1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
30 #define MLOG_MASK_PREFIX ML_FILE_IO
31 #include <cluster/masklog.h>
38 #include "extent_map.h"
46 #include "buffer_head_io.h"
48 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
49 struct buffer_head *bh_result, int create)
53 struct ocfs2_dinode *fe = NULL;
54 struct buffer_head *bh = NULL;
55 struct buffer_head *buffer_cache_bh = NULL;
56 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
59 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
60 (unsigned long long)iblock, bh_result, create);
62 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
65 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
66 (unsigned long long)iblock);
70 status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
71 OCFS2_I(inode)->ip_blkno,
72 &bh, OCFS2_BH_CACHED, inode);
77 fe = (struct ocfs2_dinode *) bh->b_data;
79 if (!OCFS2_IS_VALID_DINODE(fe)) {
80 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
81 (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
88 mlog(ML_ERROR, "block offset is outside the allocated size: "
89 "%llu\n", (unsigned long long)iblock);
93 /* We don't use the page cache to create symlink data, so if
94 * need be, copy it over from the buffer cache. */
95 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 buffer_cache_bh = sb_getblk(osb->sb, blkno);
99 if (!buffer_cache_bh) {
100 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
104 /* we haven't locked out transactions, so a commit
105 * could've happened. Since we've got a reference on
106 * the bh, even if it commits while we're doing the
107 * copy, the data is still good. */
108 if (buffer_jbd(buffer_cache_bh)
109 && ocfs2_inode_is_new(inode)) {
110 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
112 mlog(ML_ERROR, "couldn't kmap!\n");
115 memcpy(kaddr + (bh_result->b_size * iblock),
116 buffer_cache_bh->b_data,
118 kunmap_atomic(kaddr, KM_USER0);
119 set_buffer_uptodate(bh_result);
121 brelse(buffer_cache_bh);
124 map_bh(bh_result, inode->i_sb,
125 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
137 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
141 unsigned int ext_flags;
142 u64 p_blkno, past_eof;
143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
146 (unsigned long long)iblock, bh_result, create);
148 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150 inode, inode->i_ino);
152 if (S_ISLNK(inode->i_mode)) {
153 /* this always does I/O for some reason. */
154 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
158 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
161 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163 (unsigned long long)p_blkno);
168 * ocfs2 never allocates in this function - the only time we
169 * need to use BH_New is when we're extending i_size on a file
170 * system which doesn't support holes, in which case BH_New
171 * allows block_prepare_write() to zero.
173 mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
174 "ino %lu, iblock %llu\n", inode->i_ino,
175 (unsigned long long)iblock);
177 /* Treat the unwritten extent as a hole for zeroing purposes. */
178 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
179 map_bh(bh_result, inode->i_sb, p_blkno);
181 if (!ocfs2_sparse_alloc(osb)) {
185 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
186 (unsigned long long)iblock,
187 (unsigned long long)p_blkno,
188 (unsigned long long)OCFS2_I(inode)->ip_blkno);
189 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
193 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
194 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
195 (unsigned long long)past_eof);
197 if (create && (iblock >= past_eof))
198 set_buffer_new(bh_result);
209 static int ocfs2_readpage(struct file *file, struct page *page)
211 struct inode *inode = page->mapping->host;
212 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
215 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
217 ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
219 if (ret == AOP_TRUNCATED_PAGE)
225 down_read(&OCFS2_I(inode)->ip_alloc_sem);
228 * i_size might have just been updated as we grabed the meta lock. We
229 * might now be discovering a truncate that hit on another node.
230 * block_read_full_page->get_block freaks out if it is asked to read
231 * beyond the end of a file, so we check here. Callers
232 * (generic_file_read, fault->nopage) are clever enough to check i_size
233 * and notice that the page they just read isn't needed.
235 * XXX sys_readahead() seems to get that wrong?
237 if (start >= i_size_read(inode)) {
238 char *addr = kmap(page);
239 memset(addr, 0, PAGE_SIZE);
240 flush_dcache_page(page);
242 SetPageUptodate(page);
247 ret = ocfs2_data_lock_with_page(inode, 0, page);
249 if (ret == AOP_TRUNCATED_PAGE)
255 ret = block_read_full_page(page, ocfs2_get_block);
258 ocfs2_data_unlock(inode, 0);
260 up_read(&OCFS2_I(inode)->ip_alloc_sem);
261 ocfs2_meta_unlock(inode, 0);
269 /* Note: Because we don't support holes, our allocation has
270 * already happened (allocation writes zeros to the file data)
271 * so we don't have to worry about ordered writes in
274 * ->writepage is called during the process of invalidating the page cache
275 * during blocked lock processing. It can't block on any cluster locks
276 * to during block mapping. It's relying on the fact that the block
277 * mapping can't have disappeared under the dirty pages that it is
278 * being asked to write back.
280 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
284 mlog_entry("(0x%p)\n", page);
286 ret = block_write_full_page(page, ocfs2_get_block, wbc);
294 * This is called from ocfs2_write_zero_page() which has handled it's
295 * own cluster locking and has ensured allocation exists for those
296 * blocks to be written.
298 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
299 unsigned from, unsigned to)
303 down_read(&OCFS2_I(inode)->ip_alloc_sem);
305 ret = block_prepare_write(page, from, to, ocfs2_get_block);
307 up_read(&OCFS2_I(inode)->ip_alloc_sem);
312 /* Taken from ext3. We don't necessarily need the full blown
313 * functionality yet, but IMHO it's better to cut and paste the whole
314 * thing so we can avoid introducing our own bugs (and easily pick up
315 * their fixes when they happen) --Mark */
316 int walk_page_buffers( handle_t *handle,
317 struct buffer_head *head,
321 int (*fn)( handle_t *handle,
322 struct buffer_head *bh))
324 struct buffer_head *bh;
325 unsigned block_start, block_end;
326 unsigned blocksize = head->b_size;
328 struct buffer_head *next;
330 for ( bh = head, block_start = 0;
331 ret == 0 && (bh != head || !block_start);
332 block_start = block_end, bh = next)
334 next = bh->b_this_page;
335 block_end = block_start + blocksize;
336 if (block_end <= from || block_start >= to) {
337 if (partial && !buffer_uptodate(bh))
341 err = (*fn)(handle, bh);
348 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
353 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
354 handle_t *handle = NULL;
357 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
364 if (ocfs2_should_order_data(inode)) {
365 ret = walk_page_buffers(handle,
368 ocfs2_journal_dirty_data);
375 ocfs2_commit_trans(osb, handle);
376 handle = ERR_PTR(ret);
381 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
386 struct inode *inode = mapping->host;
388 mlog_entry("(block = %llu)\n", (unsigned long long)block);
390 /* We don't need to lock journal system files, since they aren't
391 * accessed concurrently from multiple nodes.
393 if (!INODE_JOURNAL(inode)) {
394 err = ocfs2_meta_lock(inode, NULL, 0);
400 down_read(&OCFS2_I(inode)->ip_alloc_sem);
403 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, NULL);
405 if (!INODE_JOURNAL(inode)) {
406 up_read(&OCFS2_I(inode)->ip_alloc_sem);
407 ocfs2_meta_unlock(inode, 0);
411 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
412 (unsigned long long)block);
419 status = err ? 0 : p_blkno;
421 mlog_exit((int)status);
427 * TODO: Make this into a generic get_blocks function.
429 * From do_direct_io in direct-io.c:
430 * "So what we do is to permit the ->get_blocks function to populate
431 * bh.b_size with the size of IO which is permitted at this offset and
434 * This function is called directly from get_more_blocks in direct-io.c.
436 * called like this: dio->get_blocks(dio->inode, fs_startblk,
437 * fs_count, map_bh, dio->rw == WRITE);
439 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
440 struct buffer_head *bh_result, int create)
443 u64 p_blkno, inode_blocks, contig_blocks;
444 unsigned int ext_flags;
445 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
446 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
448 /* This function won't even be called if the request isn't all
449 * nicely aligned and of the right size, so there's no need
450 * for us to check any of that. */
452 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
455 * Any write past EOF is not allowed because we'd be extending.
457 if (create && (iblock + max_blocks) > inode_blocks) {
462 /* This figures out the size of the next contiguous block, and
463 * our logical offset */
464 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
465 &contig_blocks, &ext_flags);
467 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
468 (unsigned long long)iblock);
473 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
474 ocfs2_error(inode->i_sb,
475 "Inode %llu has a hole at block %llu\n",
476 (unsigned long long)OCFS2_I(inode)->ip_blkno,
477 (unsigned long long)iblock);
483 * get_more_blocks() expects us to describe a hole by clearing
484 * the mapped bit on bh_result().
486 * Consider an unwritten extent as a hole.
488 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
489 map_bh(bh_result, inode->i_sb, p_blkno);
492 * ocfs2_prepare_inode_for_write() should have caught
493 * the case where we'd be filling a hole and triggered
494 * a buffered write instead.
502 clear_buffer_mapped(bh_result);
505 /* make sure we don't map more than max_blocks blocks here as
506 that's all the kernel will handle at this point. */
507 if (max_blocks < contig_blocks)
508 contig_blocks = max_blocks;
509 bh_result->b_size = contig_blocks << blocksize_bits;
515 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
516 * particularly interested in the aio/dio case. Like the core uses
517 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
518 * truncation on another.
520 static void ocfs2_dio_end_io(struct kiocb *iocb,
525 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
528 /* this io's submitter should not have unlocked this before we could */
529 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
531 ocfs2_iocb_clear_rw_locked(iocb);
533 level = ocfs2_iocb_rw_locked_level(iocb);
535 up_read(&inode->i_alloc_sem);
536 ocfs2_rw_unlock(inode, level);
540 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
541 * from ext3. PageChecked() bits have been removed as OCFS2 does not
542 * do journalled data.
544 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
546 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
548 journal_invalidatepage(journal, page, offset);
551 static int ocfs2_releasepage(struct page *page, gfp_t wait)
553 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
555 if (!page_has_buffers(page))
557 return journal_try_to_free_buffers(journal, page, wait);
560 static ssize_t ocfs2_direct_IO(int rw,
562 const struct iovec *iov,
564 unsigned long nr_segs)
566 struct file *file = iocb->ki_filp;
567 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
572 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
574 * We get PR data locks even for O_DIRECT. This
575 * allows concurrent O_DIRECT I/O but doesn't let
576 * O_DIRECT with extending and buffered zeroing writes
577 * race. If they did race then the buffered zeroing
578 * could be written back after the O_DIRECT I/O. It's
579 * one thing to tell people not to mix buffered and
580 * O_DIRECT writes, but expecting them to understand
581 * that file extension is also an implicit buffered
582 * write is too much. By getting the PR we force
583 * writeback of the buffered zeroing before
586 ret = ocfs2_data_lock(inode, 0);
591 ocfs2_data_unlock(inode, 0);
594 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
595 inode->i_sb->s_bdev, iov, offset,
597 ocfs2_direct_IO_get_blocks,
604 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
609 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
611 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
614 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
616 cluster_start = cpos % cpp;
617 cluster_start = cluster_start << osb->s_clustersize_bits;
619 cluster_end = cluster_start + osb->s_clustersize;
622 BUG_ON(cluster_start > PAGE_SIZE);
623 BUG_ON(cluster_end > PAGE_SIZE);
626 *start = cluster_start;
632 * 'from' and 'to' are the region in the page to avoid zeroing.
634 * If pagesize > clustersize, this function will avoid zeroing outside
635 * of the cluster boundary.
637 * from == to == 0 is code for "zero the entire cluster region"
639 static void ocfs2_clear_page_regions(struct page *page,
640 struct ocfs2_super *osb, u32 cpos,
641 unsigned from, unsigned to)
644 unsigned int cluster_start, cluster_end;
646 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
648 kaddr = kmap_atomic(page, KM_USER0);
651 if (from > cluster_start)
652 memset(kaddr + cluster_start, 0, from - cluster_start);
653 if (to < cluster_end)
654 memset(kaddr + to, 0, cluster_end - to);
656 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
659 kunmap_atomic(kaddr, KM_USER0);
663 * Some of this taken from block_prepare_write(). We already have our
664 * mapping by now though, and the entire write will be allocating or
665 * it won't, so not much need to use BH_New.
667 * This will also skip zeroing, which is handled externally.
669 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
670 struct inode *inode, unsigned int from,
671 unsigned int to, int new)
674 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
675 unsigned int block_end, block_start;
676 unsigned int bsize = 1 << inode->i_blkbits;
678 if (!page_has_buffers(page))
679 create_empty_buffers(page, bsize, 0);
681 head = page_buffers(page);
682 for (bh = head, block_start = 0; bh != head || !block_start;
683 bh = bh->b_this_page, block_start += bsize) {
684 block_end = block_start + bsize;
687 * Ignore blocks outside of our i/o range -
688 * they may belong to unallocated clusters.
690 if (block_start >= to || block_end <= from) {
691 if (PageUptodate(page))
692 set_buffer_uptodate(bh);
697 * For an allocating write with cluster size >= page
698 * size, we always write the entire page.
702 clear_buffer_new(bh);
704 if (!buffer_mapped(bh)) {
705 map_bh(bh, inode->i_sb, *p_blkno);
706 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
709 if (PageUptodate(page)) {
710 if (!buffer_uptodate(bh))
711 set_buffer_uptodate(bh);
712 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
713 (block_start < from || block_end > to)) {
714 ll_rw_block(READ, 1, &bh);
718 *p_blkno = *p_blkno + 1;
722 * If we issued read requests - let them complete.
724 while(wait_bh > wait) {
725 wait_on_buffer(*--wait_bh);
726 if (!buffer_uptodate(*wait_bh))
730 if (ret == 0 || !new)
734 * If we get -EIO above, zero out any newly allocated blocks
735 * to avoid exposing stale data.
742 block_end = block_start + bsize;
743 if (block_end <= from)
745 if (block_start >= to)
748 kaddr = kmap_atomic(page, KM_USER0);
749 memset(kaddr+block_start, 0, bh->b_size);
750 flush_dcache_page(page);
751 kunmap_atomic(kaddr, KM_USER0);
752 set_buffer_uptodate(bh);
753 mark_buffer_dirty(bh);
756 block_start = block_end;
757 bh = bh->b_this_page;
758 } while (bh != head);
764 * This will copy user data from the buffer page in the splice
767 * For now, we ignore SPLICE_F_MOVE as that would require some extra
768 * communication out all the way to ocfs2_write().
770 int ocfs2_map_and_write_splice_data(struct inode *inode,
771 struct ocfs2_write_ctxt *wc, u64 *p_blkno,
772 unsigned int *ret_from, unsigned int *ret_to)
775 unsigned int to, from, cluster_start, cluster_end;
777 struct ocfs2_splice_write_priv *sp = wc->w_private;
778 struct pipe_buffer *buf = sp->s_buf;
779 unsigned long bytes, src_from;
780 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
782 ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
786 src_from = sp->s_buf_offset;
789 if (wc->w_large_pages) {
791 * For cluster size < page size, we have to
792 * calculate pos within the cluster and obey
793 * the rightmost boundary.
795 bytes = min(bytes, (unsigned long)(osb->s_clustersize
796 - (wc->w_pos & (osb->s_clustersize - 1))));
800 if (wc->w_this_page_new)
801 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
802 cluster_start, cluster_end, 1);
804 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
811 BUG_ON(from > PAGE_CACHE_SIZE);
812 BUG_ON(to > PAGE_CACHE_SIZE);
813 BUG_ON(from > osb->s_clustersize);
814 BUG_ON(to > osb->s_clustersize);
816 src = buf->ops->map(sp->s_pipe, buf, 1);
817 dst = kmap_atomic(wc->w_this_page, KM_USER1);
818 memcpy(dst + from, src + src_from, bytes);
819 kunmap_atomic(wc->w_this_page, KM_USER1);
820 buf->ops->unmap(sp->s_pipe, buf, src);
822 wc->w_finished_copy = 1;
828 return bytes ? (unsigned int)bytes : ret;
832 * This will copy user data from the iovec in the buffered write
835 int ocfs2_map_and_write_user_data(struct inode *inode,
836 struct ocfs2_write_ctxt *wc, u64 *p_blkno,
837 unsigned int *ret_from, unsigned int *ret_to)
840 unsigned int to, from, cluster_start, cluster_end;
841 unsigned long bytes, src_from;
843 struct ocfs2_buffered_write_priv *bp = wc->w_private;
844 const struct iovec *cur_iov = bp->b_cur_iov;
846 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
848 ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
851 buf = cur_iov->iov_base + bp->b_cur_off;
852 src_from = (unsigned long)buf & ~PAGE_CACHE_MASK;
854 from = wc->w_pos & (PAGE_CACHE_SIZE - 1);
857 * This is a lot of comparisons, but it reads quite
858 * easily, which is important here.
860 /* Stay within the src page */
861 bytes = PAGE_SIZE - src_from;
862 /* Stay within the vector */
864 (unsigned long)(cur_iov->iov_len - bp->b_cur_off));
865 /* Stay within count */
866 bytes = min(bytes, (unsigned long)wc->w_count);
868 * For clustersize > page size, just stay within
869 * target page, otherwise we have to calculate pos
870 * within the cluster and obey the rightmost
873 if (wc->w_large_pages) {
875 * For cluster size < page size, we have to
876 * calculate pos within the cluster and obey
877 * the rightmost boundary.
879 bytes = min(bytes, (unsigned long)(osb->s_clustersize
880 - (wc->w_pos & (osb->s_clustersize - 1))));
883 * cluster size > page size is the most common
884 * case - we just stay within the target page
887 bytes = min(bytes, PAGE_CACHE_SIZE - from);
892 if (wc->w_this_page_new)
893 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
894 cluster_start, cluster_end, 1);
896 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
903 BUG_ON(from > PAGE_CACHE_SIZE);
904 BUG_ON(to > PAGE_CACHE_SIZE);
905 BUG_ON(from > osb->s_clustersize);
906 BUG_ON(to > osb->s_clustersize);
908 dst = kmap(wc->w_this_page);
909 memcpy(dst + from, bp->b_src_buf + src_from, bytes);
910 kunmap(wc->w_this_page);
913 * XXX: This is slow, but simple. The caller of
914 * ocfs2_buffered_write_cluster() is responsible for
915 * passing through the iovecs, so it's difficult to
916 * predict what our next step is in here after our
917 * initial write. A future version should be pushing
918 * that iovec manipulation further down.
920 * By setting this, we indicate that a copy from user
921 * data was done, and subsequent calls for this
922 * cluster will skip copying more data.
924 wc->w_finished_copy = 1;
930 return bytes ? (unsigned int)bytes : ret;
934 * Map, fill and write a page to disk.
936 * The work of copying data is done via callback. Newly allocated
937 * pages which don't take user data will be zero'd (set 'new' to
938 * indicate an allocating write)
940 * Returns a negative error code or the number of bytes copied into
943 static int ocfs2_write_data_page(struct inode *inode, handle_t *handle,
944 u64 *p_blkno, struct page *page,
945 struct ocfs2_write_ctxt *wc, int new)
948 unsigned int from = 0, to = 0;
949 unsigned int cluster_start, cluster_end;
950 unsigned int zero_from = 0, zero_to = 0;
952 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), wc->w_cpos,
953 &cluster_start, &cluster_end);
955 if ((wc->w_pos >> PAGE_CACHE_SHIFT) == page->index
956 && !wc->w_finished_copy) {
958 wc->w_this_page = page;
959 wc->w_this_page_new = new;
960 ret = wc->w_write_data_page(inode, wc, p_blkno, &from, &to);
971 from = cluster_start;
976 * If we haven't allocated the new page yet, we
977 * shouldn't be writing it out without copying user
978 * data. This is likely a math error from the caller.
982 from = cluster_start;
985 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
986 cluster_start, cluster_end, 1);
994 * Parts of newly allocated pages need to be zero'd.
996 * Above, we have also rewritten 'to' and 'from' - as far as
997 * the rest of the function is concerned, the entire cluster
998 * range inside of a page needs to be written.
1000 * We can skip this if the page is up to date - it's already
1001 * been zero'd from being read in as a hole.
1003 if (new && !PageUptodate(page))
1004 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1005 wc->w_cpos, zero_from, zero_to);
1007 flush_dcache_page(page);
1009 if (ocfs2_should_order_data(inode)) {
1010 ret = walk_page_buffers(handle,
1013 ocfs2_journal_dirty_data);
1019 * We don't use generic_commit_write() because we need to
1020 * handle our own i_size update.
1022 ret = block_commit_write(page, from, to);
1027 return copied ? copied : ret;
1031 * Do the actual write of some data into an inode. Optionally allocate
1032 * in order to fulfill the write.
1034 * cpos is the logical cluster offset within the file to write at
1036 * 'phys' is the physical mapping of that offset. a 'phys' value of
1037 * zero indicates that allocation is required. In this case, data_ac
1038 * and meta_ac should be valid (meta_ac can be null if metadata
1039 * allocation isn't required).
1041 static ssize_t ocfs2_write(struct file *file, u32 phys, handle_t *handle,
1042 struct buffer_head *di_bh,
1043 struct ocfs2_alloc_context *data_ac,
1044 struct ocfs2_alloc_context *meta_ac,
1045 struct ocfs2_write_ctxt *wc)
1047 int ret, i, numpages = 1, new;
1048 unsigned int copied = 0;
1050 u64 v_blkno, p_blkno;
1051 struct address_space *mapping = file->f_mapping;
1052 struct inode *inode = mapping->host;
1053 unsigned long index, start;
1054 struct page **cpages;
1056 new = phys == 0 ? 1 : 0;
1059 * Figure out how many pages we'll be manipulating here. For
1060 * non allocating write, we just change the one
1061 * page. Otherwise, we'll need a whole clusters worth.
1064 numpages = ocfs2_pages_per_cluster(inode->i_sb);
1066 cpages = kzalloc(sizeof(*cpages) * numpages, GFP_NOFS);
1074 * Fill our page array first. That way we've grabbed enough so
1075 * that we can zero and flush if we error after adding the
1079 start = ocfs2_align_clusters_to_page_index(inode->i_sb,
1081 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, wc->w_cpos);
1083 start = wc->w_pos >> PAGE_CACHE_SHIFT;
1084 v_blkno = wc->w_pos >> inode->i_sb->s_blocksize_bits;
1087 for(i = 0; i < numpages; i++) {
1090 cpages[i] = grab_cache_page(mapping, index);
1100 * This is safe to call with the page locks - it won't take
1101 * any additional semaphores or cluster locks.
1103 tmp_pos = wc->w_cpos;
1104 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1105 &tmp_pos, 1, di_bh, handle,
1106 data_ac, meta_ac, NULL);
1108 * This shouldn't happen because we must have already
1109 * calculated the correct meta data allocation required. The
1110 * internal tree allocation code should know how to increase
1111 * transaction credits itself.
1113 * If need be, we could handle -EAGAIN for a
1114 * RESTART_TRANS here.
1116 mlog_bug_on_msg(ret == -EAGAIN,
1117 "Inode %llu: EAGAIN return during allocation.\n",
1118 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1125 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1130 * XXX: Should we go readonly here?
1137 BUG_ON(p_blkno == 0);
1139 for(i = 0; i < numpages; i++) {
1140 ret = ocfs2_write_data_page(inode, handle, &p_blkno, cpages[i],
1151 for(i = 0; i < numpages; i++) {
1152 unlock_page(cpages[i]);
1153 mark_page_accessed(cpages[i]);
1154 page_cache_release(cpages[i]);
1158 return copied ? copied : ret;
1161 static void ocfs2_write_ctxt_init(struct ocfs2_write_ctxt *wc,
1162 struct ocfs2_super *osb, loff_t pos,
1163 size_t count, ocfs2_page_writer *cb,
1166 wc->w_count = count;
1168 wc->w_cpos = wc->w_pos >> osb->s_clustersize_bits;
1169 wc->w_finished_copy = 0;
1171 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1172 wc->w_large_pages = 1;
1174 wc->w_large_pages = 0;
1176 wc->w_write_data_page = cb;
1177 wc->w_private = cb_priv;
1181 * Write a cluster to an inode. The cluster may not be allocated yet,
1182 * in which case it will be. This only exists for buffered writes -
1183 * O_DIRECT takes a more "traditional" path through the kernel.
1185 * The caller is responsible for incrementing pos, written counts, etc
1187 * For file systems that don't support sparse files, pre-allocation
1188 * and page zeroing up until cpos should be done prior to this
1191 * Callers should be holding i_sem, and the rw cluster lock.
1193 * Returns the number of user bytes written, or less than zero for
1196 ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
1197 size_t count, ocfs2_page_writer *actor,
1200 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1201 ssize_t written = 0;
1203 struct inode *inode = file->f_mapping->host;
1204 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1205 struct buffer_head *di_bh = NULL;
1206 struct ocfs2_dinode *di;
1207 struct ocfs2_alloc_context *data_ac = NULL;
1208 struct ocfs2_alloc_context *meta_ac = NULL;
1210 struct ocfs2_write_ctxt wc;
1212 ocfs2_write_ctxt_init(&wc, osb, pos, count, actor, priv);
1214 ret = ocfs2_meta_lock(inode, &di_bh, 1);
1219 di = (struct ocfs2_dinode *)di_bh->b_data;
1222 * Take alloc sem here to prevent concurrent lookups. That way
1223 * the mapping, zeroing and tree manipulation within
1224 * ocfs2_write() will be safe against ->readpage(). This
1225 * should also serve to lock out allocation from a shared
1228 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1230 ret = ocfs2_get_clusters(inode, wc.w_cpos, &phys, NULL, NULL);
1236 /* phys == 0 means that allocation is required. */
1238 ret = ocfs2_lock_allocators(inode, di, 1, &data_ac, &meta_ac);
1244 credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1);
1247 ret = ocfs2_data_lock(inode, 1);
1253 handle = ocfs2_start_trans(osb, credits);
1254 if (IS_ERR(handle)) {
1255 ret = PTR_ERR(handle);
1260 written = ocfs2_write(file, phys, handle, di_bh, data_ac,
1268 ret = ocfs2_journal_access(handle, inode, di_bh,
1269 OCFS2_JOURNAL_ACCESS_WRITE);
1276 if (pos > inode->i_size) {
1277 i_size_write(inode, pos);
1278 mark_inode_dirty(inode);
1280 inode->i_blocks = ocfs2_inode_sector_count(inode);
1281 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1282 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1283 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1284 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1286 ret = ocfs2_journal_dirty(handle, di_bh);
1291 ocfs2_commit_trans(osb, handle);
1294 ocfs2_data_unlock(inode, 1);
1297 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1298 ocfs2_meta_unlock(inode, 1);
1303 ocfs2_free_alloc_context(data_ac);
1305 ocfs2_free_alloc_context(meta_ac);
1307 return written ? written : ret;
1310 const struct address_space_operations ocfs2_aops = {
1311 .readpage = ocfs2_readpage,
1312 .writepage = ocfs2_writepage,
1314 .sync_page = block_sync_page,
1315 .direct_IO = ocfs2_direct_IO,
1316 .invalidatepage = ocfs2_invalidatepage,
1317 .releasepage = ocfs2_releasepage,
1318 .migratepage = buffer_migrate_page,