2 * IA-32 Huge TLB Page Support for Kernel.
4 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
7 #include <linux/init.h>
10 #include <linux/hugetlb.h>
11 #include <linux/pagemap.h>
12 #include <linux/smp_lock.h>
13 #include <linux/slab.h>
14 #include <linux/err.h>
15 #include <linux/sysctl.h>
18 #include <asm/tlbflush.h>
20 static unsigned long page_table_shareable(struct vm_area_struct *svma,
21 struct vm_area_struct *vma,
22 unsigned long addr, pgoff_t idx)
24 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
26 unsigned long sbase = saddr & PUD_MASK;
27 unsigned long s_end = sbase + PUD_SIZE;
30 * match the virtual addresses, permission and the alignment of the
33 if (pmd_index(addr) != pmd_index(saddr) ||
34 vma->vm_flags != svma->vm_flags ||
35 sbase < svma->vm_start || svma->vm_end < s_end)
41 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
43 unsigned long base = addr & PUD_MASK;
44 unsigned long end = base + PUD_SIZE;
47 * check on proper vm_flags and page table alignment
49 if (vma->vm_flags & VM_MAYSHARE &&
50 vma->vm_start <= base && end <= vma->vm_end)
56 * search for a shareable pmd page for hugetlb.
58 static void huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
60 struct vm_area_struct *vma = find_vma(mm, addr);
61 struct address_space *mapping = vma->vm_file->f_mapping;
62 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
64 struct prio_tree_iter iter;
65 struct vm_area_struct *svma;
69 if (!vma_shareable(vma, addr))
72 spin_lock(&mapping->i_mmap_lock);
73 vma_prio_tree_foreach(svma, &iter, &mapping->i_mmap, idx, idx) {
77 saddr = page_table_shareable(svma, vma, addr, idx);
79 spte = huge_pte_offset(svma->vm_mm, saddr);
81 get_page(virt_to_page(spte));
90 spin_lock(&mm->page_table_lock);
92 pud_populate(mm, pud, (unsigned long) spte & PAGE_MASK);
94 put_page(virt_to_page(spte));
95 spin_unlock(&mm->page_table_lock);
97 spin_unlock(&mapping->i_mmap_lock);
101 * unmap huge page backed by shared pte.
103 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
104 * indicated by page_count > 1, unmap is achieved by clearing pud and
105 * decrementing the ref count. If count == 1, the pte page is not shared.
107 * called with vma->vm_mm->page_table_lock held.
109 * returns: 1 successfully unmapped a shared pte page
110 * 0 the underlying pte page is not shared, or it is the last user
112 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
114 pgd_t *pgd = pgd_offset(mm, *addr);
115 pud_t *pud = pud_offset(pgd, *addr);
117 BUG_ON(page_count(virt_to_page(ptep)) == 0);
118 if (page_count(virt_to_page(ptep)) == 1)
122 put_page(virt_to_page(ptep));
123 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
127 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
133 pgd = pgd_offset(mm, addr);
134 pud = pud_alloc(mm, pgd, addr);
137 huge_pmd_share(mm, addr, pud);
138 pte = (pte_t *) pmd_alloc(mm, pud, addr);
140 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
145 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
151 pgd = pgd_offset(mm, addr);
152 if (pgd_present(*pgd)) {
153 pud = pud_offset(pgd, addr);
154 if (pud_present(*pud))
155 pmd = pmd_offset(pud, addr);
157 return (pte_t *) pmd;
160 #if 0 /* This is just for testing */
162 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
164 unsigned long start = address;
168 struct vm_area_struct *vma;
170 vma = find_vma(mm, addr);
171 if (!vma || !is_vm_hugetlb_page(vma))
172 return ERR_PTR(-EINVAL);
174 pte = huge_pte_offset(mm, address);
176 /* hugetlb should be locked, and hence, prefaulted */
177 WARN_ON(!pte || pte_none(*pte));
179 page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
181 WARN_ON(!PageCompound(page));
186 int pmd_huge(pmd_t pmd)
192 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
193 pmd_t *pmd, int write)
201 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
203 return ERR_PTR(-EINVAL);
206 int pmd_huge(pmd_t pmd)
208 return !!(pmd_val(pmd) & _PAGE_PSE);
212 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
213 pmd_t *pmd, int write)
217 page = pte_page(*(pte_t *)pmd);
219 page += ((address & ~HPAGE_MASK) >> PAGE_SHIFT);
224 /* x86_64 also uses this file */
226 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
227 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
228 unsigned long addr, unsigned long len,
229 unsigned long pgoff, unsigned long flags)
231 struct mm_struct *mm = current->mm;
232 struct vm_area_struct *vma;
233 unsigned long start_addr;
235 if (len > mm->cached_hole_size) {
236 start_addr = mm->free_area_cache;
238 start_addr = TASK_UNMAPPED_BASE;
239 mm->cached_hole_size = 0;
243 addr = ALIGN(start_addr, HPAGE_SIZE);
245 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
246 /* At this point: (!vma || addr < vma->vm_end). */
247 if (TASK_SIZE - len < addr) {
249 * Start a new search - just in case we missed
252 if (start_addr != TASK_UNMAPPED_BASE) {
253 start_addr = TASK_UNMAPPED_BASE;
254 mm->cached_hole_size = 0;
259 if (!vma || addr + len <= vma->vm_start) {
260 mm->free_area_cache = addr + len;
263 if (addr + mm->cached_hole_size < vma->vm_start)
264 mm->cached_hole_size = vma->vm_start - addr;
265 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
269 static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
270 unsigned long addr0, unsigned long len,
271 unsigned long pgoff, unsigned long flags)
273 struct mm_struct *mm = current->mm;
274 struct vm_area_struct *vma, *prev_vma;
275 unsigned long base = mm->mmap_base, addr = addr0;
276 unsigned long largest_hole = mm->cached_hole_size;
279 /* don't allow allocations above current base */
280 if (mm->free_area_cache > base)
281 mm->free_area_cache = base;
283 if (len <= largest_hole) {
285 mm->free_area_cache = base;
288 /* make sure it can fit in the remaining address space */
289 if (mm->free_area_cache < len)
292 /* either no address requested or cant fit in requested address hole */
293 addr = (mm->free_area_cache - len) & HPAGE_MASK;
296 * Lookup failure means no vma is above this address,
297 * i.e. return with success:
299 if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
303 * new region fits between prev_vma->vm_end and
304 * vma->vm_start, use it:
306 if (addr + len <= vma->vm_start &&
307 (!prev_vma || (addr >= prev_vma->vm_end))) {
308 /* remember the address as a hint for next time */
309 mm->cached_hole_size = largest_hole;
310 return (mm->free_area_cache = addr);
312 /* pull free_area_cache down to the first hole */
313 if (mm->free_area_cache == vma->vm_end) {
314 mm->free_area_cache = vma->vm_start;
315 mm->cached_hole_size = largest_hole;
319 /* remember the largest hole we saw so far */
320 if (addr + largest_hole < vma->vm_start)
321 largest_hole = vma->vm_start - addr;
323 /* try just below the current vma->vm_start */
324 addr = (vma->vm_start - len) & HPAGE_MASK;
325 } while (len <= vma->vm_start);
329 * if hint left us with no space for the requested
330 * mapping then try again:
333 mm->free_area_cache = base;
339 * A failed mmap() very likely causes application failure,
340 * so fall back to the bottom-up function here. This scenario
341 * can happen with large stack limits and large mmap()
344 mm->free_area_cache = TASK_UNMAPPED_BASE;
345 mm->cached_hole_size = ~0UL;
346 addr = hugetlb_get_unmapped_area_bottomup(file, addr0,
350 * Restore the topdown base:
352 mm->free_area_cache = base;
353 mm->cached_hole_size = ~0UL;
359 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
360 unsigned long len, unsigned long pgoff, unsigned long flags)
362 struct mm_struct *mm = current->mm;
363 struct vm_area_struct *vma;
365 if (len & ~HPAGE_MASK)
371 addr = ALIGN(addr, HPAGE_SIZE);
372 vma = find_vma(mm, addr);
373 if (TASK_SIZE - len >= addr &&
374 (!vma || addr + len <= vma->vm_start))
377 if (mm->get_unmapped_area == arch_get_unmapped_area)
378 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
381 return hugetlb_get_unmapped_area_topdown(file, addr, len,
385 #endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/