[PATCH] USB: usbtouchscreen: unified USB touchscreen driver
[linux-2.6] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/smp.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ctype.h>
19 #include <linux/cpufreq.h>
20 #include <linux/sysctl.h>
21 #include <linux/types.h>
22 #include <linux/fs.h>
23 #include <linux/sysfs.h>
24 #include <linux/sched.h>
25 #include <linux/kmod.h>
26 #include <linux/workqueue.h>
27 #include <linux/jiffies.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/percpu.h>
30 #include <linux/mutex.h>
31
32 /*
33  * dbs is used in this file as a shortform for demandbased switching
34  * It helps to keep variable names smaller, simpler
35  */
36
37 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
38 #define MIN_FREQUENCY_UP_THRESHOLD              (11)
39 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
40
41 /*
42  * The polling frequency of this governor depends on the capability of
43  * the processor. Default polling frequency is 1000 times the transition
44  * latency of the processor. The governor will work on any processor with
45  * transition latency <= 10mS, using appropriate sampling
46  * rate.
47  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48  * this governor will not work.
49  * All times here are in uS.
50  */
51 static unsigned int def_sampling_rate;
52 #define MIN_SAMPLING_RATE_RATIO                 (2)
53 /* for correct statistics, we need at least 10 ticks between each measure */
54 #define MIN_STAT_SAMPLING_RATE                  (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55 #define MIN_SAMPLING_RATE                       (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
56 #define MAX_SAMPLING_RATE                       (500 * def_sampling_rate)
57 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER    (1000)
58 #define DEF_SAMPLING_DOWN_FACTOR                (1)
59 #define MAX_SAMPLING_DOWN_FACTOR                (10)
60 #define TRANSITION_LATENCY_LIMIT                (10 * 1000)
61
62 static void do_dbs_timer(void *data);
63
64 struct cpu_dbs_info_s {
65         struct cpufreq_policy *cur_policy;
66         unsigned int prev_cpu_idle_up;
67         unsigned int prev_cpu_idle_down;
68         unsigned int enable;
69 };
70 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
71
72 static unsigned int dbs_enable; /* number of CPUs using this policy */
73
74 static DEFINE_MUTEX (dbs_mutex);
75 static DECLARE_WORK     (dbs_work, do_dbs_timer, NULL);
76
77 struct dbs_tuners {
78         unsigned int sampling_rate;
79         unsigned int sampling_down_factor;
80         unsigned int up_threshold;
81         unsigned int ignore_nice;
82 };
83
84 static struct dbs_tuners dbs_tuners_ins = {
85         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
86         .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
87         .ignore_nice = 0,
88 };
89
90 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
91 {
92         return  kstat_cpu(cpu).cpustat.idle +
93                 kstat_cpu(cpu).cpustat.iowait +
94                 ( dbs_tuners_ins.ignore_nice ?
95                   kstat_cpu(cpu).cpustat.nice :
96                   0);
97 }
98
99 /************************** sysfs interface ************************/
100 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
101 {
102         return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
103 }
104
105 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
106 {
107         return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
108 }
109
110 #define define_one_ro(_name)            \
111 static struct freq_attr _name =         \
112 __ATTR(_name, 0444, show_##_name, NULL)
113
114 define_one_ro(sampling_rate_max);
115 define_one_ro(sampling_rate_min);
116
117 /* cpufreq_ondemand Governor Tunables */
118 #define show_one(file_name, object)                                     \
119 static ssize_t show_##file_name                                         \
120 (struct cpufreq_policy *unused, char *buf)                              \
121 {                                                                       \
122         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
123 }
124 show_one(sampling_rate, sampling_rate);
125 show_one(sampling_down_factor, sampling_down_factor);
126 show_one(up_threshold, up_threshold);
127 show_one(ignore_nice_load, ignore_nice);
128
129 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
130                 const char *buf, size_t count)
131 {
132         unsigned int input;
133         int ret;
134         ret = sscanf (buf, "%u", &input);
135         if (ret != 1 )
136                 return -EINVAL;
137
138         if (input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
139                 return -EINVAL;
140
141         mutex_lock(&dbs_mutex);
142         dbs_tuners_ins.sampling_down_factor = input;
143         mutex_unlock(&dbs_mutex);
144
145         return count;
146 }
147
148 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
149                 const char *buf, size_t count)
150 {
151         unsigned int input;
152         int ret;
153         ret = sscanf (buf, "%u", &input);
154
155         mutex_lock(&dbs_mutex);
156         if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
157                 mutex_unlock(&dbs_mutex);
158                 return -EINVAL;
159         }
160
161         dbs_tuners_ins.sampling_rate = input;
162         mutex_unlock(&dbs_mutex);
163
164         return count;
165 }
166
167 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
168                 const char *buf, size_t count)
169 {
170         unsigned int input;
171         int ret;
172         ret = sscanf (buf, "%u", &input);
173
174         mutex_lock(&dbs_mutex);
175         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
176                         input < MIN_FREQUENCY_UP_THRESHOLD) {
177                 mutex_unlock(&dbs_mutex);
178                 return -EINVAL;
179         }
180
181         dbs_tuners_ins.up_threshold = input;
182         mutex_unlock(&dbs_mutex);
183
184         return count;
185 }
186
187 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
188                 const char *buf, size_t count)
189 {
190         unsigned int input;
191         int ret;
192
193         unsigned int j;
194
195         ret = sscanf (buf, "%u", &input);
196         if ( ret != 1 )
197                 return -EINVAL;
198
199         if ( input > 1 )
200                 input = 1;
201
202         mutex_lock(&dbs_mutex);
203         if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
204                 mutex_unlock(&dbs_mutex);
205                 return count;
206         }
207         dbs_tuners_ins.ignore_nice = input;
208
209         /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
210         for_each_online_cpu(j) {
211                 struct cpu_dbs_info_s *j_dbs_info;
212                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
213                 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
214                 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
215         }
216         mutex_unlock(&dbs_mutex);
217
218         return count;
219 }
220
221 #define define_one_rw(_name) \
222 static struct freq_attr _name = \
223 __ATTR(_name, 0644, show_##_name, store_##_name)
224
225 define_one_rw(sampling_rate);
226 define_one_rw(sampling_down_factor);
227 define_one_rw(up_threshold);
228 define_one_rw(ignore_nice_load);
229
230 static struct attribute * dbs_attributes[] = {
231         &sampling_rate_max.attr,
232         &sampling_rate_min.attr,
233         &sampling_rate.attr,
234         &sampling_down_factor.attr,
235         &up_threshold.attr,
236         &ignore_nice_load.attr,
237         NULL
238 };
239
240 static struct attribute_group dbs_attr_group = {
241         .attrs = dbs_attributes,
242         .name = "ondemand",
243 };
244
245 /************************** sysfs end ************************/
246
247 static void dbs_check_cpu(int cpu)
248 {
249         unsigned int idle_ticks, up_idle_ticks, total_ticks;
250         unsigned int freq_next;
251         unsigned int freq_down_sampling_rate;
252         static int down_skip[NR_CPUS];
253         struct cpu_dbs_info_s *this_dbs_info;
254
255         struct cpufreq_policy *policy;
256         unsigned int j;
257
258         this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
259         if (!this_dbs_info->enable)
260                 return;
261
262         policy = this_dbs_info->cur_policy;
263         /*
264          * Every sampling_rate, we check, if current idle time is less
265          * than 20% (default), then we try to increase frequency
266          * Every sampling_rate*sampling_down_factor, we look for a the lowest
267          * frequency which can sustain the load while keeping idle time over
268          * 30%. If such a frequency exist, we try to decrease to this frequency.
269          *
270          * Any frequency increase takes it to the maximum frequency.
271          * Frequency reduction happens at minimum steps of
272          * 5% (default) of current frequency
273          */
274
275         /* Check for frequency increase */
276         idle_ticks = UINT_MAX;
277         for_each_cpu_mask(j, policy->cpus) {
278                 unsigned int tmp_idle_ticks, total_idle_ticks;
279                 struct cpu_dbs_info_s *j_dbs_info;
280
281                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
282                 total_idle_ticks = get_cpu_idle_time(j);
283                 tmp_idle_ticks = total_idle_ticks -
284                         j_dbs_info->prev_cpu_idle_up;
285                 j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
286
287                 if (tmp_idle_ticks < idle_ticks)
288                         idle_ticks = tmp_idle_ticks;
289         }
290
291         /* Scale idle ticks by 100 and compare with up and down ticks */
292         idle_ticks *= 100;
293         up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
294                         usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
295
296         if (idle_ticks < up_idle_ticks) {
297                 down_skip[cpu] = 0;
298                 for_each_cpu_mask(j, policy->cpus) {
299                         struct cpu_dbs_info_s *j_dbs_info;
300
301                         j_dbs_info = &per_cpu(cpu_dbs_info, j);
302                         j_dbs_info->prev_cpu_idle_down =
303                                         j_dbs_info->prev_cpu_idle_up;
304                 }
305                 /* if we are already at full speed then break out early */
306                 if (policy->cur == policy->max)
307                         return;
308
309                 __cpufreq_driver_target(policy, policy->max,
310                         CPUFREQ_RELATION_H);
311                 return;
312         }
313
314         /* Check for frequency decrease */
315         down_skip[cpu]++;
316         if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
317                 return;
318
319         idle_ticks = UINT_MAX;
320         for_each_cpu_mask(j, policy->cpus) {
321                 unsigned int tmp_idle_ticks, total_idle_ticks;
322                 struct cpu_dbs_info_s *j_dbs_info;
323
324                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
325                 /* Check for frequency decrease */
326                 total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
327                 tmp_idle_ticks = total_idle_ticks -
328                         j_dbs_info->prev_cpu_idle_down;
329                 j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
330
331                 if (tmp_idle_ticks < idle_ticks)
332                         idle_ticks = tmp_idle_ticks;
333         }
334
335         down_skip[cpu] = 0;
336         /* if we cannot reduce the frequency anymore, break out early */
337         if (policy->cur == policy->min)
338                 return;
339
340         /* Compute how many ticks there are between two measurements */
341         freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
342                 dbs_tuners_ins.sampling_down_factor;
343         total_ticks = usecs_to_jiffies(freq_down_sampling_rate);
344
345         /*
346          * The optimal frequency is the frequency that is the lowest that
347          * can support the current CPU usage without triggering the up
348          * policy. To be safe, we focus 10 points under the threshold.
349          */
350         freq_next = ((total_ticks - idle_ticks) * 100) / total_ticks;
351         freq_next = (freq_next * policy->cur) /
352                         (dbs_tuners_ins.up_threshold - 10);
353
354         if (freq_next < policy->min)
355                 freq_next = policy->min;
356
357         if (freq_next <= ((policy->cur * 95) / 100))
358                 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
359 }
360
361 static void do_dbs_timer(void *data)
362 {
363         int i;
364         mutex_lock(&dbs_mutex);
365         for_each_online_cpu(i)
366                 dbs_check_cpu(i);
367         schedule_delayed_work(&dbs_work,
368                         usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
369         mutex_unlock(&dbs_mutex);
370 }
371
372 static inline void dbs_timer_init(void)
373 {
374         INIT_WORK(&dbs_work, do_dbs_timer, NULL);
375         schedule_delayed_work(&dbs_work,
376                         usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
377         return;
378 }
379
380 static inline void dbs_timer_exit(void)
381 {
382         cancel_delayed_work(&dbs_work);
383         return;
384 }
385
386 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
387                                    unsigned int event)
388 {
389         unsigned int cpu = policy->cpu;
390         struct cpu_dbs_info_s *this_dbs_info;
391         unsigned int j;
392
393         this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
394
395         switch (event) {
396         case CPUFREQ_GOV_START:
397                 if ((!cpu_online(cpu)) ||
398                     (!policy->cur))
399                         return -EINVAL;
400
401                 if (policy->cpuinfo.transition_latency >
402                                 (TRANSITION_LATENCY_LIMIT * 1000)) {
403                         printk(KERN_WARNING "ondemand governor failed to load "
404                                "due to too long transition latency\n");
405                         return -EINVAL;
406                 }
407                 if (this_dbs_info->enable) /* Already enabled */
408                         break;
409
410                 mutex_lock(&dbs_mutex);
411                 for_each_cpu_mask(j, policy->cpus) {
412                         struct cpu_dbs_info_s *j_dbs_info;
413                         j_dbs_info = &per_cpu(cpu_dbs_info, j);
414                         j_dbs_info->cur_policy = policy;
415
416                         j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
417                         j_dbs_info->prev_cpu_idle_down
418                                 = j_dbs_info->prev_cpu_idle_up;
419                 }
420                 this_dbs_info->enable = 1;
421                 sysfs_create_group(&policy->kobj, &dbs_attr_group);
422                 dbs_enable++;
423                 /*
424                  * Start the timerschedule work, when this governor
425                  * is used for first time
426                  */
427                 if (dbs_enable == 1) {
428                         unsigned int latency;
429                         /* policy latency is in nS. Convert it to uS first */
430                         latency = policy->cpuinfo.transition_latency / 1000;
431                         if (latency == 0)
432                                 latency = 1;
433
434                         def_sampling_rate = latency *
435                                         DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
436
437                         if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
438                                 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
439
440                         dbs_tuners_ins.sampling_rate = def_sampling_rate;
441                         dbs_timer_init();
442                 }
443
444                 mutex_unlock(&dbs_mutex);
445                 break;
446
447         case CPUFREQ_GOV_STOP:
448                 mutex_lock(&dbs_mutex);
449                 this_dbs_info->enable = 0;
450                 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
451                 dbs_enable--;
452                 /*
453                  * Stop the timerschedule work, when this governor
454                  * is used for first time
455                  */
456                 if (dbs_enable == 0)
457                         dbs_timer_exit();
458
459                 mutex_unlock(&dbs_mutex);
460
461                 break;
462
463         case CPUFREQ_GOV_LIMITS:
464                 mutex_lock(&dbs_mutex);
465                 if (policy->max < this_dbs_info->cur_policy->cur)
466                         __cpufreq_driver_target(
467                                         this_dbs_info->cur_policy,
468                                         policy->max, CPUFREQ_RELATION_H);
469                 else if (policy->min > this_dbs_info->cur_policy->cur)
470                         __cpufreq_driver_target(
471                                         this_dbs_info->cur_policy,
472                                         policy->min, CPUFREQ_RELATION_L);
473                 mutex_unlock(&dbs_mutex);
474                 break;
475         }
476         return 0;
477 }
478
479 static struct cpufreq_governor cpufreq_gov_dbs = {
480         .name           = "ondemand",
481         .governor       = cpufreq_governor_dbs,
482         .owner          = THIS_MODULE,
483 };
484
485 static int __init cpufreq_gov_dbs_init(void)
486 {
487         return cpufreq_register_governor(&cpufreq_gov_dbs);
488 }
489
490 static void __exit cpufreq_gov_dbs_exit(void)
491 {
492         /* Make sure that the scheduled work is indeed not running */
493         flush_scheduled_work();
494
495         cpufreq_unregister_governor(&cpufreq_gov_dbs);
496 }
497
498
499 MODULE_AUTHOR ("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
500 MODULE_DESCRIPTION ("'cpufreq_ondemand' - A dynamic cpufreq governor for "
501                 "Low Latency Frequency Transition capable processors");
502 MODULE_LICENSE ("GPL");
503
504 module_init(cpufreq_gov_dbs_init);
505 module_exit(cpufreq_gov_dbs_exit);