 /**
3088  * igb_intr_msi - Interrupt Handler
3089  * @irq: interrupt number
3090  * @data: pointer to a network interface device structure
3091  **/
3092 static irqreturn_t igb_intr_msi(int irq, void *data)
3093 {
3094         struct net_device *netdev = data;
3095         struct igb_adapter *adapter = netdev_priv(netdev);
3096         struct napi_struct *napi = &adapter->napi;
3097         struct e1000_hw *hw = &adapter->hw;
3098         /* read ICR disables interrupts using IAM */
3099         u32 icr = rd32(E1000_ICR);
3100
3101         /* Write the ITR value calculated at the end of the
3102          * previous interrupt.
3103          */
3104         if (adapter->set_itr) {
3105                 wr32(E1000_ITR,
3106                         1000000000 / (adapter->itr * 256));
3107                 adapter->set_itr = 0;
3108         }
3109
3110         /* read ICR disables interrupts using IAM */
3111         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3112                 hw->mac.get_link_status = 1;
3113                 if (!test_bit(__IGB_DOWN, &adapter->state))
3114                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3115         }
3116
3117         if (netif_rx_schedule_prep(netdev, napi)) {
3118                 adapter->tx_ring->total_bytes = 0;
3119                 adapter->tx_ring->total_packets = 0;
3120                 adapter->rx_ring->total_bytes = 0;
3121                 adapter->rx_ring->total_packets = 0;
3122                 __netif_rx_schedule(netdev, napi);
3123         }
3124
3125         return IRQ_HANDLED;
3126 }
3127
3128 /**
3129  * igb_intr - Interrupt Handler
3130  * @irq: interrupt number
3131  * @data: pointer to a network interface device structure
3132  **/
3133 static irqreturn_t igb_intr(int irq, void *data)
3134 {
3135         struct net_device *netdev = data;
3136         struct igb_adapter *adapter = netdev_priv(netdev);
3137         struct napi_struct *napi = &adapter->napi;
3138         struct e1000_hw *hw = &adapter->hw;
3139         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3140          * need for the IMC write */
3141         u32 icr = rd32(E1000_ICR);
3142         u32 eicr = 0;
3143         if (!icr)
3144                 return IRQ_NONE;  /* Not our interrupt */
3145
3146         /* Write the ITR value calculated at the end of the
3147          * previous interrupt.
3148          */
3149         if (adapter->set_itr) {
3150                 wr32(E1000_ITR,
3151                         1000000000 / (adapter->itr * 256));
3152                 adapter->set_itr = 0;
3153         }
3154
3155         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3156          * not set, then the adapter didn't send an interrupt */
3157         if (!(icr & E1000_ICR_INT_ASSERTED))
3158                 return IRQ_NONE;
3159
3160         eicr = rd32(E1000_EICR);
3161
3162         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3163                 hw->mac.get_link_status = 1;
3164                 /* guard against interrupt when we're going down */
3165                 if (!test_bit(__IGB_DOWN, &adapter->state))
3166                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3167         }
3168
3169         if (netif_rx_schedule_prep(netdev, napi)) {
3170                 adapter->tx_ring->total_bytes = 0;
3171                 adapter->rx_ring->total_bytes = 0;
3172                 adapter->tx_ring->total_packets = 0;
3173                 adapter->rx_ring->total_packets = 0;
3174                 __netif_rx_schedule(netdev, napi);
3175         }
3176
3177         return IRQ_HANDLED;
3178 }
3179
3180 /**
3181  * igb_clean - NAPI Rx polling callback
3182  * @adapter: board private structure
3183  **/
3184 static int igb_clean(struct napi_struct *napi, int budget)
3185 {
3186         struct igb_adapter *adapter = container_of(napi, struct igb_adapter,
3187                                                    napi);
3188         struct net_device *netdev = adapter->netdev;
3189         int tx_clean_complete = 1, work_done = 0;
3190         int i;
3191
3192         /* Must NOT use netdev_priv macro here. */
3193         adapter = netdev->priv;
3194
3195         /* Keep link state information with original netdev */
3196         if (!netif_carrier_ok(netdev))
3197                 goto quit_polling;
3198
3199         /* igb_clean is called per-cpu.  This lock protects tx_ring[i] from
3200          * being cleaned by multiple cpus simultaneously.  A failure obtaining
3201          * the lock means tx_ring[i] is currently being cleaned anyway. */
3202         for (i = 0; i < adapter->num_tx_queues; i++) {
3203                 if (spin_trylock(&adapter->tx_ring[i].tx_clean_lock)) {
3204                         tx_clean_complete &= igb_clean_tx_irq(adapter,
3205                                                         &adapter->tx_ring[i]);
3206                         spin_unlock(&adapter->tx_ring[i].tx_clean_lock);
3207                 }
3208         }
3209
3210         for (i = 0; i < adapter->num_rx_queues; i++)
3211                 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i], &work_done,
3212                                      adapter->rx_ring[i].napi.weight);
3213
3214         /* If no Tx and not enough Rx work done, exit the polling mode */
3215         if ((tx_clean_complete && (work_done < budget)) ||
3216             !netif_running(netdev)) {
3217 quit_polling:
3218                 if (adapter->itr_setting & 3)
3219                         igb_set_itr(adapter, E1000_ITR, false);
3220                 netif_rx_complete(netdev, napi);
3221                 if (!test_bit(__IGB_DOWN, &adapter->state))
3222                         igb_irq_enable(adapter);
3223                 return 0;
3224         }
3225
3226         return 1;
3227 }
3228
3229 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3230 {
3231         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3232         struct igb_adapter *adapter = rx_ring->adapter;
3233         struct e1000_hw *hw = &adapter->hw;
3234         struct net_device *netdev = adapter->netdev;
3235         int work_done = 0;
3236
3237         /* Keep link state information with original netdev */
3238         if (!netif_carrier_ok(netdev))
3239                 goto quit_polling;
3240
3241         igb_clean_rx_irq_adv(adapter, rx_ring, &work_done, budget);
3242
3243
3244         /* If not enough Rx work done, exit the polling mode */
3245         if ((work_done == 0) || !netif_running(netdev)) {
3246 quit_polling:
3247                 netif_rx_complete(netdev, napi);
3248
3249                 wr32(E1000_EIMS, rx_ring->eims_value);
3250                 if ((adapter->itr_setting & 3) && !rx_ring->no_itr_adjust &&
3251                     (rx_ring->total_packets > IGB_DYN_ITR_PACKET_THRESHOLD)) {
3252                         int mean_size = rx_ring->total_bytes /
3253                                         rx_ring->total_packets;
3254                         if (mean_size < IGB_DYN_ITR_LENGTH_LOW)
3255                                 igb_raise_rx_eitr(adapter, rx_ring);
3256                         else if (mean_size > IGB_DYN_ITR_LENGTH_HIGH)
3257                                 igb_lower_rx_eitr(adapter, rx_ring);
3258                 }
3259                 return 0;
3260         }
3261
3262         return 1;
3263 }
3264
3265 static inline u32 get_head(struct igb_ring *tx_ring)
3266 {
3267         void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3268         return le32_to_cpu(*(volatile __le32 *)end);
3269 }
3270
3271 /**
3272  * igb_clean_tx_irq - Reclaim resources after transmit completes
3273  * @adapter: board private structure
3274  * returns true if ring is completely cleaned
3275  **/
3276 static bool igb_clean_tx_irq(struct igb_adapter *adapter,
3277                                   struct igb_ring *tx_ring)
3278 {
3279         struct net_device *netdev = adapter->netdev;
3280         struct e1000_hw *hw = &adapter->hw;
3281         struct e1000_tx_desc *tx_desc;
3282         struct igb_buffer *buffer_info;
3283         struct sk_buff *skb;
3284         unsigned int i;
3285         u32 head, oldhead;
3286         unsigned int count = 0;
3287         bool cleaned = false;
3288         bool retval = true;
3289         unsigned int total_bytes = 0, total_packets = 0;
3290
3291         rmb();
3292         head = get_head(tx_ring);
3293         i = tx_ring->next_to_clean;
3294         while (1) {
3295                 while (i != head) {
3296                         cleaned = true;
3297                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3298                         buffer_info = &tx_ring->buffer_info[i];
3299                         skb = buffer_info->skb;
3300
3301                         if (skb) {
3302                                 unsigned int segs, bytecount;
3303                                 /* gso_segs is currently only valid for tcp */
3304                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3305                                 /* multiply data chunks by size of headers */
3306                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3307                                             skb->len;
3308                                 total_packets += segs;
3309                                 total_bytes += bytecount;
3310                         }
3311
3312                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
3313                         tx_desc->upper.data = 0;
3314
3315                         i++;
3316                         if (i == tx_ring->count)
3317                                 i = 0;
3318
3319                         count++;
3320                         if (count == IGB_MAX_TX_CLEAN) {
3321                                 retval = false;
3322                                 goto done_cleaning;
3323                         }
3324                 }
3325                 oldhead = head;
3326                 rmb();
3327                 head = get_head(tx_ring);
3328                 if (head == oldhead)
3329                         goto done_cleaning;
3330         }  /* while (1) */
3331
3332 done_cleaning:
3333         tx_ring->next_to_clean = i;
3334
3335         if (unlikely(cleaned &&
3336                      netif_carrier_ok(netdev) &&
3337                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3338                 /* Make sure that anybody stopping the queue after this
3339                  * sees the new next_to_clean.
3340                  */
3341                 smp_mb();
3342                 if (netif_queue_stopped(netdev) &&
3343                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3344                         netif_wake_queue(netdev);
3345                         ++adapter->restart_queue;
3346                 }
3347         }
3348
3349         if (tx_ring->detect_tx_hung) {
3350                 /* Detect a transmit hang in hardware, this serializes the
3351                  * check with the clearing of time_stamp and movement of i */
3352                 tx_ring->detect_tx_hung = false;
3353                 if (tx_ring->buffer_info[i].time_stamp &&
3354                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3355                                (adapter->tx_timeout_factor * HZ))
3356                     && !(rd32(E1000_STATUS) &
3357                          E1000_STATUS_TXOFF)) {
3358
3359                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3360                         /* detected Tx unit hang */
3361                         dev_err(&adapter->pdev->dev,
3362                                 "Detected Tx Unit Hang\n"
3363                                 "  Tx Queue             <%lu>\n"
3364                                 "  TDH                  <%x>\n"
3365                                 "  TDT                  <%x>\n"
3366                                 "  next_to_use          <%x>\n"
3367                                 "  next_to_clean        <%x>\n"
3368                                 "  head (WB)            <%x>\n"
3369                                 "buffer_info[next_to_clean]\n"
3370                                 "  time_stamp           <%lx>\n"
3371                                 "  jiffies              <%lx>\n"
3372                                 "  desc.status          <%x>\n",
3373                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3374                                         sizeof(struct igb_ring)),
3375                                 readl(adapter->hw.hw_addr + tx_ring->head),
3376                                 readl(adapter->hw.hw_addr + tx_ring->tail),
3377                                 tx_ring->next_to_use,
3378                                 tx_ring->next_to_clean,
3379                                 head,
3380                                 tx_ring->buffer_info[i].time_stamp,
3381                                 jiffies,
3382                                 tx_desc->upper.fields.status);
3383                         netif_stop_queue(netdev);
3384                 }
3385         }
3386         tx_ring->total_bytes += total_bytes;
3387         tx_ring->total_packets += total_packets;
3388         adapter->net_stats.tx_bytes += total_bytes;
3389         adapter->net_stats.tx_packets += total_packets;
3390         return retval;
3391 }
3392
3393
3394 /**
3395  * igb_receive_skb - helper function to handle rx indications
3396  * @adapter: board private structure
3397  * @status: descriptor status field as written by hardware
3398  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3399  * @skb: pointer to sk_buff to be indicated to stack
3400  **/
3401 static void igb_receive_skb(struct igb_adapter *adapter, u8 status, __le16 vlan,
3402                             struct sk_buff *skb)
3403 {
3404         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
3405                 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3406                                          le16_to_cpu(vlan) &
3407                                          E1000_RXD_SPC_VLAN_MASK);
3408         else
3409                 netif_receive_skb(skb);
3410 }
3411
3412
3413 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3414                                        u32 status_err, struct sk_buff *skb)
3415 {
3416         skb->ip_summed = CHECKSUM_NONE;
3417
3418         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3419         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3420                 return;
3421         /* TCP/UDP checksum error bit is set */
3422         if (status_err &
3423             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3424                 /* let the stack verify checksum errors */
3425                 adapter->hw_csum_err++;
3426                 return;
3427         }
3428         /* It must be a TCP or UDP packet with a valid checksum */
3429         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3430                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3431
3432         adapter->hw_csum_good++;
3433 }
3434
3435 static bool igb_clean_rx_irq_adv(struct igb_adapter *adapter,
3436                                       struct igb_ring *rx_ring,
3437                                       int *work_done, int budget)
3438 {
3439         struct net_device *netdev = adapter->netdev;
3440         struct pci_dev *pdev = adapter->pdev;
3441         union e1000_adv_rx_desc *rx_desc , *next_rxd;
3442         struct igb_buffer *buffer_info , *next_buffer;
3443         struct sk_buff *skb;
3444         unsigned int i, j;
3445         u32 length, hlen, staterr;
3446         bool cleaned = false;
3447         int cleaned_count = 0;
3448         unsigned int total_bytes = 0, total_packets = 0;
3449
3450         i = rx_ring->next_to_clean;
3451         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3452         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3453
3454         while (staterr & E1000_RXD_STAT_DD) {
3455                 if (*work_done >= budget)
3456                         break;
3457                 (*work_done)++;
3458                 buffer_info = &rx_ring->buffer_info[i];
3459
3460                 /* HW will not DMA in data larger than the given buffer, even
3461                  * if it parses the (NFS, of course) header to be larger.  In
3462                  * that case, it fills the header buffer and spills the rest
3463                  * into the page.
3464                  */
3465                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3466                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3467                 if (hlen > adapter->rx_ps_hdr_size)
3468                         hlen = adapter->rx_ps_hdr_size;
3469
3470                 length = le16_to_cpu(rx_desc->wb.upper.length);
3471                 cleaned = true;
3472                 cleaned_count++;
3473
3474                 if (rx_ring->pending_skb != NULL) {
3475                         skb = rx_ring->pending_skb;
3476                         rx_ring->pending_skb = NULL;
3477                         j = rx_ring->pending_skb_page;
3478                 } else {
3479                         skb = buffer_info->skb;
3480                         prefetch(skb->data - NET_IP_ALIGN);
3481                         buffer_info->skb = NULL;
3482                         if (hlen) {
3483                                 pci_unmap_single(pdev, buffer_info->dma,
3484                                                  adapter->rx_ps_hdr_size +
3485                                                    NET_IP_ALIGN,
3486                                                  PCI_DMA_FROMDEVICE);
3487                                 skb_put(skb, hlen);
3488                         } else {
3489                                 pci_unmap_single(pdev, buffer_info->dma,
3490                                                  adapter->rx_buffer_len +
3491                                                    NET_IP_ALIGN,
3492                                                  PCI_DMA_FROMDEVICE);
3493                                 skb_put(skb, length);
3494                                 goto send_up;
3495                         }
3496                         j = 0;
3497                 }
3498
3499                 while (length) {
3500                         pci_unmap_page(pdev, buffer_info->page_dma,
3501                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3502                         buffer_info->page_dma = 0;
3503                         skb_fill_page_desc(skb, j, buffer_info->page,
3504                                                 0, length);
3505                         buffer_info->page = NULL;
3506
3507                         skb->len += length;
3508                         skb->data_len += length;
3509                         skb->truesize += length;
3510                         rx_desc->wb.upper.status_error = 0;
3511                         if (staterr & E1000_RXD_STAT_EOP)
3512                                 break;
3513
3514                         j++;
3515                         cleaned_count++;
3516                         i++;
3517                         if (i == rx_ring->count)
3518                                 i = 0;
3519
3520                         buffer_info = &rx_ring->buffer_info[i];
3521                         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3522                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3523                         length = le16_to_cpu(rx_desc->wb.upper.length);
3524                         if (!(staterr & E1000_RXD_STAT_DD)) {
3525                                 rx_ring->pending_skb = skb;
3526                                 rx_ring->pending_skb_page = j;
3527                                 goto out;
3528                         }
3529                 }
3530 send_up:
3531                 pskb_trim(skb, skb->len - 4);
3532                 i++;
3533                 if (i == rx_ring->count)
3534                         i = 0;
3535                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3536                 prefetch(next_rxd);
3537                 next_buffer = &rx_ring->buffer_info[i];
3538
3539                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3540                         dev_kfree_skb_irq(skb);
3541                         goto next_desc;
3542                 }
3543                 rx_ring->no_itr_adjust |= (staterr & E1000_RXD_STAT_DYNINT);
3544
3545                 total_bytes += skb->len;
3546                 total_packets++;
3547
3548                 igb_rx_checksum_adv(adapter, staterr, skb);
3549
3550                 skb->protocol = eth_type_trans(skb, netdev);
3551
3552                 igb_receive_skb(adapter, staterr, rx_desc->wb.upper.vlan, skb);
3553
3554                 netdev->last_rx = jiffies;
3555
3556 next_desc:
3557                 rx_desc->wb.upper.status_error = 0;
3558
3559                 /* return some buffers to hardware, one at a time is too slow */
3560                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3561                         igb_alloc_rx_buffers_adv(adapter, rx_ring,
3562                                                  cleaned_count);
3563                         cleaned_count = 0;
3564                 }
3565
3566                 /* use prefetched values */
3567                 rx_desc = next_rxd;
3568                 buffer_info = next_buffer;
3569
3570                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3571         }
3572 out:
3573         rx_ring->next_to_clean = i;
3574         cleaned_count = IGB_DESC_UNUSED(rx_ring);
3575
3576         if (cleaned_count)
3577                 igb_alloc_rx_buffers_adv(adapter, rx_ring, cleaned_count);
3578
3579         rx_ring->total_packets += total_packets;
3580         rx_ring->total_bytes += total_bytes;
3581         rx_ring->rx_stats.packets += total_packets;
3582         rx_ring->rx_stats.bytes += total_bytes;
3583         adapter->net_stats.rx_bytes += total_bytes;
3584         adapter->net_stats.rx_packets += total_packets;
3585         return cleaned;
3586 }
3587
3588
3589 /**
3590  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3591  * @adapter: address of board private structure
3592  **/
3593 static void igb_alloc_rx_buffers_adv(struct igb_adapter *adapter,
3594                                      struct igb_ring *rx_ring,
3595                                      int cleaned_count)
3596 {
3597         struct net_device *netdev = adapter->netdev;
3598         struct pci_dev *pdev = adapter->pdev;
3599         union e1000_adv_rx_desc *rx_desc;
3600         struct igb_buffer *buffer_info;
3601         struct sk_buff *skb;
3602         unsigned int i;
3603
3604         i = rx_ring->next_to_use;
3605         buffer_info = &rx_ring->buffer_info[i];
3606
3607         while (cleaned_count--) {
3608                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3609
3610                 if (adapter->rx_ps_hdr_size && !buffer_info->page) {
3611                         buffer_info->page = alloc_page(GFP_ATOMIC);
3612                         if (!buffer_info->page) {
3613                                 adapter->alloc_rx_buff_failed++;
3614                                 goto no_buffers;
3615                         }
3616                         buffer_info->page_dma =
3617                                 pci_map_page(pdev,
3618                                              buffer_info->page,
3619                                              0, PAGE_SIZE,
3620                                              PCI_DMA_FROMDEVICE);
3621                 }
3622
3623                 if (!buffer_info->skb) {
3624                         int bufsz;
3625
3626                         if (adapter->rx_ps_hdr_size)
3627                                 bufsz = adapter->rx_ps_hdr_size;
3628                         else
3629                                 bufsz = adapter->rx_buffer_len;
3630                         bufsz += NET_IP_ALIGN;
3631                         skb = netdev_alloc_skb(netdev, bufsz);
3632
3633                         if (!skb) {
3634                                 adapter->alloc_rx_buff_failed++;
3635                                 goto no_buffers;
3636                         }
3637
3638                         /* Make buffer alignment 2 beyond a 16 byte boundary
3639                          * this will result in a 16 byte aligned IP header after
3640                          * the 14 byte MAC header is removed
3641                          */
3642                         skb_reserve(skb, NET_IP_ALIGN);
3643
3644                         buffer_info->skb = skb;
3645                         buffer_info->dma = pci_map_single(pdev, skb->data,
3646                                                           bufsz,
3647                                                           PCI_DMA_FROMDEVICE);
3648
3649                 }
3650                 /* Refresh the desc even if buffer_addrs didn't change because
3651                  * each write-back erases this info. */
3652                 if (adapter->rx_ps_hdr_size) {
3653                         rx_desc->read.pkt_addr =
3654                              cpu_to_le64(buffer_info->page_dma);
3655                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
3656                 } else {
3657                         rx_desc->read.pkt_addr =
3658                              cpu_to_le64(buffer_info->dma);
3659                         rx_desc->read.hdr_addr = 0;
3660                 }
3661
3662                 i++;
3663                 if (i == rx_ring->count)
3664                         i = 0;
3665                 buffer_info = &rx_ring->buffer_info[i];
3666         }
3667
3668 no_buffers:
3669         if (rx_ring->next_to_use != i) {
3670                 rx_ring->next_to_use = i;
3671                 if (i == 0)
3672                         i = (rx_ring->count - 1);
3673                 else
3674                         i--;
3675
3676                 /* Force memory writes to complete before letting h/w
3677                  * know there are new descriptors to fetch.  (Only
3678                  * applicable for weak-ordered memory model archs,
3679                  * such as IA-64). */
3680                 wmb();
3681                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
3682         }
3683 }
3684
3685 /**
3686  * igb_mii_ioctl -
3687  * @netdev:
3688  * @ifreq:
3689  * @cmd:
3690  **/
3691 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3692 {
3693         struct igb_adapter *adapter = netdev_priv(netdev);
3694         struct mii_ioctl_data *data = if_mii(ifr);
3695
3696         if (adapter->hw.phy.media_type != e1000_media_type_copper)
3697                 return -EOPNOTSUPP;
3698
3699         switch (cmd) {
3700         case SIOCGMIIPHY:
3701                 data->phy_id = adapter->hw.phy.addr;
3702                 break;
3703         case SIOCGMIIREG:
3704                 if (!capable(CAP_NET_ADMIN))
3705                         return -EPERM;
3706                 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
3707                                                      data->reg_num
3708                                                      & 0x1F, &data->val_out))
3709                         return -EIO;
3710                 break;
3711         case SIOCSMIIREG:
3712         default:
3713                 return -EOPNOTSUPP;
3714         }
3715         return 0;
3716 }
3717
3718 /**
3719  * igb_ioctl -
3720  * @netdev:
3721  * @ifreq:
3722  * @cmd:
3723  **/
3724 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3725 {
3726         switch (cmd) {
3727         case SIOCGMIIPHY:
3728         case SIOCGMIIREG:
3729         case SIOCSMIIREG:
3730                 return igb_mii_ioctl(netdev, ifr, cmd);
3731         default:
3732                 return -EOPNOTSUPP;
3733         }
3734 }
3735
3736 static void igb_vlan_rx_register(struct net_device *netdev,
3737                                  struct vlan_group *grp)
3738 {
3739         struct igb_adapter *adapter = netdev_priv(netdev);
3740         struct e1000_hw *hw = &adapter->hw;
3741         u32 ctrl, rctl;
3742
3743         igb_irq_disable(adapter);
3744         adapter->vlgrp = grp;
3745
3746         if (grp) {
3747                 /* enable VLAN tag insert/strip */
3748                 ctrl = rd32(E1000_CTRL);
3749                 ctrl |= E1000_CTRL_VME;
3750                 wr32(E1000_CTRL, ctrl);
3751
3752                 /* enable VLAN receive filtering */
3753                 rctl = rd32(E1000_RCTL);
3754                 rctl |= E1000_RCTL_VFE;
3755                 rctl &= ~E1000_RCTL_CFIEN;
3756                 wr32(E1000_RCTL, rctl);
3757                 igb_update_mng_vlan(adapter);
3758                 wr32(E1000_RLPML,
3759                                 adapter->max_frame_size + VLAN_TAG_SIZE);
3760         } else {
3761                 /* disable VLAN tag insert/strip */
3762                 ctrl = rd32(E1000_CTRL);
3763                 ctrl &= ~E1000_CTRL_VME;
3764                 wr32(E1000_CTRL, ctrl);
3765
3766                 /* disable VLAN filtering */
3767                 rctl = rd32(E1000_RCTL);
3768                 rctl &= ~E1000_RCTL_VFE;
3769                 wr32(E1000_RCTL, rctl);
3770                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
3771                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3772                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
3773                 }
3774                 wr32(E1000_RLPML,
3775                                 adapter->max_frame_size);
3776         }
3777
3778         if (!test_bit(__IGB_DOWN, &adapter->state))
3779                 igb_irq_enable(adapter);
3780 }
3781
3782 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
3783 {
3784         struct igb_adapter *adapter = netdev_priv(netdev);
3785         struct e1000_hw *hw = &adapter->hw;
3786         u32 vfta, index;
3787
3788         if ((adapter->hw.mng_cookie.status &
3789              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3790             (vid == adapter->mng_vlan_id))
3791                 return;
3792         /* add VID to filter table */
3793         index = (vid >> 5) & 0x7F;
3794         vfta = array_rd32(E1000_VFTA, index);
3795         vfta |= (1 << (vid & 0x1F));
3796         igb_write_vfta(&adapter->hw, index, vfta);
3797 }
3798
3799 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
3800 {
3801         struct igb_adapter *adapter = netdev_priv(netdev);
3802         struct e1000_hw *hw = &adapter->hw;
3803         u32 vfta, index;
3804
3805         igb_irq_disable(adapter);
3806         vlan_group_set_device(adapter->vlgrp, vid, NULL);
3807
3808         if (!test_bit(__IGB_DOWN, &adapter->state))
3809                 igb_irq_enable(adapter);
3810
3811         if ((adapter->hw.mng_cookie.status &
3812              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3813             (vid == adapter->mng_vlan_id)) {
3814                 /* release control to f/w */
3815                 igb_release_hw_control(adapter);
3816                 return;
3817         }
3818
3819         /* remove VID from filter table */
3820         index = (vid >> 5) & 0x7F;
3821         vfta = array_rd32(E1000_VFTA, index);
3822         vfta &= ~(1 << (vid & 0x1F));
3823         igb_write_vfta(&adapter->hw, index, vfta);
3824 }
3825
3826 static void igb_restore_vlan(struct igb_adapter *adapter)
3827 {
3828         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
3829
3830         if (adapter->vlgrp) {
3831                 u16 vid;
3832                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
3833                         if (!vlan_group_get_device(adapter->vlgrp, vid))
3834                                 continue;
3835                         igb_vlan_rx_add_vid(adapter->netdev, vid);
3836                 }
3837         }
3838 }
3839
3840 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
3841 {
3842         struct e1000_mac_info *mac = &adapter->hw.mac;
3843
3844         mac->autoneg = 0;
3845
3846         /* Fiber NICs only allow 1000 gbps Full duplex */
3847         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
3848                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
3849                 dev_err(&adapter->pdev->dev,
3850                         "Unsupported Speed/Duplex configuration\n");
3851                 return -EINVAL;
3852         }
3853
3854         switch (spddplx) {
3855         case SPEED_10 + DUPLEX_HALF:
3856                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
3857                 break;
3858         case SPEED_10 + DUPLEX_FULL:
3859                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
3860                 break;
3861         case SPEED_100 + DUPLEX_HALF:
3862                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
3863                 break;
3864         case SPEED_100 + DUPLEX_FULL:
3865                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
3866                 break;
3867         case SPEED_1000 + DUPLEX_FULL:
3868                 mac->autoneg = 1;
3869                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
3870                 break;
3871         case SPEED_1000 + DUPLEX_HALF: /* not supported */
3872         default:
3873                 dev_err(&adapter->pdev->dev,
3874                         "Unsupported Speed/Duplex configuration\n");
3875                 return -EINVAL;
3876         }
3877         return 0;
3878 }
3879
3880
3881 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
3882 {
3883         struct net_device *netdev = pci_get_drvdata(pdev);
3884         struct igb_adapter *adapter = netdev_priv(netdev);
3885         struct e1000_hw *hw = &adapter->hw;
3886         u32 ctrl, ctrl_ext, rctl, status;
3887         u32 wufc = adapter->wol;
3888 #ifdef CONFIG_PM
3889         int retval = 0;
3890 #endif
3891
3892         netif_device_detach(netdev);
3893
3894         if (netif_running(netdev)) {
3895                 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3896                 igb_down(adapter);
3897                 igb_free_irq(adapter);
3898         }
3899
3900 #ifdef CONFIG_PM
3901         retval = pci_save_state(pdev);
3902         if (retval)
3903                 return retval;
3904 #endif
3905
3906         status = rd32(E1000_STATUS);
3907         if (status & E1000_STATUS_LU)
3908                 wufc &= ~E1000_WUFC_LNKC;
3909
3910         if (wufc) {
3911                 igb_setup_rctl(adapter);
3912                 igb_set_multi(netdev);
3913
3914                 /* turn on all-multi mode if wake on multicast is enabled */
3915                 if (wufc & E1000_WUFC_MC) {
3916                         rctl = rd32(E1000_RCTL);
3917                         rctl |= E1000_RCTL_MPE;
3918                         wr32(E1000_RCTL, rctl);
3919                 }
3920
3921                 ctrl = rd32(E1000_CTRL);
3922                 /* advertise wake from D3Cold */
3923                 #define E1000_CTRL_ADVD3WUC 0x00100000
3924                 /* phy power management enable */
3925                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3926                 ctrl |= E1000_CTRL_ADVD3WUC;
3927                 wr32(E1000_CTRL, ctrl);
3928
3929                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3930                    adapter->hw.phy.media_type ==
3931                                         e1000_media_type_internal_serdes) {
3932                         /* keep the laser running in D3 */
3933                         ctrl_ext = rd32(E1000_CTRL_EXT);
3934                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3935                         wr32(E1000_CTRL_EXT, ctrl_ext);
3936                 }
3937
3938                 /* Allow time for pending master requests to run */
3939                 igb_disable_pcie_master(&adapter->hw);
3940
3941                 wr32(E1000_WUC, E1000_WUC_PME_EN);
3942                 wr32(E1000_WUFC, wufc);
3943                 pci_enable_wake(pdev, PCI_D3hot, 1);
3944                 pci_enable_wake(pdev, PCI_D3cold, 1);
3945         } else {
3946                 wr32(E1000_WUC, 0);
3947                 wr32(E1000_WUFC, 0);
3948                 pci_enable_wake(pdev, PCI_D3hot, 0);
3949                 pci_enable_wake(pdev, PCI_D3cold, 0);
3950         }
3951
3952         /* make sure adapter isn't asleep if manageability is enabled */
3953         if (adapter->en_mng_pt) {
3954                 pci_enable_wake(pdev, PCI_D3hot, 1);
3955                 pci_enable_wake(pdev, PCI_D3cold, 1);
3956         }
3957
3958         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3959          * would have already happened in close and is redundant. */
3960         igb_release_hw_control(adapter);
3961
3962         pci_disable_device(pdev);
3963
3964         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3965
3966         return 0;
3967 }
3968
3969 #ifdef CONFIG_PM
3970 static int igb_resume(struct pci_dev *pdev)
3971 {
3972         struct net_device *netdev = pci_get_drvdata(pdev);
3973         struct igb_adapter *adapter = netdev_priv(netdev);
3974         struct e1000_hw *hw = &adapter->hw;
3975         u32 err;
3976
3977         pci_set_power_state(pdev, PCI_D0);
3978         pci_restore_state(pdev);
3979         err = pci_enable_device(pdev);
3980         if (err) {
3981                 dev_err(&pdev->dev,
3982                         "igb: Cannot enable PCI device from suspend\n");
3983                 return err;
3984         }
3985         pci_set_master(pdev);
3986
3987         pci_enable_wake(pdev, PCI_D3hot, 0);
3988         pci_enable_wake(pdev, PCI_D3cold, 0);
3989
3990         if (netif_running(netdev)) {
3991                 err = igb_request_irq(adapter);
3992                 if (err)
3993                         return err;
3994         }
3995
3996         /* e1000_power_up_phy(adapter); */
3997
3998         igb_reset(adapter);
3999         wr32(E1000_WUS, ~0);
4000
4001         igb_init_manageability(adapter);
4002
4003         if (netif_running(netdev))
4004                 igb_up(adapter);
4005
4006         netif_device_attach(netdev);
4007
4008         /* let the f/w know that the h/w is now under the control of the
4009          * driver. */
4010         igb_get_hw_control(adapter);
4011
4012         return 0;
4013 }
4014 #endif
4015
4016 static void igb_shutdown(struct pci_dev *pdev)
4017 {
4018         igb_suspend(pdev, PMSG_SUSPEND);
4019 }
4020
4021 #ifdef CONFIG_NET_POLL_CONTROLLER
4022 /*
4023  * Polling 'interrupt' - used by things like netconsole to send skbs
4024  * without having to re-enable interrupts. It's not called while
4025  * the interrupt routine is executing.
4026  */
4027 static void igb_netpoll(struct net_device *netdev)
4028 {
4029         struct igb_adapter *adapter = netdev_priv(netdev);
4030         int i;
4031         int work_done = 0;
4032
4033         igb_irq_disable(adapter);
4034         for (i = 0; i < adapter->num_tx_queues; i++)
4035                 igb_clean_tx_irq(adapter, &adapter->tx_ring[i]);
4036
4037         for (i = 0; i < adapter->num_rx_queues; i++)
4038                 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i],
4039                                      &work_done,
4040                                      adapter->rx_ring[i].napi.weight);
4041
4042         igb_irq_enable(adapter);
4043 }
4044 #endif /* CONFIG_NET_POLL_CONTROLLER */
4045
4046 /**
4047  * igb_io_error_detected - called when PCI error is detected
4048  * @pdev: Pointer to PCI device
4049  * @state: The current pci connection state
4050  *
4051  * This function is called after a PCI bus error affecting
4052  * this device has been detected.
4053  */
4054 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4055                                               pci_channel_state_t state)
4056 {
4057         struct net_device *netdev = pci_get_drvdata(pdev);
4058         struct igb_adapter *adapter = netdev_priv(netdev);
4059
4060         netif_device_detach(netdev);
4061
4062         if (netif_running(netdev))
4063                 igb_down(adapter);
4064         pci_disable_device(pdev);
4065
4066         /* Request a slot slot reset. */
4067         return PCI_ERS_RESULT_NEED_RESET;
4068 }
4069
4070 /**
4071  * igb_io_slot_reset - called after the pci bus has been reset.
4072  * @pdev: Pointer to PCI device
4073  *
4074  * Restart the card from scratch, as if from a cold-boot. Implementation
4075  * resembles the first-half of the igb_resume routine.
4076  */
4077 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4078 {
4079         struct net_device *netdev = pci_get_drvdata(pdev);
4080         struct igb_adapter *adapter = netdev_priv(netdev);
4081         struct e1000_hw *hw = &adapter->hw;
4082
4083         if (pci_enable_device(pdev)) {
4084                 dev_err(&pdev->dev,
4085                         "Cannot re-enable PCI device after reset.\n");
4086                 return PCI_ERS_RESULT_DISCONNECT;
4087         }
4088         pci_set_master(pdev);
4089         pci_restore_state(pdev);
4090
4091         pci_enable_wake(pdev, PCI_D3hot, 0);
4092         pci_enable_wake(pdev, PCI_D3cold, 0);
4093
4094         igb_reset(adapter);
4095         wr32(E1000_WUS, ~0);
4096
4097         return PCI_ERS_RESULT_RECOVERED;
4098 }
4099
4100 /**
4101  * igb_io_resume - called when traffic can start flowing again.
4102  * @pdev: Pointer to PCI device
4103  *
4104  * This callback is called when the error recovery driver tells us that
4105  * its OK to resume normal operation. Implementation resembles the
4106  * second-half of the igb_resume routine.
4107  */
4108 static void igb_io_resume(struct pci_dev *pdev)
4109 {
4110         struct net_device *netdev = pci_get_drvdata(pdev);
4111         struct igb_adapter *adapter = netdev_priv(netdev);
4112
4113         igb_init_manageability(adapter);
4114
4115         if (netif_running(netdev)) {
4116                 if (igb_up(adapter)) {
4117                         dev_err(&pdev->dev, "igb_up failed after reset\n");
4118                         return;
4119                 }
4120         }
4121
4122         netif_device_attach(netdev);
4123
4124         /* let the f/w know that the h/w is now under the control of the
4125          * driver. */
4126         igb_get_hw_control(adapter);
4127
4128 }
4129
4130 /* igb_main.c */