1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
3 Written 1998-2000 by Donald Becker.
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
16 The information below comes from Donald Becker's original driver:
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
29 #define DRV_NAME "starfire"
30 #define DRV_VERSION "2.1"
31 #define DRV_RELDATE "July 6, 2008"
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/pci.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/init.h>
39 #include <linux/delay.h>
40 #include <linux/crc32.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
45 #include <asm/processor.h> /* Processor type for cache alignment. */
46 #include <asm/uaccess.h>
49 #include "starfire_firmware.h"
51 * The current frame processor firmware fails to checksum a fragment
52 * of length 1. If and when this is fixed, the #define below can be removed.
54 #define HAS_BROKEN_FIRMWARE
57 * If using the broken firmware, data must be padded to the next 32-bit boundary.
59 #ifdef HAS_BROKEN_FIRMWARE
60 #define PADDING_MASK 3
64 * Define this if using the driver with the zero-copy patch
68 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
72 /* The user-configurable values.
73 These may be modified when a driver module is loaded.*/
75 /* Used for tuning interrupt latency vs. overhead. */
76 static int intr_latency;
77 static int small_frames;
79 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
80 static int max_interrupt_work = 20;
82 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
83 The Starfire has a 512 element hash table based on the Ethernet CRC. */
84 static const int multicast_filter_limit = 512;
85 /* Whether to do TCP/UDP checksums in hardware */
86 static int enable_hw_cksum = 1;
88 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
90 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
91 * Setting to > 1518 effectively disables this feature.
94 * The ia64 doesn't allow for unaligned loads even of integers being
95 * misaligned on a 2 byte boundary. Thus always force copying of
96 * packets as the starfire doesn't allow for misaligned DMAs ;-(
99 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
100 * at least, having unaligned frames leads to a rather serious performance
103 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
104 static int rx_copybreak = PKT_BUF_SZ;
106 static int rx_copybreak /* = 0 */;
109 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111 #define DMA_BURST_SIZE 64
113 #define DMA_BURST_SIZE 128
116 /* Used to pass the media type, etc.
117 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
118 The media type is usually passed in 'options[]'.
119 These variables are deprecated, use ethtool instead. -Ion
121 #define MAX_UNITS 8 /* More are supported, limit only on options */
122 static int options[MAX_UNITS] = {0, };
123 static int full_duplex[MAX_UNITS] = {0, };
125 /* Operational parameters that are set at compile time. */
127 /* The "native" ring sizes are either 256 or 2048.
128 However in some modes a descriptor may be marked to wrap the ring earlier.
130 #define RX_RING_SIZE 256
131 #define TX_RING_SIZE 32
132 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
133 #define DONE_Q_SIZE 1024
134 /* All queues must be aligned on a 256-byte boundary */
135 #define QUEUE_ALIGN 256
137 #if RX_RING_SIZE > 256
138 #define RX_Q_ENTRIES Rx2048QEntries
140 #define RX_Q_ENTRIES Rx256QEntries
143 /* Operational parameters that usually are not changed. */
144 /* Time in jiffies before concluding the transmitter is hung. */
145 #define TX_TIMEOUT (2 * HZ)
149 * We need a much better method to determine if dma_addr_t is 64-bit.
151 #if (defined(__i386__) && defined(CONFIG_HIGHMEM64G)) || defined(__x86_64__) || defined (__ia64__) || defined(__alpha__) || defined(__mips64__) || (defined(__mips__) && defined(CONFIG_HIGHMEM) && defined(CONFIG_64BIT_PHYS_ADDR))
152 /* 64-bit dma_addr_t */
153 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
154 #define netdrv_addr_t __le64
155 #define cpu_to_dma(x) cpu_to_le64(x)
156 #define dma_to_cpu(x) le64_to_cpu(x)
157 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
158 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
159 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
160 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
161 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
162 #else /* 32-bit dma_addr_t */
163 #define netdrv_addr_t __le32
164 #define cpu_to_dma(x) cpu_to_le32(x)
165 #define dma_to_cpu(x) le32_to_cpu(x)
166 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
167 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
168 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
169 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
170 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
173 #define skb_first_frag_len(skb) skb_headlen(skb)
174 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
176 /* These identify the driver base version and may not be removed. */
177 static char version[] =
178 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
179 KERN_INFO " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
181 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
182 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
183 MODULE_LICENSE("GPL");
184 MODULE_VERSION(DRV_VERSION);
186 module_param(max_interrupt_work, int, 0);
187 module_param(mtu, int, 0);
188 module_param(debug, int, 0);
189 module_param(rx_copybreak, int, 0);
190 module_param(intr_latency, int, 0);
191 module_param(small_frames, int, 0);
192 module_param_array(options, int, NULL, 0);
193 module_param_array(full_duplex, int, NULL, 0);
194 module_param(enable_hw_cksum, int, 0);
195 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
196 MODULE_PARM_DESC(mtu, "MTU (all boards)");
197 MODULE_PARM_DESC(debug, "Debug level (0-6)");
198 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
199 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
200 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
201 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
202 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
203 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
208 I. Board Compatibility
210 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
212 II. Board-specific settings
214 III. Driver operation
218 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
219 ring sizes are set fixed by the hardware, but may optionally be wrapped
220 earlier by the END bit in the descriptor.
221 This driver uses that hardware queue size for the Rx ring, where a large
222 number of entries has no ill effect beyond increases the potential backlog.
223 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
224 disables the queue layer priority ordering and we have no mechanism to
225 utilize the hardware two-level priority queue. When modifying the
226 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
229 IIIb/c. Transmit/Receive Structure
231 See the Adaptec manual for the many possible structures, and options for
232 each structure. There are far too many to document all of them here.
234 For transmit this driver uses type 0/1 transmit descriptors (depending
235 on the 32/64 bitness of the architecture), and relies on automatic
236 minimum-length padding. It does not use the completion queue
237 consumer index, but instead checks for non-zero status entries.
239 For receive this driver uses type 2/3 receive descriptors. The driver
240 allocates full frame size skbuffs for the Rx ring buffers, so all frames
241 should fit in a single descriptor. The driver does not use the completion
242 queue consumer index, but instead checks for non-zero status entries.
244 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
245 is allocated and the frame is copied to the new skbuff. When the incoming
246 frame is larger, the skbuff is passed directly up the protocol stack.
247 Buffers consumed this way are replaced by newly allocated skbuffs in a later
250 A notable aspect of operation is that unaligned buffers are not permitted by
251 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
252 isn't longword aligned, which may cause problems on some machine
253 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
254 the frame into a new skbuff unconditionally. Copied frames are put into the
255 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
257 IIId. Synchronization
259 The driver runs as two independent, single-threaded flows of control. One
260 is the send-packet routine, which enforces single-threaded use by the
261 dev->tbusy flag. The other thread is the interrupt handler, which is single
262 threaded by the hardware and interrupt handling software.
264 The send packet thread has partial control over the Tx ring and the netif_queue
265 status. If the number of free Tx slots in the ring falls below a certain number
266 (currently hardcoded to 4), it signals the upper layer to stop the queue.
268 The interrupt handler has exclusive control over the Rx ring and records stats
269 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
270 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
271 number of free Tx slow is above the threshold, it signals the upper layer to
278 The Adaptec Starfire manuals, available only from Adaptec.
279 http://www.scyld.com/expert/100mbps.html
280 http://www.scyld.com/expert/NWay.html
284 - StopOnPerr is broken, don't enable
285 - Hardware ethernet padding exposes random data, perform software padding
286 instead (unverified -- works correctly for all the hardware I have)
292 enum chip_capability_flags {CanHaveMII=1, };
298 static struct pci_device_id starfire_pci_tbl[] = {
299 { 0x9004, 0x6915, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_6915 },
302 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
304 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
305 static const struct chip_info {
308 } netdrv_tbl[] __devinitdata = {
309 { "Adaptec Starfire 6915", CanHaveMII },
313 /* Offsets to the device registers.
314 Unlike software-only systems, device drivers interact with complex hardware.
315 It's not useful to define symbolic names for every register bit in the
316 device. The name can only partially document the semantics and make
317 the driver longer and more difficult to read.
318 In general, only the important configuration values or bits changed
319 multiple times should be defined symbolically.
321 enum register_offsets {
322 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
323 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
324 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
325 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
326 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
327 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
328 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
330 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
331 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
332 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
333 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
334 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
335 TxMode=0x55000, VlanType=0x55064,
336 PerfFilterTable=0x56000, HashTable=0x56100,
337 TxGfpMem=0x58000, RxGfpMem=0x5a000,
341 * Bits in the interrupt status/mask registers.
342 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
343 * enables all the interrupt sources that are or'ed into those status bits.
345 enum intr_status_bits {
346 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
347 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
348 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
349 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
350 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
351 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
352 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
353 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
354 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
355 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
356 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
357 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
358 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
359 IntrTxGfp=0x02, IntrPCIPad=0x01,
361 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
362 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
363 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
366 /* Bits in the RxFilterMode register. */
368 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
369 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
370 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
374 /* Bits in the TxMode register */
376 MiiSoftReset=0x8000, MIILoopback=0x4000,
377 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
378 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
381 /* Bits in the TxDescCtrl register. */
383 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
384 TxDescSpace128=0x30, TxDescSpace256=0x40,
385 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
386 TxDescType3=0x03, TxDescType4=0x04,
387 TxNoDMACompletion=0x08,
388 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
389 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
390 TxDMABurstSizeShift=8,
393 /* Bits in the RxDescQCtrl register. */
395 RxBufferLenShift=16, RxMinDescrThreshShift=0,
396 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
397 Rx2048QEntries=0x4000, Rx256QEntries=0,
398 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
399 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
400 RxDescSpace4=0x000, RxDescSpace8=0x100,
401 RxDescSpace16=0x200, RxDescSpace32=0x300,
402 RxDescSpace64=0x400, RxDescSpace128=0x500,
406 /* Bits in the RxDMACtrl register. */
407 enum rx_dmactrl_bits {
408 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
409 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
410 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
411 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
412 RxChecksumRejectTCPOnly=0x01000000,
413 RxCompletionQ2Enable=0x800000,
414 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
415 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
416 RxDMAQ2NonIP=0x400000,
417 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
418 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
422 /* Bits in the RxCompletionAddr register */
424 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
425 RxComplProducerWrEn=0x40,
426 RxComplType0=0x00, RxComplType1=0x10,
427 RxComplType2=0x20, RxComplType3=0x30,
428 RxComplThreshShift=0,
431 /* Bits in the TxCompletionAddr register */
433 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
434 TxComplProducerWrEn=0x40,
435 TxComplIntrStatus=0x20,
436 CommonQueueMode=0x10,
437 TxComplThreshShift=0,
440 /* Bits in the GenCtrl register */
442 RxEnable=0x05, TxEnable=0x0a,
443 RxGFPEnable=0x10, TxGFPEnable=0x20,
446 /* Bits in the IntrTimerCtrl register */
447 enum intr_ctrl_bits {
448 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
449 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
450 IntrLatencyMask=0x1f,
453 /* The Rx and Tx buffer descriptors. */
454 struct starfire_rx_desc {
455 netdrv_addr_t rxaddr;
458 RxDescValid=1, RxDescEndRing=2,
461 /* Completion queue entry. */
462 struct short_rx_done_desc {
463 __le32 status; /* Low 16 bits is length. */
465 struct basic_rx_done_desc {
466 __le32 status; /* Low 16 bits is length. */
470 struct csum_rx_done_desc {
471 __le32 status; /* Low 16 bits is length. */
472 __le16 csum; /* Partial checksum */
475 struct full_rx_done_desc {
476 __le32 status; /* Low 16 bits is length. */
480 __le16 csum; /* partial checksum */
483 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
485 typedef struct full_rx_done_desc rx_done_desc;
486 #define RxComplType RxComplType3
487 #else /* not VLAN_SUPPORT */
488 typedef struct csum_rx_done_desc rx_done_desc;
489 #define RxComplType RxComplType2
490 #endif /* not VLAN_SUPPORT */
493 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
496 /* Type 1 Tx descriptor. */
497 struct starfire_tx_desc_1 {
498 __le32 status; /* Upper bits are status, lower 16 length. */
502 /* Type 2 Tx descriptor. */
503 struct starfire_tx_desc_2 {
504 __le32 status; /* Upper bits are status, lower 16 length. */
510 typedef struct starfire_tx_desc_2 starfire_tx_desc;
511 #define TX_DESC_TYPE TxDescType2
512 #else /* not ADDR_64BITS */
513 typedef struct starfire_tx_desc_1 starfire_tx_desc;
514 #define TX_DESC_TYPE TxDescType1
515 #endif /* not ADDR_64BITS */
516 #define TX_DESC_SPACING TxDescSpaceUnlim
520 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
521 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
523 struct tx_done_desc {
524 __le32 status; /* timestamp, index. */
526 __le32 intrstatus; /* interrupt status */
530 struct rx_ring_info {
534 struct tx_ring_info {
537 unsigned int used_slots;
541 struct netdev_private {
542 /* Descriptor rings first for alignment. */
543 struct starfire_rx_desc *rx_ring;
544 starfire_tx_desc *tx_ring;
545 dma_addr_t rx_ring_dma;
546 dma_addr_t tx_ring_dma;
547 /* The addresses of rx/tx-in-place skbuffs. */
548 struct rx_ring_info rx_info[RX_RING_SIZE];
549 struct tx_ring_info tx_info[TX_RING_SIZE];
550 /* Pointers to completion queues (full pages). */
551 rx_done_desc *rx_done_q;
552 dma_addr_t rx_done_q_dma;
553 unsigned int rx_done;
554 struct tx_done_desc *tx_done_q;
555 dma_addr_t tx_done_q_dma;
556 unsigned int tx_done;
557 struct napi_struct napi;
558 struct net_device *dev;
559 struct net_device_stats stats;
560 struct pci_dev *pci_dev;
562 struct vlan_group *vlgrp;
565 dma_addr_t queue_mem_dma;
566 size_t queue_mem_size;
568 /* Frequently used values: keep some adjacent for cache effect. */
570 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
571 unsigned int cur_tx, dirty_tx, reap_tx;
572 unsigned int rx_buf_sz; /* Based on MTU+slack. */
573 /* These values keep track of the transceiver/media in use. */
574 int speed100; /* Set if speed == 100MBit. */
578 /* MII transceiver section. */
579 struct mii_if_info mii_if; /* MII lib hooks/info */
580 int phy_cnt; /* MII device addresses. */
581 unsigned char phys[PHY_CNT]; /* MII device addresses. */
586 static int mdio_read(struct net_device *dev, int phy_id, int location);
587 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
588 static int netdev_open(struct net_device *dev);
589 static void check_duplex(struct net_device *dev);
590 static void tx_timeout(struct net_device *dev);
591 static void init_ring(struct net_device *dev);
592 static int start_tx(struct sk_buff *skb, struct net_device *dev);
593 static irqreturn_t intr_handler(int irq, void *dev_instance);
594 static void netdev_error(struct net_device *dev, int intr_status);
595 static int __netdev_rx(struct net_device *dev, int *quota);
596 static int netdev_poll(struct napi_struct *napi, int budget);
597 static void refill_rx_ring(struct net_device *dev);
598 static void netdev_error(struct net_device *dev, int intr_status);
599 static void set_rx_mode(struct net_device *dev);
600 static struct net_device_stats *get_stats(struct net_device *dev);
601 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
602 static int netdev_close(struct net_device *dev);
603 static void netdev_media_change(struct net_device *dev);
604 static const struct ethtool_ops ethtool_ops;
608 static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
610 struct netdev_private *np = netdev_priv(dev);
612 spin_lock(&np->lock);
614 printk("%s: Setting vlgrp to %p\n", dev->name, grp);
617 spin_unlock(&np->lock);
620 static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
622 struct netdev_private *np = netdev_priv(dev);
624 spin_lock(&np->lock);
626 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
628 spin_unlock(&np->lock);
631 static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
633 struct netdev_private *np = netdev_priv(dev);
635 spin_lock(&np->lock);
637 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
638 vlan_group_set_device(np->vlgrp, vid, NULL);
640 spin_unlock(&np->lock);
642 #endif /* VLAN_SUPPORT */
645 static int __devinit starfire_init_one(struct pci_dev *pdev,
646 const struct pci_device_id *ent)
648 struct netdev_private *np;
649 int i, irq, option, chip_idx = ent->driver_data;
650 struct net_device *dev;
651 static int card_idx = -1;
654 int drv_flags, io_size;
656 DECLARE_MAC_BUF(mac);
658 /* when built into the kernel, we only print version if device is found */
660 static int printed_version;
661 if (!printed_version++)
667 if (pci_enable_device (pdev))
670 ioaddr = pci_resource_start(pdev, 0);
671 io_size = pci_resource_len(pdev, 0);
672 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
673 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
677 dev = alloc_etherdev(sizeof(*np));
679 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
682 SET_NETDEV_DEV(dev, &pdev->dev);
686 if (pci_request_regions (pdev, DRV_NAME)) {
687 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
688 goto err_out_free_netdev;
691 base = ioremap(ioaddr, io_size);
693 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
694 card_idx, io_size, ioaddr);
695 goto err_out_free_res;
698 pci_set_master(pdev);
700 /* enable MWI -- it vastly improves Rx performance on sparc64 */
701 pci_try_set_mwi(pdev);
704 /* Starfire can do TCP/UDP checksumming */
706 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
707 #endif /* ZEROCOPY */
709 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
710 dev->vlan_rx_register = netdev_vlan_rx_register;
711 dev->vlan_rx_add_vid = netdev_vlan_rx_add_vid;
712 dev->vlan_rx_kill_vid = netdev_vlan_rx_kill_vid;
713 #endif /* VLAN_RX_KILL_VID */
715 dev->features |= NETIF_F_HIGHDMA;
716 #endif /* ADDR_64BITS */
718 /* Serial EEPROM reads are hidden by the hardware. */
719 for (i = 0; i < 6; i++)
720 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
722 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
724 for (i = 0; i < 0x20; i++)
726 (unsigned int)readb(base + EEPROMCtrl + i),
727 i % 16 != 15 ? " " : "\n");
730 /* Issue soft reset */
731 writel(MiiSoftReset, base + TxMode);
733 writel(0, base + TxMode);
735 /* Reset the chip to erase previous misconfiguration. */
736 writel(1, base + PCIDeviceConfig);
738 while (--boguscnt > 0) {
740 if ((readl(base + PCIDeviceConfig) & 1) == 0)
744 printk("%s: chipset reset never completed!\n", dev->name);
745 /* wait a little longer */
748 dev->base_addr = (unsigned long)base;
751 np = netdev_priv(dev);
754 spin_lock_init(&np->lock);
755 pci_set_drvdata(pdev, dev);
759 np->mii_if.dev = dev;
760 np->mii_if.mdio_read = mdio_read;
761 np->mii_if.mdio_write = mdio_write;
762 np->mii_if.phy_id_mask = 0x1f;
763 np->mii_if.reg_num_mask = 0x1f;
765 drv_flags = netdrv_tbl[chip_idx].drv_flags;
767 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
769 option = dev->mem_start;
771 /* The lower four bits are the media type. */
773 np->mii_if.full_duplex = 1;
775 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
776 np->mii_if.full_duplex = 1;
778 if (np->mii_if.full_duplex)
779 np->mii_if.force_media = 1;
781 np->mii_if.force_media = 0;
784 /* timer resolution is 128 * 0.8us */
785 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
786 Timer10X | EnableIntrMasking;
788 if (small_frames > 0) {
789 np->intr_timer_ctrl |= SmallFrameBypass;
790 switch (small_frames) {
792 np->intr_timer_ctrl |= SmallFrame64;
795 np->intr_timer_ctrl |= SmallFrame128;
798 np->intr_timer_ctrl |= SmallFrame256;
801 np->intr_timer_ctrl |= SmallFrame512;
802 if (small_frames > 512)
803 printk("Adjusting small_frames down to 512\n");
808 /* The chip-specific entries in the device structure. */
809 dev->open = &netdev_open;
810 dev->hard_start_xmit = &start_tx;
811 dev->tx_timeout = tx_timeout;
812 dev->watchdog_timeo = TX_TIMEOUT;
813 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
814 dev->stop = &netdev_close;
815 dev->get_stats = &get_stats;
816 dev->set_multicast_list = &set_rx_mode;
817 dev->do_ioctl = &netdev_ioctl;
818 SET_ETHTOOL_OPS(dev, ðtool_ops);
823 if (register_netdev(dev))
824 goto err_out_cleardev;
826 printk(KERN_INFO "%s: %s at %p, %s, IRQ %d.\n",
827 dev->name, netdrv_tbl[chip_idx].name, base,
828 print_mac(mac, dev->dev_addr), irq);
830 if (drv_flags & CanHaveMII) {
831 int phy, phy_idx = 0;
833 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
834 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
837 while (--boguscnt > 0)
838 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
841 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
844 mii_status = mdio_read(dev, phy, MII_BMSR);
845 if (mii_status != 0) {
846 np->phys[phy_idx++] = phy;
847 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
848 printk(KERN_INFO "%s: MII PHY found at address %d, status "
849 "%#4.4x advertising %#4.4x.\n",
850 dev->name, phy, mii_status, np->mii_if.advertising);
851 /* there can be only one PHY on-board */
855 np->phy_cnt = phy_idx;
857 np->mii_if.phy_id = np->phys[0];
859 memset(&np->mii_if, 0, sizeof(np->mii_if));
862 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
863 dev->name, enable_hw_cksum ? "enabled" : "disabled");
867 pci_set_drvdata(pdev, NULL);
870 pci_release_regions (pdev);
877 /* Read the MII Management Data I/O (MDIO) interfaces. */
878 static int mdio_read(struct net_device *dev, int phy_id, int location)
880 struct netdev_private *np = netdev_priv(dev);
881 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
882 int result, boguscnt=1000;
883 /* ??? Should we add a busy-wait here? */
885 result = readl(mdio_addr);
886 while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
889 if ((result & 0xffff) == 0xffff)
891 return result & 0xffff;
895 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
897 struct netdev_private *np = netdev_priv(dev);
898 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
899 writel(value, mdio_addr);
900 /* The busy-wait will occur before a read. */
904 static int netdev_open(struct net_device *dev)
906 struct netdev_private *np = netdev_priv(dev);
907 void __iomem *ioaddr = np->base;
909 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
911 /* Do we ever need to reset the chip??? */
913 retval = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
917 /* Disable the Rx and Tx, and reset the chip. */
918 writel(0, ioaddr + GenCtrl);
919 writel(1, ioaddr + PCIDeviceConfig);
921 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
922 dev->name, dev->irq);
924 /* Allocate the various queues. */
925 if (!np->queue_mem) {
926 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
927 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
928 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
929 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
930 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
931 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
932 if (np->queue_mem == NULL) {
933 free_irq(dev->irq, dev);
937 np->tx_done_q = np->queue_mem;
938 np->tx_done_q_dma = np->queue_mem_dma;
939 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
940 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
941 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
942 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
943 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
944 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
947 /* Start with no carrier, it gets adjusted later */
948 netif_carrier_off(dev);
950 /* Set the size of the Rx buffers. */
951 writel((np->rx_buf_sz << RxBufferLenShift) |
952 (0 << RxMinDescrThreshShift) |
953 RxPrefetchMode | RxVariableQ |
955 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
957 ioaddr + RxDescQCtrl);
959 /* Set up the Rx DMA controller. */
960 writel(RxChecksumIgnore |
961 (0 << RxEarlyIntThreshShift) |
962 (6 << RxHighPrioThreshShift) |
963 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
966 /* Set Tx descriptor */
967 writel((2 << TxHiPriFIFOThreshShift) |
968 (0 << TxPadLenShift) |
969 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
970 TX_DESC_Q_ADDR_SIZE |
971 TX_DESC_SPACING | TX_DESC_TYPE,
972 ioaddr + TxDescCtrl);
974 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
975 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
976 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
977 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
978 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
980 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
981 writel(np->rx_done_q_dma |
983 (0 << RxComplThreshShift),
984 ioaddr + RxCompletionAddr);
987 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
989 /* Fill both the Tx SA register and the Rx perfect filter. */
990 for (i = 0; i < 6; i++)
991 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
992 /* The first entry is special because it bypasses the VLAN filter.
994 writew(0, ioaddr + PerfFilterTable);
995 writew(0, ioaddr + PerfFilterTable + 4);
996 writew(0, ioaddr + PerfFilterTable + 8);
997 for (i = 1; i < 16; i++) {
998 __be16 *eaddrs = (__be16 *)dev->dev_addr;
999 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1000 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
1001 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
1002 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1005 /* Initialize other registers. */
1006 /* Configure the PCI bus bursts and FIFO thresholds. */
1007 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1008 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1010 writel(np->tx_mode, ioaddr + TxMode);
1011 np->tx_threshold = 4;
1012 writel(np->tx_threshold, ioaddr + TxThreshold);
1014 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1016 napi_enable(&np->napi);
1018 netif_start_queue(dev);
1021 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1024 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1027 /* Enable GPIO interrupts on link change */
1028 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1030 /* Set the interrupt mask */
1031 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1032 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1033 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1034 ioaddr + IntrEnable);
1035 /* Enable PCI interrupts. */
1036 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1037 ioaddr + PCIDeviceConfig);
1040 /* Set VLAN type to 802.1q */
1041 writel(ETH_P_8021Q, ioaddr + VlanType);
1042 #endif /* VLAN_SUPPORT */
1044 /* Load Rx/Tx firmware into the frame processors */
1045 for (i = 0; i < FIRMWARE_RX_SIZE * 2; i++)
1046 writel(firmware_rx[i], ioaddr + RxGfpMem + i * 4);
1047 for (i = 0; i < FIRMWARE_TX_SIZE * 2; i++)
1048 writel(firmware_tx[i], ioaddr + TxGfpMem + i * 4);
1049 if (enable_hw_cksum)
1050 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1051 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1053 /* Enable the Rx and Tx units only. */
1054 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1057 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1064 static void check_duplex(struct net_device *dev)
1066 struct netdev_private *np = netdev_priv(dev);
1068 int silly_count = 1000;
1070 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1071 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1073 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1076 printk("%s: MII reset failed!\n", dev->name);
1080 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1082 if (!np->mii_if.force_media) {
1083 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1085 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1087 reg0 |= BMCR_SPEED100;
1088 if (np->mii_if.full_duplex)
1089 reg0 |= BMCR_FULLDPLX;
1090 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1092 np->speed100 ? "100" : "10",
1093 np->mii_if.full_duplex ? "full" : "half");
1095 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1099 static void tx_timeout(struct net_device *dev)
1101 struct netdev_private *np = netdev_priv(dev);
1102 void __iomem *ioaddr = np->base;
1105 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1106 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1108 /* Perhaps we should reinitialize the hardware here. */
1111 * Stop and restart the interface.
1112 * Cheat and increase the debug level temporarily.
1120 /* Trigger an immediate transmit demand. */
1122 dev->trans_start = jiffies;
1123 np->stats.tx_errors++;
1124 netif_wake_queue(dev);
1128 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1129 static void init_ring(struct net_device *dev)
1131 struct netdev_private *np = netdev_priv(dev);
1134 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1135 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1137 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1139 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1140 for (i = 0; i < RX_RING_SIZE; i++) {
1141 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1142 np->rx_info[i].skb = skb;
1145 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1146 skb->dev = dev; /* Mark as being used by this device. */
1147 /* Grrr, we cannot offset to correctly align the IP header. */
1148 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1150 writew(i - 1, np->base + RxDescQIdx);
1151 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1153 /* Clear the remainder of the Rx buffer ring. */
1154 for ( ; i < RX_RING_SIZE; i++) {
1155 np->rx_ring[i].rxaddr = 0;
1156 np->rx_info[i].skb = NULL;
1157 np->rx_info[i].mapping = 0;
1159 /* Mark the last entry as wrapping the ring. */
1160 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1162 /* Clear the completion rings. */
1163 for (i = 0; i < DONE_Q_SIZE; i++) {
1164 np->rx_done_q[i].status = 0;
1165 np->tx_done_q[i].status = 0;
1168 for (i = 0; i < TX_RING_SIZE; i++)
1169 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1175 static int start_tx(struct sk_buff *skb, struct net_device *dev)
1177 struct netdev_private *np = netdev_priv(dev);
1183 * be cautious here, wrapping the queue has weird semantics
1184 * and we may not have enough slots even when it seems we do.
1186 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1187 netif_stop_queue(dev);
1191 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1192 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1193 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1194 return NETDEV_TX_OK;
1196 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1198 entry = np->cur_tx % TX_RING_SIZE;
1199 for (i = 0; i < skb_num_frags(skb); i++) {
1204 np->tx_info[entry].skb = skb;
1206 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1207 status |= TxRingWrap;
1211 status |= TxDescIntr;
1214 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1216 np->stats.tx_compressed++;
1218 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1220 np->tx_info[entry].mapping =
1221 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1223 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1224 status |= this_frag->size;
1225 np->tx_info[entry].mapping =
1226 pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE);
1229 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1230 np->tx_ring[entry].status = cpu_to_le32(status);
1232 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1233 dev->name, np->cur_tx, np->dirty_tx,
1236 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1237 np->cur_tx += np->tx_info[entry].used_slots;
1240 np->tx_info[entry].used_slots = 1;
1241 np->cur_tx += np->tx_info[entry].used_slots;
1244 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1245 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1249 /* Non-x86: explicitly flush descriptor cache lines here. */
1250 /* Ensure all descriptors are written back before the transmit is
1254 /* Update the producer index. */
1255 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1257 /* 4 is arbitrary, but should be ok */
1258 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1259 netif_stop_queue(dev);
1261 dev->trans_start = jiffies;
1267 /* The interrupt handler does all of the Rx thread work and cleans up
1268 after the Tx thread. */
1269 static irqreturn_t intr_handler(int irq, void *dev_instance)
1271 struct net_device *dev = dev_instance;
1272 struct netdev_private *np = netdev_priv(dev);
1273 void __iomem *ioaddr = np->base;
1274 int boguscnt = max_interrupt_work;
1280 u32 intr_status = readl(ioaddr + IntrClear);
1283 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1284 dev->name, intr_status);
1286 if (intr_status == 0 || intr_status == (u32) -1)
1291 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1294 if (likely(netif_rx_schedule_prep(dev, &np->napi))) {
1295 __netif_rx_schedule(dev, &np->napi);
1296 enable = readl(ioaddr + IntrEnable);
1297 enable &= ~(IntrRxDone | IntrRxEmpty);
1298 writel(enable, ioaddr + IntrEnable);
1299 /* flush PCI posting buffers */
1300 readl(ioaddr + IntrEnable);
1302 /* Paranoia check */
1303 enable = readl(ioaddr + IntrEnable);
1304 if (enable & (IntrRxDone | IntrRxEmpty)) {
1306 "%s: interrupt while in poll!\n",
1308 enable &= ~(IntrRxDone | IntrRxEmpty);
1309 writel(enable, ioaddr + IntrEnable);
1314 /* Scavenge the skbuff list based on the Tx-done queue.
1315 There are redundant checks here that may be cleaned up
1316 after the driver has proven to be reliable. */
1317 consumer = readl(ioaddr + TxConsumerIdx);
1319 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1320 dev->name, consumer);
1322 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1324 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1325 dev->name, np->dirty_tx, np->tx_done, tx_status);
1326 if ((tx_status & 0xe0000000) == 0xa0000000) {
1327 np->stats.tx_packets++;
1328 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1329 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1330 struct sk_buff *skb = np->tx_info[entry].skb;
1331 np->tx_info[entry].skb = NULL;
1332 pci_unmap_single(np->pci_dev,
1333 np->tx_info[entry].mapping,
1334 skb_first_frag_len(skb),
1336 np->tx_info[entry].mapping = 0;
1337 np->dirty_tx += np->tx_info[entry].used_slots;
1338 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1341 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1342 pci_unmap_single(np->pci_dev,
1343 np->tx_info[entry].mapping,
1344 skb_shinfo(skb)->frags[i].size,
1351 dev_kfree_skb_irq(skb);
1353 np->tx_done_q[np->tx_done].status = 0;
1354 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1356 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1358 if (netif_queue_stopped(dev) &&
1359 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1360 /* The ring is no longer full, wake the queue. */
1361 netif_wake_queue(dev);
1364 /* Stats overflow */
1365 if (intr_status & IntrStatsMax)
1368 /* Media change interrupt. */
1369 if (intr_status & IntrLinkChange)
1370 netdev_media_change(dev);
1372 /* Abnormal error summary/uncommon events handlers. */
1373 if (intr_status & IntrAbnormalSummary)
1374 netdev_error(dev, intr_status);
1376 if (--boguscnt < 0) {
1378 printk(KERN_WARNING "%s: Too much work at interrupt, "
1380 dev->name, intr_status);
1386 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1387 dev->name, (int) readl(ioaddr + IntrStatus));
1388 return IRQ_RETVAL(handled);
1393 * This routine is logically part of the interrupt/poll handler, but separated
1394 * for clarity and better register allocation.
1396 static int __netdev_rx(struct net_device *dev, int *quota)
1398 struct netdev_private *np = netdev_priv(dev);
1402 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1403 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1404 struct sk_buff *skb;
1407 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1410 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1411 if (!(desc_status & RxOK)) {
1412 /* There was an error. */
1414 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1415 np->stats.rx_errors++;
1416 if (desc_status & RxFIFOErr)
1417 np->stats.rx_fifo_errors++;
1421 if (*quota <= 0) { /* out of rx quota */
1427 pkt_len = desc_status; /* Implicitly Truncate */
1428 entry = (desc_status >> 16) & 0x7ff;
1431 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1432 /* Check if the packet is long enough to accept without copying
1433 to a minimally-sized skbuff. */
1434 if (pkt_len < rx_copybreak
1435 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1436 skb_reserve(skb, 2); /* 16 byte align the IP header */
1437 pci_dma_sync_single_for_cpu(np->pci_dev,
1438 np->rx_info[entry].mapping,
1439 pkt_len, PCI_DMA_FROMDEVICE);
1440 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1441 pci_dma_sync_single_for_device(np->pci_dev,
1442 np->rx_info[entry].mapping,
1443 pkt_len, PCI_DMA_FROMDEVICE);
1444 skb_put(skb, pkt_len);
1446 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1447 skb = np->rx_info[entry].skb;
1448 skb_put(skb, pkt_len);
1449 np->rx_info[entry].skb = NULL;
1450 np->rx_info[entry].mapping = 0;
1452 #ifndef final_version /* Remove after testing. */
1453 /* You will want this info for the initial debug. */
1455 printk(KERN_DEBUG " Rx data " MAC_FMT " " MAC_FMT
1457 skb->data[0], skb->data[1], skb->data[2],
1458 skb->data[3], skb->data[4], skb->data[5],
1459 skb->data[6], skb->data[7], skb->data[8],
1460 skb->data[9], skb->data[10], skb->data[11],
1461 skb->data[12], skb->data[13]);
1465 skb->protocol = eth_type_trans(skb, dev);
1468 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1470 if (le16_to_cpu(desc->status2) & 0x0100) {
1471 skb->ip_summed = CHECKSUM_UNNECESSARY;
1472 np->stats.rx_compressed++;
1475 * This feature doesn't seem to be working, at least
1476 * with the two firmware versions I have. If the GFP sees
1477 * an IP fragment, it either ignores it completely, or reports
1478 * "bad checksum" on it.
1480 * Maybe I missed something -- corrections are welcome.
1481 * Until then, the printk stays. :-) -Ion
1483 else if (le16_to_cpu(desc->status2) & 0x0040) {
1484 skb->ip_summed = CHECKSUM_COMPLETE;
1485 skb->csum = le16_to_cpu(desc->csum);
1486 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1489 if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) {
1490 u16 vlid = le16_to_cpu(desc->vlanid);
1493 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1497 * vlan_hwaccel_rx expects a packet with the VLAN tag
1500 vlan_hwaccel_rx(skb, np->vlgrp, vlid);
1502 #endif /* VLAN_SUPPORT */
1503 netif_receive_skb(skb);
1504 dev->last_rx = jiffies;
1505 np->stats.rx_packets++;
1510 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1513 if (*quota == 0) { /* out of rx quota */
1517 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1520 refill_rx_ring(dev);
1522 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1523 retcode, np->rx_done, desc_status);
1527 static int netdev_poll(struct napi_struct *napi, int budget)
1529 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1530 struct net_device *dev = np->dev;
1532 void __iomem *ioaddr = np->base;
1536 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1538 if (__netdev_rx(dev, "a))
1541 intr_status = readl(ioaddr + IntrStatus);
1542 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1544 netif_rx_complete(dev, napi);
1545 intr_status = readl(ioaddr + IntrEnable);
1546 intr_status |= IntrRxDone | IntrRxEmpty;
1547 writel(intr_status, ioaddr + IntrEnable);
1551 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1554 /* Restart Rx engine if stopped. */
1555 return budget - quota;
1558 static void refill_rx_ring(struct net_device *dev)
1560 struct netdev_private *np = netdev_priv(dev);
1561 struct sk_buff *skb;
1564 /* Refill the Rx ring buffers. */
1565 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1566 entry = np->dirty_rx % RX_RING_SIZE;
1567 if (np->rx_info[entry].skb == NULL) {
1568 skb = dev_alloc_skb(np->rx_buf_sz);
1569 np->rx_info[entry].skb = skb;
1571 break; /* Better luck next round. */
1572 np->rx_info[entry].mapping =
1573 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1574 skb->dev = dev; /* Mark as being used by this device. */
1575 np->rx_ring[entry].rxaddr =
1576 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1578 if (entry == RX_RING_SIZE - 1)
1579 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1582 writew(entry, np->base + RxDescQIdx);
1586 static void netdev_media_change(struct net_device *dev)
1588 struct netdev_private *np = netdev_priv(dev);
1589 void __iomem *ioaddr = np->base;
1590 u16 reg0, reg1, reg4, reg5;
1592 u32 new_intr_timer_ctrl;
1594 /* reset status first */
1595 mdio_read(dev, np->phys[0], MII_BMCR);
1596 mdio_read(dev, np->phys[0], MII_BMSR);
1598 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1599 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1601 if (reg1 & BMSR_LSTATUS) {
1603 if (reg0 & BMCR_ANENABLE) {
1604 /* autonegotiation is enabled */
1605 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1606 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1607 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1609 np->mii_if.full_duplex = 1;
1610 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1612 np->mii_if.full_duplex = 0;
1613 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1615 np->mii_if.full_duplex = 1;
1618 np->mii_if.full_duplex = 0;
1621 /* autonegotiation is disabled */
1622 if (reg0 & BMCR_SPEED100)
1626 if (reg0 & BMCR_FULLDPLX)
1627 np->mii_if.full_duplex = 1;
1629 np->mii_if.full_duplex = 0;
1631 netif_carrier_on(dev);
1632 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1634 np->speed100 ? "100" : "10",
1635 np->mii_if.full_duplex ? "full" : "half");
1637 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1638 if (np->mii_if.full_duplex)
1639 new_tx_mode |= FullDuplex;
1640 if (np->tx_mode != new_tx_mode) {
1641 np->tx_mode = new_tx_mode;
1642 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1644 writel(np->tx_mode, ioaddr + TxMode);
1647 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1649 new_intr_timer_ctrl |= Timer10X;
1650 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1651 np->intr_timer_ctrl = new_intr_timer_ctrl;
1652 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1655 netif_carrier_off(dev);
1656 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1661 static void netdev_error(struct net_device *dev, int intr_status)
1663 struct netdev_private *np = netdev_priv(dev);
1665 /* Came close to underrunning the Tx FIFO, increase threshold. */
1666 if (intr_status & IntrTxDataLow) {
1667 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1668 writel(++np->tx_threshold, np->base + TxThreshold);
1669 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1670 dev->name, np->tx_threshold * 16);
1672 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1674 if (intr_status & IntrRxGFPDead) {
1675 np->stats.rx_fifo_errors++;
1676 np->stats.rx_errors++;
1678 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1679 np->stats.tx_fifo_errors++;
1680 np->stats.tx_errors++;
1682 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1683 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1684 dev->name, intr_status);
1688 static struct net_device_stats *get_stats(struct net_device *dev)
1690 struct netdev_private *np = netdev_priv(dev);
1691 void __iomem *ioaddr = np->base;
1693 /* This adapter architecture needs no SMP locks. */
1694 np->stats.tx_bytes = readl(ioaddr + 0x57010);
1695 np->stats.rx_bytes = readl(ioaddr + 0x57044);
1696 np->stats.tx_packets = readl(ioaddr + 0x57000);
1697 np->stats.tx_aborted_errors =
1698 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1699 np->stats.tx_window_errors = readl(ioaddr + 0x57018);
1700 np->stats.collisions =
1701 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1703 /* The chip only need report frame silently dropped. */
1704 np->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1705 writew(0, ioaddr + RxDMAStatus);
1706 np->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1707 np->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1708 np->stats.rx_length_errors = readl(ioaddr + 0x57058);
1709 np->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1715 static void set_rx_mode(struct net_device *dev)
1717 struct netdev_private *np = netdev_priv(dev);
1718 void __iomem *ioaddr = np->base;
1719 u32 rx_mode = MinVLANPrio;
1720 struct dev_mc_list *mclist;
1724 rx_mode |= VlanMode;
1727 void __iomem *filter_addr = ioaddr + HashTable + 8;
1728 for (i = 0; i < VLAN_VID_MASK; i++) {
1729 if (vlan_group_get_device(np->vlgrp, i)) {
1730 if (vlan_count >= 32)
1732 writew(i, filter_addr);
1737 if (i == VLAN_VID_MASK) {
1738 rx_mode |= PerfectFilterVlan;
1739 while (vlan_count < 32) {
1740 writew(0, filter_addr);
1746 #endif /* VLAN_SUPPORT */
1748 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1749 rx_mode |= AcceptAll;
1750 } else if ((dev->mc_count > multicast_filter_limit)
1751 || (dev->flags & IFF_ALLMULTI)) {
1752 /* Too many to match, or accept all multicasts. */
1753 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1754 } else if (dev->mc_count <= 14) {
1755 /* Use the 16 element perfect filter, skip first two entries. */
1756 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1758 for (i = 2, mclist = dev->mc_list; mclist && i < dev->mc_count + 2;
1759 i++, mclist = mclist->next) {
1760 eaddrs = (__be16 *)mclist->dmi_addr;
1761 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1762 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1763 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1765 eaddrs = (__be16 *)dev->dev_addr;
1767 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1768 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1769 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1771 rx_mode |= AcceptBroadcast|PerfectFilter;
1773 /* Must use a multicast hash table. */
1774 void __iomem *filter_addr;
1776 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1778 memset(mc_filter, 0, sizeof(mc_filter));
1779 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1780 i++, mclist = mclist->next) {
1781 /* The chip uses the upper 9 CRC bits
1782 as index into the hash table */
1783 int bit_nr = ether_crc_le(ETH_ALEN, mclist->dmi_addr) >> 23;
1784 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1786 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1788 /* Clear the perfect filter list, skip first two entries. */
1789 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1790 eaddrs = (__be16 *)dev->dev_addr;
1791 for (i = 2; i < 16; i++) {
1792 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1793 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1794 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1796 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1797 writew(mc_filter[i], filter_addr);
1798 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1800 writel(rx_mode, ioaddr + RxFilterMode);
1803 static int check_if_running(struct net_device *dev)
1805 if (!netif_running(dev))
1810 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1812 struct netdev_private *np = netdev_priv(dev);
1813 strcpy(info->driver, DRV_NAME);
1814 strcpy(info->version, DRV_VERSION);
1815 strcpy(info->bus_info, pci_name(np->pci_dev));
1818 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1820 struct netdev_private *np = netdev_priv(dev);
1821 spin_lock_irq(&np->lock);
1822 mii_ethtool_gset(&np->mii_if, ecmd);
1823 spin_unlock_irq(&np->lock);
1827 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1829 struct netdev_private *np = netdev_priv(dev);
1831 spin_lock_irq(&np->lock);
1832 res = mii_ethtool_sset(&np->mii_if, ecmd);
1833 spin_unlock_irq(&np->lock);
1838 static int nway_reset(struct net_device *dev)
1840 struct netdev_private *np = netdev_priv(dev);
1841 return mii_nway_restart(&np->mii_if);
1844 static u32 get_link(struct net_device *dev)
1846 struct netdev_private *np = netdev_priv(dev);
1847 return mii_link_ok(&np->mii_if);
1850 static u32 get_msglevel(struct net_device *dev)
1855 static void set_msglevel(struct net_device *dev, u32 val)
1860 static const struct ethtool_ops ethtool_ops = {
1861 .begin = check_if_running,
1862 .get_drvinfo = get_drvinfo,
1863 .get_settings = get_settings,
1864 .set_settings = set_settings,
1865 .nway_reset = nway_reset,
1866 .get_link = get_link,
1867 .get_msglevel = get_msglevel,
1868 .set_msglevel = set_msglevel,
1871 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1873 struct netdev_private *np = netdev_priv(dev);
1874 struct mii_ioctl_data *data = if_mii(rq);
1877 if (!netif_running(dev))
1880 spin_lock_irq(&np->lock);
1881 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1882 spin_unlock_irq(&np->lock);
1884 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1890 static int netdev_close(struct net_device *dev)
1892 struct netdev_private *np = netdev_priv(dev);
1893 void __iomem *ioaddr = np->base;
1896 netif_stop_queue(dev);
1898 napi_disable(&np->napi);
1901 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1902 dev->name, (int) readl(ioaddr + IntrStatus));
1903 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1904 dev->name, np->cur_tx, np->dirty_tx,
1905 np->cur_rx, np->dirty_rx);
1908 /* Disable interrupts by clearing the interrupt mask. */
1909 writel(0, ioaddr + IntrEnable);
1911 /* Stop the chip's Tx and Rx processes. */
1912 writel(0, ioaddr + GenCtrl);
1913 readl(ioaddr + GenCtrl);
1916 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1917 (long long) np->tx_ring_dma);
1918 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1919 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1920 i, le32_to_cpu(np->tx_ring[i].status),
1921 (long long) dma_to_cpu(np->tx_ring[i].addr),
1922 le32_to_cpu(np->tx_done_q[i].status));
1923 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1924 (long long) np->rx_ring_dma, np->rx_done_q);
1926 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1927 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1928 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1932 free_irq(dev->irq, dev);
1934 /* Free all the skbuffs in the Rx queue. */
1935 for (i = 0; i < RX_RING_SIZE; i++) {
1936 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1937 if (np->rx_info[i].skb != NULL) {
1938 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1939 dev_kfree_skb(np->rx_info[i].skb);
1941 np->rx_info[i].skb = NULL;
1942 np->rx_info[i].mapping = 0;
1944 for (i = 0; i < TX_RING_SIZE; i++) {
1945 struct sk_buff *skb = np->tx_info[i].skb;
1948 pci_unmap_single(np->pci_dev,
1949 np->tx_info[i].mapping,
1950 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1951 np->tx_info[i].mapping = 0;
1953 np->tx_info[i].skb = NULL;
1960 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1962 struct net_device *dev = pci_get_drvdata(pdev);
1964 if (netif_running(dev)) {
1965 netif_device_detach(dev);
1969 pci_save_state(pdev);
1970 pci_set_power_state(pdev, pci_choose_state(pdev,state));
1975 static int starfire_resume(struct pci_dev *pdev)
1977 struct net_device *dev = pci_get_drvdata(pdev);
1979 pci_set_power_state(pdev, PCI_D0);
1980 pci_restore_state(pdev);
1982 if (netif_running(dev)) {
1984 netif_device_attach(dev);
1989 #endif /* CONFIG_PM */
1992 static void __devexit starfire_remove_one (struct pci_dev *pdev)
1994 struct net_device *dev = pci_get_drvdata(pdev);
1995 struct netdev_private *np = netdev_priv(dev);
1999 unregister_netdev(dev);
2002 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2005 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2006 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2007 pci_disable_device(pdev);
2010 pci_release_regions(pdev);
2012 pci_set_drvdata(pdev, NULL);
2013 free_netdev(dev); /* Will also free np!! */
2017 static struct pci_driver starfire_driver = {
2019 .probe = starfire_init_one,
2020 .remove = __devexit_p(starfire_remove_one),
2022 .suspend = starfire_suspend,
2023 .resume = starfire_resume,
2024 #endif /* CONFIG_PM */
2025 .id_table = starfire_pci_tbl,
2029 static int __init starfire_init (void)
2031 /* when a module, this is printed whether or not devices are found in probe */
2035 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2038 /* we can do this test only at run-time... sigh */
2039 if (sizeof(dma_addr_t) != sizeof(netdrv_addr_t)) {
2040 printk("This driver has dma_addr_t issues, please send email to maintainer\n");
2044 return pci_register_driver(&starfire_driver);
2048 static void __exit starfire_cleanup (void)
2050 pci_unregister_driver (&starfire_driver);
2054 module_init(starfire_init);
2055 module_exit(starfire_cleanup);