1 #include <linux/init.h>
4 #include <linux/spinlock.h>
6 #include <linux/interrupt.h>
7 #include <linux/module.h>
9 #include <asm/tlbflush.h>
10 #include <asm/mmu_context.h>
12 #include <asm/uv/uv.h>
14 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
18 * Smarter SMP flushing macros.
21 * These mean you can really definitely utterly forget about
22 * writing to user space from interrupts. (Its not allowed anyway).
24 * Optimizations Manfred Spraul <manfred@colorfullife.com>
26 * More scalable flush, from Andi Kleen
28 * To avoid global state use 8 different call vectors.
29 * Each CPU uses a specific vector to trigger flushes on other
30 * CPUs. Depending on the received vector the target CPUs look into
31 * the right array slot for the flush data.
33 * With more than 8 CPUs they are hashed to the 8 available
34 * vectors. The limited global vector space forces us to this right now.
35 * In future when interrupts are split into per CPU domains this could be
36 * fixed, at the cost of triggering multiple IPIs in some cases.
39 union smp_flush_state {
41 struct mm_struct *flush_mm;
42 unsigned long flush_va;
43 spinlock_t tlbstate_lock;
44 DECLARE_BITMAP(flush_cpumask, NR_CPUS);
46 char pad[CONFIG_X86_INTERNODE_CACHE_BYTES];
47 } ____cacheline_internodealigned_in_smp;
49 /* State is put into the per CPU data section, but padded
50 to a full cache line because other CPUs can access it and we don't
51 want false sharing in the per cpu data segment. */
52 static union smp_flush_state flush_state[NUM_INVALIDATE_TLB_VECTORS];
55 * We cannot call mmdrop() because we are in interrupt context,
56 * instead update mm->cpu_vm_mask.
58 void leave_mm(int cpu)
60 if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
62 cpu_clear(cpu, percpu_read(cpu_tlbstate.active_mm)->cpu_vm_mask);
63 load_cr3(swapper_pg_dir);
65 EXPORT_SYMBOL_GPL(leave_mm);
69 * The flush IPI assumes that a thread switch happens in this order:
70 * [cpu0: the cpu that switches]
71 * 1) switch_mm() either 1a) or 1b)
72 * 1a) thread switch to a different mm
73 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
74 * Stop ipi delivery for the old mm. This is not synchronized with
75 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
76 * for the wrong mm, and in the worst case we perform a superfluous
78 * 1a2) set cpu mmu_state to TLBSTATE_OK
79 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
80 * was in lazy tlb mode.
81 * 1a3) update cpu active_mm
82 * Now cpu0 accepts tlb flushes for the new mm.
83 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
84 * Now the other cpus will send tlb flush ipis.
86 * 1b) thread switch without mm change
87 * cpu active_mm is correct, cpu0 already handles
89 * 1b1) set cpu mmu_state to TLBSTATE_OK
90 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
91 * Atomically set the bit [other cpus will start sending flush ipis],
93 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
94 * 2) switch %%esp, ie current
96 * The interrupt must handle 2 special cases:
97 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
98 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
99 * runs in kernel space, the cpu could load tlb entries for user space
102 * The good news is that cpu mmu_state is local to each cpu, no
103 * write/read ordering problems.
109 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
110 * 2) Leave the mm if we are in the lazy tlb mode.
112 * Interrupts are disabled.
116 * FIXME: use of asmlinkage is not consistent. On x86_64 it's noop
117 * but still used for documentation purpose but the usage is slightly
118 * inconsistent. On x86_32, asmlinkage is regparm(0) but interrupt
119 * entry calls in with the first parameter in %eax. Maybe define
125 void smp_invalidate_interrupt(struct pt_regs *regs)
129 union smp_flush_state *f;
131 cpu = smp_processor_id();
133 * orig_rax contains the negated interrupt vector.
134 * Use that to determine where the sender put the data.
136 sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START;
137 f = &flush_state[sender];
139 if (!cpumask_test_cpu(cpu, to_cpumask(f->flush_cpumask)))
142 * This was a BUG() but until someone can quote me the
143 * line from the intel manual that guarantees an IPI to
144 * multiple CPUs is retried _only_ on the erroring CPUs
145 * its staying as a return
150 if (f->flush_mm == percpu_read(cpu_tlbstate.active_mm)) {
151 if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
152 if (f->flush_va == TLB_FLUSH_ALL)
155 __flush_tlb_one(f->flush_va);
161 smp_mb__before_clear_bit();
162 cpumask_clear_cpu(cpu, to_cpumask(f->flush_cpumask));
163 smp_mb__after_clear_bit();
164 inc_irq_stat(irq_tlb_count);
167 static void flush_tlb_others_ipi(const struct cpumask *cpumask,
168 struct mm_struct *mm, unsigned long va)
171 union smp_flush_state *f;
173 /* Caller has disabled preemption */
174 sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS;
175 f = &flush_state[sender];
178 * Could avoid this lock when
179 * num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is
180 * probably not worth checking this for a cache-hot lock.
182 spin_lock(&f->tlbstate_lock);
186 cpumask_andnot(to_cpumask(f->flush_cpumask),
187 cpumask, cpumask_of(smp_processor_id()));
190 * Make the above memory operations globally visible before
195 * We have to send the IPI only to
198 apic->send_IPI_mask(to_cpumask(f->flush_cpumask),
199 INVALIDATE_TLB_VECTOR_START + sender);
201 while (!cpumask_empty(to_cpumask(f->flush_cpumask)))
206 spin_unlock(&f->tlbstate_lock);
209 void native_flush_tlb_others(const struct cpumask *cpumask,
210 struct mm_struct *mm, unsigned long va)
212 if (is_uv_system()) {
216 cpumask = uv_flush_tlb_others(cpumask, mm, va, cpu);
218 flush_tlb_others_ipi(cpumask, mm, va);
222 flush_tlb_others_ipi(cpumask, mm, va);
225 static int __cpuinit init_smp_flush(void)
229 for (i = 0; i < ARRAY_SIZE(flush_state); i++)
230 spin_lock_init(&flush_state[i].tlbstate_lock);
234 core_initcall(init_smp_flush);
236 void flush_tlb_current_task(void)
238 struct mm_struct *mm = current->mm;
243 if (cpumask_any_but(&mm->cpu_vm_mask, smp_processor_id()) < nr_cpu_ids)
244 flush_tlb_others(&mm->cpu_vm_mask, mm, TLB_FLUSH_ALL);
248 void flush_tlb_mm(struct mm_struct *mm)
252 if (current->active_mm == mm) {
256 leave_mm(smp_processor_id());
258 if (cpumask_any_but(&mm->cpu_vm_mask, smp_processor_id()) < nr_cpu_ids)
259 flush_tlb_others(&mm->cpu_vm_mask, mm, TLB_FLUSH_ALL);
264 void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
266 struct mm_struct *mm = vma->vm_mm;
270 if (current->active_mm == mm) {
274 leave_mm(smp_processor_id());
277 if (cpumask_any_but(&mm->cpu_vm_mask, smp_processor_id()) < nr_cpu_ids)
278 flush_tlb_others(&mm->cpu_vm_mask, mm, va);
283 static void do_flush_tlb_all(void *info)
285 unsigned long cpu = smp_processor_id();
288 if (percpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
292 void flush_tlb_all(void)
294 on_each_cpu(do_flush_tlb_all, NULL, 1);