2 * Procedures for creating, accessing and interpreting the device tree.
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
10 * Adapted for sparc64 by David S. Miller davem@davemloft.net
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/string.h>
22 #include <linux/bootmem.h>
23 #include <linux/module.h>
26 #include <asm/of_device.h>
27 #include <asm/oplib.h>
32 static struct device_node *allnodes;
34 /* use when traversing tree through the allnext, child, sibling,
35 * or parent members of struct device_node.
37 static DEFINE_RWLOCK(devtree_lock);
39 int of_device_is_compatible(const struct device_node *device,
45 cp = of_get_property(device, "compatible", &cplen);
49 if (strncmp(cp, compat, strlen(compat)) == 0)
58 EXPORT_SYMBOL(of_device_is_compatible);
60 struct device_node *of_get_parent(const struct device_node *node)
62 struct device_node *np;
71 EXPORT_SYMBOL(of_get_parent);
73 struct device_node *of_get_next_child(const struct device_node *node,
74 struct device_node *prev)
76 struct device_node *next;
78 next = prev ? prev->sibling : node->child;
79 for (; next != 0; next = next->sibling) {
85 EXPORT_SYMBOL(of_get_next_child);
87 struct device_node *of_find_node_by_path(const char *path)
89 struct device_node *np = allnodes;
91 for (; np != 0; np = np->allnext) {
92 if (np->full_name != 0 && strcmp(np->full_name, path) == 0)
98 EXPORT_SYMBOL(of_find_node_by_path);
100 struct device_node *of_find_node_by_phandle(phandle handle)
102 struct device_node *np;
104 for (np = allnodes; np != 0; np = np->allnext)
105 if (np->node == handle)
110 EXPORT_SYMBOL(of_find_node_by_phandle);
112 struct device_node *of_find_node_by_name(struct device_node *from,
115 struct device_node *np;
117 np = from ? from->allnext : allnodes;
118 for (; np != NULL; np = np->allnext)
119 if (np->name != NULL && strcmp(np->name, name) == 0)
124 EXPORT_SYMBOL(of_find_node_by_name);
126 struct device_node *of_find_node_by_type(struct device_node *from,
129 struct device_node *np;
131 np = from ? from->allnext : allnodes;
132 for (; np != 0; np = np->allnext)
133 if (np->type != 0 && strcmp(np->type, type) == 0)
138 EXPORT_SYMBOL(of_find_node_by_type);
140 struct device_node *of_find_compatible_node(struct device_node *from,
141 const char *type, const char *compatible)
143 struct device_node *np;
145 np = from ? from->allnext : allnodes;
146 for (; np != 0; np = np->allnext) {
148 && !(np->type != 0 && strcmp(np->type, type) == 0))
150 if (of_device_is_compatible(np, compatible))
156 EXPORT_SYMBOL(of_find_compatible_node);
158 struct property *of_find_property(const struct device_node *np,
164 for (pp = np->properties; pp != 0; pp = pp->next) {
165 if (strcasecmp(pp->name, name) == 0) {
173 EXPORT_SYMBOL(of_find_property);
176 * Find a property with a given name for a given node
177 * and return the value.
179 const void *of_get_property(const struct device_node *np, const char *name,
182 struct property *pp = of_find_property(np,name,lenp);
183 return pp ? pp->value : NULL;
185 EXPORT_SYMBOL(of_get_property);
187 int of_getintprop_default(struct device_node *np, const char *name, int def)
189 struct property *prop;
192 prop = of_find_property(np, name, &len);
193 if (!prop || len != 4)
196 return *(int *) prop->value;
198 EXPORT_SYMBOL(of_getintprop_default);
200 int of_n_addr_cells(struct device_node *np)
206 ip = of_get_property(np, "#address-cells", NULL);
209 } while (np->parent);
210 /* No #address-cells property for the root node, default to 2 */
213 EXPORT_SYMBOL(of_n_addr_cells);
215 int of_n_size_cells(struct device_node *np)
221 ip = of_get_property(np, "#size-cells", NULL);
224 } while (np->parent);
225 /* No #size-cells property for the root node, default to 1 */
228 EXPORT_SYMBOL(of_n_size_cells);
230 int of_set_property(struct device_node *dp, const char *name, void *val, int len)
232 struct property **prevp;
236 new_val = kmalloc(len, GFP_KERNEL);
240 memcpy(new_val, val, len);
244 write_lock(&devtree_lock);
245 prevp = &dp->properties;
247 struct property *prop = *prevp;
249 if (!strcasecmp(prop->name, name)) {
250 void *old_val = prop->value;
253 ret = prom_setprop(dp->node, name, val, len);
256 prop->value = new_val;
259 if (OF_IS_DYNAMIC(prop))
262 OF_MARK_DYNAMIC(prop);
268 prevp = &(*prevp)->next;
270 write_unlock(&devtree_lock);
272 /* XXX Upate procfs if necessary... */
276 EXPORT_SYMBOL(of_set_property);
278 static unsigned int prom_early_allocated;
280 static void * __init prom_early_alloc(unsigned long size)
284 ret = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
286 memset(ret, 0, size);
288 prom_early_allocated += size;
294 /* PSYCHO interrupt mapping support. */
295 #define PSYCHO_IMAP_A_SLOT0 0x0c00UL
296 #define PSYCHO_IMAP_B_SLOT0 0x0c20UL
297 static unsigned long psycho_pcislot_imap_offset(unsigned long ino)
299 unsigned int bus = (ino & 0x10) >> 4;
300 unsigned int slot = (ino & 0x0c) >> 2;
303 return PSYCHO_IMAP_A_SLOT0 + (slot * 8);
305 return PSYCHO_IMAP_B_SLOT0 + (slot * 8);
308 #define PSYCHO_IMAP_SCSI 0x1000UL
309 #define PSYCHO_IMAP_ETH 0x1008UL
310 #define PSYCHO_IMAP_BPP 0x1010UL
311 #define PSYCHO_IMAP_AU_REC 0x1018UL
312 #define PSYCHO_IMAP_AU_PLAY 0x1020UL
313 #define PSYCHO_IMAP_PFAIL 0x1028UL
314 #define PSYCHO_IMAP_KMS 0x1030UL
315 #define PSYCHO_IMAP_FLPY 0x1038UL
316 #define PSYCHO_IMAP_SHW 0x1040UL
317 #define PSYCHO_IMAP_KBD 0x1048UL
318 #define PSYCHO_IMAP_MS 0x1050UL
319 #define PSYCHO_IMAP_SER 0x1058UL
320 #define PSYCHO_IMAP_TIM0 0x1060UL
321 #define PSYCHO_IMAP_TIM1 0x1068UL
322 #define PSYCHO_IMAP_UE 0x1070UL
323 #define PSYCHO_IMAP_CE 0x1078UL
324 #define PSYCHO_IMAP_A_ERR 0x1080UL
325 #define PSYCHO_IMAP_B_ERR 0x1088UL
326 #define PSYCHO_IMAP_PMGMT 0x1090UL
327 #define PSYCHO_IMAP_GFX 0x1098UL
328 #define PSYCHO_IMAP_EUPA 0x10a0UL
330 static unsigned long __psycho_onboard_imap_off[] = {
331 /*0x20*/ PSYCHO_IMAP_SCSI,
332 /*0x21*/ PSYCHO_IMAP_ETH,
333 /*0x22*/ PSYCHO_IMAP_BPP,
334 /*0x23*/ PSYCHO_IMAP_AU_REC,
335 /*0x24*/ PSYCHO_IMAP_AU_PLAY,
336 /*0x25*/ PSYCHO_IMAP_PFAIL,
337 /*0x26*/ PSYCHO_IMAP_KMS,
338 /*0x27*/ PSYCHO_IMAP_FLPY,
339 /*0x28*/ PSYCHO_IMAP_SHW,
340 /*0x29*/ PSYCHO_IMAP_KBD,
341 /*0x2a*/ PSYCHO_IMAP_MS,
342 /*0x2b*/ PSYCHO_IMAP_SER,
343 /*0x2c*/ PSYCHO_IMAP_TIM0,
344 /*0x2d*/ PSYCHO_IMAP_TIM1,
345 /*0x2e*/ PSYCHO_IMAP_UE,
346 /*0x2f*/ PSYCHO_IMAP_CE,
347 /*0x30*/ PSYCHO_IMAP_A_ERR,
348 /*0x31*/ PSYCHO_IMAP_B_ERR,
349 /*0x32*/ PSYCHO_IMAP_PMGMT,
350 /*0x33*/ PSYCHO_IMAP_GFX,
351 /*0x34*/ PSYCHO_IMAP_EUPA,
353 #define PSYCHO_ONBOARD_IRQ_BASE 0x20
354 #define PSYCHO_ONBOARD_IRQ_LAST 0x34
355 #define psycho_onboard_imap_offset(__ino) \
356 __psycho_onboard_imap_off[(__ino) - PSYCHO_ONBOARD_IRQ_BASE]
358 #define PSYCHO_ICLR_A_SLOT0 0x1400UL
359 #define PSYCHO_ICLR_SCSI 0x1800UL
361 #define psycho_iclr_offset(ino) \
362 ((ino & 0x20) ? (PSYCHO_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \
363 (PSYCHO_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3)))
365 static unsigned int psycho_irq_build(struct device_node *dp,
369 unsigned long controller_regs = (unsigned long) _data;
370 unsigned long imap, iclr;
371 unsigned long imap_off, iclr_off;
375 if (ino < PSYCHO_ONBOARD_IRQ_BASE) {
377 imap_off = psycho_pcislot_imap_offset(ino);
380 if (ino > PSYCHO_ONBOARD_IRQ_LAST) {
381 prom_printf("psycho_irq_build: Wacky INO [%x]\n", ino);
384 imap_off = psycho_onboard_imap_offset(ino);
387 /* Now build the IRQ bucket. */
388 imap = controller_regs + imap_off;
390 iclr_off = psycho_iclr_offset(ino);
391 iclr = controller_regs + iclr_off;
393 if ((ino & 0x20) == 0)
394 inofixup = ino & 0x03;
396 return build_irq(inofixup, iclr, imap);
399 static void __init psycho_irq_trans_init(struct device_node *dp)
401 const struct linux_prom64_registers *regs;
403 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
404 dp->irq_trans->irq_build = psycho_irq_build;
406 regs = of_get_property(dp, "reg", NULL);
407 dp->irq_trans->data = (void *) regs[2].phys_addr;
410 #define sabre_read(__reg) \
412 __asm__ __volatile__("ldxa [%1] %2, %0" \
414 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
419 struct sabre_irq_data {
420 unsigned long controller_regs;
421 unsigned int pci_first_busno;
423 #define SABRE_CONFIGSPACE 0x001000000UL
424 #define SABRE_WRSYNC 0x1c20UL
426 #define SABRE_CONFIG_BASE(CONFIG_SPACE) \
427 (CONFIG_SPACE | (1UL << 24))
428 #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
429 (((unsigned long)(BUS) << 16) | \
430 ((unsigned long)(DEVFN) << 8) | \
431 ((unsigned long)(REG)))
433 /* When a device lives behind a bridge deeper in the PCI bus topology
434 * than APB, a special sequence must run to make sure all pending DMA
435 * transfers at the time of IRQ delivery are visible in the coherency
436 * domain by the cpu. This sequence is to perform a read on the far
437 * side of the non-APB bridge, then perform a read of Sabre's DMA
438 * write-sync register.
440 static void sabre_wsync_handler(unsigned int ino, void *_arg1, void *_arg2)
442 unsigned int phys_hi = (unsigned int) (unsigned long) _arg1;
443 struct sabre_irq_data *irq_data = _arg2;
444 unsigned long controller_regs = irq_data->controller_regs;
445 unsigned long sync_reg = controller_regs + SABRE_WRSYNC;
446 unsigned long config_space = controller_regs + SABRE_CONFIGSPACE;
447 unsigned int bus, devfn;
450 config_space = SABRE_CONFIG_BASE(config_space);
452 bus = (phys_hi >> 16) & 0xff;
453 devfn = (phys_hi >> 8) & 0xff;
455 config_space |= SABRE_CONFIG_ENCODE(bus, devfn, 0x00);
457 __asm__ __volatile__("membar #Sync\n\t"
458 "lduha [%1] %2, %0\n\t"
461 : "r" ((u16 *) config_space),
462 "i" (ASI_PHYS_BYPASS_EC_E_L)
465 sabre_read(sync_reg);
468 #define SABRE_IMAP_A_SLOT0 0x0c00UL
469 #define SABRE_IMAP_B_SLOT0 0x0c20UL
470 #define SABRE_IMAP_SCSI 0x1000UL
471 #define SABRE_IMAP_ETH 0x1008UL
472 #define SABRE_IMAP_BPP 0x1010UL
473 #define SABRE_IMAP_AU_REC 0x1018UL
474 #define SABRE_IMAP_AU_PLAY 0x1020UL
475 #define SABRE_IMAP_PFAIL 0x1028UL
476 #define SABRE_IMAP_KMS 0x1030UL
477 #define SABRE_IMAP_FLPY 0x1038UL
478 #define SABRE_IMAP_SHW 0x1040UL
479 #define SABRE_IMAP_KBD 0x1048UL
480 #define SABRE_IMAP_MS 0x1050UL
481 #define SABRE_IMAP_SER 0x1058UL
482 #define SABRE_IMAP_UE 0x1070UL
483 #define SABRE_IMAP_CE 0x1078UL
484 #define SABRE_IMAP_PCIERR 0x1080UL
485 #define SABRE_IMAP_GFX 0x1098UL
486 #define SABRE_IMAP_EUPA 0x10a0UL
487 #define SABRE_ICLR_A_SLOT0 0x1400UL
488 #define SABRE_ICLR_B_SLOT0 0x1480UL
489 #define SABRE_ICLR_SCSI 0x1800UL
490 #define SABRE_ICLR_ETH 0x1808UL
491 #define SABRE_ICLR_BPP 0x1810UL
492 #define SABRE_ICLR_AU_REC 0x1818UL
493 #define SABRE_ICLR_AU_PLAY 0x1820UL
494 #define SABRE_ICLR_PFAIL 0x1828UL
495 #define SABRE_ICLR_KMS 0x1830UL
496 #define SABRE_ICLR_FLPY 0x1838UL
497 #define SABRE_ICLR_SHW 0x1840UL
498 #define SABRE_ICLR_KBD 0x1848UL
499 #define SABRE_ICLR_MS 0x1850UL
500 #define SABRE_ICLR_SER 0x1858UL
501 #define SABRE_ICLR_UE 0x1870UL
502 #define SABRE_ICLR_CE 0x1878UL
503 #define SABRE_ICLR_PCIERR 0x1880UL
505 static unsigned long sabre_pcislot_imap_offset(unsigned long ino)
507 unsigned int bus = (ino & 0x10) >> 4;
508 unsigned int slot = (ino & 0x0c) >> 2;
511 return SABRE_IMAP_A_SLOT0 + (slot * 8);
513 return SABRE_IMAP_B_SLOT0 + (slot * 8);
516 static unsigned long __sabre_onboard_imap_off[] = {
517 /*0x20*/ SABRE_IMAP_SCSI,
518 /*0x21*/ SABRE_IMAP_ETH,
519 /*0x22*/ SABRE_IMAP_BPP,
520 /*0x23*/ SABRE_IMAP_AU_REC,
521 /*0x24*/ SABRE_IMAP_AU_PLAY,
522 /*0x25*/ SABRE_IMAP_PFAIL,
523 /*0x26*/ SABRE_IMAP_KMS,
524 /*0x27*/ SABRE_IMAP_FLPY,
525 /*0x28*/ SABRE_IMAP_SHW,
526 /*0x29*/ SABRE_IMAP_KBD,
527 /*0x2a*/ SABRE_IMAP_MS,
528 /*0x2b*/ SABRE_IMAP_SER,
529 /*0x2c*/ 0 /* reserved */,
530 /*0x2d*/ 0 /* reserved */,
531 /*0x2e*/ SABRE_IMAP_UE,
532 /*0x2f*/ SABRE_IMAP_CE,
533 /*0x30*/ SABRE_IMAP_PCIERR,
534 /*0x31*/ 0 /* reserved */,
535 /*0x32*/ 0 /* reserved */,
536 /*0x33*/ SABRE_IMAP_GFX,
537 /*0x34*/ SABRE_IMAP_EUPA,
539 #define SABRE_ONBOARD_IRQ_BASE 0x20
540 #define SABRE_ONBOARD_IRQ_LAST 0x30
541 #define sabre_onboard_imap_offset(__ino) \
542 __sabre_onboard_imap_off[(__ino) - SABRE_ONBOARD_IRQ_BASE]
544 #define sabre_iclr_offset(ino) \
545 ((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \
546 (SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3)))
548 static int sabre_device_needs_wsync(struct device_node *dp)
550 struct device_node *parent = dp->parent;
551 const char *parent_model, *parent_compat;
553 /* This traversal up towards the root is meant to
556 * 1) non-PCI bus sitting under PCI, such as 'ebus'
557 * 2) the PCI controller interrupts themselves, which
558 * will use the sabre_irq_build but do not need
559 * the DMA synchronization handling
562 if (!strcmp(parent->type, "pci"))
564 parent = parent->parent;
570 parent_model = of_get_property(parent,
573 (!strcmp(parent_model, "SUNW,sabre") ||
574 !strcmp(parent_model, "SUNW,simba")))
577 parent_compat = of_get_property(parent,
580 (!strcmp(parent_compat, "pci108e,a000") ||
581 !strcmp(parent_compat, "pci108e,a001")))
587 static unsigned int sabre_irq_build(struct device_node *dp,
591 struct sabre_irq_data *irq_data = _data;
592 unsigned long controller_regs = irq_data->controller_regs;
593 const struct linux_prom_pci_registers *regs;
594 unsigned long imap, iclr;
595 unsigned long imap_off, iclr_off;
600 if (ino < SABRE_ONBOARD_IRQ_BASE) {
602 imap_off = sabre_pcislot_imap_offset(ino);
605 if (ino > SABRE_ONBOARD_IRQ_LAST) {
606 prom_printf("sabre_irq_build: Wacky INO [%x]\n", ino);
609 imap_off = sabre_onboard_imap_offset(ino);
612 /* Now build the IRQ bucket. */
613 imap = controller_regs + imap_off;
615 iclr_off = sabre_iclr_offset(ino);
616 iclr = controller_regs + iclr_off;
618 if ((ino & 0x20) == 0)
619 inofixup = ino & 0x03;
621 virt_irq = build_irq(inofixup, iclr, imap);
623 /* If the parent device is a PCI<->PCI bridge other than
624 * APB, we have to install a pre-handler to ensure that
625 * all pending DMA is drained before the interrupt handler
628 regs = of_get_property(dp, "reg", NULL);
629 if (regs && sabre_device_needs_wsync(dp)) {
630 irq_install_pre_handler(virt_irq,
632 (void *) (long) regs->phys_hi,
639 static void __init sabre_irq_trans_init(struct device_node *dp)
641 const struct linux_prom64_registers *regs;
642 struct sabre_irq_data *irq_data;
645 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
646 dp->irq_trans->irq_build = sabre_irq_build;
648 irq_data = prom_early_alloc(sizeof(struct sabre_irq_data));
650 regs = of_get_property(dp, "reg", NULL);
651 irq_data->controller_regs = regs[0].phys_addr;
653 busrange = of_get_property(dp, "bus-range", NULL);
654 irq_data->pci_first_busno = busrange[0];
656 dp->irq_trans->data = irq_data;
659 /* SCHIZO interrupt mapping support. Unlike Psycho, for this controller the
660 * imap/iclr registers are per-PBM.
662 #define SCHIZO_IMAP_BASE 0x1000UL
663 #define SCHIZO_ICLR_BASE 0x1400UL
665 static unsigned long schizo_imap_offset(unsigned long ino)
667 return SCHIZO_IMAP_BASE + (ino * 8UL);
670 static unsigned long schizo_iclr_offset(unsigned long ino)
672 return SCHIZO_ICLR_BASE + (ino * 8UL);
675 static unsigned long schizo_ino_to_iclr(unsigned long pbm_regs,
679 return pbm_regs + schizo_iclr_offset(ino);
682 static unsigned long schizo_ino_to_imap(unsigned long pbm_regs,
685 return pbm_regs + schizo_imap_offset(ino);
688 #define schizo_read(__reg) \
690 __asm__ __volatile__("ldxa [%1] %2, %0" \
692 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
696 #define schizo_write(__reg, __val) \
697 __asm__ __volatile__("stxa %0, [%1] %2" \
699 : "r" (__val), "r" (__reg), \
700 "i" (ASI_PHYS_BYPASS_EC_E) \
703 static void tomatillo_wsync_handler(unsigned int ino, void *_arg1, void *_arg2)
705 unsigned long sync_reg = (unsigned long) _arg2;
706 u64 mask = 1UL << (ino & IMAP_INO);
710 schizo_write(sync_reg, mask);
715 val = schizo_read(sync_reg);
720 printk("tomatillo_wsync_handler: DMA won't sync [%lx:%lx]\n",
725 static unsigned char cacheline[64]
726 __attribute__ ((aligned (64)));
728 __asm__ __volatile__("rd %%fprs, %0\n\t"
730 "wr %1, 0x0, %%fprs\n\t"
731 "stda %%f0, [%5] %6\n\t"
732 "wr %0, 0x0, %%fprs\n\t"
734 : "=&r" (mask), "=&r" (val)
735 : "0" (mask), "1" (val),
736 "i" (FPRS_FEF), "r" (&cacheline[0]),
737 "i" (ASI_BLK_COMMIT_P));
741 struct schizo_irq_data {
742 unsigned long pbm_regs;
743 unsigned long sync_reg;
748 static unsigned int schizo_irq_build(struct device_node *dp,
752 struct schizo_irq_data *irq_data = _data;
753 unsigned long pbm_regs = irq_data->pbm_regs;
754 unsigned long imap, iclr;
761 /* Now build the IRQ bucket. */
762 imap = schizo_ino_to_imap(pbm_regs, ino);
763 iclr = schizo_ino_to_iclr(pbm_regs, ino);
765 /* On Schizo, no inofixup occurs. This is because each
766 * INO has it's own IMAP register. On Psycho and Sabre
767 * there is only one IMAP register for each PCI slot even
768 * though four different INOs can be generated by each
771 * But, for JBUS variants (essentially, Tomatillo), we have
772 * to fixup the lowest bit of the interrupt group number.
776 is_tomatillo = (irq_data->sync_reg != 0UL);
779 if (irq_data->portid & 1)
780 ign_fixup = (1 << 6);
783 virt_irq = build_irq(ign_fixup, iclr, imap);
786 irq_install_pre_handler(virt_irq,
787 tomatillo_wsync_handler,
788 ((irq_data->chip_version <= 4) ?
789 (void *) 1 : (void *) 0),
790 (void *) irq_data->sync_reg);
796 static void __init __schizo_irq_trans_init(struct device_node *dp,
799 const struct linux_prom64_registers *regs;
800 struct schizo_irq_data *irq_data;
802 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
803 dp->irq_trans->irq_build = schizo_irq_build;
805 irq_data = prom_early_alloc(sizeof(struct schizo_irq_data));
807 regs = of_get_property(dp, "reg", NULL);
808 dp->irq_trans->data = irq_data;
810 irq_data->pbm_regs = regs[0].phys_addr;
812 irq_data->sync_reg = regs[3].phys_addr + 0x1a18UL;
814 irq_data->sync_reg = 0UL;
815 irq_data->portid = of_getintprop_default(dp, "portid", 0);
816 irq_data->chip_version = of_getintprop_default(dp, "version#", 0);
819 static void __init schizo_irq_trans_init(struct device_node *dp)
821 __schizo_irq_trans_init(dp, 0);
824 static void __init tomatillo_irq_trans_init(struct device_node *dp)
826 __schizo_irq_trans_init(dp, 1);
829 static unsigned int pci_sun4v_irq_build(struct device_node *dp,
833 u32 devhandle = (u32) (unsigned long) _data;
835 return sun4v_build_irq(devhandle, devino);
838 static void __init pci_sun4v_irq_trans_init(struct device_node *dp)
840 const struct linux_prom64_registers *regs;
842 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
843 dp->irq_trans->irq_build = pci_sun4v_irq_build;
845 regs = of_get_property(dp, "reg", NULL);
846 dp->irq_trans->data = (void *) (unsigned long)
847 ((regs->phys_addr >> 32UL) & 0x0fffffff);
850 struct fire_irq_data {
851 unsigned long pbm_regs;
855 #define FIRE_IMAP_BASE 0x001000
856 #define FIRE_ICLR_BASE 0x001400
858 static unsigned long fire_imap_offset(unsigned long ino)
860 return FIRE_IMAP_BASE + (ino * 8UL);
863 static unsigned long fire_iclr_offset(unsigned long ino)
865 return FIRE_ICLR_BASE + (ino * 8UL);
868 static unsigned long fire_ino_to_iclr(unsigned long pbm_regs,
871 return pbm_regs + fire_iclr_offset(ino);
874 static unsigned long fire_ino_to_imap(unsigned long pbm_regs,
877 return pbm_regs + fire_imap_offset(ino);
880 static unsigned int fire_irq_build(struct device_node *dp,
884 struct fire_irq_data *irq_data = _data;
885 unsigned long pbm_regs = irq_data->pbm_regs;
886 unsigned long imap, iclr;
887 unsigned long int_ctrlr;
891 /* Now build the IRQ bucket. */
892 imap = fire_ino_to_imap(pbm_regs, ino);
893 iclr = fire_ino_to_iclr(pbm_regs, ino);
895 /* Set the interrupt controller number. */
897 upa_writeq(int_ctrlr, imap);
899 /* The interrupt map registers do not have an INO field
900 * like other chips do. They return zero in the INO
901 * field, and the interrupt controller number is controlled
902 * in bits 6 to 9. So in order for build_irq() to get
903 * the INO right we pass it in as part of the fixup
904 * which will get added to the map register zero value
905 * read by build_irq().
907 ino |= (irq_data->portid << 6);
909 return build_irq(ino, iclr, imap);
912 static void __init fire_irq_trans_init(struct device_node *dp)
914 const struct linux_prom64_registers *regs;
915 struct fire_irq_data *irq_data;
917 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
918 dp->irq_trans->irq_build = fire_irq_build;
920 irq_data = prom_early_alloc(sizeof(struct fire_irq_data));
922 regs = of_get_property(dp, "reg", NULL);
923 dp->irq_trans->data = irq_data;
925 irq_data->pbm_regs = regs[0].phys_addr;
926 irq_data->portid = of_getintprop_default(dp, "portid", 0);
928 #endif /* CONFIG_PCI */
931 /* INO number to IMAP register offset for SYSIO external IRQ's.
932 * This should conform to both Sunfire/Wildfire server and Fusion
935 #define SYSIO_IMAP_SLOT0 0x2c04UL
936 #define SYSIO_IMAP_SLOT1 0x2c0cUL
937 #define SYSIO_IMAP_SLOT2 0x2c14UL
938 #define SYSIO_IMAP_SLOT3 0x2c1cUL
939 #define SYSIO_IMAP_SCSI 0x3004UL
940 #define SYSIO_IMAP_ETH 0x300cUL
941 #define SYSIO_IMAP_BPP 0x3014UL
942 #define SYSIO_IMAP_AUDIO 0x301cUL
943 #define SYSIO_IMAP_PFAIL 0x3024UL
944 #define SYSIO_IMAP_KMS 0x302cUL
945 #define SYSIO_IMAP_FLPY 0x3034UL
946 #define SYSIO_IMAP_SHW 0x303cUL
947 #define SYSIO_IMAP_KBD 0x3044UL
948 #define SYSIO_IMAP_MS 0x304cUL
949 #define SYSIO_IMAP_SER 0x3054UL
950 #define SYSIO_IMAP_TIM0 0x3064UL
951 #define SYSIO_IMAP_TIM1 0x306cUL
952 #define SYSIO_IMAP_UE 0x3074UL
953 #define SYSIO_IMAP_CE 0x307cUL
954 #define SYSIO_IMAP_SBERR 0x3084UL
955 #define SYSIO_IMAP_PMGMT 0x308cUL
956 #define SYSIO_IMAP_GFX 0x3094UL
957 #define SYSIO_IMAP_EUPA 0x309cUL
959 #define bogon ((unsigned long) -1)
960 static unsigned long sysio_irq_offsets[] = {
961 /* SBUS Slot 0 --> 3, level 1 --> 7 */
962 SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0,
963 SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0,
964 SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1,
965 SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1,
966 SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2,
967 SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2,
968 SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3,
969 SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3,
971 /* Onboard devices (not relevant/used on SunFire). */
1002 #define NUM_SYSIO_OFFSETS ARRAY_SIZE(sysio_irq_offsets)
1004 /* Convert Interrupt Mapping register pointer to associated
1005 * Interrupt Clear register pointer, SYSIO specific version.
1007 #define SYSIO_ICLR_UNUSED0 0x3400UL
1008 #define SYSIO_ICLR_SLOT0 0x340cUL
1009 #define SYSIO_ICLR_SLOT1 0x344cUL
1010 #define SYSIO_ICLR_SLOT2 0x348cUL
1011 #define SYSIO_ICLR_SLOT3 0x34ccUL
1012 static unsigned long sysio_imap_to_iclr(unsigned long imap)
1014 unsigned long diff = SYSIO_ICLR_UNUSED0 - SYSIO_IMAP_SLOT0;
1018 static unsigned int sbus_of_build_irq(struct device_node *dp,
1022 unsigned long reg_base = (unsigned long) _data;
1023 const struct linux_prom_registers *regs;
1024 unsigned long imap, iclr;
1030 regs = of_get_property(dp, "reg", NULL);
1032 sbus_slot = regs->which_io;
1035 ino += (sbus_slot * 8);
1037 imap = sysio_irq_offsets[ino];
1038 if (imap == ((unsigned long)-1)) {
1039 prom_printf("get_irq_translations: Bad SYSIO INO[%x]\n",
1045 /* SYSIO inconsistency. For external SLOTS, we have to select
1046 * the right ICLR register based upon the lower SBUS irq level
1050 iclr = sysio_imap_to_iclr(imap);
1052 sbus_level = ino & 0x7;
1056 iclr = reg_base + SYSIO_ICLR_SLOT0;
1059 iclr = reg_base + SYSIO_ICLR_SLOT1;
1062 iclr = reg_base + SYSIO_ICLR_SLOT2;
1066 iclr = reg_base + SYSIO_ICLR_SLOT3;
1070 iclr += ((unsigned long)sbus_level - 1UL) * 8UL;
1072 return build_irq(sbus_level, iclr, imap);
1075 static void __init sbus_irq_trans_init(struct device_node *dp)
1077 const struct linux_prom64_registers *regs;
1079 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
1080 dp->irq_trans->irq_build = sbus_of_build_irq;
1082 regs = of_get_property(dp, "reg", NULL);
1083 dp->irq_trans->data = (void *) (unsigned long) regs->phys_addr;
1085 #endif /* CONFIG_SBUS */
1088 static unsigned int central_build_irq(struct device_node *dp,
1092 struct device_node *central_dp = _data;
1093 struct of_device *central_op = of_find_device_by_node(central_dp);
1094 struct resource *res;
1095 unsigned long imap, iclr;
1098 if (!strcmp(dp->name, "eeprom")) {
1099 res = ¢ral_op->resource[5];
1100 } else if (!strcmp(dp->name, "zs")) {
1101 res = ¢ral_op->resource[4];
1102 } else if (!strcmp(dp->name, "clock-board")) {
1103 res = ¢ral_op->resource[3];
1108 imap = res->start + 0x00UL;
1109 iclr = res->start + 0x10UL;
1111 /* Set the INO state to idle, and disable. */
1112 upa_writel(0, iclr);
1115 tmp = upa_readl(imap);
1117 upa_writel(tmp, imap);
1119 return build_irq(0, iclr, imap);
1122 static void __init central_irq_trans_init(struct device_node *dp)
1124 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
1125 dp->irq_trans->irq_build = central_build_irq;
1127 dp->irq_trans->data = dp;
1132 void (*init)(struct device_node *);
1136 static struct irq_trans __initdata pci_irq_trans_table[] = {
1137 { "SUNW,sabre", sabre_irq_trans_init },
1138 { "pci108e,a000", sabre_irq_trans_init },
1139 { "pci108e,a001", sabre_irq_trans_init },
1140 { "SUNW,psycho", psycho_irq_trans_init },
1141 { "pci108e,8000", psycho_irq_trans_init },
1142 { "SUNW,schizo", schizo_irq_trans_init },
1143 { "pci108e,8001", schizo_irq_trans_init },
1144 { "SUNW,schizo+", schizo_irq_trans_init },
1145 { "pci108e,8002", schizo_irq_trans_init },
1146 { "SUNW,tomatillo", tomatillo_irq_trans_init },
1147 { "pci108e,a801", tomatillo_irq_trans_init },
1148 { "SUNW,sun4v-pci", pci_sun4v_irq_trans_init },
1149 { "pciex108e,80f0", fire_irq_trans_init },
1153 static unsigned int sun4v_vdev_irq_build(struct device_node *dp,
1154 unsigned int devino,
1157 u32 devhandle = (u32) (unsigned long) _data;
1159 return sun4v_build_irq(devhandle, devino);
1162 static void __init sun4v_vdev_irq_trans_init(struct device_node *dp)
1164 const struct linux_prom64_registers *regs;
1166 dp->irq_trans = prom_early_alloc(sizeof(struct of_irq_controller));
1167 dp->irq_trans->irq_build = sun4v_vdev_irq_build;
1169 regs = of_get_property(dp, "reg", NULL);
1170 dp->irq_trans->data = (void *) (unsigned long)
1171 ((regs->phys_addr >> 32UL) & 0x0fffffff);
1174 static void __init irq_trans_init(struct device_node *dp)
1182 model = of_get_property(dp, "model", NULL);
1184 model = of_get_property(dp, "compatible", NULL);
1186 for (i = 0; i < ARRAY_SIZE(pci_irq_trans_table); i++) {
1187 struct irq_trans *t = &pci_irq_trans_table[i];
1189 if (!strcmp(model, t->name))
1195 if (!strcmp(dp->name, "sbus") ||
1196 !strcmp(dp->name, "sbi"))
1197 return sbus_irq_trans_init(dp);
1199 if (!strcmp(dp->name, "fhc") &&
1200 !strcmp(dp->parent->name, "central"))
1201 return central_irq_trans_init(dp);
1202 if (!strcmp(dp->name, "virtual-devices"))
1203 return sun4v_vdev_irq_trans_init(dp);
1206 static int is_root_node(const struct device_node *dp)
1211 return (dp->parent == NULL);
1214 /* The following routines deal with the black magic of fully naming a
1217 * Certain well known named nodes are just the simple name string.
1219 * Actual devices have an address specifier appended to the base name
1220 * string, like this "foo@addr". The "addr" can be in any number of
1221 * formats, and the platform plus the type of the node determine the
1222 * format and how it is constructed.
1224 * For children of the ROOT node, the naming convention is fixed and
1225 * determined by whether this is a sun4u or sun4v system.
1227 * For children of other nodes, it is bus type specific. So
1228 * we walk up the tree until we discover a "device_type" property
1229 * we recognize and we go from there.
1231 * As an example, the boot device on my workstation has a full path:
1233 * /pci@1e,600000/ide@d/disk@0,0:c
1235 static void __init sun4v_path_component(struct device_node *dp, char *tmp_buf)
1237 struct linux_prom64_registers *regs;
1238 struct property *rprop;
1239 u32 high_bits, low_bits, type;
1241 rprop = of_find_property(dp, "reg", NULL);
1245 regs = rprop->value;
1246 if (!is_root_node(dp->parent)) {
1247 sprintf(tmp_buf, "%s@%x,%x",
1249 (unsigned int) (regs->phys_addr >> 32UL),
1250 (unsigned int) (regs->phys_addr & 0xffffffffUL));
1254 type = regs->phys_addr >> 60UL;
1255 high_bits = (regs->phys_addr >> 32UL) & 0x0fffffffUL;
1256 low_bits = (regs->phys_addr & 0xffffffffUL);
1258 if (type == 0 || type == 8) {
1259 const char *prefix = (type == 0) ? "m" : "i";
1262 sprintf(tmp_buf, "%s@%s%x,%x",
1264 high_bits, low_bits);
1266 sprintf(tmp_buf, "%s@%s%x",
1270 } else if (type == 12) {
1271 sprintf(tmp_buf, "%s@%x",
1272 dp->name, high_bits);
1276 static void __init sun4u_path_component(struct device_node *dp, char *tmp_buf)
1278 struct linux_prom64_registers *regs;
1279 struct property *prop;
1281 prop = of_find_property(dp, "reg", NULL);
1286 if (!is_root_node(dp->parent)) {
1287 sprintf(tmp_buf, "%s@%x,%x",
1289 (unsigned int) (regs->phys_addr >> 32UL),
1290 (unsigned int) (regs->phys_addr & 0xffffffffUL));
1294 prop = of_find_property(dp, "upa-portid", NULL);
1296 prop = of_find_property(dp, "portid", NULL);
1298 unsigned long mask = 0xffffffffUL;
1300 if (tlb_type >= cheetah)
1303 sprintf(tmp_buf, "%s@%x,%x",
1305 *(u32 *)prop->value,
1306 (unsigned int) (regs->phys_addr & mask));
1310 /* "name@slot,offset" */
1311 static void __init sbus_path_component(struct device_node *dp, char *tmp_buf)
1313 struct linux_prom_registers *regs;
1314 struct property *prop;
1316 prop = of_find_property(dp, "reg", NULL);
1321 sprintf(tmp_buf, "%s@%x,%x",
1327 /* "name@devnum[,func]" */
1328 static void __init pci_path_component(struct device_node *dp, char *tmp_buf)
1330 struct linux_prom_pci_registers *regs;
1331 struct property *prop;
1334 prop = of_find_property(dp, "reg", NULL);
1339 devfn = (regs->phys_hi >> 8) & 0xff;
1341 sprintf(tmp_buf, "%s@%x,%x",
1346 sprintf(tmp_buf, "%s@%x",
1352 /* "name@UPA_PORTID,offset" */
1353 static void __init upa_path_component(struct device_node *dp, char *tmp_buf)
1355 struct linux_prom64_registers *regs;
1356 struct property *prop;
1358 prop = of_find_property(dp, "reg", NULL);
1364 prop = of_find_property(dp, "upa-portid", NULL);
1368 sprintf(tmp_buf, "%s@%x,%x",
1370 *(u32 *) prop->value,
1371 (unsigned int) (regs->phys_addr & 0xffffffffUL));
1375 static void __init vdev_path_component(struct device_node *dp, char *tmp_buf)
1377 struct property *prop;
1380 prop = of_find_property(dp, "reg", NULL);
1386 sprintf(tmp_buf, "%s@%x", dp->name, *regs);
1389 /* "name@addrhi,addrlo" */
1390 static void __init ebus_path_component(struct device_node *dp, char *tmp_buf)
1392 struct linux_prom64_registers *regs;
1393 struct property *prop;
1395 prop = of_find_property(dp, "reg", NULL);
1401 sprintf(tmp_buf, "%s@%x,%x",
1403 (unsigned int) (regs->phys_addr >> 32UL),
1404 (unsigned int) (regs->phys_addr & 0xffffffffUL));
1407 /* "name@bus,addr" */
1408 static void __init i2c_path_component(struct device_node *dp, char *tmp_buf)
1410 struct property *prop;
1413 prop = of_find_property(dp, "reg", NULL);
1419 /* This actually isn't right... should look at the #address-cells
1420 * property of the i2c bus node etc. etc.
1422 sprintf(tmp_buf, "%s@%x,%x",
1423 dp->name, regs[0], regs[1]);
1426 /* "name@reg0[,reg1]" */
1427 static void __init usb_path_component(struct device_node *dp, char *tmp_buf)
1429 struct property *prop;
1432 prop = of_find_property(dp, "reg", NULL);
1438 if (prop->length == sizeof(u32) || regs[1] == 1) {
1439 sprintf(tmp_buf, "%s@%x",
1442 sprintf(tmp_buf, "%s@%x,%x",
1443 dp->name, regs[0], regs[1]);
1447 /* "name@reg0reg1[,reg2reg3]" */
1448 static void __init ieee1394_path_component(struct device_node *dp, char *tmp_buf)
1450 struct property *prop;
1453 prop = of_find_property(dp, "reg", NULL);
1459 if (regs[2] || regs[3]) {
1460 sprintf(tmp_buf, "%s@%08x%08x,%04x%08x",
1461 dp->name, regs[0], regs[1], regs[2], regs[3]);
1463 sprintf(tmp_buf, "%s@%08x%08x",
1464 dp->name, regs[0], regs[1]);
1468 static void __init __build_path_component(struct device_node *dp, char *tmp_buf)
1470 struct device_node *parent = dp->parent;
1472 if (parent != NULL) {
1473 if (!strcmp(parent->type, "pci") ||
1474 !strcmp(parent->type, "pciex"))
1475 return pci_path_component(dp, tmp_buf);
1476 if (!strcmp(parent->type, "sbus"))
1477 return sbus_path_component(dp, tmp_buf);
1478 if (!strcmp(parent->type, "upa"))
1479 return upa_path_component(dp, tmp_buf);
1480 if (!strcmp(parent->type, "ebus"))
1481 return ebus_path_component(dp, tmp_buf);
1482 if (!strcmp(parent->name, "usb") ||
1483 !strcmp(parent->name, "hub"))
1484 return usb_path_component(dp, tmp_buf);
1485 if (!strcmp(parent->type, "i2c"))
1486 return i2c_path_component(dp, tmp_buf);
1487 if (!strcmp(parent->type, "firewire"))
1488 return ieee1394_path_component(dp, tmp_buf);
1489 if (!strcmp(parent->type, "virtual-devices"))
1490 return vdev_path_component(dp, tmp_buf);
1492 /* "isa" is handled with platform naming */
1495 /* Use platform naming convention. */
1496 if (tlb_type == hypervisor)
1497 return sun4v_path_component(dp, tmp_buf);
1499 return sun4u_path_component(dp, tmp_buf);
1502 static char * __init build_path_component(struct device_node *dp)
1504 char tmp_buf[64], *n;
1507 __build_path_component(dp, tmp_buf);
1508 if (tmp_buf[0] == '\0')
1509 strcpy(tmp_buf, dp->name);
1511 n = prom_early_alloc(strlen(tmp_buf) + 1);
1517 static char * __init build_full_name(struct device_node *dp)
1519 int len, ourlen, plen;
1522 plen = strlen(dp->parent->full_name);
1523 ourlen = strlen(dp->path_component_name);
1524 len = ourlen + plen + 2;
1526 n = prom_early_alloc(len);
1527 strcpy(n, dp->parent->full_name);
1528 if (!is_root_node(dp->parent)) {
1529 strcpy(n + plen, "/");
1532 strcpy(n + plen, dp->path_component_name);
1537 static unsigned int unique_id;
1539 static struct property * __init build_one_prop(phandle node, char *prev, char *special_name, void *special_val, int special_len)
1541 static struct property *tmp = NULL;
1546 memset(p, 0, sizeof(*p) + 32);
1549 p = prom_early_alloc(sizeof(struct property) + 32);
1550 p->unique_id = unique_id++;
1553 p->name = (char *) (p + 1);
1555 strcpy(p->name, special_name);
1556 p->length = special_len;
1557 p->value = prom_early_alloc(special_len);
1558 memcpy(p->value, special_val, special_len);
1561 prom_firstprop(node, p->name);
1563 prom_nextprop(node, prev, p->name);
1565 if (strlen(p->name) == 0) {
1569 p->length = prom_getproplen(node, p->name);
1570 if (p->length <= 0) {
1573 p->value = prom_early_alloc(p->length + 1);
1574 prom_getproperty(node, p->name, p->value, p->length);
1575 ((unsigned char *)p->value)[p->length] = '\0';
1581 static struct property * __init build_prop_list(phandle node)
1583 struct property *head, *tail;
1585 head = tail = build_one_prop(node, NULL,
1586 ".node", &node, sizeof(node));
1588 tail->next = build_one_prop(node, NULL, NULL, NULL, 0);
1591 tail->next = build_one_prop(node, tail->name,
1599 static char * __init get_one_property(phandle node, const char *name)
1601 char *buf = "<NULL>";
1604 len = prom_getproplen(node, name);
1606 buf = prom_early_alloc(len);
1607 prom_getproperty(node, name, buf, len);
1613 static struct device_node * __init create_node(phandle node, struct device_node *parent)
1615 struct device_node *dp;
1620 dp = prom_early_alloc(sizeof(*dp));
1621 dp->unique_id = unique_id++;
1622 dp->parent = parent;
1624 kref_init(&dp->kref);
1626 dp->name = get_one_property(node, "name");
1627 dp->type = get_one_property(node, "device_type");
1630 dp->properties = build_prop_list(node);
1637 static struct device_node * __init build_tree(struct device_node *parent, phandle node, struct device_node ***nextp)
1639 struct device_node *ret = NULL, *prev_sibling = NULL;
1640 struct device_node *dp;
1643 dp = create_node(node, parent);
1648 prev_sibling->sibling = dp;
1655 *nextp = &dp->allnext;
1657 dp->path_component_name = build_path_component(dp);
1658 dp->full_name = build_full_name(dp);
1660 dp->child = build_tree(dp, prom_getchild(node), nextp);
1662 node = prom_getsibling(node);
1668 void __init prom_build_devicetree(void)
1670 struct device_node **nextp;
1672 allnodes = create_node(prom_root_node, NULL);
1673 allnodes->path_component_name = "";
1674 allnodes->full_name = "/";
1676 nextp = &allnodes->allnext;
1677 allnodes->child = build_tree(allnodes,
1678 prom_getchild(allnodes->node),
1680 printk("PROM: Built device tree with %u bytes of memory.\n",
1681 prom_early_allocated);