4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <linux/idr.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
35 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
36 #define HASH_SIZE (1UL << HASH_SHIFT)
38 /* spinlock for vfsmount related operations, inplace of dcache_lock */
39 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
42 static DEFINE_IDA(mnt_id_ida);
43 static DEFINE_IDA(mnt_group_ida);
45 static struct list_head *mount_hashtable __read_mostly;
46 static struct kmem_cache *mnt_cache __read_mostly;
47 static struct rw_semaphore namespace_sem;
50 struct kobject *fs_kobj;
51 EXPORT_SYMBOL_GPL(fs_kobj);
53 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
56 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
57 tmp = tmp + (tmp >> HASH_SHIFT);
58 return tmp & (HASH_SIZE - 1);
61 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63 /* allocation is serialized by namespace_sem */
64 static int mnt_alloc_id(struct vfsmount *mnt)
69 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
70 spin_lock(&vfsmount_lock);
71 res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
72 spin_unlock(&vfsmount_lock);
79 static void mnt_free_id(struct vfsmount *mnt)
81 spin_lock(&vfsmount_lock);
82 ida_remove(&mnt_id_ida, mnt->mnt_id);
83 spin_unlock(&vfsmount_lock);
87 * Allocate a new peer group ID
89 * mnt_group_ida is protected by namespace_sem
91 static int mnt_alloc_group_id(struct vfsmount *mnt)
93 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
96 return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
100 * Release a peer group ID
102 void mnt_release_group_id(struct vfsmount *mnt)
104 ida_remove(&mnt_group_ida, mnt->mnt_group_id);
105 mnt->mnt_group_id = 0;
108 struct vfsmount *alloc_vfsmnt(const char *name)
110 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
114 err = mnt_alloc_id(mnt);
116 kmem_cache_free(mnt_cache, mnt);
120 atomic_set(&mnt->mnt_count, 1);
121 INIT_LIST_HEAD(&mnt->mnt_hash);
122 INIT_LIST_HEAD(&mnt->mnt_child);
123 INIT_LIST_HEAD(&mnt->mnt_mounts);
124 INIT_LIST_HEAD(&mnt->mnt_list);
125 INIT_LIST_HEAD(&mnt->mnt_expire);
126 INIT_LIST_HEAD(&mnt->mnt_share);
127 INIT_LIST_HEAD(&mnt->mnt_slave_list);
128 INIT_LIST_HEAD(&mnt->mnt_slave);
129 atomic_set(&mnt->__mnt_writers, 0);
131 int size = strlen(name) + 1;
132 char *newname = kmalloc(size, GFP_KERNEL);
134 memcpy(newname, name, size);
135 mnt->mnt_devname = newname;
143 * Most r/o checks on a fs are for operations that take
144 * discrete amounts of time, like a write() or unlink().
145 * We must keep track of when those operations start
146 * (for permission checks) and when they end, so that
147 * we can determine when writes are able to occur to
151 * __mnt_is_readonly: check whether a mount is read-only
152 * @mnt: the mount to check for its write status
154 * This shouldn't be used directly ouside of the VFS.
155 * It does not guarantee that the filesystem will stay
156 * r/w, just that it is right *now*. This can not and
157 * should not be used in place of IS_RDONLY(inode).
158 * mnt_want/drop_write() will _keep_ the filesystem
161 int __mnt_is_readonly(struct vfsmount *mnt)
163 if (mnt->mnt_flags & MNT_READONLY)
165 if (mnt->mnt_sb->s_flags & MS_RDONLY)
169 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
173 * If holding multiple instances of this lock, they
174 * must be ordered by cpu number.
177 struct lock_class_key lock_class; /* compiles out with !lockdep */
179 struct vfsmount *mnt;
180 } ____cacheline_aligned_in_smp;
181 static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
183 static int __init init_mnt_writers(void)
186 for_each_possible_cpu(cpu) {
187 struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
188 spin_lock_init(&writer->lock);
189 lockdep_set_class(&writer->lock, &writer->lock_class);
194 fs_initcall(init_mnt_writers);
196 static void unlock_mnt_writers(void)
199 struct mnt_writer *cpu_writer;
201 for_each_possible_cpu(cpu) {
202 cpu_writer = &per_cpu(mnt_writers, cpu);
203 spin_unlock(&cpu_writer->lock);
207 static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
209 if (!cpu_writer->mnt)
212 * This is in case anyone ever leaves an invalid,
213 * old ->mnt and a count of 0.
215 if (!cpu_writer->count)
217 atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
218 cpu_writer->count = 0;
221 * must hold cpu_writer->lock
223 static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
224 struct vfsmount *mnt)
226 if (cpu_writer->mnt == mnt)
228 __clear_mnt_count(cpu_writer);
229 cpu_writer->mnt = mnt;
233 * Most r/o checks on a fs are for operations that take
234 * discrete amounts of time, like a write() or unlink().
235 * We must keep track of when those operations start
236 * (for permission checks) and when they end, so that
237 * we can determine when writes are able to occur to
241 * mnt_want_write - get write access to a mount
242 * @mnt: the mount on which to take a write
244 * This tells the low-level filesystem that a write is
245 * about to be performed to it, and makes sure that
246 * writes are allowed before returning success. When
247 * the write operation is finished, mnt_drop_write()
248 * must be called. This is effectively a refcount.
250 int mnt_want_write(struct vfsmount *mnt)
253 struct mnt_writer *cpu_writer;
255 cpu_writer = &get_cpu_var(mnt_writers);
256 spin_lock(&cpu_writer->lock);
257 if (__mnt_is_readonly(mnt)) {
261 use_cpu_writer_for_mount(cpu_writer, mnt);
264 spin_unlock(&cpu_writer->lock);
265 put_cpu_var(mnt_writers);
268 EXPORT_SYMBOL_GPL(mnt_want_write);
270 static void lock_mnt_writers(void)
273 struct mnt_writer *cpu_writer;
275 for_each_possible_cpu(cpu) {
276 cpu_writer = &per_cpu(mnt_writers, cpu);
277 spin_lock(&cpu_writer->lock);
278 __clear_mnt_count(cpu_writer);
279 cpu_writer->mnt = NULL;
284 * These per-cpu write counts are not guaranteed to have
285 * matched increments and decrements on any given cpu.
286 * A file open()ed for write on one cpu and close()d on
287 * another cpu will imbalance this count. Make sure it
288 * does not get too far out of whack.
290 static void handle_write_count_underflow(struct vfsmount *mnt)
292 if (atomic_read(&mnt->__mnt_writers) >=
293 MNT_WRITER_UNDERFLOW_LIMIT)
296 * It isn't necessary to hold all of the locks
297 * at the same time, but doing it this way makes
298 * us share a lot more code.
302 * vfsmount_lock is for mnt_flags.
304 spin_lock(&vfsmount_lock);
306 * If coalescing the per-cpu writer counts did not
307 * get us back to a positive writer count, we have
310 if ((atomic_read(&mnt->__mnt_writers) < 0) &&
311 !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
312 WARN(1, KERN_DEBUG "leak detected on mount(%p) writers "
314 mnt, atomic_read(&mnt->__mnt_writers));
315 /* use the flag to keep the dmesg spam down */
316 mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
318 spin_unlock(&vfsmount_lock);
319 unlock_mnt_writers();
323 * mnt_drop_write - give up write access to a mount
324 * @mnt: the mount on which to give up write access
326 * Tells the low-level filesystem that we are done
327 * performing writes to it. Must be matched with
328 * mnt_want_write() call above.
330 void mnt_drop_write(struct vfsmount *mnt)
332 int must_check_underflow = 0;
333 struct mnt_writer *cpu_writer;
335 cpu_writer = &get_cpu_var(mnt_writers);
336 spin_lock(&cpu_writer->lock);
338 use_cpu_writer_for_mount(cpu_writer, mnt);
339 if (cpu_writer->count > 0) {
342 must_check_underflow = 1;
343 atomic_dec(&mnt->__mnt_writers);
346 spin_unlock(&cpu_writer->lock);
348 * Logically, we could call this each time,
349 * but the __mnt_writers cacheline tends to
350 * be cold, and makes this expensive.
352 if (must_check_underflow)
353 handle_write_count_underflow(mnt);
355 * This could be done right after the spinlock
356 * is taken because the spinlock keeps us on
357 * the cpu, and disables preemption. However,
358 * putting it here bounds the amount that
359 * __mnt_writers can underflow. Without it,
360 * we could theoretically wrap __mnt_writers.
362 put_cpu_var(mnt_writers);
364 EXPORT_SYMBOL_GPL(mnt_drop_write);
366 static int mnt_make_readonly(struct vfsmount *mnt)
372 * With all the locks held, this value is stable
374 if (atomic_read(&mnt->__mnt_writers) > 0) {
379 * nobody can do a successful mnt_want_write() with all
380 * of the counts in MNT_DENIED_WRITE and the locks held.
382 spin_lock(&vfsmount_lock);
384 mnt->mnt_flags |= MNT_READONLY;
385 spin_unlock(&vfsmount_lock);
387 unlock_mnt_writers();
391 static void __mnt_unmake_readonly(struct vfsmount *mnt)
393 spin_lock(&vfsmount_lock);
394 mnt->mnt_flags &= ~MNT_READONLY;
395 spin_unlock(&vfsmount_lock);
398 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
401 mnt->mnt_root = dget(sb->s_root);
405 EXPORT_SYMBOL(simple_set_mnt);
407 void free_vfsmnt(struct vfsmount *mnt)
409 kfree(mnt->mnt_devname);
411 kmem_cache_free(mnt_cache, mnt);
415 * find the first or last mount at @dentry on vfsmount @mnt depending on
416 * @dir. If @dir is set return the first mount else return the last mount.
418 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
421 struct list_head *head = mount_hashtable + hash(mnt, dentry);
422 struct list_head *tmp = head;
423 struct vfsmount *p, *found = NULL;
426 tmp = dir ? tmp->next : tmp->prev;
430 p = list_entry(tmp, struct vfsmount, mnt_hash);
431 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
440 * lookup_mnt increments the ref count before returning
441 * the vfsmount struct.
443 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
445 struct vfsmount *child_mnt;
446 spin_lock(&vfsmount_lock);
447 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
449 spin_unlock(&vfsmount_lock);
453 static inline int check_mnt(struct vfsmount *mnt)
455 return mnt->mnt_ns == current->nsproxy->mnt_ns;
458 static void touch_mnt_namespace(struct mnt_namespace *ns)
462 wake_up_interruptible(&ns->poll);
466 static void __touch_mnt_namespace(struct mnt_namespace *ns)
468 if (ns && ns->event != event) {
470 wake_up_interruptible(&ns->poll);
474 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
476 old_path->dentry = mnt->mnt_mountpoint;
477 old_path->mnt = mnt->mnt_parent;
478 mnt->mnt_parent = mnt;
479 mnt->mnt_mountpoint = mnt->mnt_root;
480 list_del_init(&mnt->mnt_child);
481 list_del_init(&mnt->mnt_hash);
482 old_path->dentry->d_mounted--;
485 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
486 struct vfsmount *child_mnt)
488 child_mnt->mnt_parent = mntget(mnt);
489 child_mnt->mnt_mountpoint = dget(dentry);
493 static void attach_mnt(struct vfsmount *mnt, struct path *path)
495 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
496 list_add_tail(&mnt->mnt_hash, mount_hashtable +
497 hash(path->mnt, path->dentry));
498 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
502 * the caller must hold vfsmount_lock
504 static void commit_tree(struct vfsmount *mnt)
506 struct vfsmount *parent = mnt->mnt_parent;
509 struct mnt_namespace *n = parent->mnt_ns;
511 BUG_ON(parent == mnt);
513 list_add_tail(&head, &mnt->mnt_list);
514 list_for_each_entry(m, &head, mnt_list)
516 list_splice(&head, n->list.prev);
518 list_add_tail(&mnt->mnt_hash, mount_hashtable +
519 hash(parent, mnt->mnt_mountpoint));
520 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
521 touch_mnt_namespace(n);
524 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
526 struct list_head *next = p->mnt_mounts.next;
527 if (next == &p->mnt_mounts) {
531 next = p->mnt_child.next;
532 if (next != &p->mnt_parent->mnt_mounts)
537 return list_entry(next, struct vfsmount, mnt_child);
540 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
542 struct list_head *prev = p->mnt_mounts.prev;
543 while (prev != &p->mnt_mounts) {
544 p = list_entry(prev, struct vfsmount, mnt_child);
545 prev = p->mnt_mounts.prev;
550 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
553 struct super_block *sb = old->mnt_sb;
554 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
557 if (flag & (CL_SLAVE | CL_PRIVATE))
558 mnt->mnt_group_id = 0; /* not a peer of original */
560 mnt->mnt_group_id = old->mnt_group_id;
562 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
563 int err = mnt_alloc_group_id(mnt);
568 mnt->mnt_flags = old->mnt_flags;
569 atomic_inc(&sb->s_active);
571 mnt->mnt_root = dget(root);
572 mnt->mnt_mountpoint = mnt->mnt_root;
573 mnt->mnt_parent = mnt;
575 if (flag & CL_SLAVE) {
576 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
577 mnt->mnt_master = old;
578 CLEAR_MNT_SHARED(mnt);
579 } else if (!(flag & CL_PRIVATE)) {
580 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
581 list_add(&mnt->mnt_share, &old->mnt_share);
582 if (IS_MNT_SLAVE(old))
583 list_add(&mnt->mnt_slave, &old->mnt_slave);
584 mnt->mnt_master = old->mnt_master;
586 if (flag & CL_MAKE_SHARED)
589 /* stick the duplicate mount on the same expiry list
590 * as the original if that was on one */
591 if (flag & CL_EXPIRE) {
592 if (!list_empty(&old->mnt_expire))
593 list_add(&mnt->mnt_expire, &old->mnt_expire);
603 static inline void __mntput(struct vfsmount *mnt)
606 struct super_block *sb = mnt->mnt_sb;
608 * We don't have to hold all of the locks at the
609 * same time here because we know that we're the
610 * last reference to mnt and that no new writers
613 for_each_possible_cpu(cpu) {
614 struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
615 if (cpu_writer->mnt != mnt)
617 spin_lock(&cpu_writer->lock);
618 atomic_add(cpu_writer->count, &mnt->__mnt_writers);
619 cpu_writer->count = 0;
621 * Might as well do this so that no one
622 * ever sees the pointer and expects
625 cpu_writer->mnt = NULL;
626 spin_unlock(&cpu_writer->lock);
629 * This probably indicates that somebody messed
630 * up a mnt_want/drop_write() pair. If this
631 * happens, the filesystem was probably unable
632 * to make r/w->r/o transitions.
634 WARN_ON(atomic_read(&mnt->__mnt_writers));
637 deactivate_super(sb);
640 void mntput_no_expire(struct vfsmount *mnt)
643 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
644 if (likely(!mnt->mnt_pinned)) {
645 spin_unlock(&vfsmount_lock);
649 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
651 spin_unlock(&vfsmount_lock);
652 acct_auto_close_mnt(mnt);
653 security_sb_umount_close(mnt);
658 EXPORT_SYMBOL(mntput_no_expire);
660 void mnt_pin(struct vfsmount *mnt)
662 spin_lock(&vfsmount_lock);
664 spin_unlock(&vfsmount_lock);
667 EXPORT_SYMBOL(mnt_pin);
669 void mnt_unpin(struct vfsmount *mnt)
671 spin_lock(&vfsmount_lock);
672 if (mnt->mnt_pinned) {
673 atomic_inc(&mnt->mnt_count);
676 spin_unlock(&vfsmount_lock);
679 EXPORT_SYMBOL(mnt_unpin);
681 static inline void mangle(struct seq_file *m, const char *s)
683 seq_escape(m, s, " \t\n\\");
687 * Simple .show_options callback for filesystems which don't want to
688 * implement more complex mount option showing.
690 * See also save_mount_options().
692 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
694 const char *options = mnt->mnt_sb->s_options;
696 if (options != NULL && options[0]) {
703 EXPORT_SYMBOL(generic_show_options);
706 * If filesystem uses generic_show_options(), this function should be
707 * called from the fill_super() callback.
709 * The .remount_fs callback usually needs to be handled in a special
710 * way, to make sure, that previous options are not overwritten if the
713 * Also note, that if the filesystem's .remount_fs function doesn't
714 * reset all options to their default value, but changes only newly
715 * given options, then the displayed options will not reflect reality
718 void save_mount_options(struct super_block *sb, char *options)
720 kfree(sb->s_options);
721 sb->s_options = kstrdup(options, GFP_KERNEL);
723 EXPORT_SYMBOL(save_mount_options);
725 #ifdef CONFIG_PROC_FS
727 static void *m_start(struct seq_file *m, loff_t *pos)
729 struct proc_mounts *p = m->private;
731 down_read(&namespace_sem);
732 return seq_list_start(&p->ns->list, *pos);
735 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
737 struct proc_mounts *p = m->private;
739 return seq_list_next(v, &p->ns->list, pos);
742 static void m_stop(struct seq_file *m, void *v)
744 up_read(&namespace_sem);
747 struct proc_fs_info {
752 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
754 static const struct proc_fs_info fs_info[] = {
755 { MS_SYNCHRONOUS, ",sync" },
756 { MS_DIRSYNC, ",dirsync" },
757 { MS_MANDLOCK, ",mand" },
760 const struct proc_fs_info *fs_infop;
762 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
763 if (sb->s_flags & fs_infop->flag)
764 seq_puts(m, fs_infop->str);
767 return security_sb_show_options(m, sb);
770 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
772 static const struct proc_fs_info mnt_info[] = {
773 { MNT_NOSUID, ",nosuid" },
774 { MNT_NODEV, ",nodev" },
775 { MNT_NOEXEC, ",noexec" },
776 { MNT_NOATIME, ",noatime" },
777 { MNT_NODIRATIME, ",nodiratime" },
778 { MNT_RELATIME, ",relatime" },
781 const struct proc_fs_info *fs_infop;
783 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
784 if (mnt->mnt_flags & fs_infop->flag)
785 seq_puts(m, fs_infop->str);
789 static void show_type(struct seq_file *m, struct super_block *sb)
791 mangle(m, sb->s_type->name);
792 if (sb->s_subtype && sb->s_subtype[0]) {
794 mangle(m, sb->s_subtype);
798 static int show_vfsmnt(struct seq_file *m, void *v)
800 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
802 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
804 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
806 seq_path(m, &mnt_path, " \t\n\\");
808 show_type(m, mnt->mnt_sb);
809 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
810 err = show_sb_opts(m, mnt->mnt_sb);
813 show_mnt_opts(m, mnt);
814 if (mnt->mnt_sb->s_op->show_options)
815 err = mnt->mnt_sb->s_op->show_options(m, mnt);
816 seq_puts(m, " 0 0\n");
821 const struct seq_operations mounts_op = {
828 static int show_mountinfo(struct seq_file *m, void *v)
830 struct proc_mounts *p = m->private;
831 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
832 struct super_block *sb = mnt->mnt_sb;
833 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
834 struct path root = p->root;
837 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
838 MAJOR(sb->s_dev), MINOR(sb->s_dev));
839 seq_dentry(m, mnt->mnt_root, " \t\n\\");
841 seq_path_root(m, &mnt_path, &root, " \t\n\\");
842 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
844 * Mountpoint is outside root, discard that one. Ugly,
845 * but less so than trying to do that in iterator in a
846 * race-free way (due to renames).
850 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
851 show_mnt_opts(m, mnt);
853 /* Tagged fields ("foo:X" or "bar") */
854 if (IS_MNT_SHARED(mnt))
855 seq_printf(m, " shared:%i", mnt->mnt_group_id);
856 if (IS_MNT_SLAVE(mnt)) {
857 int master = mnt->mnt_master->mnt_group_id;
858 int dom = get_dominating_id(mnt, &p->root);
859 seq_printf(m, " master:%i", master);
860 if (dom && dom != master)
861 seq_printf(m, " propagate_from:%i", dom);
863 if (IS_MNT_UNBINDABLE(mnt))
864 seq_puts(m, " unbindable");
866 /* Filesystem specific data */
870 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
871 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
872 err = show_sb_opts(m, sb);
875 if (sb->s_op->show_options)
876 err = sb->s_op->show_options(m, mnt);
882 const struct seq_operations mountinfo_op = {
886 .show = show_mountinfo,
889 static int show_vfsstat(struct seq_file *m, void *v)
891 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
892 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
896 if (mnt->mnt_devname) {
897 seq_puts(m, "device ");
898 mangle(m, mnt->mnt_devname);
900 seq_puts(m, "no device");
903 seq_puts(m, " mounted on ");
904 seq_path(m, &mnt_path, " \t\n\\");
907 /* file system type */
908 seq_puts(m, "with fstype ");
909 show_type(m, mnt->mnt_sb);
911 /* optional statistics */
912 if (mnt->mnt_sb->s_op->show_stats) {
914 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
921 const struct seq_operations mountstats_op = {
925 .show = show_vfsstat,
927 #endif /* CONFIG_PROC_FS */
930 * may_umount_tree - check if a mount tree is busy
931 * @mnt: root of mount tree
933 * This is called to check if a tree of mounts has any
934 * open files, pwds, chroots or sub mounts that are
937 int may_umount_tree(struct vfsmount *mnt)
940 int minimum_refs = 0;
943 spin_lock(&vfsmount_lock);
944 for (p = mnt; p; p = next_mnt(p, mnt)) {
945 actual_refs += atomic_read(&p->mnt_count);
948 spin_unlock(&vfsmount_lock);
950 if (actual_refs > minimum_refs)
956 EXPORT_SYMBOL(may_umount_tree);
959 * may_umount - check if a mount point is busy
960 * @mnt: root of mount
962 * This is called to check if a mount point has any
963 * open files, pwds, chroots or sub mounts. If the
964 * mount has sub mounts this will return busy
965 * regardless of whether the sub mounts are busy.
967 * Doesn't take quota and stuff into account. IOW, in some cases it will
968 * give false negatives. The main reason why it's here is that we need
969 * a non-destructive way to look for easily umountable filesystems.
971 int may_umount(struct vfsmount *mnt)
974 spin_lock(&vfsmount_lock);
975 if (propagate_mount_busy(mnt, 2))
977 spin_unlock(&vfsmount_lock);
981 EXPORT_SYMBOL(may_umount);
983 void release_mounts(struct list_head *head)
985 struct vfsmount *mnt;
986 while (!list_empty(head)) {
987 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
988 list_del_init(&mnt->mnt_hash);
989 if (mnt->mnt_parent != mnt) {
990 struct dentry *dentry;
992 spin_lock(&vfsmount_lock);
993 dentry = mnt->mnt_mountpoint;
995 mnt->mnt_mountpoint = mnt->mnt_root;
996 mnt->mnt_parent = mnt;
998 spin_unlock(&vfsmount_lock);
1006 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1010 for (p = mnt; p; p = next_mnt(p, mnt))
1011 list_move(&p->mnt_hash, kill);
1014 propagate_umount(kill);
1016 list_for_each_entry(p, kill, mnt_hash) {
1017 list_del_init(&p->mnt_expire);
1018 list_del_init(&p->mnt_list);
1019 __touch_mnt_namespace(p->mnt_ns);
1021 list_del_init(&p->mnt_child);
1022 if (p->mnt_parent != p) {
1023 p->mnt_parent->mnt_ghosts++;
1024 p->mnt_mountpoint->d_mounted--;
1026 change_mnt_propagation(p, MS_PRIVATE);
1030 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1032 static int do_umount(struct vfsmount *mnt, int flags)
1034 struct super_block *sb = mnt->mnt_sb;
1036 LIST_HEAD(umount_list);
1038 retval = security_sb_umount(mnt, flags);
1043 * Allow userspace to request a mountpoint be expired rather than
1044 * unmounting unconditionally. Unmount only happens if:
1045 * (1) the mark is already set (the mark is cleared by mntput())
1046 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1048 if (flags & MNT_EXPIRE) {
1049 if (mnt == current->fs->root.mnt ||
1050 flags & (MNT_FORCE | MNT_DETACH))
1053 if (atomic_read(&mnt->mnt_count) != 2)
1056 if (!xchg(&mnt->mnt_expiry_mark, 1))
1061 * If we may have to abort operations to get out of this
1062 * mount, and they will themselves hold resources we must
1063 * allow the fs to do things. In the Unix tradition of
1064 * 'Gee thats tricky lets do it in userspace' the umount_begin
1065 * might fail to complete on the first run through as other tasks
1066 * must return, and the like. Thats for the mount program to worry
1067 * about for the moment.
1070 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1072 sb->s_op->umount_begin(sb);
1077 * No sense to grab the lock for this test, but test itself looks
1078 * somewhat bogus. Suggestions for better replacement?
1079 * Ho-hum... In principle, we might treat that as umount + switch
1080 * to rootfs. GC would eventually take care of the old vfsmount.
1081 * Actually it makes sense, especially if rootfs would contain a
1082 * /reboot - static binary that would close all descriptors and
1083 * call reboot(9). Then init(8) could umount root and exec /reboot.
1085 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1087 * Special case for "unmounting" root ...
1088 * we just try to remount it readonly.
1090 down_write(&sb->s_umount);
1091 if (!(sb->s_flags & MS_RDONLY)) {
1093 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1096 up_write(&sb->s_umount);
1100 down_write(&namespace_sem);
1101 spin_lock(&vfsmount_lock);
1104 if (!(flags & MNT_DETACH))
1105 shrink_submounts(mnt, &umount_list);
1108 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1109 if (!list_empty(&mnt->mnt_list))
1110 umount_tree(mnt, 1, &umount_list);
1113 spin_unlock(&vfsmount_lock);
1115 security_sb_umount_busy(mnt);
1116 up_write(&namespace_sem);
1117 release_mounts(&umount_list);
1122 * Now umount can handle mount points as well as block devices.
1123 * This is important for filesystems which use unnamed block devices.
1125 * We now support a flag for forced unmount like the other 'big iron'
1126 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1129 asmlinkage long sys_umount(char __user * name, int flags)
1131 struct nameidata nd;
1134 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
1138 if (nd.path.dentry != nd.path.mnt->mnt_root)
1140 if (!check_mnt(nd.path.mnt))
1144 if (!capable(CAP_SYS_ADMIN))
1147 retval = do_umount(nd.path.mnt, flags);
1149 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1150 dput(nd.path.dentry);
1151 mntput_no_expire(nd.path.mnt);
1156 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1159 * The 2.0 compatible umount. No flags.
1161 asmlinkage long sys_oldumount(char __user * name)
1163 return sys_umount(name, 0);
1168 static int mount_is_safe(struct nameidata *nd)
1170 if (capable(CAP_SYS_ADMIN))
1174 if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
1176 if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
1177 if (current->uid != nd->path.dentry->d_inode->i_uid)
1180 if (vfs_permission(nd, MAY_WRITE))
1186 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1189 struct vfsmount *res, *p, *q, *r, *s;
1192 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1195 res = q = clone_mnt(mnt, dentry, flag);
1198 q->mnt_mountpoint = mnt->mnt_mountpoint;
1201 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1202 if (!is_subdir(r->mnt_mountpoint, dentry))
1205 for (s = r; s; s = next_mnt(s, r)) {
1206 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1207 s = skip_mnt_tree(s);
1210 while (p != s->mnt_parent) {
1216 path.dentry = p->mnt_mountpoint;
1217 q = clone_mnt(p, p->mnt_root, flag);
1220 spin_lock(&vfsmount_lock);
1221 list_add_tail(&q->mnt_list, &res->mnt_list);
1222 attach_mnt(q, &path);
1223 spin_unlock(&vfsmount_lock);
1229 LIST_HEAD(umount_list);
1230 spin_lock(&vfsmount_lock);
1231 umount_tree(res, 0, &umount_list);
1232 spin_unlock(&vfsmount_lock);
1233 release_mounts(&umount_list);
1238 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
1240 struct vfsmount *tree;
1241 down_write(&namespace_sem);
1242 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
1243 up_write(&namespace_sem);
1247 void drop_collected_mounts(struct vfsmount *mnt)
1249 LIST_HEAD(umount_list);
1250 down_write(&namespace_sem);
1251 spin_lock(&vfsmount_lock);
1252 umount_tree(mnt, 0, &umount_list);
1253 spin_unlock(&vfsmount_lock);
1254 up_write(&namespace_sem);
1255 release_mounts(&umount_list);
1258 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1262 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1263 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1264 mnt_release_group_id(p);
1268 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1272 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1273 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1274 int err = mnt_alloc_group_id(p);
1276 cleanup_group_ids(mnt, p);
1286 * @source_mnt : mount tree to be attached
1287 * @nd : place the mount tree @source_mnt is attached
1288 * @parent_nd : if non-null, detach the source_mnt from its parent and
1289 * store the parent mount and mountpoint dentry.
1290 * (done when source_mnt is moved)
1292 * NOTE: in the table below explains the semantics when a source mount
1293 * of a given type is attached to a destination mount of a given type.
1294 * ---------------------------------------------------------------------------
1295 * | BIND MOUNT OPERATION |
1296 * |**************************************************************************
1297 * | source-->| shared | private | slave | unbindable |
1301 * |**************************************************************************
1302 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1304 * |non-shared| shared (+) | private | slave (*) | invalid |
1305 * ***************************************************************************
1306 * A bind operation clones the source mount and mounts the clone on the
1307 * destination mount.
1309 * (++) the cloned mount is propagated to all the mounts in the propagation
1310 * tree of the destination mount and the cloned mount is added to
1311 * the peer group of the source mount.
1312 * (+) the cloned mount is created under the destination mount and is marked
1313 * as shared. The cloned mount is added to the peer group of the source
1315 * (+++) the mount is propagated to all the mounts in the propagation tree
1316 * of the destination mount and the cloned mount is made slave
1317 * of the same master as that of the source mount. The cloned mount
1318 * is marked as 'shared and slave'.
1319 * (*) the cloned mount is made a slave of the same master as that of the
1322 * ---------------------------------------------------------------------------
1323 * | MOVE MOUNT OPERATION |
1324 * |**************************************************************************
1325 * | source-->| shared | private | slave | unbindable |
1329 * |**************************************************************************
1330 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1332 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1333 * ***************************************************************************
1335 * (+) the mount is moved to the destination. And is then propagated to
1336 * all the mounts in the propagation tree of the destination mount.
1337 * (+*) the mount is moved to the destination.
1338 * (+++) the mount is moved to the destination and is then propagated to
1339 * all the mounts belonging to the destination mount's propagation tree.
1340 * the mount is marked as 'shared and slave'.
1341 * (*) the mount continues to be a slave at the new location.
1343 * if the source mount is a tree, the operations explained above is
1344 * applied to each mount in the tree.
1345 * Must be called without spinlocks held, since this function can sleep
1348 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1349 struct path *path, struct path *parent_path)
1351 LIST_HEAD(tree_list);
1352 struct vfsmount *dest_mnt = path->mnt;
1353 struct dentry *dest_dentry = path->dentry;
1354 struct vfsmount *child, *p;
1357 if (IS_MNT_SHARED(dest_mnt)) {
1358 err = invent_group_ids(source_mnt, true);
1362 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1364 goto out_cleanup_ids;
1366 if (IS_MNT_SHARED(dest_mnt)) {
1367 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1371 spin_lock(&vfsmount_lock);
1373 detach_mnt(source_mnt, parent_path);
1374 attach_mnt(source_mnt, path);
1375 touch_mnt_namespace(current->nsproxy->mnt_ns);
1377 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1378 commit_tree(source_mnt);
1381 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1382 list_del_init(&child->mnt_hash);
1385 spin_unlock(&vfsmount_lock);
1389 if (IS_MNT_SHARED(dest_mnt))
1390 cleanup_group_ids(source_mnt, NULL);
1395 static int graft_tree(struct vfsmount *mnt, struct path *path)
1398 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1401 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1402 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1406 mutex_lock(&path->dentry->d_inode->i_mutex);
1407 if (IS_DEADDIR(path->dentry->d_inode))
1410 err = security_sb_check_sb(mnt, path);
1415 if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
1416 err = attach_recursive_mnt(mnt, path, NULL);
1418 mutex_unlock(&path->dentry->d_inode->i_mutex);
1420 security_sb_post_addmount(mnt, path);
1425 * recursively change the type of the mountpoint.
1426 * noinline this do_mount helper to save do_mount stack space.
1428 static noinline int do_change_type(struct nameidata *nd, int flag)
1430 struct vfsmount *m, *mnt = nd->path.mnt;
1431 int recurse = flag & MS_REC;
1432 int type = flag & ~MS_REC;
1435 if (!capable(CAP_SYS_ADMIN))
1438 if (nd->path.dentry != nd->path.mnt->mnt_root)
1441 down_write(&namespace_sem);
1442 if (type == MS_SHARED) {
1443 err = invent_group_ids(mnt, recurse);
1448 spin_lock(&vfsmount_lock);
1449 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1450 change_mnt_propagation(m, type);
1451 spin_unlock(&vfsmount_lock);
1454 up_write(&namespace_sem);
1459 * do loopback mount.
1460 * noinline this do_mount helper to save do_mount stack space.
1462 static noinline int do_loopback(struct nameidata *nd, char *old_name,
1465 struct nameidata old_nd;
1466 struct vfsmount *mnt = NULL;
1467 int err = mount_is_safe(nd);
1470 if (!old_name || !*old_name)
1472 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1476 down_write(&namespace_sem);
1478 if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
1481 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1486 mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
1488 mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
1493 err = graft_tree(mnt, &nd->path);
1495 LIST_HEAD(umount_list);
1496 spin_lock(&vfsmount_lock);
1497 umount_tree(mnt, 0, &umount_list);
1498 spin_unlock(&vfsmount_lock);
1499 release_mounts(&umount_list);
1503 up_write(&namespace_sem);
1504 path_put(&old_nd.path);
1508 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1511 int readonly_request = 0;
1513 if (ms_flags & MS_RDONLY)
1514 readonly_request = 1;
1515 if (readonly_request == __mnt_is_readonly(mnt))
1518 if (readonly_request)
1519 error = mnt_make_readonly(mnt);
1521 __mnt_unmake_readonly(mnt);
1526 * change filesystem flags. dir should be a physical root of filesystem.
1527 * If you've mounted a non-root directory somewhere and want to do remount
1528 * on it - tough luck.
1529 * noinline this do_mount helper to save do_mount stack space.
1531 static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
1535 struct super_block *sb = nd->path.mnt->mnt_sb;
1537 if (!capable(CAP_SYS_ADMIN))
1540 if (!check_mnt(nd->path.mnt))
1543 if (nd->path.dentry != nd->path.mnt->mnt_root)
1546 down_write(&sb->s_umount);
1547 if (flags & MS_BIND)
1548 err = change_mount_flags(nd->path.mnt, flags);
1550 err = do_remount_sb(sb, flags, data, 0);
1552 nd->path.mnt->mnt_flags = mnt_flags;
1553 up_write(&sb->s_umount);
1555 security_sb_post_remount(nd->path.mnt, flags, data);
1559 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1562 for (p = mnt; p; p = next_mnt(p, mnt)) {
1563 if (IS_MNT_UNBINDABLE(p))
1570 * noinline this do_mount helper to save do_mount stack space.
1572 static noinline int do_move_mount(struct nameidata *nd, char *old_name)
1574 struct nameidata old_nd;
1575 struct path parent_path;
1578 if (!capable(CAP_SYS_ADMIN))
1580 if (!old_name || !*old_name)
1582 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1586 down_write(&namespace_sem);
1587 while (d_mountpoint(nd->path.dentry) &&
1588 follow_down(&nd->path.mnt, &nd->path.dentry))
1591 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1595 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
1596 if (IS_DEADDIR(nd->path.dentry->d_inode))
1599 if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
1603 if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
1606 if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
1609 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
1610 S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
1613 * Don't move a mount residing in a shared parent.
1615 if (old_nd.path.mnt->mnt_parent &&
1616 IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
1619 * Don't move a mount tree containing unbindable mounts to a destination
1620 * mount which is shared.
1622 if (IS_MNT_SHARED(nd->path.mnt) &&
1623 tree_contains_unbindable(old_nd.path.mnt))
1626 for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
1627 if (p == old_nd.path.mnt)
1630 err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
1634 /* if the mount is moved, it should no longer be expire
1636 list_del_init(&old_nd.path.mnt->mnt_expire);
1638 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
1640 up_write(&namespace_sem);
1642 path_put(&parent_path);
1643 path_put(&old_nd.path);
1648 * create a new mount for userspace and request it to be added into the
1650 * noinline this do_mount helper to save do_mount stack space.
1652 static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
1653 int mnt_flags, char *name, void *data)
1655 struct vfsmount *mnt;
1657 if (!type || !memchr(type, 0, PAGE_SIZE))
1660 /* we need capabilities... */
1661 if (!capable(CAP_SYS_ADMIN))
1664 mnt = do_kern_mount(type, flags, name, data);
1666 return PTR_ERR(mnt);
1668 return do_add_mount(mnt, nd, mnt_flags, NULL);
1672 * add a mount into a namespace's mount tree
1673 * - provide the option of adding the new mount to an expiration list
1675 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1676 int mnt_flags, struct list_head *fslist)
1680 down_write(&namespace_sem);
1681 /* Something was mounted here while we slept */
1682 while (d_mountpoint(nd->path.dentry) &&
1683 follow_down(&nd->path.mnt, &nd->path.dentry))
1686 if (!check_mnt(nd->path.mnt))
1689 /* Refuse the same filesystem on the same mount point */
1691 if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
1692 nd->path.mnt->mnt_root == nd->path.dentry)
1696 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1699 newmnt->mnt_flags = mnt_flags;
1700 if ((err = graft_tree(newmnt, &nd->path)))
1703 if (fslist) /* add to the specified expiration list */
1704 list_add_tail(&newmnt->mnt_expire, fslist);
1706 up_write(&namespace_sem);
1710 up_write(&namespace_sem);
1715 EXPORT_SYMBOL_GPL(do_add_mount);
1718 * process a list of expirable mountpoints with the intent of discarding any
1719 * mountpoints that aren't in use and haven't been touched since last we came
1722 void mark_mounts_for_expiry(struct list_head *mounts)
1724 struct vfsmount *mnt, *next;
1725 LIST_HEAD(graveyard);
1728 if (list_empty(mounts))
1731 down_write(&namespace_sem);
1732 spin_lock(&vfsmount_lock);
1734 /* extract from the expiration list every vfsmount that matches the
1735 * following criteria:
1736 * - only referenced by its parent vfsmount
1737 * - still marked for expiry (marked on the last call here; marks are
1738 * cleared by mntput())
1740 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1741 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1742 propagate_mount_busy(mnt, 1))
1744 list_move(&mnt->mnt_expire, &graveyard);
1746 while (!list_empty(&graveyard)) {
1747 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1748 touch_mnt_namespace(mnt->mnt_ns);
1749 umount_tree(mnt, 1, &umounts);
1751 spin_unlock(&vfsmount_lock);
1752 up_write(&namespace_sem);
1754 release_mounts(&umounts);
1757 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1760 * Ripoff of 'select_parent()'
1762 * search the list of submounts for a given mountpoint, and move any
1763 * shrinkable submounts to the 'graveyard' list.
1765 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1767 struct vfsmount *this_parent = parent;
1768 struct list_head *next;
1772 next = this_parent->mnt_mounts.next;
1774 while (next != &this_parent->mnt_mounts) {
1775 struct list_head *tmp = next;
1776 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1779 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1782 * Descend a level if the d_mounts list is non-empty.
1784 if (!list_empty(&mnt->mnt_mounts)) {
1789 if (!propagate_mount_busy(mnt, 1)) {
1790 list_move_tail(&mnt->mnt_expire, graveyard);
1795 * All done at this level ... ascend and resume the search
1797 if (this_parent != parent) {
1798 next = this_parent->mnt_child.next;
1799 this_parent = this_parent->mnt_parent;
1806 * process a list of expirable mountpoints with the intent of discarding any
1807 * submounts of a specific parent mountpoint
1809 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1811 LIST_HEAD(graveyard);
1814 /* extract submounts of 'mountpoint' from the expiration list */
1815 while (select_submounts(mnt, &graveyard)) {
1816 while (!list_empty(&graveyard)) {
1817 m = list_first_entry(&graveyard, struct vfsmount,
1819 touch_mnt_namespace(mnt->mnt_ns);
1820 umount_tree(mnt, 1, umounts);
1826 * Some copy_from_user() implementations do not return the exact number of
1827 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1828 * Note that this function differs from copy_from_user() in that it will oops
1829 * on bad values of `to', rather than returning a short copy.
1831 static long exact_copy_from_user(void *to, const void __user * from,
1835 const char __user *f = from;
1838 if (!access_ok(VERIFY_READ, from, n))
1842 if (__get_user(c, f)) {
1853 int copy_mount_options(const void __user * data, unsigned long *where)
1863 if (!(page = __get_free_page(GFP_KERNEL)))
1866 /* We only care that *some* data at the address the user
1867 * gave us is valid. Just in case, we'll zero
1868 * the remainder of the page.
1870 /* copy_from_user cannot cross TASK_SIZE ! */
1871 size = TASK_SIZE - (unsigned long)data;
1872 if (size > PAGE_SIZE)
1875 i = size - exact_copy_from_user((void *)page, data, size);
1881 memset((char *)page + i, 0, PAGE_SIZE - i);
1887 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1888 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1890 * data is a (void *) that can point to any structure up to
1891 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1892 * information (or be NULL).
1894 * Pre-0.97 versions of mount() didn't have a flags word.
1895 * When the flags word was introduced its top half was required
1896 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1897 * Therefore, if this magic number is present, it carries no information
1898 * and must be discarded.
1900 long do_mount(char *dev_name, char *dir_name, char *type_page,
1901 unsigned long flags, void *data_page)
1903 struct nameidata nd;
1908 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1909 flags &= ~MS_MGC_MSK;
1911 /* Basic sanity checks */
1913 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1915 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1919 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1921 /* Separate the per-mountpoint flags */
1922 if (flags & MS_NOSUID)
1923 mnt_flags |= MNT_NOSUID;
1924 if (flags & MS_NODEV)
1925 mnt_flags |= MNT_NODEV;
1926 if (flags & MS_NOEXEC)
1927 mnt_flags |= MNT_NOEXEC;
1928 if (flags & MS_NOATIME)
1929 mnt_flags |= MNT_NOATIME;
1930 if (flags & MS_NODIRATIME)
1931 mnt_flags |= MNT_NODIRATIME;
1932 if (flags & MS_RELATIME)
1933 mnt_flags |= MNT_RELATIME;
1934 if (flags & MS_RDONLY)
1935 mnt_flags |= MNT_READONLY;
1937 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1938 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1940 /* ... and get the mountpoint */
1941 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1945 retval = security_sb_mount(dev_name, &nd.path,
1946 type_page, flags, data_page);
1950 if (flags & MS_REMOUNT)
1951 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1953 else if (flags & MS_BIND)
1954 retval = do_loopback(&nd, dev_name, flags & MS_REC);
1955 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1956 retval = do_change_type(&nd, flags);
1957 else if (flags & MS_MOVE)
1958 retval = do_move_mount(&nd, dev_name);
1960 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1961 dev_name, data_page);
1968 * Allocate a new namespace structure and populate it with contents
1969 * copied from the namespace of the passed in task structure.
1971 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1972 struct fs_struct *fs)
1974 struct mnt_namespace *new_ns;
1975 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1976 struct vfsmount *p, *q;
1978 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1980 return ERR_PTR(-ENOMEM);
1982 atomic_set(&new_ns->count, 1);
1983 INIT_LIST_HEAD(&new_ns->list);
1984 init_waitqueue_head(&new_ns->poll);
1987 down_write(&namespace_sem);
1988 /* First pass: copy the tree topology */
1989 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1990 CL_COPY_ALL | CL_EXPIRE);
1991 if (!new_ns->root) {
1992 up_write(&namespace_sem);
1994 return ERR_PTR(-ENOMEM);;
1996 spin_lock(&vfsmount_lock);
1997 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1998 spin_unlock(&vfsmount_lock);
2001 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2002 * as belonging to new namespace. We have already acquired a private
2003 * fs_struct, so tsk->fs->lock is not needed.
2010 if (p == fs->root.mnt) {
2012 fs->root.mnt = mntget(q);
2014 if (p == fs->pwd.mnt) {
2016 fs->pwd.mnt = mntget(q);
2018 if (p == fs->altroot.mnt) {
2020 fs->altroot.mnt = mntget(q);
2023 p = next_mnt(p, mnt_ns->root);
2024 q = next_mnt(q, new_ns->root);
2026 up_write(&namespace_sem);
2038 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2039 struct fs_struct *new_fs)
2041 struct mnt_namespace *new_ns;
2046 if (!(flags & CLONE_NEWNS))
2049 new_ns = dup_mnt_ns(ns, new_fs);
2055 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
2056 char __user * type, unsigned long flags,
2060 unsigned long data_page;
2061 unsigned long type_page;
2062 unsigned long dev_page;
2065 retval = copy_mount_options(type, &type_page);
2069 dir_page = getname(dir_name);
2070 retval = PTR_ERR(dir_page);
2071 if (IS_ERR(dir_page))
2074 retval = copy_mount_options(dev_name, &dev_page);
2078 retval = copy_mount_options(data, &data_page);
2083 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2084 flags, (void *)data_page);
2086 free_page(data_page);
2089 free_page(dev_page);
2093 free_page(type_page);
2098 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
2099 * It can block. Requires the big lock held.
2101 void set_fs_root(struct fs_struct *fs, struct path *path)
2103 struct path old_root;
2105 write_lock(&fs->lock);
2106 old_root = fs->root;
2109 write_unlock(&fs->lock);
2110 if (old_root.dentry)
2111 path_put(&old_root);
2115 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
2116 * It can block. Requires the big lock held.
2118 void set_fs_pwd(struct fs_struct *fs, struct path *path)
2120 struct path old_pwd;
2122 write_lock(&fs->lock);
2126 write_unlock(&fs->lock);
2132 static void chroot_fs_refs(struct path *old_root, struct path *new_root)
2134 struct task_struct *g, *p;
2135 struct fs_struct *fs;
2137 read_lock(&tasklist_lock);
2138 do_each_thread(g, p) {
2142 atomic_inc(&fs->count);
2144 if (fs->root.dentry == old_root->dentry
2145 && fs->root.mnt == old_root->mnt)
2146 set_fs_root(fs, new_root);
2147 if (fs->pwd.dentry == old_root->dentry
2148 && fs->pwd.mnt == old_root->mnt)
2149 set_fs_pwd(fs, new_root);
2153 } while_each_thread(g, p);
2154 read_unlock(&tasklist_lock);
2158 * pivot_root Semantics:
2159 * Moves the root file system of the current process to the directory put_old,
2160 * makes new_root as the new root file system of the current process, and sets
2161 * root/cwd of all processes which had them on the current root to new_root.
2164 * The new_root and put_old must be directories, and must not be on the
2165 * same file system as the current process root. The put_old must be
2166 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2167 * pointed to by put_old must yield the same directory as new_root. No other
2168 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2170 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2171 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2172 * in this situation.
2175 * - we don't move root/cwd if they are not at the root (reason: if something
2176 * cared enough to change them, it's probably wrong to force them elsewhere)
2177 * - it's okay to pick a root that isn't the root of a file system, e.g.
2178 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2179 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2182 asmlinkage long sys_pivot_root(const char __user * new_root,
2183 const char __user * put_old)
2185 struct vfsmount *tmp;
2186 struct nameidata new_nd, old_nd;
2187 struct path parent_path, root_parent, root;
2190 if (!capable(CAP_SYS_ADMIN))
2193 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
2198 if (!check_mnt(new_nd.path.mnt))
2201 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
2205 error = security_sb_pivotroot(&old_nd.path, &new_nd.path);
2207 path_put(&old_nd.path);
2211 read_lock(¤t->fs->lock);
2212 root = current->fs->root;
2213 path_get(¤t->fs->root);
2214 read_unlock(¤t->fs->lock);
2215 down_write(&namespace_sem);
2216 mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
2218 if (IS_MNT_SHARED(old_nd.path.mnt) ||
2219 IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
2220 IS_MNT_SHARED(root.mnt->mnt_parent))
2222 if (!check_mnt(root.mnt))
2225 if (IS_DEADDIR(new_nd.path.dentry->d_inode))
2227 if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
2229 if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
2232 if (new_nd.path.mnt == root.mnt ||
2233 old_nd.path.mnt == root.mnt)
2234 goto out2; /* loop, on the same file system */
2236 if (root.mnt->mnt_root != root.dentry)
2237 goto out2; /* not a mountpoint */
2238 if (root.mnt->mnt_parent == root.mnt)
2239 goto out2; /* not attached */
2240 if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
2241 goto out2; /* not a mountpoint */
2242 if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
2243 goto out2; /* not attached */
2244 /* make sure we can reach put_old from new_root */
2245 tmp = old_nd.path.mnt;
2246 spin_lock(&vfsmount_lock);
2247 if (tmp != new_nd.path.mnt) {
2249 if (tmp->mnt_parent == tmp)
2250 goto out3; /* already mounted on put_old */
2251 if (tmp->mnt_parent == new_nd.path.mnt)
2253 tmp = tmp->mnt_parent;
2255 if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
2257 } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
2259 detach_mnt(new_nd.path.mnt, &parent_path);
2260 detach_mnt(root.mnt, &root_parent);
2261 /* mount old root on put_old */
2262 attach_mnt(root.mnt, &old_nd.path);
2263 /* mount new_root on / */
2264 attach_mnt(new_nd.path.mnt, &root_parent);
2265 touch_mnt_namespace(current->nsproxy->mnt_ns);
2266 spin_unlock(&vfsmount_lock);
2267 chroot_fs_refs(&root, &new_nd.path);
2268 security_sb_post_pivotroot(&root, &new_nd.path);
2270 path_put(&root_parent);
2271 path_put(&parent_path);
2273 mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
2274 up_write(&namespace_sem);
2276 path_put(&old_nd.path);
2278 path_put(&new_nd.path);
2282 spin_unlock(&vfsmount_lock);
2286 static void __init init_mount_tree(void)
2288 struct vfsmount *mnt;
2289 struct mnt_namespace *ns;
2292 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2294 panic("Can't create rootfs");
2295 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2297 panic("Can't allocate initial namespace");
2298 atomic_set(&ns->count, 1);
2299 INIT_LIST_HEAD(&ns->list);
2300 init_waitqueue_head(&ns->poll);
2302 list_add(&mnt->mnt_list, &ns->list);
2306 init_task.nsproxy->mnt_ns = ns;
2309 root.mnt = ns->root;
2310 root.dentry = ns->root->mnt_root;
2312 set_fs_pwd(current->fs, &root);
2313 set_fs_root(current->fs, &root);
2316 void __init mnt_init(void)
2321 init_rwsem(&namespace_sem);
2323 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2324 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2326 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2328 if (!mount_hashtable)
2329 panic("Failed to allocate mount hash table\n");
2331 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2333 for (u = 0; u < HASH_SIZE; u++)
2334 INIT_LIST_HEAD(&mount_hashtable[u]);
2338 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2340 fs_kobj = kobject_create_and_add("fs", NULL);
2342 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2347 void __put_mnt_ns(struct mnt_namespace *ns)
2349 struct vfsmount *root = ns->root;
2350 LIST_HEAD(umount_list);
2352 spin_unlock(&vfsmount_lock);
2353 down_write(&namespace_sem);
2354 spin_lock(&vfsmount_lock);
2355 umount_tree(root, 0, &umount_list);
2356 spin_unlock(&vfsmount_lock);
2357 up_write(&namespace_sem);
2358 release_mounts(&umount_list);