Documentation/kernel-parameters.txt: add min_addr, fix max_addr
[linux-2.6] / net / dsa / mv88e6xxx.c
1 /*
2  * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
3  * Copyright (c) 2008 Marvell Semiconductor
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  */
10
11 #include <linux/list.h>
12 #include <linux/netdevice.h>
13 #include <linux/phy.h>
14 #include "dsa_priv.h"
15 #include "mv88e6xxx.h"
16
17 /*
18  * If the switch's ADDR[4:0] strap pins are strapped to zero, it will
19  * use all 32 SMI bus addresses on its SMI bus, and all switch registers
20  * will be directly accessible on some {device address,register address}
21  * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch
22  * will only respond to SMI transactions to that specific address, and
23  * an indirect addressing mechanism needs to be used to access its
24  * registers.
25  */
26 static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
27 {
28         int ret;
29         int i;
30
31         for (i = 0; i < 16; i++) {
32                 ret = mdiobus_read(bus, sw_addr, 0);
33                 if (ret < 0)
34                         return ret;
35
36                 if ((ret & 0x8000) == 0)
37                         return 0;
38         }
39
40         return -ETIMEDOUT;
41 }
42
43 int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
44 {
45         int ret;
46
47         if (sw_addr == 0)
48                 return mdiobus_read(bus, addr, reg);
49
50         /*
51          * Wait for the bus to become free.
52          */
53         ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
54         if (ret < 0)
55                 return ret;
56
57         /*
58          * Transmit the read command.
59          */
60         ret = mdiobus_write(bus, sw_addr, 0, 0x9800 | (addr << 5) | reg);
61         if (ret < 0)
62                 return ret;
63
64         /*
65          * Wait for the read command to complete.
66          */
67         ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
68         if (ret < 0)
69                 return ret;
70
71         /*
72          * Read the data.
73          */
74         ret = mdiobus_read(bus, sw_addr, 1);
75         if (ret < 0)
76                 return ret;
77
78         return ret & 0xffff;
79 }
80
81 int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
82 {
83         struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
84         int ret;
85
86         mutex_lock(&ps->smi_mutex);
87         ret = __mv88e6xxx_reg_read(ds->master_mii_bus,
88                                    ds->pd->sw_addr, addr, reg);
89         mutex_unlock(&ps->smi_mutex);
90
91         return ret;
92 }
93
94 int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
95                           int reg, u16 val)
96 {
97         int ret;
98
99         if (sw_addr == 0)
100                 return mdiobus_write(bus, addr, reg, val);
101
102         /*
103          * Wait for the bus to become free.
104          */
105         ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
106         if (ret < 0)
107                 return ret;
108
109         /*
110          * Transmit the data to write.
111          */
112         ret = mdiobus_write(bus, sw_addr, 1, val);
113         if (ret < 0)
114                 return ret;
115
116         /*
117          * Transmit the write command.
118          */
119         ret = mdiobus_write(bus, sw_addr, 0, 0x9400 | (addr << 5) | reg);
120         if (ret < 0)
121                 return ret;
122
123         /*
124          * Wait for the write command to complete.
125          */
126         ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
127         if (ret < 0)
128                 return ret;
129
130         return 0;
131 }
132
133 int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
134 {
135         struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
136         int ret;
137
138         mutex_lock(&ps->smi_mutex);
139         ret = __mv88e6xxx_reg_write(ds->master_mii_bus,
140                                     ds->pd->sw_addr, addr, reg, val);
141         mutex_unlock(&ps->smi_mutex);
142
143         return ret;
144 }
145
146 int mv88e6xxx_config_prio(struct dsa_switch *ds)
147 {
148         /*
149          * Configure the IP ToS mapping registers.
150          */
151         REG_WRITE(REG_GLOBAL, 0x10, 0x0000);
152         REG_WRITE(REG_GLOBAL, 0x11, 0x0000);
153         REG_WRITE(REG_GLOBAL, 0x12, 0x5555);
154         REG_WRITE(REG_GLOBAL, 0x13, 0x5555);
155         REG_WRITE(REG_GLOBAL, 0x14, 0xaaaa);
156         REG_WRITE(REG_GLOBAL, 0x15, 0xaaaa);
157         REG_WRITE(REG_GLOBAL, 0x16, 0xffff);
158         REG_WRITE(REG_GLOBAL, 0x17, 0xffff);
159
160         /*
161          * Configure the IEEE 802.1p priority mapping register.
162          */
163         REG_WRITE(REG_GLOBAL, 0x18, 0xfa41);
164
165         return 0;
166 }
167
168 int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
169 {
170         REG_WRITE(REG_GLOBAL, 0x01, (addr[0] << 8) | addr[1]);
171         REG_WRITE(REG_GLOBAL, 0x02, (addr[2] << 8) | addr[3]);
172         REG_WRITE(REG_GLOBAL, 0x03, (addr[4] << 8) | addr[5]);
173
174         return 0;
175 }
176
177 int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
178 {
179         int i;
180         int ret;
181
182         for (i = 0; i < 6; i++) {
183                 int j;
184
185                 /*
186                  * Write the MAC address byte.
187                  */
188                 REG_WRITE(REG_GLOBAL2, 0x0d, 0x8000 | (i << 8) | addr[i]);
189
190                 /*
191                  * Wait for the write to complete.
192                  */
193                 for (j = 0; j < 16; j++) {
194                         ret = REG_READ(REG_GLOBAL2, 0x0d);
195                         if ((ret & 0x8000) == 0)
196                                 break;
197                 }
198                 if (j == 16)
199                         return -ETIMEDOUT;
200         }
201
202         return 0;
203 }
204
205 int mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
206 {
207         if (addr >= 0)
208                 return mv88e6xxx_reg_read(ds, addr, regnum);
209         return 0xffff;
210 }
211
212 int mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, u16 val)
213 {
214         if (addr >= 0)
215                 return mv88e6xxx_reg_write(ds, addr, regnum, val);
216         return 0;
217 }
218
219 #ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
220 static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
221 {
222         int ret;
223         int i;
224
225         ret = REG_READ(REG_GLOBAL, 0x04);
226         REG_WRITE(REG_GLOBAL, 0x04, ret & ~0x4000);
227
228         for (i = 0; i < 1000; i++) {
229                 ret = REG_READ(REG_GLOBAL, 0x00);
230                 msleep(1);
231                 if ((ret & 0xc000) != 0xc000)
232                         return 0;
233         }
234
235         return -ETIMEDOUT;
236 }
237
238 static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
239 {
240         int ret;
241         int i;
242
243         ret = REG_READ(REG_GLOBAL, 0x04);
244         REG_WRITE(REG_GLOBAL, 0x04, ret | 0x4000);
245
246         for (i = 0; i < 1000; i++) {
247                 ret = REG_READ(REG_GLOBAL, 0x00);
248                 msleep(1);
249                 if ((ret & 0xc000) == 0xc000)
250                         return 0;
251         }
252
253         return -ETIMEDOUT;
254 }
255
256 static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
257 {
258         struct mv88e6xxx_priv_state *ps;
259
260         ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
261         if (mutex_trylock(&ps->ppu_mutex)) {
262                 struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
263
264                 if (mv88e6xxx_ppu_enable(ds) == 0)
265                         ps->ppu_disabled = 0;
266                 mutex_unlock(&ps->ppu_mutex);
267         }
268 }
269
270 static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
271 {
272         struct mv88e6xxx_priv_state *ps = (void *)_ps;
273
274         schedule_work(&ps->ppu_work);
275 }
276
277 static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
278 {
279         struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
280         int ret;
281
282         mutex_lock(&ps->ppu_mutex);
283
284         /*
285          * If the PHY polling unit is enabled, disable it so that
286          * we can access the PHY registers.  If it was already
287          * disabled, cancel the timer that is going to re-enable
288          * it.
289          */
290         if (!ps->ppu_disabled) {
291                 ret = mv88e6xxx_ppu_disable(ds);
292                 if (ret < 0) {
293                         mutex_unlock(&ps->ppu_mutex);
294                         return ret;
295                 }
296                 ps->ppu_disabled = 1;
297         } else {
298                 del_timer(&ps->ppu_timer);
299                 ret = 0;
300         }
301
302         return ret;
303 }
304
305 static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
306 {
307         struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
308
309         /*
310          * Schedule a timer to re-enable the PHY polling unit.
311          */
312         mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
313         mutex_unlock(&ps->ppu_mutex);
314 }
315
316 void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
317 {
318         struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
319
320         mutex_init(&ps->ppu_mutex);
321         INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
322         init_timer(&ps->ppu_timer);
323         ps->ppu_timer.data = (unsigned long)ps;
324         ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
325 }
326
327 int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
328 {
329         int ret;
330
331         ret = mv88e6xxx_ppu_access_get(ds);
332         if (ret >= 0) {
333                 ret = mv88e6xxx_reg_read(ds, addr, regnum);
334                 mv88e6xxx_ppu_access_put(ds);
335         }
336
337         return ret;
338 }
339
340 int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
341                             int regnum, u16 val)
342 {
343         int ret;
344
345         ret = mv88e6xxx_ppu_access_get(ds);
346         if (ret >= 0) {
347                 ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
348                 mv88e6xxx_ppu_access_put(ds);
349         }
350
351         return ret;
352 }
353 #endif
354
355 void mv88e6xxx_poll_link(struct dsa_switch *ds)
356 {
357         int i;
358
359         for (i = 0; i < DSA_MAX_PORTS; i++) {
360                 struct net_device *dev;
361                 int port_status;
362                 int link;
363                 int speed;
364                 int duplex;
365                 int fc;
366
367                 dev = ds->ports[i];
368                 if (dev == NULL)
369                         continue;
370
371                 link = 0;
372                 if (dev->flags & IFF_UP) {
373                         port_status = mv88e6xxx_reg_read(ds, REG_PORT(i), 0x00);
374                         if (port_status < 0)
375                                 continue;
376
377                         link = !!(port_status & 0x0800);
378                 }
379
380                 if (!link) {
381                         if (netif_carrier_ok(dev)) {
382                                 printk(KERN_INFO "%s: link down\n", dev->name);
383                                 netif_carrier_off(dev);
384                         }
385                         continue;
386                 }
387
388                 switch (port_status & 0x0300) {
389                 case 0x0000:
390                         speed = 10;
391                         break;
392                 case 0x0100:
393                         speed = 100;
394                         break;
395                 case 0x0200:
396                         speed = 1000;
397                         break;
398                 default:
399                         speed = -1;
400                         break;
401                 }
402                 duplex = (port_status & 0x0400) ? 1 : 0;
403                 fc = (port_status & 0x8000) ? 1 : 0;
404
405                 if (!netif_carrier_ok(dev)) {
406                         printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
407                                          "flow control %sabled\n", dev->name,
408                                          speed, duplex ? "full" : "half",
409                                          fc ? "en" : "dis");
410                         netif_carrier_on(dev);
411                 }
412         }
413 }
414
415 static int mv88e6xxx_stats_wait(struct dsa_switch *ds)
416 {
417         int ret;
418         int i;
419
420         for (i = 0; i < 10; i++) {
421                 ret = REG_READ(REG_GLOBAL2, 0x1d);
422                 if ((ret & 0x8000) == 0)
423                         return 0;
424         }
425
426         return -ETIMEDOUT;
427 }
428
429 static int mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
430 {
431         int ret;
432
433         /*
434          * Snapshot the hardware statistics counters for this port.
435          */
436         REG_WRITE(REG_GLOBAL, 0x1d, 0xdc00 | port);
437
438         /*
439          * Wait for the snapshotting to complete.
440          */
441         ret = mv88e6xxx_stats_wait(ds);
442         if (ret < 0)
443                 return ret;
444
445         return 0;
446 }
447
448 static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
449 {
450         u32 _val;
451         int ret;
452
453         *val = 0;
454
455         ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x1d, 0xcc00 | stat);
456         if (ret < 0)
457                 return;
458
459         ret = mv88e6xxx_stats_wait(ds);
460         if (ret < 0)
461                 return;
462
463         ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1e);
464         if (ret < 0)
465                 return;
466
467         _val = ret << 16;
468
469         ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1f);
470         if (ret < 0)
471                 return;
472
473         *val = _val | ret;
474 }
475
476 void mv88e6xxx_get_strings(struct dsa_switch *ds,
477                            int nr_stats, struct mv88e6xxx_hw_stat *stats,
478                            int port, uint8_t *data)
479 {
480         int i;
481
482         for (i = 0; i < nr_stats; i++) {
483                 memcpy(data + i * ETH_GSTRING_LEN,
484                        stats[i].string, ETH_GSTRING_LEN);
485         }
486 }
487
488 void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
489                                  int nr_stats, struct mv88e6xxx_hw_stat *stats,
490                                  int port, uint64_t *data)
491 {
492         struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
493         int ret;
494         int i;
495
496         mutex_lock(&ps->stats_mutex);
497
498         ret = mv88e6xxx_stats_snapshot(ds, port);
499         if (ret < 0) {
500                 mutex_unlock(&ps->stats_mutex);
501                 return;
502         }
503
504         /*
505          * Read each of the counters.
506          */
507         for (i = 0; i < nr_stats; i++) {
508                 struct mv88e6xxx_hw_stat *s = stats + i;
509                 u32 low;
510                 u32 high;
511
512                 mv88e6xxx_stats_read(ds, s->reg, &low);
513                 if (s->sizeof_stat == 8)
514                         mv88e6xxx_stats_read(ds, s->reg + 1, &high);
515                 else
516                         high = 0;
517
518                 data[i] = (((u64)high) << 32) | low;
519         }
520
521         mutex_unlock(&ps->stats_mutex);
522 }