Merge master.kernel.org:/pub/scm/linux/kernel/git/steve/gfs2-2.6-nmw
[linux-2.6] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14  *                          <dgoeddel@trustedcs.com>
15  *  Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16  *                     Paul Moore, <paul.moore@hp.com>
17  *
18  *      This program is free software; you can redistribute it and/or modify
19  *      it under the terms of the GNU General Public License version 2,
20  *      as published by the Free Software Foundation.
21  */
22
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/errno.h>
28 #include <linux/sched.h>
29 #include <linux/security.h>
30 #include <linux/xattr.h>
31 #include <linux/capability.h>
32 #include <linux/unistd.h>
33 #include <linux/mm.h>
34 #include <linux/mman.h>
35 #include <linux/slab.h>
36 #include <linux/pagemap.h>
37 #include <linux/swap.h>
38 #include <linux/smp_lock.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
46 #include <linux/kd.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for sysctl_local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <asm/uaccess.h>
54 #include <asm/ioctls.h>
55 #include <linux/bitops.h>
56 #include <linux/interrupt.h>
57 #include <linux/netdevice.h>    /* for network interface checks */
58 #include <linux/netlink.h>
59 #include <linux/tcp.h>
60 #include <linux/udp.h>
61 #include <linux/dccp.h>
62 #include <linux/quota.h>
63 #include <linux/un.h>           /* for Unix socket types */
64 #include <net/af_unix.h>        /* for Unix socket types */
65 #include <linux/parser.h>
66 #include <linux/nfs_mount.h>
67 #include <net/ipv6.h>
68 #include <linux/hugetlb.h>
69 #include <linux/personality.h>
70 #include <linux/sysctl.h>
71 #include <linux/audit.h>
72 #include <linux/string.h>
73 #include <linux/selinux.h>
74 #include <linux/mutex.h>
75
76 #include "avc.h"
77 #include "objsec.h"
78 #include "netif.h"
79 #include "xfrm.h"
80 #include "selinux_netlabel.h"
81
82 #define XATTR_SELINUX_SUFFIX "selinux"
83 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
84
85 extern unsigned int policydb_loaded_version;
86 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
87 extern int selinux_compat_net;
88
89 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
90 int selinux_enforcing = 0;
91
92 static int __init enforcing_setup(char *str)
93 {
94         selinux_enforcing = simple_strtol(str,NULL,0);
95         return 1;
96 }
97 __setup("enforcing=", enforcing_setup);
98 #endif
99
100 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
101 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
102
103 static int __init selinux_enabled_setup(char *str)
104 {
105         selinux_enabled = simple_strtol(str, NULL, 0);
106         return 1;
107 }
108 __setup("selinux=", selinux_enabled_setup);
109 #else
110 int selinux_enabled = 1;
111 #endif
112
113 /* Original (dummy) security module. */
114 static struct security_operations *original_ops = NULL;
115
116 /* Minimal support for a secondary security module,
117    just to allow the use of the dummy or capability modules.
118    The owlsm module can alternatively be used as a secondary
119    module as long as CONFIG_OWLSM_FD is not enabled. */
120 static struct security_operations *secondary_ops = NULL;
121
122 /* Lists of inode and superblock security structures initialized
123    before the policy was loaded. */
124 static LIST_HEAD(superblock_security_head);
125 static DEFINE_SPINLOCK(sb_security_lock);
126
127 static struct kmem_cache *sel_inode_cache;
128
129 /* Return security context for a given sid or just the context 
130    length if the buffer is null or length is 0 */
131 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
132 {
133         char *context;
134         unsigned len;
135         int rc;
136
137         rc = security_sid_to_context(sid, &context, &len);
138         if (rc)
139                 return rc;
140
141         if (!buffer || !size)
142                 goto getsecurity_exit;
143
144         if (size < len) {
145                 len = -ERANGE;
146                 goto getsecurity_exit;
147         }
148         memcpy(buffer, context, len);
149
150 getsecurity_exit:
151         kfree(context);
152         return len;
153 }
154
155 /* Allocate and free functions for each kind of security blob. */
156
157 static int task_alloc_security(struct task_struct *task)
158 {
159         struct task_security_struct *tsec;
160
161         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
162         if (!tsec)
163                 return -ENOMEM;
164
165         tsec->task = task;
166         tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
167         task->security = tsec;
168
169         return 0;
170 }
171
172 static void task_free_security(struct task_struct *task)
173 {
174         struct task_security_struct *tsec = task->security;
175         task->security = NULL;
176         kfree(tsec);
177 }
178
179 static int inode_alloc_security(struct inode *inode)
180 {
181         struct task_security_struct *tsec = current->security;
182         struct inode_security_struct *isec;
183
184         isec = kmem_cache_alloc(sel_inode_cache, GFP_KERNEL);
185         if (!isec)
186                 return -ENOMEM;
187
188         memset(isec, 0, sizeof(*isec));
189         mutex_init(&isec->lock);
190         INIT_LIST_HEAD(&isec->list);
191         isec->inode = inode;
192         isec->sid = SECINITSID_UNLABELED;
193         isec->sclass = SECCLASS_FILE;
194         isec->task_sid = tsec->sid;
195         inode->i_security = isec;
196
197         return 0;
198 }
199
200 static void inode_free_security(struct inode *inode)
201 {
202         struct inode_security_struct *isec = inode->i_security;
203         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
204
205         spin_lock(&sbsec->isec_lock);
206         if (!list_empty(&isec->list))
207                 list_del_init(&isec->list);
208         spin_unlock(&sbsec->isec_lock);
209
210         inode->i_security = NULL;
211         kmem_cache_free(sel_inode_cache, isec);
212 }
213
214 static int file_alloc_security(struct file *file)
215 {
216         struct task_security_struct *tsec = current->security;
217         struct file_security_struct *fsec;
218
219         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
220         if (!fsec)
221                 return -ENOMEM;
222
223         fsec->file = file;
224         fsec->sid = tsec->sid;
225         fsec->fown_sid = tsec->sid;
226         file->f_security = fsec;
227
228         return 0;
229 }
230
231 static void file_free_security(struct file *file)
232 {
233         struct file_security_struct *fsec = file->f_security;
234         file->f_security = NULL;
235         kfree(fsec);
236 }
237
238 static int superblock_alloc_security(struct super_block *sb)
239 {
240         struct superblock_security_struct *sbsec;
241
242         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
243         if (!sbsec)
244                 return -ENOMEM;
245
246         mutex_init(&sbsec->lock);
247         INIT_LIST_HEAD(&sbsec->list);
248         INIT_LIST_HEAD(&sbsec->isec_head);
249         spin_lock_init(&sbsec->isec_lock);
250         sbsec->sb = sb;
251         sbsec->sid = SECINITSID_UNLABELED;
252         sbsec->def_sid = SECINITSID_FILE;
253         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
254         sb->s_security = sbsec;
255
256         return 0;
257 }
258
259 static void superblock_free_security(struct super_block *sb)
260 {
261         struct superblock_security_struct *sbsec = sb->s_security;
262
263         spin_lock(&sb_security_lock);
264         if (!list_empty(&sbsec->list))
265                 list_del_init(&sbsec->list);
266         spin_unlock(&sb_security_lock);
267
268         sb->s_security = NULL;
269         kfree(sbsec);
270 }
271
272 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
273 {
274         struct sk_security_struct *ssec;
275
276         ssec = kzalloc(sizeof(*ssec), priority);
277         if (!ssec)
278                 return -ENOMEM;
279
280         ssec->sk = sk;
281         ssec->peer_sid = SECINITSID_UNLABELED;
282         ssec->sid = SECINITSID_UNLABELED;
283         sk->sk_security = ssec;
284
285         selinux_netlbl_sk_security_init(ssec, family);
286
287         return 0;
288 }
289
290 static void sk_free_security(struct sock *sk)
291 {
292         struct sk_security_struct *ssec = sk->sk_security;
293
294         sk->sk_security = NULL;
295         kfree(ssec);
296 }
297
298 /* The security server must be initialized before
299    any labeling or access decisions can be provided. */
300 extern int ss_initialized;
301
302 /* The file system's label must be initialized prior to use. */
303
304 static char *labeling_behaviors[6] = {
305         "uses xattr",
306         "uses transition SIDs",
307         "uses task SIDs",
308         "uses genfs_contexts",
309         "not configured for labeling",
310         "uses mountpoint labeling",
311 };
312
313 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
314
315 static inline int inode_doinit(struct inode *inode)
316 {
317         return inode_doinit_with_dentry(inode, NULL);
318 }
319
320 enum {
321         Opt_context = 1,
322         Opt_fscontext = 2,
323         Opt_defcontext = 4,
324         Opt_rootcontext = 8,
325 };
326
327 static match_table_t tokens = {
328         {Opt_context, "context=%s"},
329         {Opt_fscontext, "fscontext=%s"},
330         {Opt_defcontext, "defcontext=%s"},
331         {Opt_rootcontext, "rootcontext=%s"},
332 };
333
334 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
335
336 static int may_context_mount_sb_relabel(u32 sid,
337                         struct superblock_security_struct *sbsec,
338                         struct task_security_struct *tsec)
339 {
340         int rc;
341
342         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
343                           FILESYSTEM__RELABELFROM, NULL);
344         if (rc)
345                 return rc;
346
347         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
348                           FILESYSTEM__RELABELTO, NULL);
349         return rc;
350 }
351
352 static int may_context_mount_inode_relabel(u32 sid,
353                         struct superblock_security_struct *sbsec,
354                         struct task_security_struct *tsec)
355 {
356         int rc;
357         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
358                           FILESYSTEM__RELABELFROM, NULL);
359         if (rc)
360                 return rc;
361
362         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
363                           FILESYSTEM__ASSOCIATE, NULL);
364         return rc;
365 }
366
367 static int try_context_mount(struct super_block *sb, void *data)
368 {
369         char *context = NULL, *defcontext = NULL;
370         char *fscontext = NULL, *rootcontext = NULL;
371         const char *name;
372         u32 sid;
373         int alloc = 0, rc = 0, seen = 0;
374         struct task_security_struct *tsec = current->security;
375         struct superblock_security_struct *sbsec = sb->s_security;
376
377         if (!data)
378                 goto out;
379
380         name = sb->s_type->name;
381
382         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
383
384                 /* NFS we understand. */
385                 if (!strcmp(name, "nfs")) {
386                         struct nfs_mount_data *d = data;
387
388                         if (d->version <  NFS_MOUNT_VERSION)
389                                 goto out;
390
391                         if (d->context[0]) {
392                                 context = d->context;
393                                 seen |= Opt_context;
394                         }
395                 } else
396                         goto out;
397
398         } else {
399                 /* Standard string-based options. */
400                 char *p, *options = data;
401
402                 while ((p = strsep(&options, "|")) != NULL) {
403                         int token;
404                         substring_t args[MAX_OPT_ARGS];
405
406                         if (!*p)
407                                 continue;
408
409                         token = match_token(p, tokens, args);
410
411                         switch (token) {
412                         case Opt_context:
413                                 if (seen & (Opt_context|Opt_defcontext)) {
414                                         rc = -EINVAL;
415                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
416                                         goto out_free;
417                                 }
418                                 context = match_strdup(&args[0]);
419                                 if (!context) {
420                                         rc = -ENOMEM;
421                                         goto out_free;
422                                 }
423                                 if (!alloc)
424                                         alloc = 1;
425                                 seen |= Opt_context;
426                                 break;
427
428                         case Opt_fscontext:
429                                 if (seen & Opt_fscontext) {
430                                         rc = -EINVAL;
431                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
432                                         goto out_free;
433                                 }
434                                 fscontext = match_strdup(&args[0]);
435                                 if (!fscontext) {
436                                         rc = -ENOMEM;
437                                         goto out_free;
438                                 }
439                                 if (!alloc)
440                                         alloc = 1;
441                                 seen |= Opt_fscontext;
442                                 break;
443
444                         case Opt_rootcontext:
445                                 if (seen & Opt_rootcontext) {
446                                         rc = -EINVAL;
447                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
448                                         goto out_free;
449                                 }
450                                 rootcontext = match_strdup(&args[0]);
451                                 if (!rootcontext) {
452                                         rc = -ENOMEM;
453                                         goto out_free;
454                                 }
455                                 if (!alloc)
456                                         alloc = 1;
457                                 seen |= Opt_rootcontext;
458                                 break;
459
460                         case Opt_defcontext:
461                                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
462                                         rc = -EINVAL;
463                                         printk(KERN_WARNING "SELinux:  "
464                                                "defcontext option is invalid "
465                                                "for this filesystem type\n");
466                                         goto out_free;
467                                 }
468                                 if (seen & (Opt_context|Opt_defcontext)) {
469                                         rc = -EINVAL;
470                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
471                                         goto out_free;
472                                 }
473                                 defcontext = match_strdup(&args[0]);
474                                 if (!defcontext) {
475                                         rc = -ENOMEM;
476                                         goto out_free;
477                                 }
478                                 if (!alloc)
479                                         alloc = 1;
480                                 seen |= Opt_defcontext;
481                                 break;
482
483                         default:
484                                 rc = -EINVAL;
485                                 printk(KERN_WARNING "SELinux:  unknown mount "
486                                        "option\n");
487                                 goto out_free;
488
489                         }
490                 }
491         }
492
493         if (!seen)
494                 goto out;
495
496         /* sets the context of the superblock for the fs being mounted. */
497         if (fscontext) {
498                 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
499                 if (rc) {
500                         printk(KERN_WARNING "SELinux: security_context_to_sid"
501                                "(%s) failed for (dev %s, type %s) errno=%d\n",
502                                fscontext, sb->s_id, name, rc);
503                         goto out_free;
504                 }
505
506                 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
507                 if (rc)
508                         goto out_free;
509
510                 sbsec->sid = sid;
511         }
512
513         /*
514          * Switch to using mount point labeling behavior.
515          * sets the label used on all file below the mountpoint, and will set
516          * the superblock context if not already set.
517          */
518         if (context) {
519                 rc = security_context_to_sid(context, strlen(context), &sid);
520                 if (rc) {
521                         printk(KERN_WARNING "SELinux: security_context_to_sid"
522                                "(%s) failed for (dev %s, type %s) errno=%d\n",
523                                context, sb->s_id, name, rc);
524                         goto out_free;
525                 }
526
527                 if (!fscontext) {
528                         rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
529                         if (rc)
530                                 goto out_free;
531                         sbsec->sid = sid;
532                 } else {
533                         rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
534                         if (rc)
535                                 goto out_free;
536                 }
537                 sbsec->mntpoint_sid = sid;
538
539                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
540         }
541
542         if (rootcontext) {
543                 struct inode *inode = sb->s_root->d_inode;
544                 struct inode_security_struct *isec = inode->i_security;
545                 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
546                 if (rc) {
547                         printk(KERN_WARNING "SELinux: security_context_to_sid"
548                                "(%s) failed for (dev %s, type %s) errno=%d\n",
549                                rootcontext, sb->s_id, name, rc);
550                         goto out_free;
551                 }
552
553                 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
554                 if (rc)
555                         goto out_free;
556
557                 isec->sid = sid;
558                 isec->initialized = 1;
559         }
560
561         if (defcontext) {
562                 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
563                 if (rc) {
564                         printk(KERN_WARNING "SELinux: security_context_to_sid"
565                                "(%s) failed for (dev %s, type %s) errno=%d\n",
566                                defcontext, sb->s_id, name, rc);
567                         goto out_free;
568                 }
569
570                 if (sid == sbsec->def_sid)
571                         goto out_free;
572
573                 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
574                 if (rc)
575                         goto out_free;
576
577                 sbsec->def_sid = sid;
578         }
579
580 out_free:
581         if (alloc) {
582                 kfree(context);
583                 kfree(defcontext);
584                 kfree(fscontext);
585                 kfree(rootcontext);
586         }
587 out:
588         return rc;
589 }
590
591 static int superblock_doinit(struct super_block *sb, void *data)
592 {
593         struct superblock_security_struct *sbsec = sb->s_security;
594         struct dentry *root = sb->s_root;
595         struct inode *inode = root->d_inode;
596         int rc = 0;
597
598         mutex_lock(&sbsec->lock);
599         if (sbsec->initialized)
600                 goto out;
601
602         if (!ss_initialized) {
603                 /* Defer initialization until selinux_complete_init,
604                    after the initial policy is loaded and the security
605                    server is ready to handle calls. */
606                 spin_lock(&sb_security_lock);
607                 if (list_empty(&sbsec->list))
608                         list_add(&sbsec->list, &superblock_security_head);
609                 spin_unlock(&sb_security_lock);
610                 goto out;
611         }
612
613         /* Determine the labeling behavior to use for this filesystem type. */
614         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
615         if (rc) {
616                 printk(KERN_WARNING "%s:  security_fs_use(%s) returned %d\n",
617                        __FUNCTION__, sb->s_type->name, rc);
618                 goto out;
619         }
620
621         rc = try_context_mount(sb, data);
622         if (rc)
623                 goto out;
624
625         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
626                 /* Make sure that the xattr handler exists and that no
627                    error other than -ENODATA is returned by getxattr on
628                    the root directory.  -ENODATA is ok, as this may be
629                    the first boot of the SELinux kernel before we have
630                    assigned xattr values to the filesystem. */
631                 if (!inode->i_op->getxattr) {
632                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
633                                "xattr support\n", sb->s_id, sb->s_type->name);
634                         rc = -EOPNOTSUPP;
635                         goto out;
636                 }
637                 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
638                 if (rc < 0 && rc != -ENODATA) {
639                         if (rc == -EOPNOTSUPP)
640                                 printk(KERN_WARNING "SELinux: (dev %s, type "
641                                        "%s) has no security xattr handler\n",
642                                        sb->s_id, sb->s_type->name);
643                         else
644                                 printk(KERN_WARNING "SELinux: (dev %s, type "
645                                        "%s) getxattr errno %d\n", sb->s_id,
646                                        sb->s_type->name, -rc);
647                         goto out;
648                 }
649         }
650
651         if (strcmp(sb->s_type->name, "proc") == 0)
652                 sbsec->proc = 1;
653
654         sbsec->initialized = 1;
655
656         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
657                 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n",
658                        sb->s_id, sb->s_type->name);
659         }
660         else {
661                 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n",
662                        sb->s_id, sb->s_type->name,
663                        labeling_behaviors[sbsec->behavior-1]);
664         }
665
666         /* Initialize the root inode. */
667         rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
668
669         /* Initialize any other inodes associated with the superblock, e.g.
670            inodes created prior to initial policy load or inodes created
671            during get_sb by a pseudo filesystem that directly
672            populates itself. */
673         spin_lock(&sbsec->isec_lock);
674 next_inode:
675         if (!list_empty(&sbsec->isec_head)) {
676                 struct inode_security_struct *isec =
677                                 list_entry(sbsec->isec_head.next,
678                                            struct inode_security_struct, list);
679                 struct inode *inode = isec->inode;
680                 spin_unlock(&sbsec->isec_lock);
681                 inode = igrab(inode);
682                 if (inode) {
683                         if (!IS_PRIVATE (inode))
684                                 inode_doinit(inode);
685                         iput(inode);
686                 }
687                 spin_lock(&sbsec->isec_lock);
688                 list_del_init(&isec->list);
689                 goto next_inode;
690         }
691         spin_unlock(&sbsec->isec_lock);
692 out:
693         mutex_unlock(&sbsec->lock);
694         return rc;
695 }
696
697 static inline u16 inode_mode_to_security_class(umode_t mode)
698 {
699         switch (mode & S_IFMT) {
700         case S_IFSOCK:
701                 return SECCLASS_SOCK_FILE;
702         case S_IFLNK:
703                 return SECCLASS_LNK_FILE;
704         case S_IFREG:
705                 return SECCLASS_FILE;
706         case S_IFBLK:
707                 return SECCLASS_BLK_FILE;
708         case S_IFDIR:
709                 return SECCLASS_DIR;
710         case S_IFCHR:
711                 return SECCLASS_CHR_FILE;
712         case S_IFIFO:
713                 return SECCLASS_FIFO_FILE;
714
715         }
716
717         return SECCLASS_FILE;
718 }
719
720 static inline int default_protocol_stream(int protocol)
721 {
722         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
723 }
724
725 static inline int default_protocol_dgram(int protocol)
726 {
727         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
728 }
729
730 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
731 {
732         switch (family) {
733         case PF_UNIX:
734                 switch (type) {
735                 case SOCK_STREAM:
736                 case SOCK_SEQPACKET:
737                         return SECCLASS_UNIX_STREAM_SOCKET;
738                 case SOCK_DGRAM:
739                         return SECCLASS_UNIX_DGRAM_SOCKET;
740                 }
741                 break;
742         case PF_INET:
743         case PF_INET6:
744                 switch (type) {
745                 case SOCK_STREAM:
746                         if (default_protocol_stream(protocol))
747                                 return SECCLASS_TCP_SOCKET;
748                         else
749                                 return SECCLASS_RAWIP_SOCKET;
750                 case SOCK_DGRAM:
751                         if (default_protocol_dgram(protocol))
752                                 return SECCLASS_UDP_SOCKET;
753                         else
754                                 return SECCLASS_RAWIP_SOCKET;
755                 case SOCK_DCCP:
756                         return SECCLASS_DCCP_SOCKET;
757                 default:
758                         return SECCLASS_RAWIP_SOCKET;
759                 }
760                 break;
761         case PF_NETLINK:
762                 switch (protocol) {
763                 case NETLINK_ROUTE:
764                         return SECCLASS_NETLINK_ROUTE_SOCKET;
765                 case NETLINK_FIREWALL:
766                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
767                 case NETLINK_INET_DIAG:
768                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
769                 case NETLINK_NFLOG:
770                         return SECCLASS_NETLINK_NFLOG_SOCKET;
771                 case NETLINK_XFRM:
772                         return SECCLASS_NETLINK_XFRM_SOCKET;
773                 case NETLINK_SELINUX:
774                         return SECCLASS_NETLINK_SELINUX_SOCKET;
775                 case NETLINK_AUDIT:
776                         return SECCLASS_NETLINK_AUDIT_SOCKET;
777                 case NETLINK_IP6_FW:
778                         return SECCLASS_NETLINK_IP6FW_SOCKET;
779                 case NETLINK_DNRTMSG:
780                         return SECCLASS_NETLINK_DNRT_SOCKET;
781                 case NETLINK_KOBJECT_UEVENT:
782                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
783                 default:
784                         return SECCLASS_NETLINK_SOCKET;
785                 }
786         case PF_PACKET:
787                 return SECCLASS_PACKET_SOCKET;
788         case PF_KEY:
789                 return SECCLASS_KEY_SOCKET;
790         case PF_APPLETALK:
791                 return SECCLASS_APPLETALK_SOCKET;
792         }
793
794         return SECCLASS_SOCKET;
795 }
796
797 #ifdef CONFIG_PROC_FS
798 static int selinux_proc_get_sid(struct proc_dir_entry *de,
799                                 u16 tclass,
800                                 u32 *sid)
801 {
802         int buflen, rc;
803         char *buffer, *path, *end;
804
805         buffer = (char*)__get_free_page(GFP_KERNEL);
806         if (!buffer)
807                 return -ENOMEM;
808
809         buflen = PAGE_SIZE;
810         end = buffer+buflen;
811         *--end = '\0';
812         buflen--;
813         path = end-1;
814         *path = '/';
815         while (de && de != de->parent) {
816                 buflen -= de->namelen + 1;
817                 if (buflen < 0)
818                         break;
819                 end -= de->namelen;
820                 memcpy(end, de->name, de->namelen);
821                 *--end = '/';
822                 path = end;
823                 de = de->parent;
824         }
825         rc = security_genfs_sid("proc", path, tclass, sid);
826         free_page((unsigned long)buffer);
827         return rc;
828 }
829 #else
830 static int selinux_proc_get_sid(struct proc_dir_entry *de,
831                                 u16 tclass,
832                                 u32 *sid)
833 {
834         return -EINVAL;
835 }
836 #endif
837
838 /* The inode's security attributes must be initialized before first use. */
839 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
840 {
841         struct superblock_security_struct *sbsec = NULL;
842         struct inode_security_struct *isec = inode->i_security;
843         u32 sid;
844         struct dentry *dentry;
845 #define INITCONTEXTLEN 255
846         char *context = NULL;
847         unsigned len = 0;
848         int rc = 0;
849
850         if (isec->initialized)
851                 goto out;
852
853         mutex_lock(&isec->lock);
854         if (isec->initialized)
855                 goto out_unlock;
856
857         sbsec = inode->i_sb->s_security;
858         if (!sbsec->initialized) {
859                 /* Defer initialization until selinux_complete_init,
860                    after the initial policy is loaded and the security
861                    server is ready to handle calls. */
862                 spin_lock(&sbsec->isec_lock);
863                 if (list_empty(&isec->list))
864                         list_add(&isec->list, &sbsec->isec_head);
865                 spin_unlock(&sbsec->isec_lock);
866                 goto out_unlock;
867         }
868
869         switch (sbsec->behavior) {
870         case SECURITY_FS_USE_XATTR:
871                 if (!inode->i_op->getxattr) {
872                         isec->sid = sbsec->def_sid;
873                         break;
874                 }
875
876                 /* Need a dentry, since the xattr API requires one.
877                    Life would be simpler if we could just pass the inode. */
878                 if (opt_dentry) {
879                         /* Called from d_instantiate or d_splice_alias. */
880                         dentry = dget(opt_dentry);
881                 } else {
882                         /* Called from selinux_complete_init, try to find a dentry. */
883                         dentry = d_find_alias(inode);
884                 }
885                 if (!dentry) {
886                         printk(KERN_WARNING "%s:  no dentry for dev=%s "
887                                "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
888                                inode->i_ino);
889                         goto out_unlock;
890                 }
891
892                 len = INITCONTEXTLEN;
893                 context = kmalloc(len, GFP_KERNEL);
894                 if (!context) {
895                         rc = -ENOMEM;
896                         dput(dentry);
897                         goto out_unlock;
898                 }
899                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
900                                            context, len);
901                 if (rc == -ERANGE) {
902                         /* Need a larger buffer.  Query for the right size. */
903                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
904                                                    NULL, 0);
905                         if (rc < 0) {
906                                 dput(dentry);
907                                 goto out_unlock;
908                         }
909                         kfree(context);
910                         len = rc;
911                         context = kmalloc(len, GFP_KERNEL);
912                         if (!context) {
913                                 rc = -ENOMEM;
914                                 dput(dentry);
915                                 goto out_unlock;
916                         }
917                         rc = inode->i_op->getxattr(dentry,
918                                                    XATTR_NAME_SELINUX,
919                                                    context, len);
920                 }
921                 dput(dentry);
922                 if (rc < 0) {
923                         if (rc != -ENODATA) {
924                                 printk(KERN_WARNING "%s:  getxattr returned "
925                                        "%d for dev=%s ino=%ld\n", __FUNCTION__,
926                                        -rc, inode->i_sb->s_id, inode->i_ino);
927                                 kfree(context);
928                                 goto out_unlock;
929                         }
930                         /* Map ENODATA to the default file SID */
931                         sid = sbsec->def_sid;
932                         rc = 0;
933                 } else {
934                         rc = security_context_to_sid_default(context, rc, &sid,
935                                                              sbsec->def_sid);
936                         if (rc) {
937                                 printk(KERN_WARNING "%s:  context_to_sid(%s) "
938                                        "returned %d for dev=%s ino=%ld\n",
939                                        __FUNCTION__, context, -rc,
940                                        inode->i_sb->s_id, inode->i_ino);
941                                 kfree(context);
942                                 /* Leave with the unlabeled SID */
943                                 rc = 0;
944                                 break;
945                         }
946                 }
947                 kfree(context);
948                 isec->sid = sid;
949                 break;
950         case SECURITY_FS_USE_TASK:
951                 isec->sid = isec->task_sid;
952                 break;
953         case SECURITY_FS_USE_TRANS:
954                 /* Default to the fs SID. */
955                 isec->sid = sbsec->sid;
956
957                 /* Try to obtain a transition SID. */
958                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
959                 rc = security_transition_sid(isec->task_sid,
960                                              sbsec->sid,
961                                              isec->sclass,
962                                              &sid);
963                 if (rc)
964                         goto out_unlock;
965                 isec->sid = sid;
966                 break;
967         case SECURITY_FS_USE_MNTPOINT:
968                 isec->sid = sbsec->mntpoint_sid;
969                 break;
970         default:
971                 /* Default to the fs superblock SID. */
972                 isec->sid = sbsec->sid;
973
974                 if (sbsec->proc) {
975                         struct proc_inode *proci = PROC_I(inode);
976                         if (proci->pde) {
977                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
978                                 rc = selinux_proc_get_sid(proci->pde,
979                                                           isec->sclass,
980                                                           &sid);
981                                 if (rc)
982                                         goto out_unlock;
983                                 isec->sid = sid;
984                         }
985                 }
986                 break;
987         }
988
989         isec->initialized = 1;
990
991 out_unlock:
992         mutex_unlock(&isec->lock);
993 out:
994         if (isec->sclass == SECCLASS_FILE)
995                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
996         return rc;
997 }
998
999 /* Convert a Linux signal to an access vector. */
1000 static inline u32 signal_to_av(int sig)
1001 {
1002         u32 perm = 0;
1003
1004         switch (sig) {
1005         case SIGCHLD:
1006                 /* Commonly granted from child to parent. */
1007                 perm = PROCESS__SIGCHLD;
1008                 break;
1009         case SIGKILL:
1010                 /* Cannot be caught or ignored */
1011                 perm = PROCESS__SIGKILL;
1012                 break;
1013         case SIGSTOP:
1014                 /* Cannot be caught or ignored */
1015                 perm = PROCESS__SIGSTOP;
1016                 break;
1017         default:
1018                 /* All other signals. */
1019                 perm = PROCESS__SIGNAL;
1020                 break;
1021         }
1022
1023         return perm;
1024 }
1025
1026 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1027    fork check, ptrace check, etc. */
1028 static int task_has_perm(struct task_struct *tsk1,
1029                          struct task_struct *tsk2,
1030                          u32 perms)
1031 {
1032         struct task_security_struct *tsec1, *tsec2;
1033
1034         tsec1 = tsk1->security;
1035         tsec2 = tsk2->security;
1036         return avc_has_perm(tsec1->sid, tsec2->sid,
1037                             SECCLASS_PROCESS, perms, NULL);
1038 }
1039
1040 /* Check whether a task is allowed to use a capability. */
1041 static int task_has_capability(struct task_struct *tsk,
1042                                int cap)
1043 {
1044         struct task_security_struct *tsec;
1045         struct avc_audit_data ad;
1046
1047         tsec = tsk->security;
1048
1049         AVC_AUDIT_DATA_INIT(&ad,CAP);
1050         ad.tsk = tsk;
1051         ad.u.cap = cap;
1052
1053         return avc_has_perm(tsec->sid, tsec->sid,
1054                             SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1055 }
1056
1057 /* Check whether a task is allowed to use a system operation. */
1058 static int task_has_system(struct task_struct *tsk,
1059                            u32 perms)
1060 {
1061         struct task_security_struct *tsec;
1062
1063         tsec = tsk->security;
1064
1065         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1066                             SECCLASS_SYSTEM, perms, NULL);
1067 }
1068
1069 /* Check whether a task has a particular permission to an inode.
1070    The 'adp' parameter is optional and allows other audit
1071    data to be passed (e.g. the dentry). */
1072 static int inode_has_perm(struct task_struct *tsk,
1073                           struct inode *inode,
1074                           u32 perms,
1075                           struct avc_audit_data *adp)
1076 {
1077         struct task_security_struct *tsec;
1078         struct inode_security_struct *isec;
1079         struct avc_audit_data ad;
1080
1081         tsec = tsk->security;
1082         isec = inode->i_security;
1083
1084         if (!adp) {
1085                 adp = &ad;
1086                 AVC_AUDIT_DATA_INIT(&ad, FS);
1087                 ad.u.fs.inode = inode;
1088         }
1089
1090         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1091 }
1092
1093 /* Same as inode_has_perm, but pass explicit audit data containing
1094    the dentry to help the auditing code to more easily generate the
1095    pathname if needed. */
1096 static inline int dentry_has_perm(struct task_struct *tsk,
1097                                   struct vfsmount *mnt,
1098                                   struct dentry *dentry,
1099                                   u32 av)
1100 {
1101         struct inode *inode = dentry->d_inode;
1102         struct avc_audit_data ad;
1103         AVC_AUDIT_DATA_INIT(&ad,FS);
1104         ad.u.fs.mnt = mnt;
1105         ad.u.fs.dentry = dentry;
1106         return inode_has_perm(tsk, inode, av, &ad);
1107 }
1108
1109 /* Check whether a task can use an open file descriptor to
1110    access an inode in a given way.  Check access to the
1111    descriptor itself, and then use dentry_has_perm to
1112    check a particular permission to the file.
1113    Access to the descriptor is implicitly granted if it
1114    has the same SID as the process.  If av is zero, then
1115    access to the file is not checked, e.g. for cases
1116    where only the descriptor is affected like seek. */
1117 static int file_has_perm(struct task_struct *tsk,
1118                                 struct file *file,
1119                                 u32 av)
1120 {
1121         struct task_security_struct *tsec = tsk->security;
1122         struct file_security_struct *fsec = file->f_security;
1123         struct vfsmount *mnt = file->f_vfsmnt;
1124         struct dentry *dentry = file->f_dentry;
1125         struct inode *inode = dentry->d_inode;
1126         struct avc_audit_data ad;
1127         int rc;
1128
1129         AVC_AUDIT_DATA_INIT(&ad, FS);
1130         ad.u.fs.mnt = mnt;
1131         ad.u.fs.dentry = dentry;
1132
1133         if (tsec->sid != fsec->sid) {
1134                 rc = avc_has_perm(tsec->sid, fsec->sid,
1135                                   SECCLASS_FD,
1136                                   FD__USE,
1137                                   &ad);
1138                 if (rc)
1139                         return rc;
1140         }
1141
1142         /* av is zero if only checking access to the descriptor. */
1143         if (av)
1144                 return inode_has_perm(tsk, inode, av, &ad);
1145
1146         return 0;
1147 }
1148
1149 /* Check whether a task can create a file. */
1150 static int may_create(struct inode *dir,
1151                       struct dentry *dentry,
1152                       u16 tclass)
1153 {
1154         struct task_security_struct *tsec;
1155         struct inode_security_struct *dsec;
1156         struct superblock_security_struct *sbsec;
1157         u32 newsid;
1158         struct avc_audit_data ad;
1159         int rc;
1160
1161         tsec = current->security;
1162         dsec = dir->i_security;
1163         sbsec = dir->i_sb->s_security;
1164
1165         AVC_AUDIT_DATA_INIT(&ad, FS);
1166         ad.u.fs.dentry = dentry;
1167
1168         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1169                           DIR__ADD_NAME | DIR__SEARCH,
1170                           &ad);
1171         if (rc)
1172                 return rc;
1173
1174         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1175                 newsid = tsec->create_sid;
1176         } else {
1177                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1178                                              &newsid);
1179                 if (rc)
1180                         return rc;
1181         }
1182
1183         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1184         if (rc)
1185                 return rc;
1186
1187         return avc_has_perm(newsid, sbsec->sid,
1188                             SECCLASS_FILESYSTEM,
1189                             FILESYSTEM__ASSOCIATE, &ad);
1190 }
1191
1192 /* Check whether a task can create a key. */
1193 static int may_create_key(u32 ksid,
1194                           struct task_struct *ctx)
1195 {
1196         struct task_security_struct *tsec;
1197
1198         tsec = ctx->security;
1199
1200         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1201 }
1202
1203 #define MAY_LINK   0
1204 #define MAY_UNLINK 1
1205 #define MAY_RMDIR  2
1206
1207 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1208 static int may_link(struct inode *dir,
1209                     struct dentry *dentry,
1210                     int kind)
1211
1212 {
1213         struct task_security_struct *tsec;
1214         struct inode_security_struct *dsec, *isec;
1215         struct avc_audit_data ad;
1216         u32 av;
1217         int rc;
1218
1219         tsec = current->security;
1220         dsec = dir->i_security;
1221         isec = dentry->d_inode->i_security;
1222
1223         AVC_AUDIT_DATA_INIT(&ad, FS);
1224         ad.u.fs.dentry = dentry;
1225
1226         av = DIR__SEARCH;
1227         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1228         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1229         if (rc)
1230                 return rc;
1231
1232         switch (kind) {
1233         case MAY_LINK:
1234                 av = FILE__LINK;
1235                 break;
1236         case MAY_UNLINK:
1237                 av = FILE__UNLINK;
1238                 break;
1239         case MAY_RMDIR:
1240                 av = DIR__RMDIR;
1241                 break;
1242         default:
1243                 printk(KERN_WARNING "may_link:  unrecognized kind %d\n", kind);
1244                 return 0;
1245         }
1246
1247         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1248         return rc;
1249 }
1250
1251 static inline int may_rename(struct inode *old_dir,
1252                              struct dentry *old_dentry,
1253                              struct inode *new_dir,
1254                              struct dentry *new_dentry)
1255 {
1256         struct task_security_struct *tsec;
1257         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1258         struct avc_audit_data ad;
1259         u32 av;
1260         int old_is_dir, new_is_dir;
1261         int rc;
1262
1263         tsec = current->security;
1264         old_dsec = old_dir->i_security;
1265         old_isec = old_dentry->d_inode->i_security;
1266         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1267         new_dsec = new_dir->i_security;
1268
1269         AVC_AUDIT_DATA_INIT(&ad, FS);
1270
1271         ad.u.fs.dentry = old_dentry;
1272         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1273                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1274         if (rc)
1275                 return rc;
1276         rc = avc_has_perm(tsec->sid, old_isec->sid,
1277                           old_isec->sclass, FILE__RENAME, &ad);
1278         if (rc)
1279                 return rc;
1280         if (old_is_dir && new_dir != old_dir) {
1281                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1282                                   old_isec->sclass, DIR__REPARENT, &ad);
1283                 if (rc)
1284                         return rc;
1285         }
1286
1287         ad.u.fs.dentry = new_dentry;
1288         av = DIR__ADD_NAME | DIR__SEARCH;
1289         if (new_dentry->d_inode)
1290                 av |= DIR__REMOVE_NAME;
1291         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1292         if (rc)
1293                 return rc;
1294         if (new_dentry->d_inode) {
1295                 new_isec = new_dentry->d_inode->i_security;
1296                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1297                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1298                                   new_isec->sclass,
1299                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1300                 if (rc)
1301                         return rc;
1302         }
1303
1304         return 0;
1305 }
1306
1307 /* Check whether a task can perform a filesystem operation. */
1308 static int superblock_has_perm(struct task_struct *tsk,
1309                                struct super_block *sb,
1310                                u32 perms,
1311                                struct avc_audit_data *ad)
1312 {
1313         struct task_security_struct *tsec;
1314         struct superblock_security_struct *sbsec;
1315
1316         tsec = tsk->security;
1317         sbsec = sb->s_security;
1318         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1319                             perms, ad);
1320 }
1321
1322 /* Convert a Linux mode and permission mask to an access vector. */
1323 static inline u32 file_mask_to_av(int mode, int mask)
1324 {
1325         u32 av = 0;
1326
1327         if ((mode & S_IFMT) != S_IFDIR) {
1328                 if (mask & MAY_EXEC)
1329                         av |= FILE__EXECUTE;
1330                 if (mask & MAY_READ)
1331                         av |= FILE__READ;
1332
1333                 if (mask & MAY_APPEND)
1334                         av |= FILE__APPEND;
1335                 else if (mask & MAY_WRITE)
1336                         av |= FILE__WRITE;
1337
1338         } else {
1339                 if (mask & MAY_EXEC)
1340                         av |= DIR__SEARCH;
1341                 if (mask & MAY_WRITE)
1342                         av |= DIR__WRITE;
1343                 if (mask & MAY_READ)
1344                         av |= DIR__READ;
1345         }
1346
1347         return av;
1348 }
1349
1350 /* Convert a Linux file to an access vector. */
1351 static inline u32 file_to_av(struct file *file)
1352 {
1353         u32 av = 0;
1354
1355         if (file->f_mode & FMODE_READ)
1356                 av |= FILE__READ;
1357         if (file->f_mode & FMODE_WRITE) {
1358                 if (file->f_flags & O_APPEND)
1359                         av |= FILE__APPEND;
1360                 else
1361                         av |= FILE__WRITE;
1362         }
1363
1364         return av;
1365 }
1366
1367 /* Hook functions begin here. */
1368
1369 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1370 {
1371         struct task_security_struct *psec = parent->security;
1372         struct task_security_struct *csec = child->security;
1373         int rc;
1374
1375         rc = secondary_ops->ptrace(parent,child);
1376         if (rc)
1377                 return rc;
1378
1379         rc = task_has_perm(parent, child, PROCESS__PTRACE);
1380         /* Save the SID of the tracing process for later use in apply_creds. */
1381         if (!(child->ptrace & PT_PTRACED) && !rc)
1382                 csec->ptrace_sid = psec->sid;
1383         return rc;
1384 }
1385
1386 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1387                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1388 {
1389         int error;
1390
1391         error = task_has_perm(current, target, PROCESS__GETCAP);
1392         if (error)
1393                 return error;
1394
1395         return secondary_ops->capget(target, effective, inheritable, permitted);
1396 }
1397
1398 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1399                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1400 {
1401         int error;
1402
1403         error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1404         if (error)
1405                 return error;
1406
1407         return task_has_perm(current, target, PROCESS__SETCAP);
1408 }
1409
1410 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1411                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1412 {
1413         secondary_ops->capset_set(target, effective, inheritable, permitted);
1414 }
1415
1416 static int selinux_capable(struct task_struct *tsk, int cap)
1417 {
1418         int rc;
1419
1420         rc = secondary_ops->capable(tsk, cap);
1421         if (rc)
1422                 return rc;
1423
1424         return task_has_capability(tsk,cap);
1425 }
1426
1427 static int selinux_sysctl(ctl_table *table, int op)
1428 {
1429         int error = 0;
1430         u32 av;
1431         struct task_security_struct *tsec;
1432         u32 tsid;
1433         int rc;
1434
1435         rc = secondary_ops->sysctl(table, op);
1436         if (rc)
1437                 return rc;
1438
1439         tsec = current->security;
1440
1441         rc = selinux_proc_get_sid(table->de, (op == 001) ?
1442                                   SECCLASS_DIR : SECCLASS_FILE, &tsid);
1443         if (rc) {
1444                 /* Default to the well-defined sysctl SID. */
1445                 tsid = SECINITSID_SYSCTL;
1446         }
1447
1448         /* The op values are "defined" in sysctl.c, thereby creating
1449          * a bad coupling between this module and sysctl.c */
1450         if(op == 001) {
1451                 error = avc_has_perm(tsec->sid, tsid,
1452                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1453         } else {
1454                 av = 0;
1455                 if (op & 004)
1456                         av |= FILE__READ;
1457                 if (op & 002)
1458                         av |= FILE__WRITE;
1459                 if (av)
1460                         error = avc_has_perm(tsec->sid, tsid,
1461                                              SECCLASS_FILE, av, NULL);
1462         }
1463
1464         return error;
1465 }
1466
1467 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1468 {
1469         int rc = 0;
1470
1471         if (!sb)
1472                 return 0;
1473
1474         switch (cmds) {
1475                 case Q_SYNC:
1476                 case Q_QUOTAON:
1477                 case Q_QUOTAOFF:
1478                 case Q_SETINFO:
1479                 case Q_SETQUOTA:
1480                         rc = superblock_has_perm(current,
1481                                                  sb,
1482                                                  FILESYSTEM__QUOTAMOD, NULL);
1483                         break;
1484                 case Q_GETFMT:
1485                 case Q_GETINFO:
1486                 case Q_GETQUOTA:
1487                         rc = superblock_has_perm(current,
1488                                                  sb,
1489                                                  FILESYSTEM__QUOTAGET, NULL);
1490                         break;
1491                 default:
1492                         rc = 0;  /* let the kernel handle invalid cmds */
1493                         break;
1494         }
1495         return rc;
1496 }
1497
1498 static int selinux_quota_on(struct dentry *dentry)
1499 {
1500         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1501 }
1502
1503 static int selinux_syslog(int type)
1504 {
1505         int rc;
1506
1507         rc = secondary_ops->syslog(type);
1508         if (rc)
1509                 return rc;
1510
1511         switch (type) {
1512                 case 3:         /* Read last kernel messages */
1513                 case 10:        /* Return size of the log buffer */
1514                         rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1515                         break;
1516                 case 6:         /* Disable logging to console */
1517                 case 7:         /* Enable logging to console */
1518                 case 8:         /* Set level of messages printed to console */
1519                         rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1520                         break;
1521                 case 0:         /* Close log */
1522                 case 1:         /* Open log */
1523                 case 2:         /* Read from log */
1524                 case 4:         /* Read/clear last kernel messages */
1525                 case 5:         /* Clear ring buffer */
1526                 default:
1527                         rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1528                         break;
1529         }
1530         return rc;
1531 }
1532
1533 /*
1534  * Check that a process has enough memory to allocate a new virtual
1535  * mapping. 0 means there is enough memory for the allocation to
1536  * succeed and -ENOMEM implies there is not.
1537  *
1538  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1539  * if the capability is granted, but __vm_enough_memory requires 1 if
1540  * the capability is granted.
1541  *
1542  * Do not audit the selinux permission check, as this is applied to all
1543  * processes that allocate mappings.
1544  */
1545 static int selinux_vm_enough_memory(long pages)
1546 {
1547         int rc, cap_sys_admin = 0;
1548         struct task_security_struct *tsec = current->security;
1549
1550         rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1551         if (rc == 0)
1552                 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1553                                         SECCLASS_CAPABILITY,
1554                                         CAP_TO_MASK(CAP_SYS_ADMIN),
1555                                         NULL);
1556
1557         if (rc == 0)
1558                 cap_sys_admin = 1;
1559
1560         return __vm_enough_memory(pages, cap_sys_admin);
1561 }
1562
1563 /* binprm security operations */
1564
1565 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1566 {
1567         struct bprm_security_struct *bsec;
1568
1569         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1570         if (!bsec)
1571                 return -ENOMEM;
1572
1573         bsec->bprm = bprm;
1574         bsec->sid = SECINITSID_UNLABELED;
1575         bsec->set = 0;
1576
1577         bprm->security = bsec;
1578         return 0;
1579 }
1580
1581 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1582 {
1583         struct task_security_struct *tsec;
1584         struct inode *inode = bprm->file->f_dentry->d_inode;
1585         struct inode_security_struct *isec;
1586         struct bprm_security_struct *bsec;
1587         u32 newsid;
1588         struct avc_audit_data ad;
1589         int rc;
1590
1591         rc = secondary_ops->bprm_set_security(bprm);
1592         if (rc)
1593                 return rc;
1594
1595         bsec = bprm->security;
1596
1597         if (bsec->set)
1598                 return 0;
1599
1600         tsec = current->security;
1601         isec = inode->i_security;
1602
1603         /* Default to the current task SID. */
1604         bsec->sid = tsec->sid;
1605
1606         /* Reset fs, key, and sock SIDs on execve. */
1607         tsec->create_sid = 0;
1608         tsec->keycreate_sid = 0;
1609         tsec->sockcreate_sid = 0;
1610
1611         if (tsec->exec_sid) {
1612                 newsid = tsec->exec_sid;
1613                 /* Reset exec SID on execve. */
1614                 tsec->exec_sid = 0;
1615         } else {
1616                 /* Check for a default transition on this program. */
1617                 rc = security_transition_sid(tsec->sid, isec->sid,
1618                                              SECCLASS_PROCESS, &newsid);
1619                 if (rc)
1620                         return rc;
1621         }
1622
1623         AVC_AUDIT_DATA_INIT(&ad, FS);
1624         ad.u.fs.mnt = bprm->file->f_vfsmnt;
1625         ad.u.fs.dentry = bprm->file->f_dentry;
1626
1627         if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
1628                 newsid = tsec->sid;
1629
1630         if (tsec->sid == newsid) {
1631                 rc = avc_has_perm(tsec->sid, isec->sid,
1632                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1633                 if (rc)
1634                         return rc;
1635         } else {
1636                 /* Check permissions for the transition. */
1637                 rc = avc_has_perm(tsec->sid, newsid,
1638                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1639                 if (rc)
1640                         return rc;
1641
1642                 rc = avc_has_perm(newsid, isec->sid,
1643                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1644                 if (rc)
1645                         return rc;
1646
1647                 /* Clear any possibly unsafe personality bits on exec: */
1648                 current->personality &= ~PER_CLEAR_ON_SETID;
1649
1650                 /* Set the security field to the new SID. */
1651                 bsec->sid = newsid;
1652         }
1653
1654         bsec->set = 1;
1655         return 0;
1656 }
1657
1658 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1659 {
1660         return secondary_ops->bprm_check_security(bprm);
1661 }
1662
1663
1664 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1665 {
1666         struct task_security_struct *tsec = current->security;
1667         int atsecure = 0;
1668
1669         if (tsec->osid != tsec->sid) {
1670                 /* Enable secure mode for SIDs transitions unless
1671                    the noatsecure permission is granted between
1672                    the two SIDs, i.e. ahp returns 0. */
1673                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1674                                          SECCLASS_PROCESS,
1675                                          PROCESS__NOATSECURE, NULL);
1676         }
1677
1678         return (atsecure || secondary_ops->bprm_secureexec(bprm));
1679 }
1680
1681 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1682 {
1683         kfree(bprm->security);
1684         bprm->security = NULL;
1685 }
1686
1687 extern struct vfsmount *selinuxfs_mount;
1688 extern struct dentry *selinux_null;
1689
1690 /* Derived from fs/exec.c:flush_old_files. */
1691 static inline void flush_unauthorized_files(struct files_struct * files)
1692 {
1693         struct avc_audit_data ad;
1694         struct file *file, *devnull = NULL;
1695         struct tty_struct *tty;
1696         struct fdtable *fdt;
1697         long j = -1;
1698
1699         mutex_lock(&tty_mutex);
1700         tty = current->signal->tty;
1701         if (tty) {
1702                 file_list_lock();
1703                 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1704                 if (file) {
1705                         /* Revalidate access to controlling tty.
1706                            Use inode_has_perm on the tty inode directly rather
1707                            than using file_has_perm, as this particular open
1708                            file may belong to another process and we are only
1709                            interested in the inode-based check here. */
1710                         struct inode *inode = file->f_dentry->d_inode;
1711                         if (inode_has_perm(current, inode,
1712                                            FILE__READ | FILE__WRITE, NULL)) {
1713                                 /* Reset controlling tty. */
1714                                 current->signal->tty = NULL;
1715                                 current->signal->tty_old_pgrp = 0;
1716                         }
1717                 }
1718                 file_list_unlock();
1719         }
1720         mutex_unlock(&tty_mutex);
1721
1722         /* Revalidate access to inherited open files. */
1723
1724         AVC_AUDIT_DATA_INIT(&ad,FS);
1725
1726         spin_lock(&files->file_lock);
1727         for (;;) {
1728                 unsigned long set, i;
1729                 int fd;
1730
1731                 j++;
1732                 i = j * __NFDBITS;
1733                 fdt = files_fdtable(files);
1734                 if (i >= fdt->max_fds || i >= fdt->max_fdset)
1735                         break;
1736                 set = fdt->open_fds->fds_bits[j];
1737                 if (!set)
1738                         continue;
1739                 spin_unlock(&files->file_lock);
1740                 for ( ; set ; i++,set >>= 1) {
1741                         if (set & 1) {
1742                                 file = fget(i);
1743                                 if (!file)
1744                                         continue;
1745                                 if (file_has_perm(current,
1746                                                   file,
1747                                                   file_to_av(file))) {
1748                                         sys_close(i);
1749                                         fd = get_unused_fd();
1750                                         if (fd != i) {
1751                                                 if (fd >= 0)
1752                                                         put_unused_fd(fd);
1753                                                 fput(file);
1754                                                 continue;
1755                                         }
1756                                         if (devnull) {
1757                                                 get_file(devnull);
1758                                         } else {
1759                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1760                                                 if (IS_ERR(devnull)) {
1761                                                         devnull = NULL;
1762                                                         put_unused_fd(fd);
1763                                                         fput(file);
1764                                                         continue;
1765                                                 }
1766                                         }
1767                                         fd_install(fd, devnull);
1768                                 }
1769                                 fput(file);
1770                         }
1771                 }
1772                 spin_lock(&files->file_lock);
1773
1774         }
1775         spin_unlock(&files->file_lock);
1776 }
1777
1778 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1779 {
1780         struct task_security_struct *tsec;
1781         struct bprm_security_struct *bsec;
1782         u32 sid;
1783         int rc;
1784
1785         secondary_ops->bprm_apply_creds(bprm, unsafe);
1786
1787         tsec = current->security;
1788
1789         bsec = bprm->security;
1790         sid = bsec->sid;
1791
1792         tsec->osid = tsec->sid;
1793         bsec->unsafe = 0;
1794         if (tsec->sid != sid) {
1795                 /* Check for shared state.  If not ok, leave SID
1796                    unchanged and kill. */
1797                 if (unsafe & LSM_UNSAFE_SHARE) {
1798                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1799                                         PROCESS__SHARE, NULL);
1800                         if (rc) {
1801                                 bsec->unsafe = 1;
1802                                 return;
1803                         }
1804                 }
1805
1806                 /* Check for ptracing, and update the task SID if ok.
1807                    Otherwise, leave SID unchanged and kill. */
1808                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1809                         rc = avc_has_perm(tsec->ptrace_sid, sid,
1810                                           SECCLASS_PROCESS, PROCESS__PTRACE,
1811                                           NULL);
1812                         if (rc) {
1813                                 bsec->unsafe = 1;
1814                                 return;
1815                         }
1816                 }
1817                 tsec->sid = sid;
1818         }
1819 }
1820
1821 /*
1822  * called after apply_creds without the task lock held
1823  */
1824 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1825 {
1826         struct task_security_struct *tsec;
1827         struct rlimit *rlim, *initrlim;
1828         struct itimerval itimer;
1829         struct bprm_security_struct *bsec;
1830         int rc, i;
1831
1832         tsec = current->security;
1833         bsec = bprm->security;
1834
1835         if (bsec->unsafe) {
1836                 force_sig_specific(SIGKILL, current);
1837                 return;
1838         }
1839         if (tsec->osid == tsec->sid)
1840                 return;
1841
1842         /* Close files for which the new task SID is not authorized. */
1843         flush_unauthorized_files(current->files);
1844
1845         /* Check whether the new SID can inherit signal state
1846            from the old SID.  If not, clear itimers to avoid
1847            subsequent signal generation and flush and unblock
1848            signals. This must occur _after_ the task SID has
1849           been updated so that any kill done after the flush
1850           will be checked against the new SID. */
1851         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1852                           PROCESS__SIGINH, NULL);
1853         if (rc) {
1854                 memset(&itimer, 0, sizeof itimer);
1855                 for (i = 0; i < 3; i++)
1856                         do_setitimer(i, &itimer, NULL);
1857                 flush_signals(current);
1858                 spin_lock_irq(&current->sighand->siglock);
1859                 flush_signal_handlers(current, 1);
1860                 sigemptyset(&current->blocked);
1861                 recalc_sigpending();
1862                 spin_unlock_irq(&current->sighand->siglock);
1863         }
1864
1865         /* Check whether the new SID can inherit resource limits
1866            from the old SID.  If not, reset all soft limits to
1867            the lower of the current task's hard limit and the init
1868            task's soft limit.  Note that the setting of hard limits
1869            (even to lower them) can be controlled by the setrlimit
1870            check. The inclusion of the init task's soft limit into
1871            the computation is to avoid resetting soft limits higher
1872            than the default soft limit for cases where the default
1873            is lower than the hard limit, e.g. RLIMIT_CORE or
1874            RLIMIT_STACK.*/
1875         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1876                           PROCESS__RLIMITINH, NULL);
1877         if (rc) {
1878                 for (i = 0; i < RLIM_NLIMITS; i++) {
1879                         rlim = current->signal->rlim + i;
1880                         initrlim = init_task.signal->rlim+i;
1881                         rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1882                 }
1883                 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1884                         /*
1885                          * This will cause RLIMIT_CPU calculations
1886                          * to be refigured.
1887                          */
1888                         current->it_prof_expires = jiffies_to_cputime(1);
1889                 }
1890         }
1891
1892         /* Wake up the parent if it is waiting so that it can
1893            recheck wait permission to the new task SID. */
1894         wake_up_interruptible(&current->parent->signal->wait_chldexit);
1895 }
1896
1897 /* superblock security operations */
1898
1899 static int selinux_sb_alloc_security(struct super_block *sb)
1900 {
1901         return superblock_alloc_security(sb);
1902 }
1903
1904 static void selinux_sb_free_security(struct super_block *sb)
1905 {
1906         superblock_free_security(sb);
1907 }
1908
1909 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1910 {
1911         if (plen > olen)
1912                 return 0;
1913
1914         return !memcmp(prefix, option, plen);
1915 }
1916
1917 static inline int selinux_option(char *option, int len)
1918 {
1919         return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1920                 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1921                 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1922                 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1923 }
1924
1925 static inline void take_option(char **to, char *from, int *first, int len)
1926 {
1927         if (!*first) {
1928                 **to = ',';
1929                 *to += 1;
1930         } else
1931                 *first = 0;
1932         memcpy(*to, from, len);
1933         *to += len;
1934 }
1935
1936 static inline void take_selinux_option(char **to, char *from, int *first, 
1937                                        int len)
1938 {
1939         int current_size = 0;
1940
1941         if (!*first) {
1942                 **to = '|';
1943                 *to += 1;
1944         }
1945         else
1946                 *first = 0;
1947
1948         while (current_size < len) {
1949                 if (*from != '"') {
1950                         **to = *from;
1951                         *to += 1;
1952                 }
1953                 from += 1;
1954                 current_size += 1;
1955         }
1956 }
1957
1958 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
1959 {
1960         int fnosec, fsec, rc = 0;
1961         char *in_save, *in_curr, *in_end;
1962         char *sec_curr, *nosec_save, *nosec;
1963         int open_quote = 0;
1964
1965         in_curr = orig;
1966         sec_curr = copy;
1967
1968         /* Binary mount data: just copy */
1969         if (type->fs_flags & FS_BINARY_MOUNTDATA) {
1970                 copy_page(sec_curr, in_curr);
1971                 goto out;
1972         }
1973
1974         nosec = (char *)get_zeroed_page(GFP_KERNEL);
1975         if (!nosec) {
1976                 rc = -ENOMEM;
1977                 goto out;
1978         }
1979
1980         nosec_save = nosec;
1981         fnosec = fsec = 1;
1982         in_save = in_end = orig;
1983
1984         do {
1985                 if (*in_end == '"')
1986                         open_quote = !open_quote;
1987                 if ((*in_end == ',' && open_quote == 0) ||
1988                                 *in_end == '\0') {
1989                         int len = in_end - in_curr;
1990
1991                         if (selinux_option(in_curr, len))
1992                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
1993                         else
1994                                 take_option(&nosec, in_curr, &fnosec, len);
1995
1996                         in_curr = in_end + 1;
1997                 }
1998         } while (*in_end++);
1999
2000         strcpy(in_save, nosec_save);
2001         free_page((unsigned long)nosec_save);
2002 out:
2003         return rc;
2004 }
2005
2006 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2007 {
2008         struct avc_audit_data ad;
2009         int rc;
2010
2011         rc = superblock_doinit(sb, data);
2012         if (rc)
2013                 return rc;
2014
2015         AVC_AUDIT_DATA_INIT(&ad,FS);
2016         ad.u.fs.dentry = sb->s_root;
2017         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2018 }
2019
2020 static int selinux_sb_statfs(struct dentry *dentry)
2021 {
2022         struct avc_audit_data ad;
2023
2024         AVC_AUDIT_DATA_INIT(&ad,FS);
2025         ad.u.fs.dentry = dentry->d_sb->s_root;
2026         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2027 }
2028
2029 static int selinux_mount(char * dev_name,
2030                          struct nameidata *nd,
2031                          char * type,
2032                          unsigned long flags,
2033                          void * data)
2034 {
2035         int rc;
2036
2037         rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2038         if (rc)
2039                 return rc;
2040
2041         if (flags & MS_REMOUNT)
2042                 return superblock_has_perm(current, nd->mnt->mnt_sb,
2043                                            FILESYSTEM__REMOUNT, NULL);
2044         else
2045                 return dentry_has_perm(current, nd->mnt, nd->dentry,
2046                                        FILE__MOUNTON);
2047 }
2048
2049 static int selinux_umount(struct vfsmount *mnt, int flags)
2050 {
2051         int rc;
2052
2053         rc = secondary_ops->sb_umount(mnt, flags);
2054         if (rc)
2055                 return rc;
2056
2057         return superblock_has_perm(current,mnt->mnt_sb,
2058                                    FILESYSTEM__UNMOUNT,NULL);
2059 }
2060
2061 /* inode security operations */
2062
2063 static int selinux_inode_alloc_security(struct inode *inode)
2064 {
2065         return inode_alloc_security(inode);
2066 }
2067
2068 static void selinux_inode_free_security(struct inode *inode)
2069 {
2070         inode_free_security(inode);
2071 }
2072
2073 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2074                                        char **name, void **value,
2075                                        size_t *len)
2076 {
2077         struct task_security_struct *tsec;
2078         struct inode_security_struct *dsec;
2079         struct superblock_security_struct *sbsec;
2080         u32 newsid, clen;
2081         int rc;
2082         char *namep = NULL, *context;
2083
2084         tsec = current->security;
2085         dsec = dir->i_security;
2086         sbsec = dir->i_sb->s_security;
2087
2088         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2089                 newsid = tsec->create_sid;
2090         } else {
2091                 rc = security_transition_sid(tsec->sid, dsec->sid,
2092                                              inode_mode_to_security_class(inode->i_mode),
2093                                              &newsid);
2094                 if (rc) {
2095                         printk(KERN_WARNING "%s:  "
2096                                "security_transition_sid failed, rc=%d (dev=%s "
2097                                "ino=%ld)\n",
2098                                __FUNCTION__,
2099                                -rc, inode->i_sb->s_id, inode->i_ino);
2100                         return rc;
2101                 }
2102         }
2103
2104         /* Possibly defer initialization to selinux_complete_init. */
2105         if (sbsec->initialized) {
2106                 struct inode_security_struct *isec = inode->i_security;
2107                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2108                 isec->sid = newsid;
2109                 isec->initialized = 1;
2110         }
2111
2112         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2113                 return -EOPNOTSUPP;
2114
2115         if (name) {
2116                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2117                 if (!namep)
2118                         return -ENOMEM;
2119                 *name = namep;
2120         }
2121
2122         if (value && len) {
2123                 rc = security_sid_to_context(newsid, &context, &clen);
2124                 if (rc) {
2125                         kfree(namep);
2126                         return rc;
2127                 }
2128                 *value = context;
2129                 *len = clen;
2130         }
2131
2132         return 0;
2133 }
2134
2135 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2136 {
2137         return may_create(dir, dentry, SECCLASS_FILE);
2138 }
2139
2140 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2141 {
2142         int rc;
2143
2144         rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2145         if (rc)
2146                 return rc;
2147         return may_link(dir, old_dentry, MAY_LINK);
2148 }
2149
2150 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2151 {
2152         int rc;
2153
2154         rc = secondary_ops->inode_unlink(dir, dentry);
2155         if (rc)
2156                 return rc;
2157         return may_link(dir, dentry, MAY_UNLINK);
2158 }
2159
2160 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2161 {
2162         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2163 }
2164
2165 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2166 {
2167         return may_create(dir, dentry, SECCLASS_DIR);
2168 }
2169
2170 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2171 {
2172         return may_link(dir, dentry, MAY_RMDIR);
2173 }
2174
2175 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2176 {
2177         int rc;
2178
2179         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2180         if (rc)
2181                 return rc;
2182
2183         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2184 }
2185
2186 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2187                                 struct inode *new_inode, struct dentry *new_dentry)
2188 {
2189         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2190 }
2191
2192 static int selinux_inode_readlink(struct dentry *dentry)
2193 {
2194         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2195 }
2196
2197 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2198 {
2199         int rc;
2200
2201         rc = secondary_ops->inode_follow_link(dentry,nameidata);
2202         if (rc)
2203                 return rc;
2204         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2205 }
2206
2207 static int selinux_inode_permission(struct inode *inode, int mask,
2208                                     struct nameidata *nd)
2209 {
2210         int rc;
2211
2212         rc = secondary_ops->inode_permission(inode, mask, nd);
2213         if (rc)
2214                 return rc;
2215
2216         if (!mask) {
2217                 /* No permission to check.  Existence test. */
2218                 return 0;
2219         }
2220
2221         return inode_has_perm(current, inode,
2222                                file_mask_to_av(inode->i_mode, mask), NULL);
2223 }
2224
2225 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2226 {
2227         int rc;
2228
2229         rc = secondary_ops->inode_setattr(dentry, iattr);
2230         if (rc)
2231                 return rc;
2232
2233         if (iattr->ia_valid & ATTR_FORCE)
2234                 return 0;
2235
2236         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2237                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2238                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2239
2240         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2241 }
2242
2243 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2244 {
2245         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2246 }
2247
2248 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2249 {
2250         struct task_security_struct *tsec = current->security;
2251         struct inode *inode = dentry->d_inode;
2252         struct inode_security_struct *isec = inode->i_security;
2253         struct superblock_security_struct *sbsec;
2254         struct avc_audit_data ad;
2255         u32 newsid;
2256         int rc = 0;
2257
2258         if (strcmp(name, XATTR_NAME_SELINUX)) {
2259                 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2260                              sizeof XATTR_SECURITY_PREFIX - 1) &&
2261                     !capable(CAP_SYS_ADMIN)) {
2262                         /* A different attribute in the security namespace.
2263                            Restrict to administrator. */
2264                         return -EPERM;
2265                 }
2266
2267                 /* Not an attribute we recognize, so just check the
2268                    ordinary setattr permission. */
2269                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2270         }
2271
2272         sbsec = inode->i_sb->s_security;
2273         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2274                 return -EOPNOTSUPP;
2275
2276         if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2277                 return -EPERM;
2278
2279         AVC_AUDIT_DATA_INIT(&ad,FS);
2280         ad.u.fs.dentry = dentry;
2281
2282         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2283                           FILE__RELABELFROM, &ad);
2284         if (rc)
2285                 return rc;
2286
2287         rc = security_context_to_sid(value, size, &newsid);
2288         if (rc)
2289                 return rc;
2290
2291         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2292                           FILE__RELABELTO, &ad);
2293         if (rc)
2294                 return rc;
2295
2296         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2297                                           isec->sclass);
2298         if (rc)
2299                 return rc;
2300
2301         return avc_has_perm(newsid,
2302                             sbsec->sid,
2303                             SECCLASS_FILESYSTEM,
2304                             FILESYSTEM__ASSOCIATE,
2305                             &ad);
2306 }
2307
2308 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2309                                         void *value, size_t size, int flags)
2310 {
2311         struct inode *inode = dentry->d_inode;
2312         struct inode_security_struct *isec = inode->i_security;
2313         u32 newsid;
2314         int rc;
2315
2316         if (strcmp(name, XATTR_NAME_SELINUX)) {
2317                 /* Not an attribute we recognize, so nothing to do. */
2318                 return;
2319         }
2320
2321         rc = security_context_to_sid(value, size, &newsid);
2322         if (rc) {
2323                 printk(KERN_WARNING "%s:  unable to obtain SID for context "
2324                        "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2325                 return;
2326         }
2327
2328         isec->sid = newsid;
2329         return;
2330 }
2331
2332 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2333 {
2334         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2335 }
2336
2337 static int selinux_inode_listxattr (struct dentry *dentry)
2338 {
2339         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2340 }
2341
2342 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2343 {
2344         if (strcmp(name, XATTR_NAME_SELINUX)) {
2345                 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2346                              sizeof XATTR_SECURITY_PREFIX - 1) &&
2347                     !capable(CAP_SYS_ADMIN)) {
2348                         /* A different attribute in the security namespace.
2349                            Restrict to administrator. */
2350                         return -EPERM;
2351                 }
2352
2353                 /* Not an attribute we recognize, so just check the
2354                    ordinary setattr permission. Might want a separate
2355                    permission for removexattr. */
2356                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2357         }
2358
2359         /* No one is allowed to remove a SELinux security label.
2360            You can change the label, but all data must be labeled. */
2361         return -EACCES;
2362 }
2363
2364 static const char *selinux_inode_xattr_getsuffix(void)
2365 {
2366       return XATTR_SELINUX_SUFFIX;
2367 }
2368
2369 /*
2370  * Copy the in-core inode security context value to the user.  If the
2371  * getxattr() prior to this succeeded, check to see if we need to
2372  * canonicalize the value to be finally returned to the user.
2373  *
2374  * Permission check is handled by selinux_inode_getxattr hook.
2375  */
2376 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2377 {
2378         struct inode_security_struct *isec = inode->i_security;
2379
2380         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2381                 return -EOPNOTSUPP;
2382
2383         return selinux_getsecurity(isec->sid, buffer, size);
2384 }
2385
2386 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2387                                      const void *value, size_t size, int flags)
2388 {
2389         struct inode_security_struct *isec = inode->i_security;
2390         u32 newsid;
2391         int rc;
2392
2393         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2394                 return -EOPNOTSUPP;
2395
2396         if (!value || !size)
2397                 return -EACCES;
2398
2399         rc = security_context_to_sid((void*)value, size, &newsid);
2400         if (rc)
2401                 return rc;
2402
2403         isec->sid = newsid;
2404         return 0;
2405 }
2406
2407 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2408 {
2409         const int len = sizeof(XATTR_NAME_SELINUX);
2410         if (buffer && len <= buffer_size)
2411                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2412         return len;
2413 }
2414
2415 /* file security operations */
2416
2417 static int selinux_file_permission(struct file *file, int mask)
2418 {
2419         int rc;
2420         struct inode *inode = file->f_dentry->d_inode;
2421
2422         if (!mask) {
2423                 /* No permission to check.  Existence test. */
2424                 return 0;
2425         }
2426
2427         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2428         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2429                 mask |= MAY_APPEND;
2430
2431         rc = file_has_perm(current, file,
2432                            file_mask_to_av(inode->i_mode, mask));
2433         if (rc)
2434                 return rc;
2435
2436         return selinux_netlbl_inode_permission(inode, mask);
2437 }
2438
2439 static int selinux_file_alloc_security(struct file *file)
2440 {
2441         return file_alloc_security(file);
2442 }
2443
2444 static void selinux_file_free_security(struct file *file)
2445 {
2446         file_free_security(file);
2447 }
2448
2449 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2450                               unsigned long arg)
2451 {
2452         int error = 0;
2453
2454         switch (cmd) {
2455                 case FIONREAD:
2456                 /* fall through */
2457                 case FIBMAP:
2458                 /* fall through */
2459                 case FIGETBSZ:
2460                 /* fall through */
2461                 case EXT2_IOC_GETFLAGS:
2462                 /* fall through */
2463                 case EXT2_IOC_GETVERSION:
2464                         error = file_has_perm(current, file, FILE__GETATTR);
2465                         break;
2466
2467                 case EXT2_IOC_SETFLAGS:
2468                 /* fall through */
2469                 case EXT2_IOC_SETVERSION:
2470                         error = file_has_perm(current, file, FILE__SETATTR);
2471                         break;
2472
2473                 /* sys_ioctl() checks */
2474                 case FIONBIO:
2475                 /* fall through */
2476                 case FIOASYNC:
2477                         error = file_has_perm(current, file, 0);
2478                         break;
2479
2480                 case KDSKBENT:
2481                 case KDSKBSENT:
2482                         error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2483                         break;
2484
2485                 /* default case assumes that the command will go
2486                  * to the file's ioctl() function.
2487                  */
2488                 default:
2489                         error = file_has_perm(current, file, FILE__IOCTL);
2490
2491         }
2492         return error;
2493 }
2494
2495 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2496 {
2497 #ifndef CONFIG_PPC32
2498         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2499                 /*
2500                  * We are making executable an anonymous mapping or a
2501                  * private file mapping that will also be writable.
2502                  * This has an additional check.
2503                  */
2504                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2505                 if (rc)
2506                         return rc;
2507         }
2508 #endif
2509
2510         if (file) {
2511                 /* read access is always possible with a mapping */
2512                 u32 av = FILE__READ;
2513
2514                 /* write access only matters if the mapping is shared */
2515                 if (shared && (prot & PROT_WRITE))
2516                         av |= FILE__WRITE;
2517
2518                 if (prot & PROT_EXEC)
2519                         av |= FILE__EXECUTE;
2520
2521                 return file_has_perm(current, file, av);
2522         }
2523         return 0;
2524 }
2525
2526 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2527                              unsigned long prot, unsigned long flags)
2528 {
2529         int rc;
2530
2531         rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2532         if (rc)
2533                 return rc;
2534
2535         if (selinux_checkreqprot)
2536                 prot = reqprot;
2537
2538         return file_map_prot_check(file, prot,
2539                                    (flags & MAP_TYPE) == MAP_SHARED);
2540 }
2541
2542 static int selinux_file_mprotect(struct vm_area_struct *vma,
2543                                  unsigned long reqprot,
2544                                  unsigned long prot)
2545 {
2546         int rc;
2547
2548         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2549         if (rc)
2550                 return rc;
2551
2552         if (selinux_checkreqprot)
2553                 prot = reqprot;
2554
2555 #ifndef CONFIG_PPC32
2556         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2557                 rc = 0;
2558                 if (vma->vm_start >= vma->vm_mm->start_brk &&
2559                     vma->vm_end <= vma->vm_mm->brk) {
2560                         rc = task_has_perm(current, current,
2561                                            PROCESS__EXECHEAP);
2562                 } else if (!vma->vm_file &&
2563                            vma->vm_start <= vma->vm_mm->start_stack &&
2564                            vma->vm_end >= vma->vm_mm->start_stack) {
2565                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2566                 } else if (vma->vm_file && vma->anon_vma) {
2567                         /*
2568                          * We are making executable a file mapping that has
2569                          * had some COW done. Since pages might have been
2570                          * written, check ability to execute the possibly
2571                          * modified content.  This typically should only
2572                          * occur for text relocations.
2573                          */
2574                         rc = file_has_perm(current, vma->vm_file,
2575                                            FILE__EXECMOD);
2576                 }
2577                 if (rc)
2578                         return rc;
2579         }
2580 #endif
2581
2582         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2583 }
2584
2585 static int selinux_file_lock(struct file *file, unsigned int cmd)
2586 {
2587         return file_has_perm(current, file, FILE__LOCK);
2588 }
2589
2590 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2591                               unsigned long arg)
2592 {
2593         int err = 0;
2594
2595         switch (cmd) {
2596                 case F_SETFL:
2597                         if (!file->f_dentry || !file->f_dentry->d_inode) {
2598                                 err = -EINVAL;
2599                                 break;
2600                         }
2601
2602                         if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2603                                 err = file_has_perm(current, file,FILE__WRITE);
2604                                 break;
2605                         }
2606                         /* fall through */
2607                 case F_SETOWN:
2608                 case F_SETSIG:
2609                 case F_GETFL:
2610                 case F_GETOWN:
2611                 case F_GETSIG:
2612                         /* Just check FD__USE permission */
2613                         err = file_has_perm(current, file, 0);
2614                         break;
2615                 case F_GETLK:
2616                 case F_SETLK:
2617                 case F_SETLKW:
2618 #if BITS_PER_LONG == 32
2619                 case F_GETLK64:
2620                 case F_SETLK64:
2621                 case F_SETLKW64:
2622 #endif
2623                         if (!file->f_dentry || !file->f_dentry->d_inode) {
2624                                 err = -EINVAL;
2625                                 break;
2626                         }
2627                         err = file_has_perm(current, file, FILE__LOCK);
2628                         break;
2629         }
2630
2631         return err;
2632 }
2633
2634 static int selinux_file_set_fowner(struct file *file)
2635 {
2636         struct task_security_struct *tsec;
2637         struct file_security_struct *fsec;
2638
2639         tsec = current->security;
2640         fsec = file->f_security;
2641         fsec->fown_sid = tsec->sid;
2642
2643         return 0;
2644 }
2645
2646 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2647                                        struct fown_struct *fown, int signum)
2648 {
2649         struct file *file;
2650         u32 perm;
2651         struct task_security_struct *tsec;
2652         struct file_security_struct *fsec;
2653
2654         /* struct fown_struct is never outside the context of a struct file */
2655         file = (struct file *)((long)fown - offsetof(struct file,f_owner));
2656
2657         tsec = tsk->security;
2658         fsec = file->f_security;
2659
2660         if (!signum)
2661                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2662         else
2663                 perm = signal_to_av(signum);
2664
2665         return avc_has_perm(fsec->fown_sid, tsec->sid,
2666                             SECCLASS_PROCESS, perm, NULL);
2667 }
2668
2669 static int selinux_file_receive(struct file *file)
2670 {
2671         return file_has_perm(current, file, file_to_av(file));
2672 }
2673
2674 /* task security operations */
2675
2676 static int selinux_task_create(unsigned long clone_flags)
2677 {
2678         int rc;
2679
2680         rc = secondary_ops->task_create(clone_flags);
2681         if (rc)
2682                 return rc;
2683
2684         return task_has_perm(current, current, PROCESS__FORK);
2685 }
2686
2687 static int selinux_task_alloc_security(struct task_struct *tsk)
2688 {
2689         struct task_security_struct *tsec1, *tsec2;
2690         int rc;
2691
2692         tsec1 = current->security;
2693
2694         rc = task_alloc_security(tsk);
2695         if (rc)
2696                 return rc;
2697         tsec2 = tsk->security;
2698
2699         tsec2->osid = tsec1->osid;
2700         tsec2->sid = tsec1->sid;
2701
2702         /* Retain the exec, fs, key, and sock SIDs across fork */
2703         tsec2->exec_sid = tsec1->exec_sid;
2704         tsec2->create_sid = tsec1->create_sid;
2705         tsec2->keycreate_sid = tsec1->keycreate_sid;
2706         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2707
2708         /* Retain ptracer SID across fork, if any.
2709            This will be reset by the ptrace hook upon any
2710            subsequent ptrace_attach operations. */
2711         tsec2->ptrace_sid = tsec1->ptrace_sid;
2712
2713         return 0;
2714 }
2715
2716 static void selinux_task_free_security(struct task_struct *tsk)
2717 {
2718         task_free_security(tsk);
2719 }
2720
2721 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2722 {
2723         /* Since setuid only affects the current process, and
2724            since the SELinux controls are not based on the Linux
2725            identity attributes, SELinux does not need to control
2726            this operation.  However, SELinux does control the use
2727            of the CAP_SETUID and CAP_SETGID capabilities using the
2728            capable hook. */
2729         return 0;
2730 }
2731
2732 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2733 {
2734         return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2735 }
2736
2737 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2738 {
2739         /* See the comment for setuid above. */
2740         return 0;
2741 }
2742
2743 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2744 {
2745         return task_has_perm(current, p, PROCESS__SETPGID);
2746 }
2747
2748 static int selinux_task_getpgid(struct task_struct *p)
2749 {
2750         return task_has_perm(current, p, PROCESS__GETPGID);
2751 }
2752
2753 static int selinux_task_getsid(struct task_struct *p)
2754 {
2755         return task_has_perm(current, p, PROCESS__GETSESSION);
2756 }
2757
2758 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2759 {
2760         selinux_get_task_sid(p, secid);
2761 }
2762
2763 static int selinux_task_setgroups(struct group_info *group_info)
2764 {
2765         /* See the comment for setuid above. */
2766         return 0;
2767 }
2768
2769 static int selinux_task_setnice(struct task_struct *p, int nice)
2770 {
2771         int rc;
2772
2773         rc = secondary_ops->task_setnice(p, nice);
2774         if (rc)
2775                 return rc;
2776
2777         return task_has_perm(current,p, PROCESS__SETSCHED);
2778 }
2779
2780 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2781 {
2782         return task_has_perm(current, p, PROCESS__SETSCHED);
2783 }
2784
2785 static int selinux_task_getioprio(struct task_struct *p)
2786 {
2787         return task_has_perm(current, p, PROCESS__GETSCHED);
2788 }
2789
2790 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2791 {
2792         struct rlimit *old_rlim = current->signal->rlim + resource;
2793         int rc;
2794
2795         rc = secondary_ops->task_setrlimit(resource, new_rlim);
2796         if (rc)
2797                 return rc;
2798
2799         /* Control the ability to change the hard limit (whether
2800            lowering or raising it), so that the hard limit can
2801            later be used as a safe reset point for the soft limit
2802            upon context transitions. See selinux_bprm_apply_creds. */
2803         if (old_rlim->rlim_max != new_rlim->rlim_max)
2804                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2805
2806         return 0;
2807 }
2808
2809 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2810 {
2811         return task_has_perm(current, p, PROCESS__SETSCHED);
2812 }
2813
2814 static int selinux_task_getscheduler(struct task_struct *p)
2815 {
2816         return task_has_perm(current, p, PROCESS__GETSCHED);
2817 }
2818
2819 static int selinux_task_movememory(struct task_struct *p)
2820 {
2821         return task_has_perm(current, p, PROCESS__SETSCHED);
2822 }
2823
2824 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2825                                 int sig, u32 secid)
2826 {
2827         u32 perm;
2828         int rc;
2829         struct task_security_struct *tsec;
2830
2831         rc = secondary_ops->task_kill(p, info, sig, secid);
2832         if (rc)
2833                 return rc;
2834
2835         if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2836                 return 0;
2837
2838         if (!sig)
2839                 perm = PROCESS__SIGNULL; /* null signal; existence test */
2840         else
2841                 perm = signal_to_av(sig);
2842         tsec = p->security;
2843         if (secid)
2844                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2845         else
2846                 rc = task_has_perm(current, p, perm);
2847         return rc;
2848 }
2849
2850 static int selinux_task_prctl(int option,
2851                               unsigned long arg2,
2852                               unsigned long arg3,
2853                               unsigned long arg4,
2854                               unsigned long arg5)
2855 {
2856         /* The current prctl operations do not appear to require
2857            any SELinux controls since they merely observe or modify
2858            the state of the current process. */
2859         return 0;
2860 }
2861
2862 static int selinux_task_wait(struct task_struct *p)
2863 {
2864         u32 perm;
2865
2866         perm = signal_to_av(p->exit_signal);
2867
2868         return task_has_perm(p, current, perm);
2869 }
2870
2871 static void selinux_task_reparent_to_init(struct task_struct *p)
2872 {
2873         struct task_security_struct *tsec;
2874
2875         secondary_ops->task_reparent_to_init(p);
2876
2877         tsec = p->security;
2878         tsec->osid = tsec->sid;
2879         tsec->sid = SECINITSID_KERNEL;
2880         return;
2881 }
2882
2883 static void selinux_task_to_inode(struct task_struct *p,
2884                                   struct inode *inode)
2885 {
2886         struct task_security_struct *tsec = p->security;
2887         struct inode_security_struct *isec = inode->i_security;
2888
2889         isec->sid = tsec->sid;
2890         isec->initialized = 1;
2891         return;
2892 }
2893
2894 /* Returns error only if unable to parse addresses */
2895 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
2896                         struct avc_audit_data *ad, u8 *proto)
2897 {
2898         int offset, ihlen, ret = -EINVAL;
2899         struct iphdr _iph, *ih;
2900
2901         offset = skb->nh.raw - skb->data;
2902         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2903         if (ih == NULL)
2904                 goto out;
2905
2906         ihlen = ih->ihl * 4;
2907         if (ihlen < sizeof(_iph))
2908                 goto out;
2909
2910         ad->u.net.v4info.saddr = ih->saddr;
2911         ad->u.net.v4info.daddr = ih->daddr;
2912         ret = 0;
2913
2914         if (proto)
2915                 *proto = ih->protocol;
2916
2917         switch (ih->protocol) {
2918         case IPPROTO_TCP: {
2919                 struct tcphdr _tcph, *th;
2920
2921                 if (ntohs(ih->frag_off) & IP_OFFSET)
2922                         break;
2923
2924                 offset += ihlen;
2925                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2926                 if (th == NULL)
2927                         break;
2928
2929                 ad->u.net.sport = th->source;
2930                 ad->u.net.dport = th->dest;
2931                 break;
2932         }
2933         
2934         case IPPROTO_UDP: {
2935                 struct udphdr _udph, *uh;
2936                 
2937                 if (ntohs(ih->frag_off) & IP_OFFSET)
2938                         break;
2939                         
2940                 offset += ihlen;
2941                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2942                 if (uh == NULL)
2943                         break;  
2944
2945                 ad->u.net.sport = uh->source;
2946                 ad->u.net.dport = uh->dest;
2947                 break;
2948         }
2949
2950         case IPPROTO_DCCP: {
2951                 struct dccp_hdr _dccph, *dh;
2952
2953                 if (ntohs(ih->frag_off) & IP_OFFSET)
2954                         break;
2955
2956                 offset += ihlen;
2957                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
2958                 if (dh == NULL)
2959                         break;
2960
2961                 ad->u.net.sport = dh->dccph_sport;
2962                 ad->u.net.dport = dh->dccph_dport;
2963                 break;
2964         }
2965
2966         default:
2967                 break;
2968         }
2969 out:
2970         return ret;
2971 }
2972
2973 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2974
2975 /* Returns error only if unable to parse addresses */
2976 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
2977                         struct avc_audit_data *ad, u8 *proto)
2978 {
2979         u8 nexthdr;
2980         int ret = -EINVAL, offset;
2981         struct ipv6hdr _ipv6h, *ip6;
2982
2983         offset = skb->nh.raw - skb->data;
2984         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
2985         if (ip6 == NULL)
2986                 goto out;
2987
2988         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
2989         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
2990         ret = 0;
2991
2992         nexthdr = ip6->nexthdr;
2993         offset += sizeof(_ipv6h);
2994         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
2995         if (offset < 0)
2996                 goto out;
2997
2998         if (proto)
2999                 *proto = nexthdr;
3000
3001         switch (nexthdr) {
3002         case IPPROTO_TCP: {
3003                 struct tcphdr _tcph, *th;
3004
3005                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3006                 if (th == NULL)
3007                         break;
3008
3009                 ad->u.net.sport = th->source;
3010                 ad->u.net.dport = th->dest;
3011                 break;
3012         }
3013
3014         case IPPROTO_UDP: {
3015                 struct udphdr _udph, *uh;
3016
3017                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3018                 if (uh == NULL)
3019                         break;
3020
3021                 ad->u.net.sport = uh->source;
3022                 ad->u.net.dport = uh->dest;
3023                 break;
3024         }
3025
3026         case IPPROTO_DCCP: {
3027                 struct dccp_hdr _dccph, *dh;
3028
3029                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3030                 if (dh == NULL)
3031                         break;
3032
3033                 ad->u.net.sport = dh->dccph_sport;
3034                 ad->u.net.dport = dh->dccph_dport;
3035                 break;
3036         }
3037
3038         /* includes fragments */
3039         default:
3040                 break;
3041         }
3042 out:
3043         return ret;
3044 }
3045
3046 #endif /* IPV6 */
3047
3048 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3049                              char **addrp, int *len, int src, u8 *proto)
3050 {
3051         int ret = 0;
3052
3053         switch (ad->u.net.family) {
3054         case PF_INET:
3055                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3056                 if (ret || !addrp)
3057                         break;
3058                 *len = 4;
3059                 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3060                                         &ad->u.net.v4info.daddr);
3061                 break;
3062
3063 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3064         case PF_INET6:
3065                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3066                 if (ret || !addrp)
3067                         break;
3068                 *len = 16;
3069                 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3070                                         &ad->u.net.v6info.daddr);
3071                 break;
3072 #endif  /* IPV6 */
3073         default:
3074                 break;
3075         }
3076
3077         return ret;
3078 }
3079
3080 /* socket security operations */
3081 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3082                            u32 perms)
3083 {
3084         struct inode_security_struct *isec;
3085         struct task_security_struct *tsec;
3086         struct avc_audit_data ad;
3087         int err = 0;
3088
3089         tsec = task->security;
3090         isec = SOCK_INODE(sock)->i_security;
3091
3092         if (isec->sid == SECINITSID_KERNEL)
3093                 goto out;
3094
3095         AVC_AUDIT_DATA_INIT(&ad,NET);
3096         ad.u.net.sk = sock->sk;
3097         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3098
3099 out:
3100         return err;
3101 }
3102
3103 static int selinux_socket_create(int family, int type,
3104                                  int protocol, int kern)
3105 {
3106         int err = 0;
3107         struct task_security_struct *tsec;
3108         u32 newsid;
3109
3110         if (kern)
3111                 goto out;
3112
3113         tsec = current->security;
3114         newsid = tsec->sockcreate_sid ? : tsec->sid;
3115         err = avc_has_perm(tsec->sid, newsid,
3116                            socket_type_to_security_class(family, type,
3117                            protocol), SOCKET__CREATE, NULL);
3118
3119 out:
3120         return err;
3121 }
3122
3123 static int selinux_socket_post_create(struct socket *sock, int family,
3124                                       int type, int protocol, int kern)
3125 {
3126         int err = 0;
3127         struct inode_security_struct *isec;
3128         struct task_security_struct *tsec;
3129         struct sk_security_struct *sksec;
3130         u32 newsid;
3131
3132         isec = SOCK_INODE(sock)->i_security;
3133
3134         tsec = current->security;
3135         newsid = tsec->sockcreate_sid ? : tsec->sid;
3136         isec->sclass = socket_type_to_security_class(family, type, protocol);
3137         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3138         isec->initialized = 1;
3139
3140         if (sock->sk) {
3141                 sksec = sock->sk->sk_security;
3142                 sksec->sid = isec->sid;
3143                 err = selinux_netlbl_socket_post_create(sock);
3144         }
3145
3146         return err;
3147 }
3148
3149 /* Range of port numbers used to automatically bind.
3150    Need to determine whether we should perform a name_bind
3151    permission check between the socket and the port number. */
3152 #define ip_local_port_range_0 sysctl_local_port_range[0]
3153 #define ip_local_port_range_1 sysctl_local_port_range[1]
3154
3155 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3156 {
3157         u16 family;
3158         int err;
3159
3160         err = socket_has_perm(current, sock, SOCKET__BIND);
3161         if (err)
3162                 goto out;
3163
3164         /*
3165          * If PF_INET or PF_INET6, check name_bind permission for the port.
3166          * Multiple address binding for SCTP is not supported yet: we just
3167          * check the first address now.
3168          */
3169         family = sock->sk->sk_family;
3170         if (family == PF_INET || family == PF_INET6) {
3171                 char *addrp;
3172                 struct inode_security_struct *isec;
3173                 struct task_security_struct *tsec;
3174                 struct avc_audit_data ad;
3175                 struct sockaddr_in *addr4 = NULL;
3176                 struct sockaddr_in6 *addr6 = NULL;
3177                 unsigned short snum;
3178                 struct sock *sk = sock->sk;
3179                 u32 sid, node_perm, addrlen;
3180
3181                 tsec = current->security;
3182                 isec = SOCK_INODE(sock)->i_security;
3183
3184                 if (family == PF_INET) {
3185                         addr4 = (struct sockaddr_in *)address;
3186                         snum = ntohs(addr4->sin_port);
3187                         addrlen = sizeof(addr4->sin_addr.s_addr);
3188                         addrp = (char *)&addr4->sin_addr.s_addr;
3189                 } else {
3190                         addr6 = (struct sockaddr_in6 *)address;
3191                         snum = ntohs(addr6->sin6_port);
3192                         addrlen = sizeof(addr6->sin6_addr.s6_addr);
3193                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3194                 }
3195
3196                 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3197                            snum > ip_local_port_range_1)) {
3198                         err = security_port_sid(sk->sk_family, sk->sk_type,
3199                                                 sk->sk_protocol, snum, &sid);
3200                         if (err)
3201                                 goto out;
3202                         AVC_AUDIT_DATA_INIT(&ad,NET);
3203                         ad.u.net.sport = htons(snum);
3204                         ad.u.net.family = family;
3205                         err = avc_has_perm(isec->sid, sid,
3206                                            isec->sclass,
3207                                            SOCKET__NAME_BIND, &ad);
3208                         if (err)
3209                                 goto out;
3210                 }
3211                 
3212                 switch(isec->sclass) {
3213                 case SECCLASS_TCP_SOCKET:
3214                         node_perm = TCP_SOCKET__NODE_BIND;
3215                         break;
3216                         
3217                 case SECCLASS_UDP_SOCKET:
3218                         node_perm = UDP_SOCKET__NODE_BIND;
3219                         break;
3220
3221                 case SECCLASS_DCCP_SOCKET:
3222                         node_perm = DCCP_SOCKET__NODE_BIND;
3223                         break;
3224
3225                 default:
3226                         node_perm = RAWIP_SOCKET__NODE_BIND;
3227                         break;
3228                 }
3229                 
3230                 err = security_node_sid(family, addrp, addrlen, &sid);
3231                 if (err)
3232                         goto out;
3233                 
3234                 AVC_AUDIT_DATA_INIT(&ad,NET);
3235                 ad.u.net.sport = htons(snum);
3236                 ad.u.net.family = family;
3237
3238                 if (family == PF_INET)
3239                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3240                 else
3241                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3242
3243                 err = avc_has_perm(isec->sid, sid,
3244                                    isec->sclass, node_perm, &ad);
3245                 if (err)
3246                         goto out;
3247         }
3248 out:
3249         return err;
3250 }
3251
3252 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3253 {
3254         struct inode_security_struct *isec;
3255         int err;
3256
3257         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3258         if (err)
3259                 return err;
3260
3261         /*
3262          * If a TCP or DCCP socket, check name_connect permission for the port.
3263          */
3264         isec = SOCK_INODE(sock)->i_security;
3265         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3266             isec->sclass == SECCLASS_DCCP_SOCKET) {
3267                 struct sock *sk = sock->sk;
3268                 struct avc_audit_data ad;
3269                 struct sockaddr_in *addr4 = NULL;
3270                 struct sockaddr_in6 *addr6 = NULL;
3271                 unsigned short snum;
3272                 u32 sid, perm;
3273
3274                 if (sk->sk_family == PF_INET) {
3275                         addr4 = (struct sockaddr_in *)address;
3276                         if (addrlen < sizeof(struct sockaddr_in))
3277                                 return -EINVAL;
3278                         snum = ntohs(addr4->sin_port);
3279                 } else {
3280                         addr6 = (struct sockaddr_in6 *)address;
3281                         if (addrlen < SIN6_LEN_RFC2133)
3282                                 return -EINVAL;
3283                         snum = ntohs(addr6->sin6_port);
3284                 }
3285
3286                 err = security_port_sid(sk->sk_family, sk->sk_type,
3287                                         sk->sk_protocol, snum, &sid);
3288                 if (err)
3289                         goto out;
3290
3291                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3292                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3293
3294                 AVC_AUDIT_DATA_INIT(&ad,NET);
3295                 ad.u.net.dport = htons(snum);
3296                 ad.u.net.family = sk->sk_family;
3297                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3298                 if (err)
3299                         goto out;
3300         }
3301
3302 out:
3303         return err;
3304 }
3305
3306 static int selinux_socket_listen(struct socket *sock, int backlog)
3307 {
3308         return socket_has_perm(current, sock, SOCKET__LISTEN);
3309 }
3310
3311 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3312 {
3313         int err;
3314         struct inode_security_struct *isec;
3315         struct inode_security_struct *newisec;
3316
3317         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3318         if (err)
3319                 return err;
3320
3321         newisec = SOCK_INODE(newsock)->i_security;
3322
3323         isec = SOCK_INODE(sock)->i_security;
3324         newisec->sclass = isec->sclass;
3325         newisec->sid = isec->sid;
3326         newisec->initialized = 1;
3327
3328         return 0;
3329 }
3330
3331 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3332                                   int size)
3333 {
3334         int rc;
3335
3336         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3337         if (rc)
3338                 return rc;
3339
3340         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3341 }
3342
3343 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3344                                   int size, int flags)
3345 {
3346         return socket_has_perm(current, sock, SOCKET__READ);
3347 }
3348
3349 static int selinux_socket_getsockname(struct socket *sock)
3350 {
3351         return socket_has_perm(current, sock, SOCKET__GETATTR);
3352 }
3353
3354 static int selinux_socket_getpeername(struct socket *sock)
3355 {
3356         return socket_has_perm(current, sock, SOCKET__GETATTR);
3357 }
3358
3359 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3360 {
3361         int err;
3362
3363         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3364         if (err)
3365                 return err;
3366
3367         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3368 }
3369
3370 static int selinux_socket_getsockopt(struct socket *sock, int level,
3371                                      int optname)
3372 {
3373         return socket_has_perm(current, sock, SOCKET__GETOPT);
3374 }
3375
3376 static int selinux_socket_shutdown(struct socket *sock, int how)
3377 {
3378         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3379 }
3380
3381 static int selinux_socket_unix_stream_connect(struct socket *sock,
3382                                               struct socket *other,
3383                                               struct sock *newsk)
3384 {
3385         struct sk_security_struct *ssec;
3386         struct inode_security_struct *isec;
3387         struct inode_security_struct *other_isec;
3388         struct avc_audit_data ad;
3389         int err;
3390
3391         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3392         if (err)
3393                 return err;
3394
3395         isec = SOCK_INODE(sock)->i_security;
3396         other_isec = SOCK_INODE(other)->i_security;
3397
3398         AVC_AUDIT_DATA_INIT(&ad,NET);
3399         ad.u.net.sk = other->sk;
3400
3401         err = avc_has_perm(isec->sid, other_isec->sid,
3402                            isec->sclass,
3403                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3404         if (err)
3405                 return err;
3406
3407         /* connecting socket */
3408         ssec = sock->sk->sk_security;
3409         ssec->peer_sid = other_isec->sid;
3410         
3411         /* server child socket */
3412         ssec = newsk->sk_security;
3413         ssec->peer_sid = isec->sid;
3414         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3415
3416         return err;
3417 }
3418
3419 static int selinux_socket_unix_may_send(struct socket *sock,
3420                                         struct socket *other)
3421 {
3422         struct inode_security_struct *isec;
3423         struct inode_security_struct *other_isec;
3424         struct avc_audit_data ad;
3425         int err;
3426
3427         isec = SOCK_INODE(sock)->i_security;
3428         other_isec = SOCK_INODE(other)->i_security;
3429
3430         AVC_AUDIT_DATA_INIT(&ad,NET);
3431         ad.u.net.sk = other->sk;
3432
3433         err = avc_has_perm(isec->sid, other_isec->sid,
3434                            isec->sclass, SOCKET__SENDTO, &ad);
3435         if (err)
3436                 return err;
3437
3438         return 0;
3439 }
3440
3441 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3442                 struct avc_audit_data *ad, u16 family, char *addrp, int len)
3443 {
3444         int err = 0;
3445         u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3446         struct socket *sock;
3447         u16 sock_class = 0;
3448         u32 sock_sid = 0;
3449
3450         read_lock_bh(&sk->sk_callback_lock);
3451         sock = sk->sk_socket;
3452         if (sock) {
3453                 struct inode *inode;
3454                 inode = SOCK_INODE(sock);
3455                 if (inode) {
3456                         struct inode_security_struct *isec;
3457                         isec = inode->i_security;
3458                         sock_sid = isec->sid;
3459                         sock_class = isec->sclass;
3460                 }
3461         }
3462         read_unlock_bh(&sk->sk_callback_lock);
3463         if (!sock_sid)
3464                 goto out;
3465
3466         if (!skb->dev)
3467                 goto out;
3468
3469         err = sel_netif_sids(skb->dev, &if_sid, NULL);
3470         if (err)
3471                 goto out;
3472
3473         switch (sock_class) {
3474         case SECCLASS_UDP_SOCKET:
3475                 netif_perm = NETIF__UDP_RECV;
3476                 node_perm = NODE__UDP_RECV;
3477                 recv_perm = UDP_SOCKET__RECV_MSG;
3478                 break;
3479         
3480         case SECCLASS_TCP_SOCKET:
3481                 netif_perm = NETIF__TCP_RECV;
3482                 node_perm = NODE__TCP_RECV;
3483                 recv_perm = TCP_SOCKET__RECV_MSG;
3484                 break;
3485
3486         case SECCLASS_DCCP_SOCKET:
3487                 netif_perm = NETIF__DCCP_RECV;
3488                 node_perm = NODE__DCCP_RECV;
3489                 recv_perm = DCCP_SOCKET__RECV_MSG;
3490                 break;
3491
3492         default:
3493                 netif_perm = NETIF__RAWIP_RECV;
3494                 node_perm = NODE__RAWIP_RECV;
3495                 break;
3496         }
3497
3498         err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3499         if (err)
3500                 goto out;
3501         
3502         err = security_node_sid(family, addrp, len, &node_sid);
3503         if (err)
3504                 goto out;
3505         
3506         err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3507         if (err)
3508                 goto out;
3509
3510         if (recv_perm) {
3511                 u32 port_sid;
3512
3513                 err = security_port_sid(sk->sk_family, sk->sk_type,
3514                                         sk->sk_protocol, ntohs(ad->u.net.sport),
3515                                         &port_sid);
3516                 if (err)
3517                         goto out;
3518
3519                 err = avc_has_perm(sock_sid, port_sid,
3520                                    sock_class, recv_perm, ad);
3521         }
3522
3523 out:
3524         return err;
3525 }
3526
3527 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3528 {
3529         u16 family;
3530         char *addrp;
3531         int len, err = 0;
3532         struct avc_audit_data ad;
3533         struct sk_security_struct *sksec = sk->sk_security;
3534
3535         family = sk->sk_family;
3536         if (family != PF_INET && family != PF_INET6)
3537                 goto out;
3538
3539         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3540         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
3541                 family = PF_INET;
3542
3543         AVC_AUDIT_DATA_INIT(&ad, NET);
3544         ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3545         ad.u.net.family = family;
3546
3547         err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL);
3548         if (err)
3549                 goto out;
3550
3551         if (selinux_compat_net)
3552                 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family,
3553                                                   addrp, len);
3554         else
3555                 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3556                                    PACKET__RECV, &ad);
3557         if (err)
3558                 goto out;
3559
3560         err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad);
3561         if (err)
3562                 goto out;
3563
3564         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3565 out:    
3566         return err;
3567 }
3568
3569 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3570                                             int __user *optlen, unsigned len)
3571 {
3572         int err = 0;
3573         char *scontext;
3574         u32 scontext_len;
3575         struct sk_security_struct *ssec;
3576         struct inode_security_struct *isec;
3577         u32 peer_sid = SECSID_NULL;
3578
3579         isec = SOCK_INODE(sock)->i_security;
3580
3581         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
3582             isec->sclass == SECCLASS_TCP_SOCKET) {
3583                 ssec = sock->sk->sk_security;
3584                 peer_sid = ssec->peer_sid;
3585         }
3586         if (peer_sid == SECSID_NULL) {
3587                 err = -ENOPROTOOPT;
3588                 goto out;
3589         }
3590
3591         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3592
3593         if (err)
3594                 goto out;
3595
3596         if (scontext_len > len) {
3597                 err = -ERANGE;
3598                 goto out_len;
3599         }
3600
3601         if (copy_to_user(optval, scontext, scontext_len))
3602                 err = -EFAULT;
3603
3604 out_len:
3605         if (put_user(scontext_len, optlen))
3606                 err = -EFAULT;
3607
3608         kfree(scontext);
3609 out:    
3610         return err;
3611 }
3612
3613 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3614 {
3615         u32 peer_secid = SECSID_NULL;
3616         int err = 0;
3617
3618         if (sock && sock->sk->sk_family == PF_UNIX)
3619                 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3620         else if (skb)
3621                 security_skb_extlbl_sid(skb,
3622                                         SECINITSID_UNLABELED,
3623                                         &peer_secid);
3624
3625         if (peer_secid == SECSID_NULL)
3626                 err = -EINVAL;
3627         *secid = peer_secid;
3628
3629         return err;
3630 }
3631
3632 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3633 {
3634         return sk_alloc_security(sk, family, priority);
3635 }
3636
3637 static void selinux_sk_free_security(struct sock *sk)
3638 {
3639         sk_free_security(sk);
3640 }
3641
3642 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
3643 {
3644         struct sk_security_struct *ssec = sk->sk_security;
3645         struct sk_security_struct *newssec = newsk->sk_security;
3646
3647         newssec->sid = ssec->sid;
3648         newssec->peer_sid = ssec->peer_sid;
3649
3650         selinux_netlbl_sk_security_clone(ssec, newssec);
3651 }
3652
3653 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
3654 {
3655         if (!sk)
3656                 *secid = SECINITSID_ANY_SOCKET;
3657         else {
3658                 struct sk_security_struct *sksec = sk->sk_security;
3659
3660                 *secid = sksec->sid;
3661         }
3662 }
3663
3664 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
3665 {
3666         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
3667         struct sk_security_struct *sksec = sk->sk_security;
3668
3669         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
3670             sk->sk_family == PF_UNIX)
3671                 isec->sid = sksec->sid;
3672
3673         selinux_netlbl_sock_graft(sk, parent);
3674 }
3675
3676 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
3677                                      struct request_sock *req)
3678 {
3679         struct sk_security_struct *sksec = sk->sk_security;
3680         int err;
3681         u32 newsid;
3682         u32 peersid;
3683
3684         security_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &peersid);
3685         if (peersid == SECSID_NULL) {
3686                 req->secid = sksec->sid;
3687                 req->peer_secid = SECSID_NULL;
3688                 return 0;
3689         }
3690
3691         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
3692         if (err)
3693                 return err;
3694
3695         req->secid = newsid;
3696         req->peer_secid = peersid;
3697         return 0;
3698 }
3699
3700 static void selinux_inet_csk_clone(struct sock *newsk,
3701                                    const struct request_sock *req)
3702 {
3703         struct sk_security_struct *newsksec = newsk->sk_security;
3704
3705         newsksec->sid = req->secid;
3706         newsksec->peer_sid = req->peer_secid;
3707         /* NOTE: Ideally, we should also get the isec->sid for the
3708            new socket in sync, but we don't have the isec available yet.
3709            So we will wait until sock_graft to do it, by which
3710            time it will have been created and available. */
3711
3712         /* We don't need to take any sort of lock here as we are the only
3713          * thread with access to newsksec */
3714         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
3715 }
3716
3717 static void selinux_inet_conn_established(struct sock *sk,
3718                                 struct sk_buff *skb)
3719 {
3720         struct sk_security_struct *sksec = sk->sk_security;
3721
3722         security_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &sksec->peer_sid);
3723 }
3724
3725 static void selinux_req_classify_flow(const struct request_sock *req,
3726                                       struct flowi *fl)
3727 {
3728         fl->secid = req->secid;
3729 }
3730
3731 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3732 {
3733         int err = 0;
3734         u32 perm;
3735         struct nlmsghdr *nlh;
3736         struct socket *sock = sk->sk_socket;
3737         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3738         
3739         if (skb->len < NLMSG_SPACE(0)) {
3740                 err = -EINVAL;
3741                 goto out;
3742         }
3743         nlh = (struct nlmsghdr *)skb->data;
3744         
3745         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3746         if (err) {
3747                 if (err == -EINVAL) {
3748                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3749                                   "SELinux:  unrecognized netlink message"
3750                                   " type=%hu for sclass=%hu\n",
3751                                   nlh->nlmsg_type, isec->sclass);
3752                         if (!selinux_enforcing)
3753                                 err = 0;
3754                 }
3755
3756                 /* Ignore */
3757                 if (err == -ENOENT)
3758                         err = 0;
3759                 goto out;
3760         }
3761
3762         err = socket_has_perm(current, sock, perm);
3763 out:
3764         return err;
3765 }
3766
3767 #ifdef CONFIG_NETFILTER
3768
3769 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3770                                             struct avc_audit_data *ad,
3771                                             u16 family, char *addrp, int len)
3772 {
3773         int err = 0;
3774         u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3775         struct socket *sock;
3776         struct inode *inode;
3777         struct inode_security_struct *isec;
3778
3779         sock = sk->sk_socket;
3780         if (!sock)
3781                 goto out;
3782
3783         inode = SOCK_INODE(sock);
3784         if (!inode)
3785                 goto out;
3786
3787         isec = inode->i_security;
3788         
3789         err = sel_netif_sids(dev, &if_sid, NULL);
3790         if (err)
3791                 goto out;
3792
3793         switch (isec->sclass) {
3794         case SECCLASS_UDP_SOCKET:
3795                 netif_perm = NETIF__UDP_SEND;
3796                 node_perm = NODE__UDP_SEND;
3797                 send_perm = UDP_SOCKET__SEND_MSG;
3798                 break;
3799         
3800         case SECCLASS_TCP_SOCKET:
3801                 netif_perm = NETIF__TCP_SEND;
3802                 node_perm = NODE__TCP_SEND;
3803                 send_perm = TCP_SOCKET__SEND_MSG;
3804                 break;
3805
3806         case SECCLASS_DCCP_SOCKET:
3807                 netif_perm = NETIF__DCCP_SEND;
3808                 node_perm = NODE__DCCP_SEND;
3809                 send_perm = DCCP_SOCKET__SEND_MSG;
3810                 break;
3811
3812         default:
3813                 netif_perm = NETIF__RAWIP_SEND;
3814                 node_perm = NODE__RAWIP_SEND;
3815                 break;
3816         }
3817
3818         err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3819         if (err)
3820                 goto out;
3821                 
3822         err = security_node_sid(family, addrp, len, &node_sid);
3823         if (err)
3824                 goto out;
3825         
3826         err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3827         if (err)
3828                 goto out;
3829
3830         if (send_perm) {
3831                 u32 port_sid;
3832                 
3833                 err = security_port_sid(sk->sk_family,
3834                                         sk->sk_type,
3835                                         sk->sk_protocol,
3836                                         ntohs(ad->u.net.dport),
3837                                         &port_sid);
3838                 if (err)
3839                         goto out;
3840
3841                 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3842                                    send_perm, ad);
3843         }
3844 out:
3845         return err;
3846 }
3847
3848 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3849                                               struct sk_buff **pskb,
3850                                               const struct net_device *in,
3851                                               const struct net_device *out,
3852                                               int (*okfn)(struct sk_buff *),
3853                                               u16 family)
3854 {
3855         char *addrp;
3856         int len, err = 0;
3857         struct sock *sk;
3858         struct sk_buff *skb = *pskb;
3859         struct avc_audit_data ad;
3860         struct net_device *dev = (struct net_device *)out;
3861         struct sk_security_struct *sksec;
3862         u8 proto;
3863
3864         sk = skb->sk;
3865         if (!sk)
3866                 goto out;
3867
3868         sksec = sk->sk_security;
3869
3870         AVC_AUDIT_DATA_INIT(&ad, NET);
3871         ad.u.net.netif = dev->name;
3872         ad.u.net.family = family;
3873
3874         err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto);
3875         if (err)
3876                 goto out;
3877
3878         if (selinux_compat_net)
3879                 err = selinux_ip_postroute_last_compat(sk, dev, &ad,
3880                                                        family, addrp, len);
3881         else
3882                 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3883                                    PACKET__SEND, &ad);
3884
3885         if (err)
3886                 goto out;
3887
3888         err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto);
3889 out:
3890         return err ? NF_DROP : NF_ACCEPT;
3891 }
3892
3893 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3894                                                 struct sk_buff **pskb,
3895                                                 const struct net_device *in,
3896                                                 const struct net_device *out,
3897                                                 int (*okfn)(struct sk_buff *))
3898 {
3899         return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3900 }
3901
3902 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3903
3904 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3905                                                 struct sk_buff **pskb,
3906                                                 const struct net_device *in,
3907                                                 const struct net_device *out,
3908                                                 int (*okfn)(struct sk_buff *))
3909 {
3910         return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3911 }
3912
3913 #endif  /* IPV6 */
3914
3915 #endif  /* CONFIG_NETFILTER */
3916
3917 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3918 {
3919         int err;
3920
3921         err = secondary_ops->netlink_send(sk, skb);
3922         if (err)
3923                 return err;
3924
3925         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
3926                 err = selinux_nlmsg_perm(sk, skb);
3927
3928         return err;
3929 }
3930
3931 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
3932 {
3933         int err;
3934         struct avc_audit_data ad;
3935
3936         err = secondary_ops->netlink_recv(skb, capability);
3937         if (err)
3938                 return err;
3939
3940         AVC_AUDIT_DATA_INIT(&ad, CAP);
3941         ad.u.cap = capability;
3942
3943         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
3944                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
3945 }
3946
3947 static int ipc_alloc_security(struct task_struct *task,
3948                               struct kern_ipc_perm *perm,
3949                               u16 sclass)
3950 {
3951         struct task_security_struct *tsec = task->security;
3952         struct ipc_security_struct *isec;
3953
3954         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
3955         if (!isec)
3956                 return -ENOMEM;
3957
3958         isec->sclass = sclass;
3959         isec->ipc_perm = perm;
3960         isec->sid = tsec->sid;
3961         perm->security = isec;
3962
3963         return 0;
3964 }
3965
3966 static void ipc_free_security(struct kern_ipc_perm *perm)
3967 {
3968         struct ipc_security_struct *isec = perm->security;
3969         perm->security = NULL;
3970         kfree(isec);
3971 }
3972
3973 static int msg_msg_alloc_security(struct msg_msg *msg)
3974 {
3975         struct msg_security_struct *msec;
3976
3977         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
3978         if (!msec)
3979                 return -ENOMEM;
3980
3981         msec->msg = msg;
3982         msec->sid = SECINITSID_UNLABELED;
3983         msg->security = msec;
3984
3985         return 0;
3986 }
3987
3988 static void msg_msg_free_security(struct msg_msg *msg)
3989 {
3990         struct msg_security_struct *msec = msg->security;
3991
3992         msg->security = NULL;
3993         kfree(msec);
3994 }
3995
3996 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
3997                         u32 perms)
3998 {
3999         struct task_security_struct *tsec;
4000         struct ipc_security_struct *isec;
4001         struct avc_audit_data ad;
4002
4003         tsec = current->security;
4004         isec = ipc_perms->security;
4005
4006         AVC_AUDIT_DATA_INIT(&ad, IPC);
4007         ad.u.ipc_id = ipc_perms->key;
4008
4009         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4010 }
4011
4012 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4013 {
4014         return msg_msg_alloc_security(msg);
4015 }
4016
4017 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4018 {
4019         msg_msg_free_security(msg);
4020 }
4021
4022 /* message queue security operations */
4023 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4024 {
4025         struct task_security_struct *tsec;
4026         struct ipc_security_struct *isec;
4027         struct avc_audit_data ad;
4028         int rc;
4029
4030         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4031         if (rc)
4032                 return rc;
4033
4034         tsec = current->security;
4035         isec = msq->q_perm.security;
4036
4037         AVC_AUDIT_DATA_INIT(&ad, IPC);
4038         ad.u.ipc_id = msq->q_perm.key;
4039
4040         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4041                           MSGQ__CREATE, &ad);
4042         if (rc) {
4043                 ipc_free_security(&msq->q_perm);
4044                 return rc;
4045         }
4046         return 0;
4047 }
4048
4049 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4050 {
4051         ipc_free_security(&msq->q_perm);
4052 }
4053
4054 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4055 {
4056         struct task_security_struct *tsec;
4057         struct ipc_security_struct *isec;
4058         struct avc_audit_data ad;
4059
4060         tsec = current->security;
4061         isec = msq->q_perm.security;
4062
4063         AVC_AUDIT_DATA_INIT(&ad, IPC);
4064         ad.u.ipc_id = msq->q_perm.key;
4065
4066         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4067                             MSGQ__ASSOCIATE, &ad);
4068 }
4069
4070 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4071 {
4072         int err;
4073         int perms;
4074
4075         switch(cmd) {
4076         case IPC_INFO:
4077         case MSG_INFO:
4078                 /* No specific object, just general system-wide information. */
4079                 return task_has_system(current, SYSTEM__IPC_INFO);
4080         case IPC_STAT:
4081         case MSG_STAT:
4082                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4083                 break;
4084         case IPC_SET:
4085                 perms = MSGQ__SETATTR;
4086                 break;
4087         case IPC_RMID:
4088                 perms = MSGQ__DESTROY;
4089                 break;
4090         default:
4091                 return 0;
4092         }
4093
4094         err = ipc_has_perm(&msq->q_perm, perms);
4095         return err;
4096 }
4097
4098 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4099 {
4100         struct task_security_struct *tsec;
4101         struct ipc_security_struct *isec;
4102         struct msg_security_struct *msec;
4103         struct avc_audit_data ad;
4104         int rc;
4105
4106         tsec = current->security;
4107         isec = msq->q_perm.security;
4108         msec = msg->security;
4109
4110         /*
4111          * First time through, need to assign label to the message
4112          */
4113         if (msec->sid == SECINITSID_UNLABELED) {
4114                 /*
4115                  * Compute new sid based on current process and
4116                  * message queue this message will be stored in
4117                  */
4118                 rc = security_transition_sid(tsec->sid,
4119                                              isec->sid,
4120                                              SECCLASS_MSG,
4121                                              &msec->sid);
4122                 if (rc)
4123                         return rc;
4124         }
4125
4126         AVC_AUDIT_DATA_INIT(&ad, IPC);
4127         ad.u.ipc_id = msq->q_perm.key;
4128
4129         /* Can this process write to the queue? */
4130         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4131                           MSGQ__WRITE, &ad);
4132         if (!rc)
4133                 /* Can this process send the message */
4134                 rc = avc_has_perm(tsec->sid, msec->sid,
4135                                   SECCLASS_MSG, MSG__SEND, &ad);
4136         if (!rc)
4137                 /* Can the message be put in the queue? */
4138                 rc = avc_has_perm(msec->sid, isec->sid,
4139                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4140
4141         return rc;
4142 }
4143
4144 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4145                                     struct task_struct *target,
4146                                     long type, int mode)
4147 {
4148         struct task_security_struct *tsec;
4149         struct ipc_security_struct *isec;
4150         struct msg_security_struct *msec;
4151         struct avc_audit_data ad;
4152         int rc;
4153
4154         tsec = target->security;
4155         isec = msq->q_perm.security;
4156         msec = msg->security;
4157
4158         AVC_AUDIT_DATA_INIT(&ad, IPC);
4159         ad.u.ipc_id = msq->q_perm.key;
4160
4161         rc = avc_has_perm(tsec->sid, isec->sid,
4162                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4163         if (!rc)
4164                 rc = avc_has_perm(tsec->sid, msec->sid,
4165                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4166         return rc;
4167 }
4168
4169 /* Shared Memory security operations */
4170 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4171 {
4172         struct task_security_struct *tsec;
4173         struct ipc_security_struct *isec;
4174         struct avc_audit_data ad;
4175         int rc;
4176
4177         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4178         if (rc)
4179                 return rc;
4180
4181         tsec = current->security;
4182         isec = shp->shm_perm.security;
4183
4184         AVC_AUDIT_DATA_INIT(&ad, IPC);
4185         ad.u.ipc_id = shp->shm_perm.key;
4186
4187         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4188                           SHM__CREATE, &ad);
4189         if (rc) {
4190                 ipc_free_security(&shp->shm_perm);
4191                 return rc;
4192         }
4193         return 0;
4194 }
4195
4196 static void selinux_shm_free_security(struct shmid_kernel *shp)
4197 {
4198         ipc_free_security(&shp->shm_perm);
4199 }
4200
4201 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4202 {
4203         struct task_security_struct *tsec;
4204         struct ipc_security_struct *isec;
4205         struct avc_audit_data ad;
4206
4207         tsec = current->security;
4208         isec = shp->shm_perm.security;
4209
4210         AVC_AUDIT_DATA_INIT(&ad, IPC);
4211         ad.u.ipc_id = shp->shm_perm.key;
4212
4213         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4214                             SHM__ASSOCIATE, &ad);
4215 }
4216
4217 /* Note, at this point, shp is locked down */
4218 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4219 {
4220         int perms;
4221         int err;
4222
4223         switch(cmd) {
4224         case IPC_INFO:
4225         case SHM_INFO:
4226                 /* No specific object, just general system-wide information. */
4227                 return task_has_system(current, SYSTEM__IPC_INFO);
4228         case IPC_STAT:
4229         case SHM_STAT:
4230                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4231                 break;
4232         case IPC_SET:
4233                 perms = SHM__SETATTR;
4234                 break;
4235         case SHM_LOCK:
4236         case SHM_UNLOCK:
4237                 perms = SHM__LOCK;
4238                 break;
4239         case IPC_RMID:
4240                 perms = SHM__DESTROY;
4241                 break;
4242         default:
4243                 return 0;
4244         }
4245
4246         err = ipc_has_perm(&shp->shm_perm, perms);
4247         return err;
4248 }
4249
4250 static int selinux_shm_shmat(struct shmid_kernel *shp,
4251                              char __user *shmaddr, int shmflg)
4252 {
4253         u32 perms;
4254         int rc;
4255
4256         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4257         if (rc)
4258                 return rc;
4259
4260         if (shmflg & SHM_RDONLY)
4261                 perms = SHM__READ;
4262         else
4263                 perms = SHM__READ | SHM__WRITE;
4264
4265         return ipc_has_perm(&shp->shm_perm, perms);
4266 }
4267
4268 /* Semaphore security operations */
4269 static int selinux_sem_alloc_security(struct sem_array *sma)
4270 {
4271         struct task_security_struct *tsec;
4272         struct ipc_security_struct *isec;
4273         struct avc_audit_data ad;
4274         int rc;
4275
4276         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4277         if (rc)
4278                 return rc;
4279
4280         tsec = current->security;
4281         isec = sma->sem_perm.security;
4282
4283         AVC_AUDIT_DATA_INIT(&ad, IPC);
4284         ad.u.ipc_id = sma->sem_perm.key;
4285
4286         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4287                           SEM__CREATE, &ad);
4288         if (rc) {
4289                 ipc_free_security(&sma->sem_perm);
4290                 return rc;
4291         }
4292         return 0;
4293 }
4294
4295 static void selinux_sem_free_security(struct sem_array *sma)
4296 {
4297         ipc_free_security(&sma->sem_perm);
4298 }
4299
4300 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4301 {
4302         struct task_security_struct *tsec;
4303         struct ipc_security_struct *isec;
4304         struct avc_audit_data ad;
4305
4306         tsec = current->security;
4307         isec = sma->sem_perm.security;
4308
4309         AVC_AUDIT_DATA_INIT(&ad, IPC);
4310         ad.u.ipc_id = sma->sem_perm.key;
4311
4312         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4313                             SEM__ASSOCIATE, &ad);
4314 }
4315
4316 /* Note, at this point, sma is locked down */
4317 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4318 {
4319         int err;
4320         u32 perms;
4321
4322         switch(cmd) {
4323         case IPC_INFO:
4324         case SEM_INFO:
4325                 /* No specific object, just general system-wide information. */
4326                 return task_has_system(current, SYSTEM__IPC_INFO);
4327         case GETPID:
4328         case GETNCNT:
4329         case GETZCNT:
4330                 perms = SEM__GETATTR;
4331                 break;
4332         case GETVAL:
4333         case GETALL:
4334                 perms = SEM__READ;
4335                 break;
4336         case SETVAL:
4337         case SETALL:
4338                 perms = SEM__WRITE;
4339                 break;
4340         case IPC_RMID:
4341                 perms = SEM__DESTROY;
4342                 break;
4343         case IPC_SET:
4344                 perms = SEM__SETATTR;
4345                 break;
4346         case IPC_STAT:
4347         case SEM_STAT:
4348                 perms = SEM__GETATTR | SEM__ASSOCIATE;
4349                 break;
4350         default:
4351                 return 0;
4352         }
4353
4354         err = ipc_has_perm(&sma->sem_perm, perms);
4355         return err;
4356 }
4357
4358 static int selinux_sem_semop(struct sem_array *sma,
4359                              struct sembuf *sops, unsigned nsops, int alter)
4360 {
4361         u32 perms;
4362
4363         if (alter)
4364                 perms = SEM__READ | SEM__WRITE;
4365         else
4366                 perms = SEM__READ;
4367
4368         return ipc_has_perm(&sma->sem_perm, perms);
4369 }
4370
4371 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4372 {
4373         u32 av = 0;
4374
4375         av = 0;
4376         if (flag & S_IRUGO)
4377                 av |= IPC__UNIX_READ;
4378         if (flag & S_IWUGO)
4379                 av |= IPC__UNIX_WRITE;
4380
4381         if (av == 0)
4382                 return 0;
4383
4384         return ipc_has_perm(ipcp, av);
4385 }
4386
4387 /* module stacking operations */
4388 static int selinux_register_security (const char *name, struct security_operations *ops)
4389 {
4390         if (secondary_ops != original_ops) {
4391                 printk(KERN_INFO "%s:  There is already a secondary security "
4392                        "module registered.\n", __FUNCTION__);
4393                 return -EINVAL;
4394         }
4395
4396         secondary_ops = ops;
4397
4398         printk(KERN_INFO "%s:  Registering secondary module %s\n",
4399                __FUNCTION__,
4400                name);
4401
4402         return 0;
4403 }
4404
4405 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4406 {
4407         if (ops != secondary_ops) {
4408                 printk (KERN_INFO "%s:  trying to unregister a security module "
4409                         "that is not registered.\n", __FUNCTION__);
4410                 return -EINVAL;
4411         }
4412
4413         secondary_ops = original_ops;
4414
4415         return 0;
4416 }
4417
4418 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4419 {
4420         if (inode)
4421                 inode_doinit_with_dentry(inode, dentry);
4422 }
4423
4424 static int selinux_getprocattr(struct task_struct *p,
4425                                char *name, void *value, size_t size)
4426 {
4427         struct task_security_struct *tsec;
4428         u32 sid;
4429         int error;
4430
4431         if (current != p) {
4432                 error = task_has_perm(current, p, PROCESS__GETATTR);
4433                 if (error)
4434                         return error;
4435         }
4436
4437         tsec = p->security;
4438
4439         if (!strcmp(name, "current"))
4440                 sid = tsec->sid;
4441         else if (!strcmp(name, "prev"))
4442                 sid = tsec->osid;
4443         else if (!strcmp(name, "exec"))
4444                 sid = tsec->exec_sid;
4445         else if (!strcmp(name, "fscreate"))
4446                 sid = tsec->create_sid;
4447         else if (!strcmp(name, "keycreate"))
4448                 sid = tsec->keycreate_sid;
4449         else if (!strcmp(name, "sockcreate"))
4450                 sid = tsec->sockcreate_sid;
4451         else
4452                 return -EINVAL;
4453
4454         if (!sid)
4455                 return 0;
4456
4457         return selinux_getsecurity(sid, value, size);
4458 }
4459
4460 static int selinux_setprocattr(struct task_struct *p,
4461                                char *name, void *value, size_t size)
4462 {
4463         struct task_security_struct *tsec;
4464         u32 sid = 0;
4465         int error;
4466         char *str = value;
4467
4468         if (current != p) {
4469                 /* SELinux only allows a process to change its own
4470                    security attributes. */
4471                 return -EACCES;
4472         }
4473
4474         /*
4475          * Basic control over ability to set these attributes at all.
4476          * current == p, but we'll pass them separately in case the
4477          * above restriction is ever removed.
4478          */
4479         if (!strcmp(name, "exec"))
4480                 error = task_has_perm(current, p, PROCESS__SETEXEC);
4481         else if (!strcmp(name, "fscreate"))
4482                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4483         else if (!strcmp(name, "keycreate"))
4484                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4485         else if (!strcmp(name, "sockcreate"))
4486                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4487         else if (!strcmp(name, "current"))
4488                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4489         else
4490                 error = -EINVAL;
4491         if (error)
4492                 return error;
4493
4494         /* Obtain a SID for the context, if one was specified. */
4495         if (size && str[1] && str[1] != '\n') {
4496                 if (str[size-1] == '\n') {
4497                         str[size-1] = 0;
4498                         size--;
4499                 }
4500                 error = security_context_to_sid(value, size, &sid);
4501                 if (error)
4502                         return error;
4503         }
4504
4505         /* Permission checking based on the specified context is
4506            performed during the actual operation (execve,
4507            open/mkdir/...), when we know the full context of the
4508            operation.  See selinux_bprm_set_security for the execve
4509            checks and may_create for the file creation checks. The
4510            operation will then fail if the context is not permitted. */
4511         tsec = p->security;
4512         if (!strcmp(name, "exec"))
4513                 tsec->exec_sid = sid;
4514         else if (!strcmp(name, "fscreate"))
4515                 tsec->create_sid = sid;
4516         else if (!strcmp(name, "keycreate")) {
4517                 error = may_create_key(sid, p);
4518                 if (error)
4519                         return error;
4520                 tsec->keycreate_sid = sid;
4521         } else if (!strcmp(name, "sockcreate"))
4522                 tsec->sockcreate_sid = sid;
4523         else if (!strcmp(name, "current")) {
4524                 struct av_decision avd;
4525
4526                 if (sid == 0)
4527                         return -EINVAL;
4528
4529                 /* Only allow single threaded processes to change context */
4530                 if (atomic_read(&p->mm->mm_users) != 1) {
4531                         struct task_struct *g, *t;
4532                         struct mm_struct *mm = p->mm;
4533                         read_lock(&tasklist_lock);
4534                         do_each_thread(g, t)
4535                                 if (t->mm == mm && t != p) {
4536                                         read_unlock(&tasklist_lock);
4537                                         return -EPERM;
4538                                 }
4539                         while_each_thread(g, t);
4540                         read_unlock(&tasklist_lock);
4541                 }
4542
4543                 /* Check permissions for the transition. */
4544                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4545                                      PROCESS__DYNTRANSITION, NULL);
4546                 if (error)
4547                         return error;
4548
4549                 /* Check for ptracing, and update the task SID if ok.
4550                    Otherwise, leave SID unchanged and fail. */
4551                 task_lock(p);
4552                 if (p->ptrace & PT_PTRACED) {
4553                         error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4554                                                      SECCLASS_PROCESS,
4555                                                      PROCESS__PTRACE, &avd);
4556                         if (!error)
4557                                 tsec->sid = sid;
4558                         task_unlock(p);
4559                         avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4560                                   PROCESS__PTRACE, &avd, error, NULL);
4561                         if (error)
4562                                 return error;
4563                 } else {
4564                         tsec->sid = sid;
4565                         task_unlock(p);
4566                 }
4567         }
4568         else
4569                 return -EINVAL;
4570
4571         return size;
4572 }
4573
4574 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4575 {
4576         return security_sid_to_context(secid, secdata, seclen);
4577 }
4578
4579 static void selinux_release_secctx(char *secdata, u32 seclen)
4580 {
4581         if (secdata)
4582                 kfree(secdata);
4583 }
4584
4585 #ifdef CONFIG_KEYS
4586
4587 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4588                              unsigned long flags)
4589 {
4590         struct task_security_struct *tsec = tsk->security;
4591         struct key_security_struct *ksec;
4592
4593         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4594         if (!ksec)
4595                 return -ENOMEM;
4596
4597         ksec->obj = k;
4598         if (tsec->keycreate_sid)
4599                 ksec->sid = tsec->keycreate_sid;
4600         else
4601                 ksec->sid = tsec->sid;
4602         k->security = ksec;
4603
4604         return 0;
4605 }
4606
4607 static void selinux_key_free(struct key *k)
4608 {
4609         struct key_security_struct *ksec = k->security;
4610
4611         k->security = NULL;
4612         kfree(ksec);
4613 }
4614
4615 static int selinux_key_permission(key_ref_t key_ref,
4616                             struct task_struct *ctx,
4617                             key_perm_t perm)
4618 {
4619         struct key *key;
4620         struct task_security_struct *tsec;
4621         struct key_security_struct *ksec;
4622
4623         key = key_ref_to_ptr(key_ref);
4624
4625         tsec = ctx->security;
4626         ksec = key->security;
4627
4628         /* if no specific permissions are requested, we skip the
4629            permission check. No serious, additional covert channels
4630            appear to be created. */
4631         if (perm == 0)
4632                 return 0;
4633
4634         return avc_has_perm(tsec->sid, ksec->sid,
4635                             SECCLASS_KEY, perm, NULL);
4636 }
4637
4638 #endif
4639
4640 static struct security_operations selinux_ops = {
4641         .ptrace =                       selinux_ptrace,
4642         .capget =                       selinux_capget,
4643         .capset_check =                 selinux_capset_check,
4644         .capset_set =                   selinux_capset_set,
4645         .sysctl =                       selinux_sysctl,
4646         .capable =                      selinux_capable,
4647         .quotactl =                     selinux_quotactl,
4648         .quota_on =                     selinux_quota_on,
4649         .syslog =                       selinux_syslog,
4650         .vm_enough_memory =             selinux_vm_enough_memory,
4651
4652         .netlink_send =                 selinux_netlink_send,
4653         .netlink_recv =                 selinux_netlink_recv,
4654
4655         .bprm_alloc_security =          selinux_bprm_alloc_security,
4656         .bprm_free_security =           selinux_bprm_free_security,
4657         .bprm_apply_creds =             selinux_bprm_apply_creds,
4658         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
4659         .bprm_set_security =            selinux_bprm_set_security,
4660         .bprm_check_security =          selinux_bprm_check_security,
4661         .bprm_secureexec =              selinux_bprm_secureexec,
4662
4663         .sb_alloc_security =            selinux_sb_alloc_security,
4664         .sb_free_security =             selinux_sb_free_security,
4665         .sb_copy_data =                 selinux_sb_copy_data,
4666         .sb_kern_mount =                selinux_sb_kern_mount,
4667         .sb_statfs =                    selinux_sb_statfs,
4668         .sb_mount =                     selinux_mount,
4669         .sb_umount =                    selinux_umount,
4670
4671         .inode_alloc_security =         selinux_inode_alloc_security,
4672         .inode_free_security =          selinux_inode_free_security,
4673         .inode_init_security =          selinux_inode_init_security,
4674         .inode_create =                 selinux_inode_create,
4675         .inode_link =                   selinux_inode_link,
4676         .inode_unlink =                 selinux_inode_unlink,
4677         .inode_symlink =                selinux_inode_symlink,
4678         .inode_mkdir =                  selinux_inode_mkdir,
4679         .inode_rmdir =                  selinux_inode_rmdir,
4680         .inode_mknod =                  selinux_inode_mknod,
4681         .inode_rename =                 selinux_inode_rename,
4682         .inode_readlink =               selinux_inode_readlink,
4683         .inode_follow_link =            selinux_inode_follow_link,
4684         .inode_permission =             selinux_inode_permission,
4685         .inode_setattr =                selinux_inode_setattr,
4686         .inode_getattr =                selinux_inode_getattr,
4687         .inode_setxattr =               selinux_inode_setxattr,
4688         .inode_post_setxattr =          selinux_inode_post_setxattr,
4689         .inode_getxattr =               selinux_inode_getxattr,
4690         .inode_listxattr =              selinux_inode_listxattr,
4691         .inode_removexattr =            selinux_inode_removexattr,
4692         .inode_xattr_getsuffix =        selinux_inode_xattr_getsuffix,
4693         .inode_getsecurity =            selinux_inode_getsecurity,
4694         .inode_setsecurity =            selinux_inode_setsecurity,
4695         .inode_listsecurity =           selinux_inode_listsecurity,
4696
4697         .file_permission =              selinux_file_permission,
4698         .file_alloc_security =          selinux_file_alloc_security,
4699         .file_free_security =           selinux_file_free_security,
4700         .file_ioctl =                   selinux_file_ioctl,
4701         .file_mmap =                    selinux_file_mmap,
4702         .file_mprotect =                selinux_file_mprotect,
4703         .file_lock =                    selinux_file_lock,
4704         .file_fcntl =                   selinux_file_fcntl,
4705         .file_set_fowner =              selinux_file_set_fowner,
4706         .file_send_sigiotask =          selinux_file_send_sigiotask,
4707         .file_receive =                 selinux_file_receive,
4708
4709         .task_create =                  selinux_task_create,
4710         .task_alloc_security =          selinux_task_alloc_security,
4711         .task_free_security =           selinux_task_free_security,
4712         .task_setuid =                  selinux_task_setuid,
4713         .task_post_setuid =             selinux_task_post_setuid,
4714         .task_setgid =                  selinux_task_setgid,
4715         .task_setpgid =                 selinux_task_setpgid,
4716         .task_getpgid =                 selinux_task_getpgid,
4717         .task_getsid =                  selinux_task_getsid,
4718         .task_getsecid =                selinux_task_getsecid,
4719         .task_setgroups =               selinux_task_setgroups,
4720         .task_setnice =                 selinux_task_setnice,
4721         .task_setioprio =               selinux_task_setioprio,
4722         .task_getioprio =               selinux_task_getioprio,
4723         .task_setrlimit =               selinux_task_setrlimit,
4724         .task_setscheduler =            selinux_task_setscheduler,
4725         .task_getscheduler =            selinux_task_getscheduler,
4726         .task_movememory =              selinux_task_movememory,
4727         .task_kill =                    selinux_task_kill,
4728         .task_wait =                    selinux_task_wait,
4729         .task_prctl =                   selinux_task_prctl,
4730         .task_reparent_to_init =        selinux_task_reparent_to_init,
4731         .task_to_inode =                selinux_task_to_inode,
4732
4733         .ipc_permission =               selinux_ipc_permission,
4734
4735         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
4736         .msg_msg_free_security =        selinux_msg_msg_free_security,
4737
4738         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
4739         .msg_queue_free_security =      selinux_msg_queue_free_security,
4740         .msg_queue_associate =          selinux_msg_queue_associate,
4741         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
4742         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
4743         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
4744
4745         .shm_alloc_security =           selinux_shm_alloc_security,
4746         .shm_free_security =            selinux_shm_free_security,
4747         .shm_associate =                selinux_shm_associate,
4748         .shm_shmctl =                   selinux_shm_shmctl,
4749         .shm_shmat =                    selinux_shm_shmat,
4750
4751         .sem_alloc_security =           selinux_sem_alloc_security,
4752         .sem_free_security =            selinux_sem_free_security,
4753         .sem_associate =                selinux_sem_associate,
4754         .sem_semctl =                   selinux_sem_semctl,
4755         .sem_semop =                    selinux_sem_semop,
4756
4757         .register_security =            selinux_register_security,
4758         .unregister_security =          selinux_unregister_security,
4759
4760         .d_instantiate =                selinux_d_instantiate,
4761
4762         .getprocattr =                  selinux_getprocattr,
4763         .setprocattr =                  selinux_setprocattr,
4764
4765         .secid_to_secctx =              selinux_secid_to_secctx,
4766         .release_secctx =               selinux_release_secctx,
4767
4768         .unix_stream_connect =          selinux_socket_unix_stream_connect,
4769         .unix_may_send =                selinux_socket_unix_may_send,
4770
4771         .socket_create =                selinux_socket_create,
4772         .socket_post_create =           selinux_socket_post_create,
4773         .socket_bind =                  selinux_socket_bind,
4774         .socket_connect =               selinux_socket_connect,
4775         .socket_listen =                selinux_socket_listen,
4776         .socket_accept =                selinux_socket_accept,
4777         .socket_sendmsg =               selinux_socket_sendmsg,
4778         .socket_recvmsg =               selinux_socket_recvmsg,
4779         .socket_getsockname =           selinux_socket_getsockname,
4780         .socket_getpeername =           selinux_socket_getpeername,
4781         .socket_getsockopt =            selinux_socket_getsockopt,
4782         .socket_setsockopt =            selinux_socket_setsockopt,
4783         .socket_shutdown =              selinux_socket_shutdown,
4784         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
4785         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
4786         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
4787         .sk_alloc_security =            selinux_sk_alloc_security,
4788         .sk_free_security =             selinux_sk_free_security,
4789         .sk_clone_security =            selinux_sk_clone_security,
4790         .sk_getsecid =                  selinux_sk_getsecid,
4791         .sock_graft =                   selinux_sock_graft,
4792         .inet_conn_request =            selinux_inet_conn_request,
4793         .inet_csk_clone =               selinux_inet_csk_clone,
4794         .inet_conn_established =        selinux_inet_conn_established,
4795         .req_classify_flow =            selinux_req_classify_flow,
4796
4797 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4798         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
4799         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
4800         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
4801         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
4802         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
4803         .xfrm_state_free_security =     selinux_xfrm_state_free,
4804         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
4805         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
4806         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
4807         .xfrm_decode_session =          selinux_xfrm_decode_session,
4808 #endif
4809
4810 #ifdef CONFIG_KEYS
4811         .key_alloc =                    selinux_key_alloc,
4812         .key_free =                     selinux_key_free,
4813         .key_permission =               selinux_key_permission,
4814 #endif
4815 };
4816
4817 static __init int selinux_init(void)
4818 {
4819         struct task_security_struct *tsec;
4820
4821         if (!selinux_enabled) {
4822                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
4823                 return 0;
4824         }
4825
4826         printk(KERN_INFO "SELinux:  Initializing.\n");
4827
4828         /* Set the security state for the initial task. */
4829         if (task_alloc_security(current))
4830                 panic("SELinux:  Failed to initialize initial task.\n");
4831         tsec = current->security;
4832         tsec->osid = tsec->sid = SECINITSID_KERNEL;
4833
4834         sel_inode_cache = kmem_cache_create("selinux_inode_security",
4835                                             sizeof(struct inode_security_struct),
4836                                             0, SLAB_PANIC, NULL, NULL);
4837         avc_init();
4838
4839         original_ops = secondary_ops = security_ops;
4840         if (!secondary_ops)
4841                 panic ("SELinux: No initial security operations\n");
4842         if (register_security (&selinux_ops))
4843                 panic("SELinux: Unable to register with kernel.\n");
4844
4845         if (selinux_enforcing) {
4846                 printk(KERN_INFO "SELinux:  Starting in enforcing mode\n");
4847         } else {
4848                 printk(KERN_INFO "SELinux:  Starting in permissive mode\n");
4849         }
4850
4851 #ifdef CONFIG_KEYS
4852         /* Add security information to initial keyrings */
4853         selinux_key_alloc(&root_user_keyring, current,
4854                           KEY_ALLOC_NOT_IN_QUOTA);
4855         selinux_key_alloc(&root_session_keyring, current,
4856                           KEY_ALLOC_NOT_IN_QUOTA);
4857 #endif
4858
4859         return 0;
4860 }
4861
4862 void selinux_complete_init(void)
4863 {
4864         printk(KERN_INFO "SELinux:  Completing initialization.\n");
4865
4866         /* Set up any superblocks initialized prior to the policy load. */
4867         printk(KERN_INFO "SELinux:  Setting up existing superblocks.\n");
4868         spin_lock(&sb_lock);
4869         spin_lock(&sb_security_lock);
4870 next_sb:
4871         if (!list_empty(&superblock_security_head)) {
4872                 struct superblock_security_struct *sbsec =
4873                                 list_entry(superblock_security_head.next,
4874                                            struct superblock_security_struct,
4875                                            list);
4876                 struct super_block *sb = sbsec->sb;
4877                 sb->s_count++;
4878                 spin_unlock(&sb_security_lock);
4879                 spin_unlock(&sb_lock);
4880                 down_read(&sb->s_umount);
4881                 if (sb->s_root)
4882                         superblock_doinit(sb, NULL);
4883                 drop_super(sb);
4884                 spin_lock(&sb_lock);
4885                 spin_lock(&sb_security_lock);
4886                 list_del_init(&sbsec->list);
4887                 goto next_sb;
4888         }
4889         spin_unlock(&sb_security_lock);
4890         spin_unlock(&sb_lock);
4891 }
4892
4893 /* SELinux requires early initialization in order to label
4894    all processes and objects when they are created. */
4895 security_initcall(selinux_init);
4896
4897 #if defined(CONFIG_NETFILTER)
4898
4899 static struct nf_hook_ops selinux_ipv4_op = {
4900         .hook =         selinux_ipv4_postroute_last,
4901         .owner =        THIS_MODULE,
4902         .pf =           PF_INET,
4903         .hooknum =      NF_IP_POST_ROUTING,
4904         .priority =     NF_IP_PRI_SELINUX_LAST,
4905 };
4906
4907 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4908
4909 static struct nf_hook_ops selinux_ipv6_op = {
4910         .hook =         selinux_ipv6_postroute_last,
4911         .owner =        THIS_MODULE,
4912         .pf =           PF_INET6,
4913         .hooknum =      NF_IP6_POST_ROUTING,
4914         .priority =     NF_IP6_PRI_SELINUX_LAST,
4915 };
4916
4917 #endif  /* IPV6 */
4918
4919 static int __init selinux_nf_ip_init(void)
4920 {
4921         int err = 0;
4922
4923         if (!selinux_enabled)
4924                 goto out;
4925                 
4926         printk(KERN_INFO "SELinux:  Registering netfilter hooks\n");
4927         
4928         err = nf_register_hook(&selinux_ipv4_op);
4929         if (err)
4930                 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
4931
4932 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4933
4934         err = nf_register_hook(&selinux_ipv6_op);
4935         if (err)
4936                 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
4937
4938 #endif  /* IPV6 */
4939
4940 out:
4941         return err;
4942 }
4943
4944 __initcall(selinux_nf_ip_init);
4945
4946 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4947 static void selinux_nf_ip_exit(void)
4948 {
4949         printk(KERN_INFO "SELinux:  Unregistering netfilter hooks\n");
4950
4951         nf_unregister_hook(&selinux_ipv4_op);
4952 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4953         nf_unregister_hook(&selinux_ipv6_op);
4954 #endif  /* IPV6 */
4955 }
4956 #endif
4957
4958 #else /* CONFIG_NETFILTER */
4959
4960 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4961 #define selinux_nf_ip_exit()
4962 #endif
4963
4964 #endif /* CONFIG_NETFILTER */
4965
4966 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4967 int selinux_disable(void)
4968 {
4969         extern void exit_sel_fs(void);
4970         static int selinux_disabled = 0;
4971
4972         if (ss_initialized) {
4973                 /* Not permitted after initial policy load. */
4974                 return -EINVAL;
4975         }
4976
4977         if (selinux_disabled) {
4978                 /* Only do this once. */
4979                 return -EINVAL;
4980         }
4981
4982         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
4983
4984         selinux_disabled = 1;
4985         selinux_enabled = 0;
4986
4987         /* Reset security_ops to the secondary module, dummy or capability. */
4988         security_ops = secondary_ops;
4989
4990         /* Unregister netfilter hooks. */
4991         selinux_nf_ip_exit();
4992
4993         /* Unregister selinuxfs. */
4994         exit_sel_fs();
4995
4996         return 0;
4997 }
4998 #endif
4999
5000